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Abstract

We study how to best spend a budget of noisy labels to compare the accu-
racy of two binary classifiers. It’s common practice to collect and aggregate
multiple noisy labels for a given data point into a less noisy label via a ma-
jority vote. We prove a theorem that runs counter to conventional wisdom.
If the goal is to identify the better of two classifiers, we show it’s best to
spend the budget on collecting a single label for more samples. We discuss
the implications of our work for the design of machine learning benchmarks,
where they overturn some time-honored recommendations.

1 Introduction

Data annotators are the “AI revolution’s unsung heros,” Gray & Suri (2019) argued. The
labor of human annotators has powered a growing industry of machine learning datasets
and benchmarks since the 1980s (Hardt & Recht, 2022). Human labels are a precious, yet
unreliable resource. Errors easily creep into data labor at scale. The designer of a benchmark
has to cope with the reality of conflicting labels for the same data point.

Many benchmarks follow a common strategy. Each data point in a sample gets noisy labels
from multiple human annotators. The candidate labels then determine a single label via an
aggregation function, such as a majority vote in the case of binary labels. For a sample of
size n and a choice of m labels per data point, the cost of this design scales as mn. Although
ubiquitous, we prove that this strategy is wasteful for creating the test set.

When the goal is to compare the population accuracy of binary classifiers, it is better to
sample mn data points and collect a single noisy label for each. This is particularly relevant
for selecting fine-tuned binary classifiers for deployment in settings where labeled data is
sparse, but also has implications for efficiently benchmarking reward models for RLHF
Ouyang et al. (2022) at scale, as these models act as binary classifiers on pairs of outputs.

The basis of our main result is a simple mathematical model that captures the essential
question. Data points are independent and identically distributed. For each data point, we
can request an odd number m ≥ 1 of binary labels, drawn independently from a distribution
that picks the correct label with some probability strictly greater than chance. We then
aggregate the m labels into a single label using a majority vote. Fix two classifiers, one
better than the other in terms of population accuracy by some positive margin. We have a
budget k to spend on labels. Given an annotator number m, we can create a labeled sample
of size n = k/m. We pick the classifier with the higher empirical accuracy on this sample.
How should we pick an annotator number m so as to maximize the probability of picking
the better classifier? Our main theorem provides the answer.

Theorem 1 (Informal). For a sufficiently large sample budget k, the probability of identi-
fying the better of two binary classifiers is maximized at m = 1 labels per data point.

Our theorem extends to the case where label errors are correlated with classifier errors,
possibly even in a data dependent way. It only fails in the unusual cases where label noise
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systematically aligns in favor of the worse classifier, the effect of aggregation on label quality
systematically aligns in favor of the better classifier, or the cost of unlabelled data is large.
While our main theorem is asymptotic, we conjecture that the statement holds for all n ≥ 1.
We have verified this numerically in a vast parameter sweep spanning more than four billion
values. The numerical tool we created also serves as an effective way to calculate tight
sample size requirements and is available at https://labelnoise.pythonanywhere.com.

There is a common belief that benchmark designers should clean noisy labels through ag-
gregation. Our result suggests a surprising departure. For the purpose of comparing and
ranking binary classifiers, quantity beats quality. A single label per data point is optimal.

1.1 Related Work

Label aggregation in dataset creation. Human-provided labels are at the heart of
modern machine learning (Gray & Suri, 2019). “Gold standard” labels for datasets like
ImageNet (Russakovsky et al., 2015) are routinely produced by aggregating multiple anno-
tators’ labels. In natural language processing, classic benchmarks like SST (Socher et al.,
2013) and MNLI (Bowman et al., 2015) also base labels on a per-instance majority vote
after collecting multiple labels for each instance. More recently, label aggregation has been
used for evaluating the safety of LLama2 (Touvron et al., 2023), while OpenAssistant (Köpf
et al., 2023) aggregates users’ rankings of model outputs into a “consensus opinion”. Recht
et al. (2019) suggest to “employ a separate labeling process for the test set that relies on
more costly expert annotations.” In line with this, it is common to collect more labels per
instance for testing than for training (Williams et al., 2017; Dorner et al., 2022).

Annotator disagreement as a feature. Aroyo & Welty (2013) argue that due to the
lack of objective ground truth, taking annotator disagreement into account is essential. The
authors suggest to to use non-binary labels that encompass disagreement. Similarly, predict-
ing individual annotators’ responses is a common approach (Tanno et al., 2019; Davani et al.,
2022; Gordon et al., 2022; Fleisig et al., 2023). To enable this, it is often recommended for
dataset creators to release these rather than already aggregated labels (Prabhakaran et al.,
2021; Denton et al., 2021). Our work is orthogonal: We assume that the target label is
agreed upon to be given by a majority vote over the whole crowdworker population. In this
setting, we demonstrate that collecting and aggregating multiple labels per data point is
statistically suboptimal in terms of identifying the better of two classifiers.

2 Formal results

Let D be a distribution of data points x with binary correct labels yTrue(x) ∈ {0, 1}. For a
binary classifier c, we define the population risk as the frequency of classification errors

R(c) := E
x∼D

[I(yTrue(x) ̸= c(x))],

where I denotes the indicator function. We consider two arbitrary classifiers cb and cw
(where b stands for “better” and w for “worse”), such that

1− pw = R(cw) > R(cb) = 1− pw − ϵ

for accuracy pw ∈ [0.5, 1] and margin ϵ ∈ (0, 1 − pw]. We want to use a limited labeling
budget k to create a test set T on which test accuracy is likely to be higher for the better
classifier, without using any information about the two specific classifiers at hand. We
assume that test sets are created as follows: Independently (with replacement) sample a
dataset D of n data points x ∼ D. Then, for each x ∈ D, sample m = k

n labelers l from
a population of crowdworkers Dcrowd, again independently and with replacement, and have
each of them provide a label yl(x) for x. For a given data point x, we then set the test label
yTest(x) equal to the majority of the labels yl(x). The main question tackled in this work is
then, how to allocate the label budget k between n and m in order to have the best chance
of correctly identifying the better classifier cb using the constructed test set.

