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Abstract

Dual-camera smartphones suffer from geometric and photometric inconsistencies
during zoom transitions, primarily due to disparities in intrinsic/extrinsic parame-
ters and divergent image processing pipelines between the two cameras. Existing
interpolation methods struggle to effectively address this issue, constrained by
the lack of ground-truth datasets and motion ambiguity in dynamic scenarios. To
overcome these challenges, we propose OmniZoom, a universal plug-and-play
paradigm for cross-device smooth zoom interpolation. Specifically, we present
a novel cross-device virtual data generation method utilizing 3D Gaussian Splat-
ting. This method tackles data scarcity by decoupling geometric features via
spatial transition modeling and correcting photometric variations with dynamic
color adaptation. It is further enhanced by cross-domain consistency learning for
device-agnostic semantic alignment. Additionally, we introduce a plug-and-play
3D Trajectory Progress Ratio (3D-TPR) framework that surmounts 2D spatial limi-
tations. As components of our framework, a texture-focus strategy is introduced
for high-frequency detail preservation, incorporating mask penalty constraints to
suppress interpolation artifacts. Our pipeline exhibits broad compatibility with
diverse interpolation methods and achieves good performance across multiple
public benchmarks. Real-world evaluations on various smartphone platforms also
reveal significant quality improvements after finetuning on our synthetic data,
which underscores the robustness and practical effectiveness of our approach for
cross-device zoom applications.

1 Introduction

In recent years, dual-camera systems [8, 9, 13] have become increasingly prevalent in modern
smartphones, offering advanced imaging capabilities. Among these functionalities, zooming[2, 58]
plays a crucial role by bridging the wide-angle and main cameras, allowing users to perceive changes
in subject distance and scale without physical movements. However, performing optical zoom [10, 28]
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introduces significant geometric misalignment and photometric inconsistencies between images.
Geometric misalignment arises from disparities in the intrinsic and extrinsic parameters of the
dual-camera system [46, 57]. In contrast, photometric inconsistencies are caused by algorithmic
divergences (e.g., white balance, color correction, and gamma correction) in Image Signal Processing
pipelines (ISP) [36, 26]. These differences lead to parallax, color shifts, and exposure mismatches
between the paired images, severely affecting the smoothness and realism of zoom transitions.

Notably, the transition between fixed-focus dual-camera views can be naturally formulated as an
intermediate frame synthesis task. Frame interpolation (FI) [17, 25, 27, 53, 60, 47, 3] is a promising
technique in this context, as it aims to synthesize temporally consistent intermediate frames between
given inputs. In this work, we define zoom interpolation (ZI) as a specialized sub-task of FI, where
the objective is to synthesize an intermediate frame that is both geometrically and photometrically
consistent, given two zoomed images captured from a dual-camera system. While ZI shares the core
goal of FI in generating intermediate content, it also presents several unique challenges that hinder
the direct application of conventional FI methods.

First, unlike FI tasks with dense temporal supervision, ZI lacks suitable ground-truth intermediate
frames. This is because deploying a continuous-zoom[2, 58] capture setup across dual-camera
hardware is impractical in real-world mobile scenarios, making it difficult to train or finetune models
in a supervised manner. Second, ZI suffers from severe motion ambiguity. Traditional FI approaches
rely on fixed timestep maps [29, 3] to model pixel displacement, assuming smooth linear motion.
However, zoom transitions often introduce complex, nonlinear object motion and parallax effects.
These distort assumptions in flow estimation, leading to motion blur and structural artifacts.

To address the unique challenges of ZI, we propose OmniZoom, a universal plug-and-play paradigm
for cross-device smooth zoom interpolation. This paradigm comprises two key components specif-
ically designed for this task: (1) Generation of cross-device smooth zoom virtual dataset. To
overcome the lack of ground-truth intermediate frames in ZI, we build upon ZoomGS [50] and adopt
3D Gaussian Splatting (3DGS) [23] to synthesize high-quality data. While ZoomGS is limited to
single-device scenarios, our method further resolves cross-device geometric and photometric incon-
sistencies. We enhance this process with spatial transition modeling and dynamic color adaptation
to decouple geometric and photometric differences between devices. Furthermore, a cross-domain
consistency learning scheme ensures the generated virtual dataset maintains semantic alignment
and photometric fidelity across different camera platforms. (2) 3D-TPR framework. To tackle
spatial deficiencies and velocity ambiguity during interpolation, we propose a plug-and-play 3D-TPR
module that encodes 3D motion-aware correspondence across frames. In addition, we incorporate a
texture-focus strategy to preserve high-frequency details and a mask uncertainty penalty to suppress
ambiguous predictions. These components work jointly to improve perceptual sharpness and mitigate
artifacts during zoom synthesis.

Our pipeline is specifically designed for ZI and exhibits strong plug-and-play adaptability across
a variety of FI backbones and mobile devices. By integrating the 3D-TPR framework into various
existing architectures, we observe remarkable fidelity improvements and superior subjective quality on
multiple public benchmarks. To further validate its real-world applicability, we construct test datasets
captured from various smartphones. Finetuning FI models on our ZI dataset leads to substantial
quality gains across all models on the real-world benchmark. Results demonstrate the generalizability
and robustness of our approach in addressing zoom-related challenges across diverse FI models and
mobile devices, providing a unified solution for achieving smooth and perceptually coherent zoom
transitions in dual-camera systems.

In conclusion, our key contributions are as follows:

• We propose a novel pipeline for constructing a cross-device ZI dataset, which models
geometric and photometric inconsistencies across devices. The resulting dataset enables
high-quality, device-agnostic supervision, filling the gap in ground-truth data for ZI task.

• We introduce a novel ZI framework, 3D-TPR, which enhances spatial modeling via disparity-
aware encoding, complemented by a texture-focus strategy and a mask penalty for better
perceptual quality and robustness.

• We propose OmniZoom, a universal plug-and-play paradigm for cross-device smooth zoom
interpolation that seamlessly integrates with FI networks. It consistently delivers high-quality
ZI results across diverse FI models and smartphone devices in real-world scenarios.
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2 Related works
2.1 Frame interpolation methods
Frame Interpolation plays a critical role in high-resolution video synthesis, slow-motion rendering,
editing, and AR/VR applications [30, 33, 16]. Recent advances have explored temporal mapping
strategies to improve interpolation quality. For instance, Interpany[60] replaces fixed timestep
maps with 2D flow-based distance-aware index. However, its reliance on 2D optical flow limits
robustness under complex 3D motion and large depth variation. We propose a 3D geometric-aware
encoding mechanism that captures spatial coherence more effectively. Unlike methods such as [17]
that suppress artifacts utilizing deep hierarchical features, our design handles mask uncertainty
without additional architectural complexity. Despite advancements of recent learning-based FI
models [3, 53, 4, 27, 19, 17, 34, 25], restoring fine textures under large motion remains challenging.
We tackle this via a texture-focus training strategy that reweights reconstruction loss based on gradient
cues, offering a lightweight alternative to traditional perceptual losses [20] or multi-scale losses [44].

2.2 3D reconstruction
3D reconstruction has evolved from classical geometry-based methods such as Structure-from-Motion
(SfM) [38] and Multi-View Stereo (MVS) [14], which enable scene recovery from unstructured images
to deep learning approaches that enhance robustness and generalization [12, 61, 43]. Neural Radiance
Fields (NeRF) [31] and its variants (e.g., Mip-NeRF 360 [6]) achieve high-fidelity view synthesis but
at high computational cost. Recently, 3D Gaussian Splatting (3DGS) [23] has emerged as an efficient
alternative with explicit point-based representation and real-time rendering capability. ZoomGS [50]
leverages 3DGS to create virtual cameras between dual-camera pairs for interpolation supervision, but
its device-specific calibration limits generalization. In this work, we extend 3DGS and ZoomGS into a
universal, cross-device virtual data generation pipeline, jointly addressing geometric and photometric
inconsistencies to support consistent and smooth zoom synthesis across diverse mobile platforms.

3 Method
In this section, we first present a pipeline based on 3DGS [23] for constructing a cross-device
smooth zoom virtual dataset. This dataset enables the generation of high-quality virtual images
that are not limited to a specific camera module. Building upon this foundation, we propose the
3D-TPR framework, which enhances temporal consistency, preserves fine details, and improves
spatial reliability during interpolation. The overall pipeline is illustrated in Figure 1(a).

3.1 Generation of cross-device smooth zoom virtual dataset

ZoomGS [50] utilizes 3DGS [23] to synthesize virtual 3D camera models Mv between the main
camera Mm and wide-angle camera Mw, facilitating the generation of pseudo-supervised training
images Ĩ via:

Ĩ = R(M,K,P), (1)

where R denotes the 3DGS rendering process [23], and K, P represent the intrinsic and extrinsic
parameters of the corresponding cameras. However, the dataset generated by ZoomGS is device-
dependent and lacks generalizability across different smartphone platforms. To overcome this
limitation, we extend the ZoomGS pipeline to construct cross-device ZI datasets applicable to arbitrary
smartphone configurations. As shown in Figure 1(b), we introduce a spatial transition modeling
module and a color adaptation strategy that decouple the geometric and photometric characteristics of
individual camera modules. Furthermore, we propose a cross-domain consistency learning approach
to enforce semantic alignment and visual coherence across devices and environments.

Spatial transition modeling. For each scene, we capture N zoom image pairs comprising wide-angle
images {Inw}Nn=1 and main images {Inm}Nn=1. These images are then processed using COLMAP [38]
to calibrate their intrinsic parameters {Knw}Nn=1, {Knm}Nn=1 and extrinsic parameters {Pnw}Nn=1,
{Pnm}Nn=1. For each pair, we generate M camera poses, including the two original cameras and
M−2 interpolated virtual views in between. To achieve smooth spatial transitions, we interpolate
both intrinsic and extrinsic parameters between the two real cameras. For the intrinsic parameters
Kvi , we perform linear interpolations [15]:

Kvi = (1− i− 1

M − 1
)⊙Kw +

i− 1

M − 1
⊙Km, (2)
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Figure 1: Overview of our proposed OmniZoom. (a) Plug-and-play integration pipeline for cross-
device ZI. (b) Dual-camera ZI dataset generation via spatial-color calibration and cross-domain
optimization. (c) Construction of similarity map in the 3D-TPR encoding module.

while the extrinsic parameters Pvi are interpolated in Euclidean space [21, 5]:

Pvi = Pw ⊙ exp

(
i− 1

M − 1
⊙ log

(
Pm
Pw

))
, (3)

where i ∈ 1, 2, . . . ,M−1. This spatial transition module enables continuous and geometrically
coherent virtual viewpoints by interpolating between COLMAP-estimated camera poses. It models
zoom motion purely from relative transformations, without relying on any device-specific parameters.