For a fixed data point x, we set q(x) ∈ (0.5, 1] to the probability that a crowd-
worker label yl(x) is correct, marginalized over l, i.e. q(x) := Pl(yl(x) = yTrue(x)).
Similarly, q denotes the same probability marginalized over both x and l: q :=
Px,l(yl(x) = yTrue(x)). We note, that in this setup, the case of collecting m labels
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yl(x) for a given x with correctness probability q(x) yields the same distribution of la-
bels as collecting a single label with correctness probability q′(x) = Mm(q(x)), where
Mm(q) := P(Majority of m independent voters correct) under the assumption that each
voter is correct with probability q. To compare the two classifiers cb and cw on our test set,
we define the gap indicator G

G :=


1 : cb(x) = yTest(x) ̸= cw(x)

−1 : cw(x) = yTest(x) ̸= cb(x)

0 : cw(x) = cb(x)

,

where x and yTest are sampled as described above. The gap indicator G describes the un-
normalized accuracy gap between the classifiers cb and cw on the test set, as we can express

1

n

n∑
i=1

Gi = AccTest(cb)−AccTest(cw)

for independent copiesGi ofG, where AccTest(c) :=
1
n

∑n
i=1 I(yTest(x) = c(x)). In particular∑n

i=1 Gi is positive if and only if our test set correctly identifies the better classifier cb.

We model the worse classifier cw to be correct with probability pw ∈ [0.5, 1]. Then, the
better classifier cb is correct with probability p0b ∈ [0.5, 1] conditional on cw being incorrect
on a given datapoint x and p1b ∈ [0.5, 1] conditional on cw being correct. The assumption
that cb has lower risk than cw implies (1− pw)p

0
b + pwp

1
b > pw or equivalently (1− pw)p

0
b +

pw
(
p1b − 1

)
> 0. We also model correlations between the two classifiers and the labels by

denoting qb ∈ (0.5, 1] as the probability that the label is correct, conditional on the event
Eb that cb is correct and cw is incorrect, and qw ∈ (0.5, 1] as the probability that the label
is correct in the case that cb is incorrect and cw is correct, termed Ew.

We abbreviate qw, qb as q, pw, p
0
b , p

1
b as p and Mm(qb),Mm(qw) as Mm(q) and treat the

treat the gap indicator G as a function of q and p. We focus on the case of homogeneous
label errors over x, i.e. q(x) = qk for k determined by x ∈ Ek. This allows us to use
the equivalence of a single labeler with accuracy Mm(qk(x)) and m labelers with accuracies
qk(x) each, to compare G(q) and G(Mm(q)) rather than explicitly parameterizing G by m.

We are interested in whether using an m−majority vote of the noisy crowdworker labels
provides more information about which of the two classifiers is better than using m times as
many data points with a single label each. More precisely, we would like to find out whether
the better classifier is more likely to win with a single label and more data points, or with ag-
gregated labels. In technical terms, we want to know whether for independent copies Gi of G

P

(
mn∑
i=0

Gi(q, p, ϵ) > 0

)
> P

(
n∑

i=0

Gi(Mm(q), p, ϵ) > 0

)
.

For small n and m this can be checked by numerically calculating the exact probabilities.
It is consistently true according to a large scale grid search over the possible values of p, q
and ϵ that evaluated nearly five billion configurations, detailed in Appendix A. Figure 1
shows these exact probabilities for fixed accuracies p = pw = 0.8, p0b = p1b = p + ϵ = 0.81
and varying values of the label accuracy q and label budget k. As can be seen, the single
label approach consistently outperforms m > 1 labels.

If labels are substantially more accurate in the event Ew, for example because cw was trained
on parts of the test set, the expectation of G can become negative, such that P(

∑n
i Gi > 0)

converges to zero. We assume that this does not happen:

Assumption 1. No biased label accuracy: qb ≥ qw.

Note that the homogeneity in label accuracy q(x) we assumed is not necessarily the best case
for m > 1: Heterogeneity lowering the label accuracy of the majority vote can be beneficial
as long it is restricted to Ew, where cb is incorrect. We assume that heterogeneity does not
disproportionately harm label accuracy when the better classifier is incorrect:
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Figure 1: Probability of identifying cb for accuracy p = 0.8, margin ϵ = 0.01, budget
k = 1500 (a), label accuracy q = 0.8 (b).

Assumption 2. No biased heterogeneity:

(1− pw)p
0
b

pw(1− p1b)

(
Mm(qb)− E

x
[Mm(q(x))|Eb]

)
≥ Mm(qw)− E

x
[Mm(q(x))|Ew]. (1)

The
(1−pw)p0

b

pw(1−p1
b)

factor is larger than one as cb is more accurate than cw. Because qb > qw

and M3(x) is more concave for larger x > 0.5, this means that for m = 3 assumption 2 is
expected to hold when heterogeneity is similar conditional on the events Eb and Ew.

Theorem 2. For G as defined above, m > 1 and qb, qw, pw, p
0
b , p

1
b fixed such that assumption

1 holds, there exist an N ∈ N such that for n > N

P

(
n∑
i

Gi(Mm(q), p) > 0

)
< P

(
mn∑
i

Gi(q, p) > 0

)
.

Under assumption 2, this implies that the single label strategy outperforms the m−label
strategy for these n.

In other words, under assumptions 1 and 2 on the joint distribution of the labels and
classifiers and sufficiently large label budgets mn, it is always better to collect a single
label for mn data points rather than m labels for n data points, when it comes to classifier
comparison. The theorem makes heavy use of Cramér’s theorem from large deviation theory
(Klenke, 2013) and is proven in Appendix C.

3 Discussion

Our results suggest that while collecting multiple labels per instance can be useful for better
understanding disagreement about a classification task, collecting a single label per instance
is optimal for comparing binary classifiers’ accuracy. Thus, while we agree with Aroyo &
Welty (2015) that “one [label] is enough” is a myth when it comes to a fine-grained under-
standing of annotator labels, we find that one label is all you need for simple benchmarking,
where a model’s performance is for better or worse reduced to its test accuracy. When
designing a new benchmark, we still encourage practitioners to initially collect multiple
annotations for a few instances, in order to better understand ambiguities in their task
definition and how annotators’ identity influences their labels Denton et al. (2021). This
can then be used to adjust the task instructions and annotator pool, such that the expected
annotator label for each instance reflects the intended task well. Once the instructions and
annotator pool are fixed and it comes to evaluation at scale, we recommend to build the
test set using a large number of instances with a single label each, according to budget.

While we do not study the effects of aggregation for datasets that include multiple labels per
instance, we reiterate Denton et al. (2021)’s recommendation to “Consider what valuable in-
formation might be lost through such aggregation”. If such a dataset is, privacy permitting,
released with all annotators’ labels, users can choose whether and how to aggregate labels
Prabhakaran et al. (2021). Otherwise, they cannot obtain information about annotator
disagreement, or simply use another aggregation method more suited to their needs.
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4 Limitations

Our recommendations might not hold if a) estimating the precise risk R(c) of a classifier c
is more important than ranking classifiers, b) the cost of unlabeled data is not negligible, or
c) there is good reason to believe that one of our assumptions is violated, i.e. label errors
are more common when the better classifier cb is correct or there is substantially more
heterogeneity in q(x) when the worse classifier cw is correct. In the latter case, using single
labels can still often be preferable, and we provide a calculator for the exact probabilities
at https://labelnoise.pythonanywhere.com.

On the theoretical side, our main theorem is asymptotic. Based on our numerical results,
we conjecture that it is always true, but are unable to proof this at the current stage:

Conjecture 1. For G defined as in Section 2 with m > 1,

P

(
n∑
i

Gi(Mm(qb),Mm(qw), pw, pb) > 0

)
< P

(
mn∑
i

Gi(qb, qw, pw, pb) > 0

)
for all n > 0 as long as assumption 1 holds. Under assumption 2, this implies that the single
label strategy outperforms the m−label strategy.

While binary classification is at the heart of many contemporary human-labeled tasks,
most notably reward modelling for Reinforcement Learning from Human Feedback (RLHF)
(Ouyang et al., 2022), multiclass classification remains an important task. Extending our
results to that setting is a challenging open problem.

Similarly, smarter adaptive labeling strategies that are out of the scope of this work, like
first collecting two labels and only collecting a third in case of a tie, could make collecting
multiple labels more competitive in the binary case.
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A Numerical evidence

We conducted a large scale parameter sweep for

n ∈ [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 100, 101, 1000, 1001],

m ∈ [3, 11]

and
qb, qw, pw, p

0
b , p

1
b ∈ S5,

where S is a set of 50 evenly spaced points s ∈ [0.5, 1] with a resolution of 0.01. For all of
the almost five billon grid points that fulfilled (1− pw)p

0
b + pwp

1
b > pw, we both explicitly

calculated

P

(
mn∑
i=0

Gi(q, p, ϵ) > 0

)
and

P

(
n∑

i=0

Gi(Mm(q), p, ϵ) > 0

)
(using iterated convolutions of the base variable G, sped up via exponentiation by squaring)
and additionally approximated the probabilities based on sampling each of the sums 100
times. Under the assumptions from section 2, the exact calculations consistently yielded

P

(
mn∑
i=0

Gi(q, p, ϵ) > 0

)
≥ P

(
n∑

i=0

Gi(Mm(q), p, ϵ) > 0

)
,

with the only exceptions happening when both probabilities are extremely close to 1 (max-
imal distance of the order 1e − 12). These exceptions do not provide meaningful evidence
against our conjecture, as they are most likely caused by numerical instability (notably, they
often coincide with calculated probabilities that exceed one). In particular, there were no
parameters for which both the exact probabilities and the sampled probabilities were better
for the m−label case, even though this happened for the sampled probabilities alone in 1.6%
of the cases (as to be expected from the relatively small sample size of 100). As an additional
sanity check, the sampled probabilities generally approximated the exact probabilities well,
with the average distance over all parameters being on the order of 1e− 7, and the average
MSE of the order 0.01 for both the single and the m−label case.

Notably, the single label approach still performed better in two thirds of the parameter
configurations with qw > qb, with this number slowly decreasing for larger values of qw.
This suggests that our (already not particularly restrictive) assumptions could be relaxed
substantially further.

B Parameterizations of the gap indicator

Proposition B.1. Assuming mututally independent classifier and labeler errors (i.e. pw =
p, p0b = p1b = p+ ϵ, qw = qb = q), G can be written as follows:

G(q, p, ϵ) =


1 w.p. qϵ+ (1− p− ϵ)p

−1 w.p. (1− q)ϵ+ (1− p− ϵ)p

0 else p(p+ ϵ) + (1− p− ϵ)(1− p)

,

for label accuracy q, classifier accuracy p and margin ϵ.