Color adaptation strategy. To handle photometric inconsistencies across heterogeneous devices,
we introduce a dynamic color adaptation mechanism that operates at the level of individual 3D
Gaussians. Specifically, we represent each camera as a 3DGS model M composed of a set of 3D
Gaussians. Each Gaussian is parameterized by its center position x, color c, anisotropic covariance Σ
(indicating its spatial extent), and opacity α [23]. To account for photometric shifts between devices,
we assign each camera a learnable embedding ϕ (e.g., ϕw = 1 for wide-angle and ϕm = 0 for main
camera), and interpolate the virtual camera embedding ϕvi following Equation 2. A lightweight
neural network, ColorNet C, then predicts a per-Gaussian color offset based on both the geometric
and appearance attributes:

∆c = C(ϕ, x, c,Σ, α). (4)

This offset is applied to each Gaussian, resulting in a view-specific virtual model M̃vi with updated
color values {x, c+∆c,Σ, α}. This learned photometric correction is continuous and device-
agnostic, enabling robust color alignment across diverse camera modules. Further architectural details
and ablation studies of ColorNet are provided in the Appendix A.1.
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Cross-domain consistency learning approach. To ensure semantic and visual consistency across
devices, we introduce a cross-domain consistency learning strategy. During joint optimization of the
color adaptation network C, the rendered images Ĩw and Ĩm are supervised by their corresponding
ground truth image Iw and Im via a reconstruction loss:

Lreal = (1− λ)L1(Ĩreal, Ireal) + λLSSIM (Ĩreal, Ireal), (5)

where real ∈ {m,w}, and L1, LSSIM denote the ℓ1 loss and SSIM loss [49], respectively. We
follow the default hyperparameters from 3DGS and set λ = 0.2. However, relying solely on low-level
pixel reconstruction is insufficient to ensure perceptual consistency across domains. To enhance
semantic structure and texture realism, we introduce two additional feature-space constraints. We
propose a semantic consistency loss Lcdc based on a pre-trained lightweight feature extractor F [37]:

Lcdc = ||F(Ĩvi)−F(Ireal)||1, (6)

Additionally, to preserve texture consistency across domains, we incorporate a texture consistency
loss Ltexture, computed using a VGG-based texture encoder Ttexture [39]:

Ltexture = ||Ttexture(Ĩvi)− Ttexture(Ireal)||2 (7)

The final objective for domain-consistent virtual image generation is given by:

Ltotal = Lreal + Lcdc + Ltexture (8)

3.2 3D-TPR framework

Traditional FI models represent the interpolation time t using a fixed timestep map that is concatenated
with the input frames {I0, I1}. However, this static encoding lacks adaptability to scene content
and motion dynamics. As illustrated in Figure 1(a), our 3D-TPR framework replaces the fixed
timestep map with a pixel-wise similarity map computed using 3D-TPR encoding, which captures 3D
geometric relationships between the input views. In addition, we introduce a texture-focus strategy
and a mask-based uncertainty penalty to provide auxiliary supervision.

3D-TPR encoding. As shown in Figure 1(c), {I0, I1, It} serves as the input to the core 3D-TPR en-
coding module. Following InterpAny [60], we use RAFT [42] to estimate 2D pixel-wise optical flows
{V xy-plane

0→t , V xy-plane
0→1 }. We compute the corresponding backward flows {V xy-plane

t→0 , V xy-plane
1→0 }

using an inverse warp module W−1(·):

V xy-plane
t→0 = W−1(V xy-plane

0→t ), V xy-plane
1→0 = W−1(V xy-plane

0→1 ). (9)

Concurrently, we employ an efficient network Lite-Mono [54] to predict monocular disparity maps
{Disp0, Dispt, Disp1} from the input frames {I0, It, I1}. The predicted disparities {Dispt, Disp1}
are then warped to the reference view I0 using the backward flows via a simple warp operation W (·),
yielding the warped disparities {Dispwarpt , Dispwarp1 }:

Dispwarpt = W (Dispt, V
xy-plane
t→0 ), Dispwarp1 = W (Disp1, V

xy-plane
1→0 ). (10)

We then compute the disparity residuals {∆D0→t,∆D0→1} by measuring the differences between
the warped disparity maps {Dispwarpt , Dispwarp1 } and the reference disparity map Disp0:

∆D0→t = ∥Dispwarpt −Disp0∥ψ, ∆D0→1 = ∥Dispwarp1 −Disp0∥ψ, (11)

where ∥·∥ψ denotes a robust error norm. These components jointly yield the disparity variation vector
V arz = ∆D0→t/∆D0→1, which reflects the disparity differential ratio of the target frame It. We
hypothesize that this progress-ratio-like scalar can serve as a learned timestep prior, replacing fixed
interpolation index and enabling better temporal alignment under non-uniform motion. Consequently,
we fuse the disparity residual ∆D0→t and the planar motion vector V xy-plane

0→t into a unified 3D motion
field ∆V xyz

0→t via a cross-domain aggregation module A(·). This multimodal fusion is symmetrically
extended to the temporal span 0 → 1. Each spatial location (i, j, k) ∈ R3 in 3D motion fields is
defined as:

(∆V xyz
0→t)

i,j,k = A(∆D0→t, V
xy-plane
0→t ), (∆V xyz

0→1)
i,j,k = A(∆D0→1, V

xy-plane
0→1 ). (12)

The trajectory progress similarity at (i, j, k) is then computed via cosine similarity:

Sim(i, j, k) =
∆V xyz

0→t(i, j, k) ·∆V xyz
0→1(i, j, k)

∥∆V xyz
0→t(i, j, k)∥ · ∥∆V xyz

0→1(i, j, k)∥
. (13)
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This formulation effectively decouples perspective projection effects from true 3D motion, addressing
a key limitation of conventional 2D optical flow methods while preserving temporal coherence across
interpolated frames.

Gradient-coupled texture-focus training strategy. To mitigate the common tendency of FI networks
to oversmooth high-frequency content [52], we introduce a texture-focus reweighting scheme. We
identify texture regions in the ground-truth frame It using a multi-scale, kernel-based detector T :

M = T (It) ∈ {0, 1}H×W , (14)

where H and W denote the height and width of It. To enhance texture mask robustness via
conventional detection [59], we adopt the Average Local Pixel Difference (ALPD) metric. Specifically,
local and global texture metrics are computed as:

vALPD =
1

P

P∑
i=1

|gi − ḡ|, vglobal =
w

Np

Np∑
j=1

|gj − ḡglobal|, (15)

where gi is the intensity of the i-th local pixel (i = 1, . . . , P ), ḡ is their mean, and Np is the
pixel count in It. Scalar w serves as a sensitivity coefficient. A pixel is classified as textured if
vALPD > vglobal. We then define a reweighted loss using this texture mask:

Ltexture-focus =
1

H ×W

∑
x,y

w(x, y) · ρ(Ît(x, y)− It(x, y)), w(x, y) = 1 + λM(x, y), (16)

where λ controls the emphasis on textured areas and ρ(·) denotes the Charbonnier loss. Ît(x, y) and
It(x, y) indicate the predicted and ground-truth frames, respectively. This formulation encourages
more accurate reconstruction of real high-frequency details.

Mask uncertainty penalty limitations. Modern FI systems typically synthesize intermediate frames
by fusing two consecutive inputs I0 and I1 using a dual-branch formulation:

F(i) = F
(i)
0 ⊙M(i) + F

(i)
1 ⊙ (1−M(i)), (17)

where F(i)
0 and F

(i)
1 is the i-th scale features of the two input frames, ⊙ is element-wise multiplication,

and M(i) ∈ [0, 1]Hi×Wi is a learnable mask indicating the per-pixel dominance of each source. We
posit that under ideal conditions where M(i) should converge to binary values (0 or 1) for confident
fusion, M(i) around 0.5 often leads to ghosting or blur in synthetic frames. To address this, we
introduce an uncertainty-aware regularization term applied to each mask level during training:

L(i)
mask = λi ·

1

H ×W

∑
p

[
4 ·M(i)

p (1−M(i)
p )

]γ
, 0 < λ1 < λ2 < · · · < λS , (18)

where p traverses all pixel positions, γ ∈ (0, 1] controls the penalty growth rate, and λi(i =
1, 2, · · · , S) is i-th scale-specific weight. Lower-resolution scales are allowed to retain higher
uncertainty to better handle large motion and occlusion, while higher-resolution scales are encouraged
to produce more confident, near-binary decisions by assigning larger λi. Additional formulation
details are provided in Appendix A.4.

4 Experiments
4.1 Implementation

Datasets for virtual camera generation. We capture zoom image pairs from HuaweiPura70Ultra
and RedmiK50Ultra [50] across 132 real-world scenes (79 indoor, 53 outdoor), covering diverse
environments and illumination conditions. Based on Section 3.1, we generate 205 virtual sequences
(16 frames each) for our ZI dataset. For ZI dataset construction details and representative samples,
please refer to Appendix A.2 and A.3. We compare our ZI dataset with ZoomGS and 3DGS in terms
of supervision quality and generalization ability for real-world ZI. Visual comparisons and finetune
results are provided in Appendix A.5.

Similarity map encoding computation. During training, t = Sim(i, j, k), ∀(i, j, k). Sim(i, j, k)
is derived from ground-truth frames using RAFT and Lite-Mono (see Eq 13). During inference, the
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Figure 2: Sample triplets from our ZI dataset, each showing the wide-angle Iw, the synthetic
intermediate frame Iv , and the main camera image Im, for two devices: Huawei and Redmi.

ground-truth frame is not accessible, and the exact similarity map cannot be computed. Following
the strategy used in prior work such as InterpAny [60], it is sufficient to provide a t = fixed −
timestep map in the same manner as conventional time-indexing methods. The semantics of this
indexing map have shifted from an uncertain timestep map to a more deterministic motion hint.
Physically, this encourages the model to move each object at constant speeds along their trajectories.
In practice, this constant-speed assumption serves as a valid approximation for smooth zoom scenarios
commonly found in mobile photography.