Proof. The better classifier cb wins for a given x (i.e. G = 1) if cb(x) and the label yTest(x)
are correct, while cw(x) is not, or if both cb(x) and the label yTest(x) are incorrect, while
cw(x) is correct. The former happens with probability ((p+ ϵ)(1− p)q), and the latter with
probability ((p)(1− p− ϵ)(1− q)). Summing up yields

P(G = 1) =((p+ ϵ)(1− p)q) + (p)(1− p− ϵ)(1− q)

= qp− qp2 + qϵ− qpϵ+ (1− q)
(
p− p2 − pϵ

)
= qp− qp2 + qϵ− qpϵ+ p− p2 − pϵ− qp+ qp2 + qpϵ

= qϵ+ p− p2 − pϵ = qϵ+ p(1− p− ϵ).
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For the worse classifier cw to win (G = −1), we get the opposite cases conditional on the
label, with respective probabilities of ((p+ ϵ)(1− p)(1− q)) and ((p)(1− p− ϵ)q. These
sum up as follows:

P(G = −1) = ((p+ ϵ)(1− p)(1− q)) + (p)(1− p− ϵ)q

=
(
p+ ϵ− p2 − pϵ

)
(1− q) + qp− qp2 − qpϵ

= p+ ϵ− p2 − pϵ− qp− qϵ+ qp2 + qpϵ+ qp− qp2 − qpϵ

= p+ ϵ− p2 − pϵ− qϵ

= (1− p− ϵ)p+ (1− q)ϵ.

Adding up both probabilities yields

P(G ̸= 0) = 2p(1− p− ϵ) + ϵ

= 2p− 2p2 − 2pϵ+ ϵ

= 1− p(p+ ϵ) + 2p− p2 − pϵ+ ϵ− 1

= 1− p(p+ ϵ)− (1− p− ϵ)(1− p),

which makes sense as the gap indicator G(p, q, ϵ) is zero whenever both classifiers produce
the same answer, independent of the label.

Proposition B.2. Assuming correlated classifiers and labels with the above parameteriza-
tion, we have:

G(q, p) =


1 w.p. qb(1− pw)p

0
b + (1− qw)pw

(
1− p1b

)
−1 w.p. (1− qb)(1− pw)p

0
b + qwpw

(
1− p1b

)
0 else

.

Proof. The better classifier cb “wins” on a given datapoint, whenever it and the label are
correct, while the worse classifier is not, or if the label and the better classifier are incorrect,
while the worse classifier is correct. The former happens with probability qb(1− pw)p

0
b and

the latter with probability (1− qw)pw
(
1− p1b

)
. The case of the worse classifier winning is

symmetric, with qi and 1− qi reversed. This yields

G
(
qb, qw, pw, p

0
b , p

1
b

)
=


1 w.p. qb(1− pw)p

0
b + (1− qw)pw

(
1− p1b

)
−1 w.p. (1− qb)(1− pw)p

0
b + qwpw

(
1− p1b

)
0 else

.

C Proving theorem 2

Theorem 2. For G as defined above, m > 1 and qb, qw, pw, p
0
b , p

1
b fixed such that assumption

1 holds, there exist an N ∈ N such that for n > N

P

(
n∑
i

Gi(Mm(q), p) > 0

)
< P

(
mn∑
i

Gi(q, p) > 0

)
.

Under assumption 2, this implies that the single label strategy outperforms the m−label
strategy for these n.

The proof of theorem 2 is based on Cramér’s Theorem:

Cramér’s Theorem. (Adapted from (Klenke, 2013)) Let Xi be iid real random variables
for i ∈ N such that

Λ(t) := logE[etX1 ] < ∞
for all t ∈ R. Define the Legendre transform

Λ∗(x) := sup
t
(tx− Λ(t)).

8
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Then for all z ∈ R such that z > E[X1], we have

lim
n→∞

1

n
logP

(
Sn =

n∑
i=0

Xi ≥ zn

)
= −Λ∗(z),

where the limit is an upper bound for all n.

This means that P(Sn =
∑n

i=0 Xi ≥ zn) is eventually roughly of the order e−nΛ∗(z). Further-
more, a glance at the prove of Cramér’s Theorem, reveals that this exponential is actually
an upper bound for the error probability independent of n in our case of z = 0. We want
to eventually apply the theorem to X = −G(Mm(q), p, ϵ) and X ′ = −

∑m
i=0 Gi(q, p, ϵ) re-

spectively. Because these random variables have negative expectation, the theorem can be
applied to z = 0 > E[X], yielding limits for

1

n
logP(Sn ≥ 0) :=

1

n
log

(
P

(
n∑
i

Gi(Mm(q), p, ϵ) ≤ 0

))
=

1

n
log

(
1− P

(
n∑
i

Gi(Mm(q), p, ϵ) > 0

))
and

1

n
logP(S′

n ≥ 0) :=
1

n
log

(
1− P

(
mn∑
i

Gi(q, p, ϵ) > 0

))
.

If we can prove that
−Λ∗

X(0) > −Λ∗
X′(0), (2)

it follows that there is an N ∈ N such that for n > N we have

1

n
log

(
1− P

(
n∑
i

Gi(Mm(q), p, ϵ) > 0

))
>

1

n
log

(
1− P

(
mn∑
i

Gi(q, p, ϵ) > 0

))
and thus by monotonicity

P

(
n∑
i

Gi(Mm(q), p, ϵ) > 0

)
< P

(
mn∑
i

Gi(q, p, ϵ) > 0

)
.

We first consider a general ternary X with negative expectation:

X =


1 w.p. x

−1 w.p. y

0 w.p. z

for y > x .

Lemma C.1. For X ternary with P(X = 1) = x, P(X = −1) = y, and P(X = 0) = z,

−Λ∗
X(0) = log (2

√
xy + z).

For sums of independent copies Xi of ternary variables Sn =
∑n

i=0 Xi,

−Λ∗
Sn

(0) = n log (2
√
xy + z).

Proof. We have that

−Λ∗
X(0) = −

(
sup
t

0 · t− ΛX(t)

)
= inf

t
ΛX(t)

Here,
ΛX(t) = logE[etX ] = log

(
xet + ye−t + z

)
.

Differentiating yields
d

dt
ΛX(t) =

xet − ye−t

xet + ye−t + z
.

9
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The numerator is positive for large positive t and negative for large negative t, with a unique
zero at xet = ye−t, i.e. y

x = e2t or t = 0.5 log y
x , such that Λ(t) is minimized at this t. This

means that

inf
t
ΛX(t) = log

(
xe0.5 log y

x + ye−0.5 log y
x + z

)
= log

(
x
√
elog

y
x + y

1√
elog

y
x

+ z

)
= log

(
x

√
y

x
+ y

√
x

y
+ z

)
= log(2

√
xy + z).

Now for Sn, we get

ΛSn
(t) = logE[etSn] = log

n∏
i=0

E[etXi ] = n log
(
xet + ye−t + z

)
.

The optimization is not affected by multiplying by n, so we get

inf
t
ΛSn

(t) = n log(2
√
xy + z)

C.1 Independent Classifiers

We first focus on the independent case with

G(q, p, ϵ) =


1 w.p. qϵ+ (1− p− ϵ)p

−1 w.p. (1− q)ϵ+ (1− p− ϵ)p

0 else p(p+ ϵ) + (1− p− ϵ)(1− p)

,

where qb = qw = q, pw = p and p0b = p1b = p + ϵ as defined in section 2 and apply Lemma
C.1 to

X = −G(Mm(q), p, ϵ)

and

X ′ = −
m∑
i=0

Gi(q, p, ϵ)

to obtain

−Λ∗
X(0) = log

(
2

√
Mm(q)(1−Mm(q))ϵ2 + ϵ(1− p− ϵ)p+ ((1− p− ϵ)p)

2
+ 1− ϵ− 2p(1− p− ϵ)

)
.

and

−Λ∗
X′(0) = m log

(
2

√
q(1− q)ϵ2 + ϵ(1− p− ϵ)p+ ((1− p− ϵ)p)

2
+ 1− ϵ− 2p(1− p− ϵ)

)
.

To get some intuition, we fix p = 0.5, such that

−Λ∗
X(0) = log

(
2

√(
Mm(q)(1−Mm(q))− 1

4

)
ϵ2 +

1

16
+

1

2

)
,

which for the aggregated case yields an asymptotic error rate of

e−Λ∗
X(0)n =

(
2

√(
Mm(q)(1−Mm(q))− 1

4

)
ϵ2 +

1

16
+

1

2

)n

The error rate has a second order taylor expansion around ϵ = 0 of

e−nΛ∗
X(0) ≈ 1 + (4(Mm(q)(1−Mm(q))− 1))nϵ2.

10
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For q = Mm(q) = 1, we thus get

e−nΛ∗
X(0) ≈ 1− nϵ2,

which is consistent with the statistical intuition that n ≫ 1
ϵ2 samples are needed to detect

a coin with a bias of order ϵ. Meanwhile as q goes to 0.5, Mm(q)(1−Mm(q)) approaches 4
and the amount of required samples explodes.

Back to general p ≥ 0.5, we note that by the AM-GM inequality, 2
√
xy+ z ≤ x+ y+ z = 1

for any x, y, z that describe a ternary random variable as above with equality only if x = y,
which cannot happen for G under our assumptions because of its positive expectation.
This means that the logarithms in the Λ∗ are always strictly negative. In particular, at
q = 0.5 and q = 1, Mm(q) = q such that the terms in the logarithm are equal and we get
−Λ∗

X(0) ≥ −mΛ∗
X(0) = −Λ∗

X′(0). In general, we have

− Λ∗
X(0) + Λ∗

X′(0) (3)

= log

(
2

√
Mm(q)(1−Mm(q))ϵ2 + ϵ(1− p− ϵ)p+ ((1− p− ϵ)p)

2
+ 1− ϵ− 2p(1− p− ϵ)

)
−m log

(
2

√
q(1− q)ϵ2 + ϵ(1− p− ϵ)p+ ((1− p− ϵ)p)

2
+ 1− ϵ− 2p(1− p− ϵ)

)
.

Because (2) holds for q = 0.5 independent of ϵ and p as both terms are the same except for
the factor m in that case, it is sufficient to show that (3) always has a positive derivative in
q. To show this, we set

f∗(q) = Mm(q)(1−Mm(q))ϵ2 + ϵ(1− p− ϵ)p+ ((1− p− ϵ)p)
2
,

g∗(q) = q(1− q)ϵ2 + ϵ(1− p− ϵ)p+ ((1− p− ϵ)p)
2

and
c = 1− ϵ− 2p(1− p− ϵ),

such that

−Λ∗
X(0) + Λ∗

X′(0) = log
(
2
√
f∗(q) + c

)
−m log

(
2
√

g∗(q) + c
)
. (4)

Differentiating yields

d

dq
(−Λ∗

X(0) + Λ∗
X′(0)) =

d

dq
log
(
2
√
f∗(q) + c

)
−m

d

dq
log
(
2
√
g∗(q) + c

)
=

d
dq2
√
f∗(q)(

2
√
f∗(q) + c

) −m

d
dq2
√
g∗(q)(

2
√
g∗(q) + c

)