Training configuration. For virtual camera generation, we adopt the Adam optimizer [24] in a
two-stage scheme. We first train the Gaussian model Mw for 5k iterations using the learning rate
from 3DGS [23]. Then, joint optimization is performed for 30k iterations on both Mw and the
ColorNet, with the learning rate decaying from 1e-3 to 1e-6 after 20k steps. Our 3D-TPR framework
is integrated into RIFE [17], IFRNet [25], EMAVFI [53], and AMT [27]. Each model is initially
trained on the Vimeo-90K [52] septuplet dataset (91,701 sequences at 448×256 resolution) using its
default hyperparameters. We then finetune them on our ZI dataset. All experiments are implemented
by PyTorch [35] on hardware devices equipped with 40 GB of memory.

Evaluation configuration. We evaluate performance and generalization on two types of datasets.
For benchmarks with ground-truth, including Vimeo90K, Inter4K [41], and UCF101 [40], we use
full-reference image quality metrics: PSNR [18], SSIM [49], and LPIPS [55]. For real-world
evaluation, we collect zoom image pairs from four smartphone platforms: HuaweiPura70Ultra,
iPhone16ProMax, OPPOFindX8Ultra, and RedmiK50Ultra[50]. Since ground truth is unavailable,
we adopt no-reference metrics including NIQE [32], PI [1], CLIP-IQA [45], MUSIQ [22] and
FLOLPIPS [11]. For all comparisons, the 2D baseline refers to the distance indexing paradigm [60].
For real-world deployment without geometric priors, the model uses a uniform map as motion
guidance when inference. Real-world dataset details are provided in the Appendix A.7.

4.2 Ablation studies
To assess the effectiveness and compatibility of each component in our 3D-TPR framework, we
perform a controlled ablation study on EMA-VFI in Table 1. The 2D framework [60] serves as the
baseline. We evaluate four configurations: (1) 3D-t-m, which applies only the 3D-TPR encoding; (2)
3D-m, which integrates the texture-focus strategy; (3) 3D-t, which incorporates the mask penalty
constraint; and (4) 3D, the full model with all components enabled.

Although improvements on pixel-centric metrics (PSNR and SSIM) appear modest, we argue that in
most practical ZI scenarios, the objective is not to produce pixel-aligned frames, but to synthesize
perceptually plausible intermediate frames. Pixel-centric metrics are relatively insensitive to
common ZI artifacts such as blur and ghosting [56], which our design explicitly targets by resolving
velocity ambiguity. As such, pixel-centric metrics are less informative for perceptual assessment.
While the improvements on pixel-centric metrics (PSNR and SSIM) appear numerically modest,
we emphasize that in practical Zoom Interpolation (ZI) scenarios, the objective is not to reproduce
pixel-aligned frames but to synthesize perceptually plausible intermediate frames. Moreover,
pixel-centric measures are inherently insensitive to blur and ghosting artifacts—the dominant
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Table 1: Ablation study of the 3D-TPR framework. Bold values indicate the best results. Each
component contributes incremental gains, and the full model yields the best performance.

Method PSNR ↑ SSIM ↑ LPIPS ↓ PI ↓ MUSIQ ↑ FLOLPIPS ↓
2D 24.73 0.851 0.081 5.071 55.968 0.128
3D-t-m 24.78 0.852 0.081 5.041 56.615 0.119
3D-m 24.74 0.852 0.084 5.022 57.362 0.113
3D-t 24.80 0.853 0.081 4.934 56.946 0.116
3D (full) 24.86 0.853 0.080 4.802 58.725 0.091

Table 2: Comparing the impact of optical flow on Vimeo90K.

Benchmarks Metrics IFRNet AMT

1x 2x 4x 8x 1x 2x 4x 8x

Vimeo90k

PSNR↑ 27.21 27.21 26.01 25.01 27.25 27.22 26.01 24.94
SSIM↑ 0.901 0.901 0.867 0.847 0.902 0.902 0.849 0.832
LPIPS↓ 0.070 0.074 0.085 0.094 0.083 0.084 0.106 0.127

degradations caused by velocity ambiguity, which our framework is explicitly designed to mitigate.
Consequently, these metrics are less indicative of perceptual fidelity.

In contrast, perceptual metrics such as PI, MUSIQ, and FLOLPIPS reveal consistent and significant
improvements across all enhanced variants. Each component contributes distinct and complementary
benefits: 3D-TPR encoding improves motion consistency (lower FLOLPIPS), texture-focus strategy
enhances high-frequency details (higher MUSIQ), and mask uncertainty penalty suppresses occlusion
artifacts (lower PI). When combined, the full model yield the best overall performance, confirming
that our framework effectively enhances perceptual quality and motion coherence in ZI. Furthermore,
when high-quality disparity supervision is available (Appendix A.10), the framework achieves notably
larger gains, indicating its strong potential to exploit more accurate geometric priors.

To analyze the effect of optical flow accuracy on 3D-TPR, we downsample the RAFT inputs to 1×,
2×, 4×, and 8× resolutions. As RAFT is resolution-sensitive, this setup offers an effective proxy
for flow fidelity variation. All estimated flows are bilinearly upsampled to original resolution for
training on AMT and IFRNet. As shown in Table 2, lower-resolution flows (4×/8×) lead to noticeable
degradation, while 2× setting achieves comparable performance to the 1x resolution case while
significantly reducing computation. We therefore adopt 2× as our default configuration.

4.3 Qualitative results

To demonstrate the visual quality of our synthetic intermediate supervision, Figure 2 shows represen-
tative samples from the ZI dataset. Iv achieves smooth transitions in photometrical and geometric
structure, while faithfully preserving fine textures and high-frequency details. Despite being generated
without ground-truth supervision, the results exhibit strong visual consistency and realism, providing
effective guidance for training ZI models.

In Figure 3, we present visual comparisons between 2D and 3D-TPR methods on Vimeo90K. Across
multiple FI networks, the 3D-TPR method consistently yields significantly better perceptual quality,
producing clearer and sharper images. In contrast, 2D approaches often suffer from noticeable blur,
while our 3D-TPR framework maintains fine-grained textures and structural consistency throughout.
These results highlight the strong perceptual quality and robustness of the 3D-TPR framework.

Meanwhile, Figure 4 offers a qualitative comparison of ZI results across FI networks and devices.
3Df -TPR consistently produces higher-quality outputs with fewer artifacts, less blur, and sharper
structures. Notably, RIFE, IFRNet, and AMT exhibit significantly reduced blur, while EMA-VFI
produces clearer and more coherent line structures. Visual results demonstrate the effectiveness
of our data generation method in cross-device generalization for the ZI task. Building upon this,
OmniZoom (3Df -TPR) further exhibits robust performance across diverse FI networks and mobile
platforms, offering a universal solution for real-world ZI. Additional visual results are provided in
Appendix A.8, and comparisons of 1D and 2D fine-tuning strategies are presented in Appendix A.9.
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Figure 3: Visual comparison of 2D and 3D-TPR FI results across networks. Each row shows
interpolation results at the same timestep.
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Figure 4: Qualitative results on real-world data across four FI networks at timestep t = 1/2. The
subscript f denotes models finetuned on our ZI dataset.

4.4 Quantitative results

As shown in Table 3, we conduct quantitative comparisons between the 2D and 3D-TPR frameworks
on Vimeo90K, Inter4K, and UCF101. On Vimeo90K, 3D-TPR achieves clear gains in PSNR, SSIM,
and LPIPS, indicating better reconstruction and perceptual quality. On the unseen Inter4K and
UCF101 benchmarks, 3D-TPR still improves perceptual metrics (SSIM and LPIPS), demonstrating
strong generalization. Although pixel-centric metric PSNR may not always improve, ZI focuses on
perceptually plausible synthesis rather than pixel-aligned outputs. Also, PSNR is less sensitive to
blur [55], which is a common artifact in ZI. Combined with the visual results in Figure 3, it confirms
the effectiveness and robustness of 3D-TPR for real-world ZI.
Table 4 offers quantitative results on real-world ZI tasks across four smartphone test sets under four
FI networks. Due to space constraints, we use 3D in this table to represent our proposed 3D-TPR
framework. 3D-TPR consistently achieves second-best performance across most devices and metrics,
clearly outperforming the 2D baseline and demonstrating its effectiveness in handling ZI tasks even
without domain-specific tuning. After finetuning on our ZI dataset, OmniZoom (3Df -TPR) achieves
the best results across nearly all models and devices, highlighting both the strong cross-device
generalization capability of the dataset and the plug-and-play adaptability of the framework.
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Table 3: Comparisons on Vimeo90k, Inter4K and UCF101 using 2D and 3D-TPR FI frameworks.
Bold indicates the best metric.

Benchmarks Metrics RIFE IFRNet EMA-VFI AMT

2D 3D-TPR 2D 3D-TPR 2D 3D-TPR 2D 3D-TPR

Vimeo90k

PSNR↑ 27.40 27.51 27.13 27.21 24.73 24.86 27.17 27.22
SSIM↑ 0.901 0.902 0.899 0.901 0.851 0.853 0.902 0.902
LPIPS↓ 0.086 0.081 0.078 0.074 0.081 0.080 0.081 0.084

inter4K

PSNR↑ 33.92 34.06 33.73 33.72 30.06 30.29 33.57 33.80
SSIM↑ 0.951 0.952 0.952 0.952 0.903 0.904 0.953 0.955
LPIPS↓ 0.048 0.046 0.046 0.045 0.044 0.044 0.048 0.047

UCF101

PSNR↑ 35.54 35.85 35.42 35.43 36.74 36.65 35.37 35.33
SSIM↑ 0.928 0.983 0.984 0.986 0.984 0.985 0.984 0.984
LPIPS↓ 0.017 0.018 0.017 0.017 0.012 0.012 0.018 0.017

Table 4: Comparisons on real-world data across four FI models. Subscript f denotes models finetuned
on our ZI dataset. Bold indicates the best performance, and underline is the second best.