=

f∗′ (q)√
f∗(q)(

2
√
f∗(q) + c

) −m

g∗′ (q)√
g∗(q)(

2
√
g∗(q) + c

)
=

f∗′
(q)√

f∗(q)
(
2
√

f∗(q) + c
)

−m
g∗

′
(q)√

g∗(q)
(
2
√
g∗(q) + c

) .
Correspondingly using (3), (2) reduces to

f∗′
(q) ≥ mg∗

′
(q)

√
f∗(q)

(
2
√

f∗(q) + c
)

√
g∗(q)

(
2
√

g∗(q) + c
) (5)

We can calculate

g∗
′
(x) =

d

dq
q(1− q)ϵ2 = ϵ2(1− 2q)
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and

f∗′
(x) = ϵ2

d

dq
Mm(q)(1−Mm(q))

= ϵ2(1− 2Mm(q))
d

dq
Mm(q)

= ϵ2(1− 2Mm(q))m

(
m− 1
m−1
2

)
q

m−1
2 (1− q)

m−1
2 ,

where the last equation uses the equality of

M2n+1(q) = (2n+ 1)

(
2n

n

)∫ q

0

xn(1− x)
n
dx

(Boland et al., 1989). Correspondingly, (5) holds if and only if

(1− 2Mm(q))m

(
m− 1
m−1
2

)
q

m−1
2 (1− q)

m−1
2 ≥ m(1− 2q)

√
f∗(q)

(
2
√

f∗(q) + c
)

√
g∗(q)

(
2
√

g∗(q) + c
) .

For 0.5 < q < 1, this is equivalent to

2Mm(q)− 1

2q − 1

(
m− 1
m−1
2

)
q

m−1
2 (1− q)

m−1
2 ≤

√
f∗(q)

(
2
√

f∗(q) + c
)

√
g∗(q)

(
2
√

g∗(q) + c
) . (6)

Lemma C.2. Let 0 < x < y and c > 0. Then, 2x+c
√
x

2y+c
√
y ≥ x

y

Proof.

2x+ c
√
x

2y + c
√
y
≥ x

y
⇐⇒

(
2x+

√
xc
)
y ≥ (2y +

√
yc)x

⇐⇒ 2xy + c
√
xy ≥ 2xy + c

√
yx

⇐⇒
√
xy ≥ √

yx

⇐⇒ y
√
y
≥ x√

x

⇐⇒ √
y ≥

√
x

⇐⇒ y ≥ x

As f∗(q) and g∗(q) can be written asMm(q)(1−Mm(q))ϵ2+d and q(1− q)ϵ2+d respectively

for d = ϵ(1− p− ϵ)p+((1− p− ϵ)p)
2
, and because k(x) = x(1− x) is monontonously falling

in x while Mm(x) grows in m, g∗(x) ≥ f∗(x), and Lemma C.2 implies that it is sufficient
to show

2Mm(q)− 1

2q − 1

(
m− 1
m−1
2

)
q

m−1
2 (1− q)

m−1
2 ≤ f∗(q)

g∗(q)
. (7)

Lemma C.3. Let 0 < x < y and d > 0. Then, x+d
y+d ≥ x

y

Proof.

x+ d

y + d
≥ x

y
⇐⇒ y(x+ d) ≥ x(y + d)

⇐⇒ xy + yd ≥ yx+ xd

⇐⇒ y ≥ x

12
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Lemma C.3 implies that (7) can be reduced to

2Mm(q)− 1

2q − 1

(
m− 1
m−1
2

)
q

m−1
2 (1− q)

m−1
2 ≤ ϵ2Mm(q)(1−Mm(q))

ϵ2q(1− q)
. (8)

Next, we need the following lemma:

Lemma C.4. Setting σ(m, q) =
∑m−2

k uneven

(
k

⌈ k
2 ⌉
)
q⌈

k
2 ⌉(1− q)

⌈ k
2 ⌉ for uneven m, we have that

Mm(q) = q + (2q − 1)σ(m, q).

Proof. Let bn(q, k) be the probability of k successes in a binomial with n trials and with
probability of success p for a single trial. Then:

Mm(q) = Mm−2(q) + q2bm−2

(
q, ⌊m− 2

2
⌋
)
− (1− q)

2
bm−2

(
q, ⌈m− 2

2
⌉
)

= Mm−2(q) + q2
1− q

q
bm−2

(
q, ⌈m− 2

2
⌉
)
− (1− q)

2
bm−2

(
q, ⌈m− 2

2
⌉
)

= Mm−2(q) +
(
q − q2 − 1 + 2q − q2

)
bm−2

(
q, ⌈m− 2

2
⌉
)

= Mm−2(q) +
(
3q − 2q2 − 1

)
bm−2

(
q, ⌈m− 2

2
⌉
)

= Mm−2(q) + (1− q)(2q − 1)bm−2

(
q, ⌈m− 2

2
⌉
)

= Mm−2(q) + (1− q)(2q − 1)

(
m− 2

⌈m−2
2 ⌉

)
q⌈

m−2
2 ⌉(1− q)

⌈m−2
2 ⌉−1

= Mm−2(q) + (2q − 1)

(
m− 2

⌈m−2
2 ⌉

)
q⌈

m−2
2 ⌉(1− q)

⌈m−2
2 ⌉

.

The first equation captures the fact that a majority of m trials consists of all events that
have a majority for the first m − 2 trials (first term), except for those with a margin of
one that simultaneously have two misses in the last two trials (third term), in addition to
all events that miss a majority in the first m − 2 trials by a margin of one, but have two
successes in the last two trials (second term). The statement of the Lemma then follows by
unrolling the additive recursion.