Device Metrics RIFE IFRNet EMA-VFI AMT

2D 3D 3Df 2D 3D 3Df 2D 3D 3Df 2D 3D 3Df

Huawei

NIQE↓ 3.8464 3.8651 3.7422 3.6801 3.4852 3.5035 3.6363 3.8470 3.8341 3.5665 3.6459 3.4547
PI↓ 4.2505 4.1537 3.9360 3.9570 3.3150 3.2520 3.7240 3.8566 3.8467 3.5147 3.6132 3.3121

CLIP-IQA↑ 0.3691 0.4939 0.5233 0.5422 0.5784 0.5909 0.5612 0.5621 0.5684 0.5428 0.5498 0.6018
MUSIQ↑ 44.8268 58.8362 60.8585 57.4632 73.0233 74.1220 61.7263 62.7403 63.5048 71.4369 71.7016 73.7092

iPhone

NIQE↓ 4.2031 4.1027 3.8601 3.8786 3.6923 3.6953 3.8155 4.0555 4.0934 3.5932 3.7053 3.5087
PI↓ 4.5340 4.3503 4.0657 4.2090 3.3942 3.3165 3.9994 4.1304 4.1123 3.4293 3.5367 3.2661

CLIP-IQA↑ 0.4821 0.5366 0.5492 0.5240 0.5829 0.5949 0.5352 0.5387 0.5503 0.5931 0.5930 0.6211
MUSIQ↑ 55.0577 59.6800 60.7988 57.4088 73.3569 73.8292 58.1422 58.6204 60.1002 71.9805 72.1243 73.6150

OPPO

NIQE↓ 4.6364 4.6100 4.3968 4.5820 5.2039 5.1133 4.5568 4.5166 4.5071 4.9042 5.3017 4.6699
PI↓ 5.0848 5.0104 4.6815 4.9749 4.9603 4.7144 4.9569 4.9022 4.8752 4.9676 5.3808 4.5702

CLIP-IQA↑ 0.4989 0.5363 0.5830 0.5525 0.5212 0.5461 0.5622 0.5590 0.5591 0.4798 0.4518 0.5595
MUSIQ↑ 63.2645 65.7912 67.1494 67.2635 75.2718 75.4545 67.4327 67.5921 67.6444 73.0842 72.1563 75.2187

Redmi

NIQE↓ 5.0138 4.8764 4.4720 5.0098 4.2837 4.0695 4.4088 4.3424 3.8852 5.1925 4.7426 3.9835
PI↓ 5.3615 5.0247 4.5195 5.1108 3.5993 3.3880 4.6708 4.5974 4.5519 5.4335 4.0235 3.3548

CLIP-IQA↑ 0.4077 0.4664 0.4930 0.4219 0.4913 0.5152 0.4599 0.4807 0.4947 0.4336 0.4754 0.5383
MUSIQ↑ 56.3870 61.9235 63.6990 57.5453 73.7573 74.3871 57.0371 59.6610 60.7579 57.6671 71.9982 74.3325

5 Conclusions
This paper tackles the ZI task that aims to synthesize geometrically and photometrically consistent
intermediate frames between dual-camera images. We propose OmniZoom, a universal solution com-
prising two key components. First, we introduce a cross-device ZI dataset construction pipeline that
enables device-agnostic supervision through spatial transition modeling, dynamic color adaptation,
and cross-domain consistency learning. Second, we develop a plug-and-play 3D-TPR framework that
enhances ZI accuracy and perceptual quality by leveraging 3D trajectory encoding and geometry-
aware feature similarity. Experiments on public benchmarks and real-world test sets show that
OmniZoom consistently improves performance across diverse FI models and devices. We believe
this exploration bridges the gap between pre-trained interpolation models and real-world dual-camera
systems, paving the way for more practical and adaptable ZI solutions.

6 Limitations

While OmniZoom is designed to be plug-and-play across various FI networks, achieving optimal
performance may still require adjustments to the training schedule, such as tuning the learning rate
warm-up strategy, rebalancing loss weights, or modifying batch size. These lightweight adjustments
reflect the need for architecture-aware training when applying our framework to diverse settings.
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A Appendix
The content of the supplementary material involves:

• Details of ColorNet in Appendix A.1.
• Dual-camera data sources for the ZI dataset in Appendix A.2.
• Details of the synthetic ZI dataset and computational cost in Appendix A.3.
• Formula reasoning of 3D-TPR framework in Appendix A.4.
• Comparative evaluation of virtual view synthesis method for ZI task in Appendix A.5.
• Additional experiment on disparity map sources in Appendix A.6.
• Details of the real-world multi-device ZI test sets in Appendix A.7.
• Additional visual results of OmniZoom on the real-world ZI test sets in Appendix A.8.
• Benchmarking ZI dataset across 1D, 2D, and 3D-TPR frameworks in Appendix A.9.
• Upper bound analysis of 3D-TPR framework in Appendix A.10.
• Additional visual results of 3D-TPR framework in Appendix A.11.
• Broader impacts in Appendix A.12.

We provide a project page at https://omnizoom.github.io/OmniZoom/, where visual results
are available, and the code/dataset will be released soon.

A.1 Details of ColorNet

A.1.1 Architecture of ColorNet

∆c

FC Leaky
ReLU FC Leaky

ReLU FC Leaky
ReLULegend:

ϕ: camera encoding
x: position
c: color
Σ: spatial extent
α: opacity

Figure 5: Architecture of ColorNet.

As illustrated in Figure 5, ColorNet is a lightweight multilayer perceptron (MLP) designed to estimate
color residuals ∆c for neural 3D rendering. The network takes as input a five-dimensional feature
tuple: the camera encoding ϕ, the center position x, the base color c, the anisotropic covariance Σ,
and the opacity α. These inputs are first projected into a latent feature space through a fully connected
(FC) layer, which is then processed by three consecutive FC blocks, each followed by a LeakyReLU
activation to ensure non-linearity and mitigate the risk of neuron inactivation. Each FC layer contains
5 hidden units. Finally, the output layer maps the intermediate representation to a 3-dimensional
color offset vector ∆c via a linear transformation. This residual is then added to the original color c,
yielding the refined output color used for rendering.

A.1.2 Ablations of ColorNet

We perform a no-reference image quality comparison between our proposed ColorNet and several
common photometric calibration baselines: (1) No Calibration, (2) Mean-Std Normalization [48], and
(3) Reinhard Color Transfer [51]. The evaluations are conducted on rendered intermediate frames
using four widely adopted metrics: NIQE, PI, CLIP-IQA, and MUSIQ.
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Table 5: No-reference image quality comparison of ColorNet against common photometric calibration
baselines on rendered intermediate frames. Lower NIQE and PI indicate better perceptual quality,
while higher CLIP-IQA and MUSIQ denote better alignment with human perception. ColorNet
consistently achieves the best performance across all metrics, demonstrating its effectiveness in
modeling fine-grained photometric variations.

Method NIQE ↓ PI ↓ CLIP-IQA ↑ MUSIQ ↑
No Calibration 3.5832 3.8378 0.5193 68.4036
Mean-Std Norm 3.3193 3.7757 0.4577 63.0220
Reinhard Transfer 3.2357 3.7345 0.4588 64.3218
ColorNet (Ours) 2.8885 3.1515 0.6099 69.3328
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Figure 6: Representative dual-camera data sources. The top row displays samples from
HuaweiPura70Ultra, while the bottom row presents examples from the publicly available Red-
miK50Ultra dataset [50]. Each scene contains paired wide-angle (Iw) and main-camera (Im) images,
covering diverse content and geometric configurations.

As reported in Table 5, ColorNet consistently outperforms all baseline methods, demonstrating
its superior capability in capturing fine-grained photometric variations that simpler approaches fail
to model. These results highlight the effectiveness of ColorNet in enhancing color consistency and
perceptual quality across intermediate frames.

A.2 Dual-camera data sources for the ZI dataset

As mentioned in the main paper, our ZI dataset comprises dual-camera zoom image pairs from
HuaweiPura70Ultra and RedmiK50Ultra. Specifically, we collect Huawei data ourselves across a
variety of indoor and outdoor scenarios, while the Redmi sequences are adopted from the publicly
available dataset introduced in [50]. The image resolutions vary by device: 2133×1600 for Huawei
and 1632×1224 for Redmi, consistent with their native imaging pipelines.

In total, the combined dataset covers 132 real-world scenes, consisting of 79 indoor and 53 outdoor
environments. Indoor scenes include structured environments such as classrooms, shopping malls,
and cafeterias, while outdoor scenes cover playgrounds, parks, and other open spaces with greater
geometric variation. For each scene, we capture 15 pairs of main–wide camera images, along
with 6 additional wide-angle views from peripheral viewpoints to enhance spatial diversity. These
supplementary images increase the geometric baseline and play a key role in stabilizing 3DGS
optimization. Representative examples from both devices are shown in Figure 6.
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Figure 7: Representative frames (Frames 4, 5, and 6) from our synthetic ZI dataset. Each row
illustrates three temporally adjacent frames sampled from a 16-frame virtual zoom sequence, demon-
strating smooth transitions in both appearance and geometry. Examples are shown from Huawei and
Redmi devices, covering diverse indoor and outdoor scenes with varying structural complexity.

A.3 Details of the synthetic ZI dataset and computational cost

We generate 205 synthetic zoom sequences, each consisting of 16 interpolated frames. These
sequences serve as high-quality supervision for training and evaluation in ZI tasks. Representative
examples of the rendered dataset are shown in Figure 7.

The training duration for each scene depends on its visual complexity and structural content, with
an average of approximately 1.5 hours per scene. Rendering a complete zoom sequence with
16 interpolated frames typically takes less than 20 seconds. All procedures are conducted on a
workstation with 40 GB of memory, consistent with our main experimental setup.

A.4 Formula reasoning of 3D-TPR framework

A.4.1 Mathematical modeling and depth constraints for projective ambiguity

Modeling the projection from 3D space to 2D image plane: Let P = (X,Y, Z)T denote a 3D
point in the scene, which is projected onto 2D image coordinates (x, y) via the pinhole camera model.
The projection is formulated as:

x =
fX

Z
, y =

fY

Z
; π(P) =

(
fX

Z
,
fY

Z

)T
, (19)

where π denotes the 3D-to-2D projection function, and f represents the camera’s focal length. When
an object moves through 3D space, its instantaneous displacement over a time interval ∆t is governed
by its 3D velocity vector v = (vX , vY , vZ)

T :

∆P = v∆t = (vX∆t, vY∆t, vZ∆t)T , (20)

where ∆P denotes the change in 3D position during ∆t. Let I(P, t) denote the projection of a 3D
point P = (X,Y, Z)T onto the image plane at time t. When the object is in motion, the position of
P evolves over time as:

P(t+∆t) = P(t) + ∆P = P(t) + v∆t. (21)

The corresponding image plane displacement δ = (∆x,∆y) induced by 3D motion can be approxi-
mated via a first-order Taylor expansion:

δ = π(P+ v∆t)− π(P) ≈ ∂π

∂P
v∆t, (22)
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where ∂π
∂P is the projection Jacobian matrix Jπ, which characterizes how variations in 3D positions

affect the projected 2D coordinates. The term v∆t represents the instantaneous 3D displacement,
and its transformation through Jπ yields the corresponding image plane motion. By substituting the
partial derivatives of the projection function, the Jacobian matrix Jπ can be explicitly written as:

Jπ =

[
∂x
∂X

∂x
∂Y

∂x
∂Z

∂y
∂X

∂y
∂Y

∂y
∂Z

]
=

[
f
Z 0 − fX

Z2

0 f
Z − fY

Z2

]
. (23)

Equation 23 constitutes an underdetermined system of equations, whose solution space forms a
straight line. Mathematically, this can be expressed as:

v = v0 + kn, n =

(
X

Z
,
Y

Z
, 1

)T
, (24)

where v0 represents a particular solution, n denotes the direction corresponding to the viewing ray,
and k ∈ R denotes an arbitrary real number. This formulation implies that infinitely many 3D velocity
vectors, which differ only in their components along the line of sight, can result in the same 2D image
plane displacement. As a concrete example, consider a 3D scene point located at P = (f, 0, Z)T :

Scene 1. Suppose the object moves purely along the horizontal axis with the velocity vector
v1 = (1, 0, 0)T . The resulting image plane displacement δ1 can be approximated via the projection
Jacobian Jπ as:

δ1 = Jπ · v1 ·∆t =

 f
Z · 1 + 0 · 0 +

(
− fX
Z2

)
· 0

0 · 1 + f
Z · 0 +

(
− fY
Z2

)
· 0

 ·∆t =

[
f
Z
0

]
·∆t. (25)

Scene 2. Now consider the case where the object moves along the optical axis (i.e., in depth), with
the velocity vector v2 = (0, 0,−Z/f)T . For the 3D point P = (f, 0, Z)T , the resulting image plane
displacement δ2 is computed as:

δ2 = Jπ · v2 ·∆t =

[
f
Z · 0 + 0 · 0 + (− fX

Z2 ) · (−Z
f )

0 · 0 + f
Z · 0 + (− fY

Z2 ) · (−Z
f )

]
·∆t =

[
X
Z
Y
Z

]
·∆t =

[
f
Z
0

]
·∆t. (26)

The distinct 3D motions illustrated in Scene 1 and Scene 2 become indistinguishable when projected
onto the 2D image plane, thereby leading to the non-uniqueness of motion estimation and highlighting
the necessity of depth-direction constraints. By enforcing a constraint along the depth direction, the
solution space is reduced from a continuous line to a single, physically plausible point, effectively
eliminating the ambiguity and suppressing implausible variations along the depth axis.

A.4.2 Gradient reallocation with texture-focus strategy

Let ST = (x, y) | M(x, y) = 1 denote the set of texture pixels, where M is the binary mask defined
in Equation 14, and let SC denote its complement. According to Equation 16, the expected value of
gradient norm over texture regions satisfies the following for λ > 0:

E
[
∥∇θLtexture−focus∥ST

]
= (1 + λ) · E

[
∥∇θLbase∥ST

]
. (27)

This formulation indicates that the texture-focus loss reweights the gradient flow to amplify super-
vision in structurally informative regions. By scaling the gradient magnitude in ST by a factor of
(1 + λ), the network is encouraged to prioritize learning from texture-rich areas, which are typically
more perceptually salient and semantically meaningful.

While expected value of the gradient norm within the texture region ST is magnified by a factor of
(1 + λ), the gradient norm in the non-texture region SC remains unchanged:

E
[
∥∇θLtexture-focus∥SC

]
= E

[
∥∇θLbase∥SC

]
. (28)

Consequently, the texture-focus strategy effectively redistributes the gradient energy in the parameter
space by selectively amplifying directions associated with texture regions, thereby enhancing supervi-
sion in structurally informative areas. Under momentum-based stochastic gradient descent (SGD),
the network parameters are updated as:

θk+1 = θk − ηvk, vk = βvk−1 + (1− β)∇θLtexture-focus(θk), (29)
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where θk denotes the network parameters at the k-th iteration, and θk+1 represents the updated
parameters after applying a weighted update in the direction of the momentum term vk. Here, η is
the learning rate, and vk is the accumulated momentum, which integrates the current gradient with
past updates. We set the momentum coefficient to β = 0.9, which determines the proportion of the
previous momentum vk−1 retained in the current step. The gradient term ∇θLtexture−focus(θk) is
computed with respect to the texture-focus loss at iteration k.

Since the gradient of Ltexture−focus within the texture region ST is scaled by a factor of (1 + λ),
the corresponding entries in the gradient tensor exhibit proportionally larger magnitudes. This
induces an optimization bias toward texture-dense regions, thereby encouraging edge sharpening
and the recovery of high-frequency details. In contrast, gradients within the non-texture region SC
remain unchanged. This targeted reallocation strategy prioritizes learning in structurally salient areas,
ultimately enhancing the perceptual fidelity and fine-detail quality of the interpolated frames.

Our proposition formally demonstrates that explicitly amplifying momentum components along
high-frequency texture directions offers two key benefits: (a) it reduces the number of iterations
required to reach local optima by modulating the effective learning rate, and (b) it suppresses
oscillatory behaviors in the loss surface caused by the competing objectives of texture underfitting
and background overfitting.

Under the flat-minima hypothesis for over-parameterized networks, this gradient reallocation strategy
further flattens the loss landscape during finetuning, acting as an implicit regularizer that improves
generalization to unseen texture distributions through curvature-driven optimization dynamics. Unlike
perceptual losses that entangle high- and low-frequency signals within the shared feature space of
pretrained encoders, our texture-focus strategy achieves frequency disentanglement via pixel-level
gradient modulation in an encoder-agnostic manner, allowing more precise control over structural
detail reconstruction only with an ancillary supervision.

A.4.3 Additional proof of mask penalty strategy

Normalization coefficient 4 ·M(1−M) ∈ [0, 1], reaching the maximum peak value at M = 0.5. As
M → 0 or → 1, the normalization coefficient value tends to zero. From a Bayesian perspective, the
mask value M

(i)
p is modelled as the parameter θ(i)p of the posterior Bernoulli distribution Q:

(M(i)
p = θ(i)p ) ∼ (Q = Bernoulli(θ(i)p )), (30)

where M
(i)
p represents the model-inferred confidence at pixel position p of the i-th scale, which is

calculated by the middle layer of the network and equivalent to θ
(i)
p . θ

(i)
p is the parameter of the

Bernoulli distribution, representing the probability that the mask value is 1 at position p, indicating
the network’s confidence that the current pixel is dominated by the features from I0.

The case θ
(i)
p = 1 indicates that the mask value at position p is fully dominated by I0, whereas

θ
(i)
p = 0 implies complete dominance by I1. θ(i)p = 0.5 shares the equal contributions from both two

reference frames.

The interpolation network dynamically adjusts the weights by learning the distribution of θ(i)p . Since
θ
(i)
p is directly adopted as the parameter of the Bernoulli distribution, its entropy H(θ

(i)
p ) quantifies

the uncertainty in the fusion decision:

H(Q) = H(θ(i)p ) = −θ(i)p log θ(i)p − (1− θ(i)p ) log(1− θ(i)p ). (31)

A higher entropy value indicates greater uncertainty in the network’s fusion decision at the current
pixel, typically when θ

(i)
p approaches 0.5. In contrast, lower entropy represents higher confidence,

corresponding to θ
(i)
p values close to 0 or 1. Assume that an implicit Beta prior distribution P is

applied to θ
(i)
p :

P(θ(i)p ) ∝ θα−1
p (1− θp)

β−1, (32)
where we adopt a symmetric, U-shaped configuration by setting α = β < 1. The probability density
is higher at θp = 0 or θp = 1 and lower at median θp = 0.5, thereby encoding prior knowledge that
induces a binarization tendency. Minimizing the KL divergence between the posterior distribution Q
and the prior distribution P yields:

DKL(Q||P) = H(Q,P)−H(Q), (33)
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where H(Q,P) = −EQ[logP(θ
(i)
p )] measures the cross-entropy between the posterior distribution

Q and the prior distribution P , reflecting how well the posterior aligns with the prior. A smaller
value indicates that Q aligns more closely with the distributional preferences encoded in P . H(Q)
quantifies the intrinsic uncertainty of Q, with a higher value indicating increased ambiguity in
decision-making.

By designing L(i)
mask ∝ θ

(i)
p (1 − θ

(i)
p ), as derived in Equation 18, we implicitly impose a gradient

direction consistent with the low-entropy Beta prior distribution P . When θ
(i)
p approaches to 0.5,

the gradient of H(Q,P) dominates the optimization direction since logP(θ
(i)
p ) tends to be negative

infinity. In that case, θ(i)p will be forced to flee quickly from high-uncertainty areas, in alignment
with the gradient of L(i)

mask. Once θ
(i)
p enters the vicinity of 0 or 1, the gradient of H(Q,P)

decays, and the gradient of H(Q) begins to dominate. At this point, the gradient of L(i)
mask remains

persistently operative throughout the optimization process, thus ensuring stable convergence of the
model. Consequently, minimizing L(i)

mask effectively approximates the minimizing KL divergence
DKL(Q||P). This design is theoretically anchored in the Bayesian framework and promotes training
stability through a principled simplification of the target loss.