Lemma C.4 allows to rewrite (8) as

(1 + 2σ(m, q))

(
m− 1
m−1
2

)
q

m−1
2 (1− q)

m−1
2

=
2q + 2(2q − 1)σ(m, q)− 1

2q − 1

(
m− 1
m−1
2

)
q

m−1
2 (1− q)

m−1
2

≤ Mm(q)(1−Mm(q))

q(1− q)

or equivalently

(1 + 2σ(m, q))

(
m− 1
m−1
2

)
q

m+1
2 (1− q)

m+1
2 ≤ Mm(q)(1−Mm(q)). (9)

We note that both sides approach zero from above as q → 1, such that (9) holds for q = 1. It
is thus sufficient to show, that the right side grows faster than the left side when decreasing
q, i.e.

d

dq

(
(1 + 2σ(m, q))

(
m− 1
m−1
2

)
q

m+1
2 (1− q)

m+1
2

)
≥ d

dq
(Mm(q)(1−Mm(q))). (10)
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We have

d

dq
(Mm(q)(1−Mm(q))) = (1− 2Mm(q))m

(
m− 1
m−1
2

)
q

m−1
2 (1− q)

m−1
2

Meanwhile,

d

dq
(1 + 2σ(m, q))

(
m− 1
m−1
2

)
q

m+1
2 (1− q)

m+1
2

= (1 + 2σ(m, q))
m+ 1

2
(1− 2q)

(
m− 1
m−1
2

)
q

m−1
2 (1− q)

m−1
2 +

(
m− 1
m−1
2

)
q

m−1
2 (1− q)

m−1
2 q(1− q)2

d

dq
σ(m, q)

=

(
m− 1
m−1
2

)
q

m−1
2 (1− q)

m−1
2

(
(1 + 2σ(m, q))

m+ 1

2
(1− 2q) + q(1− q)2

d

dq
σ(m, q)

)
.

Because
(m−1

m−1
2

)
q

m−1
2 (1− q)

m−1
2 > 0 for q < 1, (10) or

d

dq
(1 + 2σ(m, q))

(
m− 1
m−1
2

)
q

m+1
2 (1− q)

m+1
2 ≥ d

dq
(Mm(q)(1−Mm(q)))

holds whenever

(1 + 2σ(m, q))
m+ 1

2
(1− 2q) + q(1− q)2

d

dq
σ(m, q) ≥ m(1− 2Mm(q)). (11)

Dividing by the (negative) 1− 2Mm(q) term yields

(1 + 2σ(m, q))
m+ 1

2

(1− 2q)

1− 2Mm(q)
+

q(1− q)

1− 2Mm(q)
2
d

dq
σ(m, q) ≤ m.

which is equivalent to
m+ 1

2
+

q(1− q)

1− 2Mm(q)
2
d

dq
σ(m, q) ≤ m

as (1−2q)
1−2Mm(q) =

1
1+2σ(m,q) . Rewriting yields

m− 1

2
= m− m+ 1

2
(12)

≥ − q(1− q)

2Mm(q)− 1
2
d

dq
σ(m, q)

= −2
q(1− q)

2Mm(q)− 1
(1− 2q)

m−2∑
k uneven

k + 1

2

(
k

k+1
2

)
q

k−1
2 (1− q)

k−1
2

= 2
2q − 1

2Mm(q)− 1

m−2∑
k uneven

k + 1

2

(
k

k+1
2

)
q

k+1
2 (1− q)

k+1
2

= 2
1

1 + 2σ(m, q)

m−2∑
k uneven

k + 1

2

(
k

k+1
2

)
q

k+1
2 (1− q)

k+1
2 (13)

We can upper bound

m−2∑
k uneven

k + 1

2

(
k

k+1
2

)
q

k+1
2 (1− q)

k+1
2 ≤ m− 2 + 1

2

m−2∑
k uneven

(
k

k+1
2

)
q

k+1
2 (1− q)

k+1
2

=
m− 1

2
σ(m, q)

such that (12) reduces to
m− 1

2
≥ m− 1

2

2σ(m, q)

1 + 2σ(m, q)
, (14)

which is clearly true, as x
1+x < x

x = 1 for all x > 0.
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C.2 Correlated classifiers

We now analyze the case of correlated classifiers discussed in 2, at first keeping q = qb = qw
fixed to be equal. As a reminder, we now have

G(q, p, ϵ) =


1 w.p. q(1− pw)p

0
b + (1− q)pw

(
1− p1b

)
−1 w.p. (1− q)(1− pw)p

0
b + qpw

(
1− p1b

)
0 else

.

with expectation

(2q − 1)(1− pw)p
0
b − (2q − 1)pw

(
1− p1b

)
= (2q − 1)

(
(1− pw)p

0
b + pw

(
p1b − 1

))
> 0.

We also note that

P(G(q, p, ϵ) = 0) = 1− P(G(q, p, ϵ) = 1)− P(G(q, p, ϵ) = −1)

= 1− q(1− pw)p
0
b − (1− q)pw

(
1− p1b

)
− (1− q)(1− pw)p

0
b − qpw

(
1− p1b

)
= 1− (1− pw)p

0
b − pw

(
1− p1b

)
=: c0

is constant in q. Repeating the argument from above, we now obtain

Λ′∗
X(0)

= m log

(
2
√
P(G(q, p, ϵ) = 1)P(G(q, p, ϵ) = −1) + c0

)
= m log

(
2

((
q(1− pw)p

0
b(1− q)(1− pw)p

0
b + q(1− pw)p

0
bqpw

(
1− p1b

))
+ (1− q)pw

(
1− p1b

)
(1− q)(1− pw)p

0
b + (1− q)pw

(
1− p1b

)
qpw

(
1− p1b

)) 1
2

+ c0

)
= m log

(
2
√
q(1− q)c1 + qqc2 + (1− q)(1− q)c3 + (1− q)qc4 + c0

)
,

where the ci are constants that do not depend on q. We also note, that
pw
(
1− p1b

)
(1− pw)p

0
b = c2 = c3.