To sum up, the overall training target loss is:

Loverall = αT · Ltexture−focus + αm ·
S∑
i=1

L(i)
mask + αo · Loriginal, (34)

where αT , αm, and αo denote the weighting coefficients for the texture-focus loss, mask regular-
ization loss, and baseline supervision loss, respectively. These weights can be manually specified
or adaptively optimized during training, depending on the architectural design and optimization
dynamics of the model.

A.5 Comparative evaluation of virtual view synthesis method for ZI task

A.5.1 Comparison of virtual frame generation quality

To evaluate the effectiveness of synthetic supervision for the ZI task, we compare three virtual frame
generation methods: ZoomGS [50], 3DGS [23], and our proposed pipeline. For a fair comparison,
all baselines are reproduced using their official implementations and default hyperparameters. As
shown in Figure 8, our method yields noticeably higher-quality intermediate views, exhibiting sharper
textures, reduced artifacts, and more accurate geometric consistency. In contrast, ZoomGS and 3DGS
often exhibit geometric distortion and texture degradation, particularly in scenes with complex spatial
layouts or high-frequency surface details. These findings highlight the superiority of our pipeline in
producing visually reliable and semantically aligned supervision tailored for ZI training.

A.5.2 Evaluating virtual supervision via ZI finetuning

To assess the effectiveness of our synthetic supervision in real-world ZI scenarios, we conduct a
downstream finetuning evaluation against two baselines: ZoomGS [50] and 3DGS [23]. For each
method, the corresponding virtual dataset is used to finetune four representative FI networks, all
integrated into our unified 3D-TPR framework. The resulting models are then evaluated on real-world
test sets captured from four distinct smartphone platforms, enabling a comprehensive assessment of
cross-device generalization performance.

Quantitative results. Table 6 reports results on Huawei and Redmi devices, both of which are
included in all three synthetic ZI datasets. Our method consistently outperforms ZoomGS and
3DGS across all networks and metrics, demonstrating strong supervision quality in seen-device
scenarios. While ZoomGS performs reasonably due to its device-specific training coverage, it lacks
explicit spatial and color modeling. In contrast, our spatial transition and dynamic color adaptation
modules effectively handle cross-camera misalignment and photometric variation, resulting in sharper
textures and more coherent frame synthesis, reflected by gains in CLIP-IQA and MUSIQ. 3DGS also
employs Huawei and Redmi data, but builds on monocular reconstruction assumptions and ignores
dual-camera geometric or ISP discrepancies. Consequently, the composite supervision shows less
consistency, which universally degrades finetuning efficacy on all tasks.
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INPUTS 3DGS ZOOMGS Ours

Figure 8: Visual comparison of virtual frame generation methods for ZI supervision. Compared to
ZoomGS [50] and 3DGS [23], our method produces intermediate frames with fewer artifacts and
better detail preservation, demonstrating superior supervision quality for training ZI models.

Table 6: Quantitative comparison on real-world dual-camera test sets captured by Huawei and Redmi
devices, which are included in the synthetic dataset construction. Each FI model is evaluated under
four supervision variants: original 3D-TPR pretrained (Base), and finetuned on 3DGS, ZoomGS, and
our proposed supervision f . Bold indicates the best result, and underline denotes the second best.

Networks Methods HuaweiPura70Pro RedmiK50Ultra

NIQE↓ PI↓ CLIP-IQA↑ MUSIQ↑ NIQE↓ PI↓ CLIP-IQA↑ MUSIQ↑

RIFE

Base 3.8651 4.1537 0.4939 58.8362 4.8764 5.0247 0.4664 61.9235
3DGSf 3.8309 4.2570 0.5183 60.2724 4.8457 5.1787 0.3459 52.4562

ZoomGSf 3.7902 4.0084 0.5013 59.0780 4.5598 4.7340 0.4716 61.2694
Oursf 3.7422 3.9360 0.5233 60.8585 4.4720 4.5195 0.4930 63.6990

IFRNet

Base 3.4852 3.3150 0.5784 73.0233 4.2837 3.5993 0.4913 73.7573
3DGSf 3.5310 3.2570 0.5183 70.2725 4.2232 3.5776 0.4259 70.0659

ZoomGSf 3.5132 3.2769 0.5867 74.0218 4.0879 3.3928 0.5127 74.2312
Oursf 3.5035 3.2520 0.5909 74.1220 4.0695 3.3880 0.5152 74.3871

EMA-VFI

Base 3.8470 3.8566 0.5621 62.7403 4.3424 4.5974 0.4807 59.6610
3DGSf 3.8888 3.4184 0.5540 62.7141 4.2464 4.4593 0.4908 59.2312

ZoomGSf 3.6360 3.8499 0.5229 61.2508 4.2106 4.4610 0.4718 60.1914
Oursf 3.8341 3.8467 0.5684 63.5048 3.8852 4.5519 0.4947 60.7579

AMT

Base 3.6459 3.6132 0.5498 71.7016 4.7426 4.0235 0.4754 71.9982
3DGSf 3.4894 3.3929 0.5184 70.5856 4.3934 3.7834 0.4646 71.4254

ZoomGSf 3.4593 3.3395 0.5847 73.7058 4.0653 3.4472 0.5209 74.4339
Oursf 3.4547 3.3121 0.6018 73.7092 3.9835 3.3548 0.5383 74.3325

Table 7 evaluates generalization to iPhone and OPPO: two unseen devices that are not involved in
training or synthetic data generation. Despite the domain gap, our method consistently achieves the
best performance across all networks and evaluation metrics. In contrast, ZoomGS and 3DGS exhibit
clear performance degradation due to their limited capacity to model cross-device geometric and

photometric variations. These results highlight the strong generalization ability of our pipeline, which
provides robust, device-agnostic supervision across heterogeneous smartphone platforms.

Our method consistently outperforms existing virtual frame generation pipelines across both seen and
unseen device scenarios. These gains are attributed to the explicit modeling of cross-device geometric
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Table 7: Quantitative evaluation of cross-device generalization on iPhone and OPPO, two unseen
devices excluded from the synthetic dataset generation. Despite the domain shift, models finetuned
with our supervision consistently outperform those trained with 3DGS and ZoomGS. Bold indicates
the best result, and underline denotes the second best.

Networks Methods iPhone16ProMax OPPOFindX8Ultra

NIQE↓ PI↓ CLIP-IQA↑ MUSIQ↑ NIQE↓ PI↓ CLIP-IQA↑ MUSIQ↑

RIFE

Base 4.1027 4.3503 0.5366 59.6800 4.6100 5.0104 0.5366 65.7912
3DGSf 3.9618 4.2914 0.4687 54.5013 4.4927 4.9957 0.4408 60.6637

ZoomGSf 3.8950 4.1679 0.5411 59.6339 4.4543 4.8111 0.5779 66.6404
Oursf 3.8601 4.0657 0.5492 60.7988 4.3968 4.6815 0.5830 67.1494

IFRNet

Base 3.6923 3.3942 0.5829 73.3569 5.2039 4.9603 0.5212 75.2718
3DGSf 3.6233 3.3400 0.5583 71.7621 5.1306 4.8809 0.4755 74.3894

ZoomGSf 3.7501 3.3498 0.5941 73.7598 5.1630 4.7927 0.5364 75.3461
Oursf 3.6953 3.3165 0.5949 73.8292 5.1133 4.7144 0.5461 75.4545

EMA-VFI

Base 4.0555 4.1304 0.5387 58.6204 4.5166 4.9022 0.5590 67.5921
3DGSf 3.6258 3.8183 0.5418 59.2020 4.8225 4.9720 0.5868 66.8282

ZoomGSf 3.8068 3.9542 0.5377 59.5872 4.5455 4.8818 0.5551 68.2806
Oursf 4.0934 4.1123 0.5503 60.1002 4.5071 4.8752 0.5591 67.6444

AMT

Base 3.7053 3.5367 0.5930 72.1243 5.3017 5.3808 0.4518 72.1563
3DGSf 3.6991 3.4205 0.5644 71.6435 4.9154 5.0089 0.4639 72.5701

ZoomGSf 3.5192 3.4044 0.5985 71.8655 4.6889 4.7544 0.5581 72.6175
Oursf 3.5087 3.2661 0.6211 73.6150 4.6699 4.5702 0.5595 75.2187

transitions and photometric inconsistencies, two key factors for ensuring structurally accurate and
perceptually consistent zoom interpolation in real-world.

Qualitative results. We further perform a qualitative comparison of interpolation outcomes across
four FI networks and four smartphone platforms in real-world ZI tasks. As shown in Figure 9,
we visualize the results of models finetuned with three types of synthetic supervision: ZoomGS,
3DGS, and our proposed approach, alongside the original 3D-TPR pretrained baselines without
finetuning. ZoomGSf performs reasonably on Huawei and Redmi devices, which are included in its
training dataset. However, it still suffers from noticeable blurring and diminished structural fidelity,
particularly around object boundaries and fine textures. 3DGSf , which lacks explicit device-specific
modeling, exhibits limited generalization and introduces geometric distortions and color artifacts
across all devices. In contrast, our method consistently generates sharper structures, more coherent
textures, and significantly fewer artifacts. For instance, text contours appear more defined on Huawei,
linear boundaries are better preserved on Redmi, and perceptual blurring is substantially reduced on
OPPO and iPhone. These qualitative observations further underscore the importance of modeling
device geometric and photometric characteristics, and highlight the superior visual fidelity enabled
by our synthetic supervision pipeline.

Overall. Both quantitative and qualitative results consistently demonstrate the superiority of our
synthetic supervision across a wide range of FI networks and smartphone platforms. By explicitly
modeling cross-device geometric misalignment and photometric variation, our method enables more
effective finetuning, yielding improvements in perceptual quality, structural fidelity, and generalization
to unseen devices.

A.6 Additional ablation experiment on disparity map sources

To rigorously evaluate the robustness of disparity cues in our proposed 3D-TPR encoding, we
systematically ablate the disparity map sources that constitute the critical foundation for similarity
computation. Employing EMA-VFI[53] backbone with RAFT-based warping[42], we conduct
comparative analyses between our lightweight Lite-Mono[54] architecture and the sophisticated
DepthPro[7]. The experimental results are shown in Table8.

It is crucial to emphasize that this ablation study does not directly assess the disparity variation vector
itself, but rather evaluates the quality and reliability of source similarity maps utilized in constructing
the 3D trajectory vectors. Experimental results on the Vimeo90K benchmark demonstrate that both
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Figure 9: Qualitative comparison of finetuned interpolation results on real-world ZI tasks across four
smartphone platforms and four FI networks. We compare models finetuned with virtual supervision
from 3DGS, ZoomGS, and our proposed method, alongside unfinetuned baselines ("Base") imple-
mented within the unified 3D-TPR framework. Our method consistently produces sharper structures
and fewer artifacts. Notably, text contours are better preserved on Huawei, boundary lines are more
clearly delineated on Redmi, and perceptual blurring is substantially reduced on iPhone and OPPO.

Table 8: Ablation study on disparity map sources.
Method PSNR ↑ SSIM ↑ LPIPS ↓
2D 24.73 0.851 0.081
3D-TPR(Lite-Mono) 24.86 0.853 0.080
3D-TPR(Depth-pro) 24.90 0.852 0.079
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Figure 10: Representative dual-camera samples from our real-world multi-device ZI test sets. Each
row corresponds to a different smartphone platform (Huawei, Redmi, iPhone and OPPO), showing
paired zoom images captured under diverse scenes and lighting conditions. For layout consistency,
RedmiK50Ultra samples are rotated 90 degrees counterclockwise.

3D-TPR implementations consistently surpass the 2D baseline, validating the stability and gener-
alizability of our motion priors across different disparity estimators. Notably, while DepthPro[7]
generates perceptually sharper outputs, its computational complexity yields only marginal perfor-
mance gains. Consequently, we adopt Lite-Mono[54] as our preferred disparity estimator, achieving
an optimal balance between training efficiency and reconstruction quality.

A.7 Details of the real-world multi-device ZI test sets

To comprehensively evaluate the generalization ability of different ZI methods, we construct real-
world multi-device test sets spanning four mainstream smartphone platforms: HuaweiPura70Ultra,
RedmiK50Ultra, OPPOFindX7Ultra, and iPhone16ProMax. For each device, we collect a substantial
number of dual-camera zoom sequences under diverse environmental conditions and usage scenarios.

The complete test sets consist of 499 sequences, including 160 from Huawei, 69 from OPPO, 170
from iPhone, and 100 from Redmi. These sequences span a broad range of real-world scenes, such
as indoor environments (e.g., offices, shopping malls, cafés) and outdoor locations (e.g., parks,
sidewalks, playgrounds), with variations in illumination, motion intensity, and zoom transitions to
reflect practical deployment conditions.

Image resolution varies by device: Huawei (2580×1560), Redmi (1216×1632), iPhone (2016×1512),
and OPPO (2048×1536). Each sequence captures paired wide and main camera images along
the zoom trajectory, providing a challenging and diverse benchmark for evaluating ZI methods.
Representative samples from the test sets are shown in Figure 10.
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Figure 11: Additional visual comparisons on real-world ZI test data from four smartphone platforms.
Subscript f indicates models finetuned on our ZI dataset. Finetuned models produce sharper structures
and improved geometric consistency across diverse scenes.

A.8 Additional visual results of OmniZoom on the real-world ZI test sets

To further evaluate the generalization capability of our method, we present additional visual com-
parisons on the real-world ZI test sets. Specifically, we compare 3D-TPR models before and after
finetuning on the ZI dataset across four smartphone platforms. As shown in Figure 11, the finetuned
model produces more temporally consistent and perceptually sharper interpolations, particularly in
challenging regions involving parallax, fine textures, or low-light conditions. These results further
demonstrate the effectiveness of our ZI dataset in enhancing cross-device generalization for real-world
zoom interpolation.

A.9 Benchmarking ZI dataset across 1D, 2D, and 3D-TPR frameworks

The 1D-indexed models are directly adopted from publicly released versions of each corresponding FI
network. The 2D-indexed counterparts follow the interpolation strategy introduced in [60]. For each
framework, we finetune the models using our proposed ZI dataset and evaluate their performance on
the real-world multi-device test sets. Both qualitative and quantitative comparisons are conducted to
assess the improvements enabled by ZI supervision under different indexing paradigms.

Quantitative comparisons. We conduct a comprehensive evaluation of the 1D, 2D, and 3D-TPR in-
dexing frameworks across four FI models and four real-world smartphone platforms, considering both
the base models and those finetuned on our ZI dataset. As shown in Table 9, the 3D-TPR framework
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Table 9: Quantitative result of 1D, 2D, and 3D-TPR frameworks across four FI models and four
devices. All models are evaluated before and after finetuning on our ZI dataset. Bold indicates the
best performance after finetuning, and underline marks the best result before finetuning. 3D-TPR
framework reliably achieves superior perceptual quality, and its finetuned variant (3Df ) outperforms
others in most cases, demonstrating the effectiveness of our ZI dataset and the 3D-TPR design.

Device Metrics RIFE IFRNet

1D 2D 3D 1Df 2Df 3Df 1D 2D 3D 1Df 2Df 3Df

Huawei

NIQE↓ 3.9181 3.8464 3.8651 3.8678 3.8170 3.7422 3.6995 3.6801 3.4852 3.6044 3.6455 3.5035
PI↓ 4.2567 4.2505 4.1537 4.0698 4.0599 3.9360 4.0141 3.9570 3.3150 3.6448 3.6136 3.2520

CLIP-IQA↑ 0.4078 0.3691 0.4939 0.4573 0.4858 0.5233 0.4910 0.5422 0.5784 0.5649 0.5770 0.5909
MUSIQ↑ 49.4314 44.8268 58.8362 58.4623 58.7098 60.8585 51.2033 57.4632 73.0233 61.2380 63.1001 74.1220

Redmi

NIQE↓ 5.2253 5.0138 4.8764 4.6925 4.5118 4.4720 5.3165 5.0098 4.2837 4.6223 4.5292 4.0695
PI↓ 5.6387 5.3615 5.0247 4.8289 4.6331 4.5195 5.5147 5.1108 3.5993 4.6454 4.5053 3.3880

CLIP-IQA↑ 0.3661 0.4077 0.4664 0.4559 0.4851 0.4930 0.3691 0.4219 0.4913 0.4765 0.4947 0.5152
MUSIQ↑ 51.7491 56.3870 61.9235 60.6873 62.0812 63.6990 51.3791 57.5453 73.7573 61.7805 62.4252 74.3871

iPhone

NIQE↓ 4.3433 4.2031 4.1027 3.9339 3.9532 3.8601 4.0136 3.8786 3.6923 3.7891 3.8169 3.6953
PI↓ 4.6718 4.5340 4.3503 4.1674 4.2135 4.0657 4.4137 4.2090 3.3942 4.0014 3.9636 3.3165

CLIP-IQA↑ 0.4476 0.4821 0.5363 0.5371 0.5345 0.5492 0.4814 0.5240 0.5829 0.5666 0.5778 0.5949
MUSIQ↑ 52.2715 55.0577 59.6800 59.2367 58.8978 60.7988 52.7781 57.4088 73.3569 60.8860 61.9734 73.8292

OPPO

NIQE↓ 5.2103 4.6364 4.6100 5.0142 4.5575 4.3968 5.9164 4.5820 5.2039 5.6720 5.7078 5.1133
PI↓ 5.4442 5.0848 5.0104 5.0965 5.0650 4.6815 5.1909 4.9749 4.9603 5.0287 4.8435 4.7144

CLIP-IQA↑ 0.4270 0.4989 0.5366 0.5450 0.5699 0.5830 0.5181 0.5525 0.5212 0.5207 0.5667 0.5461
MUSIQ↑ 54.8990 63.2645 65.7912 63.3583 65.0204 67.1494 54.8757 67.2635 75.2718 64.9371 67.2739 75.4545

Device Metrics EMA-VFI AMT

1D 2D 3D 1Df 2Df 3Df 1D 2D 3D 1Df 2Df 3Df

Huawei

NIQE↓ 4.6877 3.6363 3.8470 3.7737 3.4852 3.8341 4.7231 3.5665 3.6459 3.9866 3.6246 3.4547
PI↓ 3.7060 3.7240 3.8566 3.6638 3.7186 3.8467 4.9499 3.5147 3.6132 3.9974 3.4639 3.3121

CLIP-IQA↑ 0.5619 0.5612 0.5621 0.5588 0.5535 0.5684 0.3127 0.5428 0.5498 0.5898 0.5944 0.6018
MUSIQ↑ 60.4395 61.7263 62.7403 62.8008 63.0230 63.5048 53.6305 71.4369 71.7016 73.4803 72.7456 73.7092

Redmi

NIQE↓ 4.5060 4.4088 4.3424 4.4864 4.3537 3.8852 5.9112 5.1925 4.7426 4.9700 5.1082 3.9835
PI↓ 4.6410 4.6708 4.5974 4.5829 4.5665 4.5519 5.0623 5.4335 4.0235 4.8863 5.0036 3.3548

CLIP-IQA↑ 0.4651 0.4599 0.4807 0.4809 0.4812 0.4947 0.4191 0.4336 0.4754 0.5082 0.4944 0.5383
MUSIQ↑ 55.3260 57.0371 59.6610 60.2753 59.9715 60.7579 49.2505 57.6671 71.9982 63.6003 61.2496 74.3325

iPhone

NIQE↓ 4.9410 4.8155 4.0555 4.7661 4.2139 4.0934 5.0436 3.5932 3.7053 3.5792 3.5883 3.5087
PI↓ 5.0171 3.9994 4.1304 4.5345 3.8462 4.1123 5.0410 3.4293 3.5367 3.3379 3.3233 3.2661

CLIP-IQA↑ 0.4603 0.5352 0.5387 0.5367 0.5462 0.5503 0.3723 0.5931 0.5930 0.6064 0.6120 0.6211
MUSIQ↑ 55.5380 58.1422 58.6204 57.6496 59.1077 60.1002 57.8120 71.9805 72.1243 73.5609 72.9853 73.6150

OPPO

NIQE↓ 5.0104 4.5568 4.5166 4.9704 4.5293 4.5071 5.7811 4.9042 5.3017 4.7389 4.7885 4.6699
PI↓ 5.1828 4.9569 4.9022 5.0729 4.9006 4.8752 5.8036 4.9676 5.3808 5.0513 4.9911 4.5702

CLIP-IQA↑ 0.5820 0.5622 0.5590 0.5071 0.5502 0.5591 0.3499 0.4798 0.4518 0.4673 0.5461 0.5595
MUSIQ↑ 67.0395 67.4327 67.5921 67.1736 67.5282 67.6444 54.9076 73.0842 72.1563 72.8543 74.7868 75.2187

consistently outperforms its 1D and 2D counterparts after finetuning, achieving the best performance
(highlighted in bold) across nearly all perceptual quality metrics. Notably, even without finetuning,
3D-TPR frequently ranks second (underlined), demonstrating strong generalization capability and
architectural robustness. In contrast, 1D and 2D variants exhibit only limited performance gains,
particularly under challenging cross-device settings. These results support two conclusions: (1) while
our ZI dataset provides performance gains across all indexing paradigms, the improvements are most
pronounced under the trajectory-aware 3D-TPR framework; and (2) OmniZoom (i.e., 3Df -TPR)
offers a universal, plug-and-play solution for real-world cross-device zoom interpolation, effectively
bridging domain gaps and enhancing perceptual quality across diverse hardware platforms.

Qualitative comparisons. Beyond quantitative evaluation, we provide qualitative results in Fig-
ures 12 and 13, illustrating ZI outputs on Huawei, Redmi, iPhone, and OPPO devices across four FI
networks. Each figure presents six variants per network: 1D, 2D, and 3D, along with their finetuned
counterparts (1Df , 2Df , and 3Df ).
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Figure 12: Qualitative comparisons on Huawei (top four rows) and Redmi (bottom four rows). While
1D and 2D models exhibit noticeable blurring and detail loss across networks, 3Df effectively restores
fine details, producing sharper structures and improved local contrast.

Several key observations emerge from these visualizations. First, the 3D configuration consistently
produces sharper and more coherent results than its 1D and 2D counterparts, highlighting the
effectiveness of the 3D-TPR framework in real-world ZI tasks. Second, across all indexing paradigms,
all finetuned models show clear perceptual improvements, demonstrating the broad applicability of
our ZI dataset across diverse FI architectures.
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Figure 13: Qualitative comparisons on iPhone and OPPO test sets under rich structural conditions.
While 1D and 2D variants exhibit edge instability and perceptual artifacts, 3Df produces noticeably
clearer results with sharper contours and reduced blurring, effectively preserving structural fidelity.

Notably, 3Df achieves the highest perceptual quality in nearly all cases, with fewer artifacts and
enhanced texture fidelity. For example, on Redmi sequences, 3Df recovers sharper character contours
and fine line structures compared to other variants. On iPhone and OPPO, where scenes contain more
intricate textures and geometric structures, 1D and 2D variants frequently introduce ghosting and
edge artifacts, issues that are substantially mitigated by the 3Df configuration.

These results underscore the strength of OmniZoom as a unified, cross-device solution for plug-and-
play zoom interpolation, offering robust perceptual quality across various hardware platforms.
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Table 10: Upper bound evaluation of the proposed 3D-TPR framework on four FI networks using
ground-truth 3D supervision. The 2D framework serves as a baseline [60]. All experiments on 3D
use the 3D trajectory progress ratio as timestep map. 3D-t-m indicates using only 3D-TPR encoding;
3D-m adds texture-focus strategy; 3D-t includes mask penalty constraint; and 3D integrates all
components. Bold indicates improvements over 2D baseline.

Network
RIFE IFRNet EMA-VFI AMT

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

2D 27.4050 0.9010 0.0863 27.1276 0.8994 0.0780 24.7313 0.8514 0.0810 27.1726 0.9017 0.0807
3D-t-m 28.7510 0.9267 0.0773 28.2484 0.9225 0.0715 25.4078 0.8618 0.0780 28.4850 0.9269 0.0837
3D-m 28.7311 0.9264 0.0764 28.3486 0.9241 0.0690 25.4705 0.8631 0.0800 28.5942 0.9285 0.0767
3D-t 28.5518 0.9234 0.0764 28.1917 0.9206 0.0686 25.3557 0.8618 0.0781 28.5895 0.9277 0.0810
3D 28.6548 0.9255 0.0773 28.2967 0.9220 0.0656 25.4984 0.8633 0.0770 28.6271 0.9286 0.0768

A.10 Upper bound analysis of 3D-TPR framework

To evaluate the performance ceiling of the 3D-TPR framework, we adopt ground-truth 3D geometry
as the timestep map, thereby ensuring perfect consistency between training and inference. As shown
in Table 10, we conduct a complementary ablation study under this setting for fair comparison.

Results indicate that utilizing consistent 3D similarity maps during both training and testing leads to
substantial gains across all metrics and networks: PSNR improves by over 1.0 dB on average, SSIM
consistently increases, and LPIPS is significantly reduced. These results reveal the latent capacity of
the 3D-TPR framework when accurate geometry is available throughout.

This upper bound analysis provides valuable insight into the theoretical capacity of our method.
While full 3D supervision may not be available in practice, our empirical findings suggest that
leveraging lightweight geometry estimation modules or substituting with physically obtainable priors
(e.g., depth from stereo, SLAM-based pose, or monocular depth) can approximate similar benefits.
This observation offers practical guidance for future extensions that aim to balance reconstruction
quality and computational feasibility.

A.11 Additional visual results of 3D-TPR framework

We present additional qualitative comparisons between the proposed 3D-TPR framework and con-
ventional 2D baselines, as shown in Figure 14. The results demonstrate that 3D-TPR effectively
restores degraded regions in 2D-based outputs, particularly in areas suffering from motion-induced
blur where structural details are severely corrupted or entirely missing.

Moreover, 3D-TPR alleviates misalignment artifacts commonly encountered in 2D models when
handling textures with high levels of repetition and self-similarity, such as linear structures or dot-like
patterns, by incorporating trajectory-aware spatial priors. In addition to these localized corrections,
our method consistently produces globally improved visual quality, exhibiting sharper details, better
structural coherence, and a more realistic overall appearance. These findings further highlight the
advantages of integrating 3D spatial awareness into temporal interpolation tasks.

A.12 Broader impacts

This work is motivated by the goal of enhancing frame interpolation in zoom scenarios, with direct
benefits for a wide range of applications in mobile photography, video conferencing, augmented
reality (AR), and digital content creation. Our proposed framework improves the temporal smoothness
and spatial consistency of interpolated video frames across heterogeneous smartphone platforms,
contributing to better visual quality in real-world capture workflows. In particular, it enables smoother
zoom transitions without requiring any hardware-level changes due to zero cost, offering cost-effective
enhancements for existing consumer devices.

Such capabilities are especially impactful in mobile videography, where users often experience
abrupt visual discontinuities during zoom. Our method can help reduce motion artifacts and maintain
semantic coherence in challenging scenes, which is beneficial for video-based communication,

29



GroundTruth RIFE IFRNet EMA-VFI AMT

2D 3D 2D 3D 2D 3D 2D 3D

Figure 14: Visual comparison of 2D and 3D interpolation results across networks at the same timestep.
The 3D method consistently yields less-blurred and neater outputs across all networks.

content sharing on social platforms, and immersive AR experiences that rely on high frame fidelity.
Furthermore, cross-device compatibility and plug-and-play integration facilitate broader adoption
across hardware vendors, making advanced interpolation accessible without retraining for each model.

Nevertheless, as with other generative video technologies, improvements in visual realism may pose
risks if misused, such as enabling the creation of misleading or manipulated video content. While
our framework is restricted to supervised frame interpolation under dual-camera settings and does
not support arbitrary video generation, we emphasize the importance of responsible use. To mitigate
misuse, we do not release general-purpose generative models, and our dataset is limited to constrained
zoom interpolation scenarios. We encourage future efforts to pair such technologies with appropriate
safeguards and transparency mechanisms to ensure ethical deployment.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: As stated in both the abstract and the introduction, our contributions and scope
are clearly defined.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are discussed in the Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: The full set of assumptions and derivations is provided in Section 3 and
Appendix A.4.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide detailed descriptions of the ZI dataset construction and 3D-TPR
architecture in the section3 and Appendix A.1 and Appendix A.4. In addition, the Section 4
and Appendix A.3 include specific training and evaluation settings. These details are
sufficient to reproduce the core experimental results and verify our main conclusions.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

32



5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We intend to release the code and dataset upon publication. While they are
not publicly available at the time of submission, the release is scheduled and will include
detailed documentation to ensure full reproducibility.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All essential training and testing details are described in Section 4, Ap-
pendix A.1, and Appendix A.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: While we do not include error bars or formal statistical significance tests, we
report average metrics (e.g., PSNR, SSIM, LPIPS) over all test samples to ensure statistical
reliability of the results.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We report the compute resources used for all experiments in Section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have thoroughly reviewed the NeurIPS Code of Ethics and ensured that
our research adheres to all stated ethical guidelines.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss both potential positive societal impacts and negative societal
impacts of the work performed in Appendix A.12
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work does not involve pretrained language models, image generation, or
internet-scraped datasets, and therefore poses no apparent risk of misuse or dual-use.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All third-party datasets and models used in our paper are clearly cited with
their original publications.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [No]

Justification: We introduce a new cross-device ZI dataset in this work. While it is not
publicly available at submission time, we plan to release it upon publication. The dataset
construction process is thoroughly described in Section 3.1, Section 4, Appendix A.1, and
Appendix A.2, and full documentation will be provided alongside the release.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve any crowdsourcing experiments or human subject
research.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
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Justification: This work does not involve any human subjects or crowdsourced data collec-
tion, so no IRB approval was required.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were only used for language polishing and did not contribute to the core
methodology, experimental design, or scientific content of the paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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