We now consider

f∗(q) = (c1 + c4)Mm(q)(1−Mm(q)) + c2

(
Mm(q)

2
+ (1−Mm(q))

2
)

= (c1 + c4)Mm(q)(1−Mm(q)) + c2

(
Mm(q)

2
+ 1− 2Mm(q) +Mm(q)

2
)

= (c1 + c4)Mm(q)(1−Mm(q)) + c2

(
2Mm(q)

2 − 2Mm(q)
)
+ c2

= (c1 + c4)Mm(q)(1−Mm(q))− 2c2(Mm(q)(1−Mm(q))) + c2

= (c1 + c4 − 2c2)Mm(q)(1−Mm(q)) + c2
and

g∗(q) = (c1 + c4 − 2c2)q(1− q) + c2,
such that

−Λ∗
X(0) + Λ∗

X′(0) = log
(
2
√

f∗(q) + c0

)
−m log

(
2
√

g∗(q) + c0

)
,

where c0 does not depend on q. This is exactly (4) with c0 replacing c. A brief glance reveals
that

(1− pw)
2(
p0b
)2

+
(
1− p1b

)2
(pw)

2

2
≥
(
(1− pw)p

0
bpw

(
1− p1b

))
by the AM-GM inequality, such that

c1 + c4 − 2c2 > 0.

This means that f∗(q) and g∗(q) are exactly of the form d1Mm(q)(1−Mm(q)) + d2 and
d1q(1− q) + d2 for constants d1 = c1 + c4 − 2c2 > 0 and d2 = c2 > 0. As it did not rely on
the specific values for these constants beyond their positivity, the reasoning from the last
section (where d1 = ϵ2 and d2 = ϵ(1− p− ϵ)p+((1− p− ϵ)p)

2
) can be repeated one to one,

proving our main result for correlated classifiers,
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C.3 Correlated classifiers and labels

As in 2, we now consider

G(q, p, ϵ) =


1 w.p. qb(1− pw)p

0
b + (1− qw)pw

(
1− p1b

)
−1 w.p. (1− qb)(1− pw)p

0
b + qwpw

(
1− p1b

)
0 else

.

with expectation

(2qb − 1)(1− pw)p
0
b − (2qw − 1)pw

(
1− p1b

)
> 0.

We note that

P(G(q, p, ϵ) = 0) = 1− P(G(q, p, ϵ) = 1)− P(G(q, p, ϵ) = −1)

= 1− qb(1− pw)p
0
b − (1− qw)pw

(
1− p1b

)
− (1− qb)(1− pw)p

0
b − qwpw

(
1− p1b

)
= 1− (1− pw)p

0
b − pw

(
1− p1b

)
still does not depend on either of the qi, nor their difference. By assumption 1, we can
reparameterise qb = qw + δ = q+ δ for δ ≥ 0 and we know by the previous calculations that
(2) holds for δ = 0. We now obtain

−Λ′∗
X(0) = m log

(
2

(
(q + δ)(1− q − δ)c1 + (q + δ)qc2 + (1− q)(1− q − δ)c3 + (1− q)qc4

) 1
2

+ c0

)
,

where the constants ci are as before and neither depend on q nor δ. We set

f∗(δ) = c1Mm(q + δ)(1−Mm(q + δ)) + c2

(
Mm(q)Mm(q + δ) + (1−Mm(q))(1−Mm(q + δ))

)
+ c4(1−Mm(q))Mm(q)

and

g∗(δ) = c1(q + δ)(1− q − δ) + c2(q(q + δ) + (1− q)(1− q − δ)) + c4(1− q)q,

such that

−Λ∗
X(0) + Λ∗

X′(0) = log
(
2
√

f∗(δ) + c0

)
−m log

(
2
√

g∗(δ) + c0

)
,

and we again have to show (5), i.e.

f∗′
(δ) ≥ mg∗

′
(δ)

√
f∗(δ)

(
2
√
f∗(δ) + c0

)
√
g∗(δ)

(
2
√
g∗(δ) + c0

)
as we already know −Λ∗

X(0) + Λ∗
X′(0) to be positive for δ = 0. This time,

g∗
′
(δ) = c1(1− 2(q + δ))− c2(1− 2q)

and

f∗′
(δ) = c1(1− 2Mm(q + δ))m

(
m− 1
m−1
2

)
(q + δ)

m−1
2 (1− q − δ)

m−1
2

+ c2Mm(q)m

(
m− 1
m−1
2

)
(q + δ)

m−1
2 (1− q + δ)

m−1
2

− c2(1−Mm(q))m

(
m− 1
m−1
2

)
(q + δ)

m−1
2 (1− q + δ)

m−1
2

= (c1(1− 2Mm(q + δ))− c2(1− 2Mm(q)))m

(
m− 1
m−1
2

)
(q + δ)

m−1
2 (1− q − δ)

m−1
2 .
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We note that
c1 − c2 =

(
(1− pw)p

0
b

)2 − (1− pw)p
0
bpw

(
1− p1b

)
,

which is positive if
(1− pw)p

0
b − pw

(
1− p1b

)
> 0,

i.e.
(1− pw)p

0
b + pw

(
p1b − 1

)
> 0,

which we assumed to be true. Correspondingly, c1 > c2 and because 1 − 2(q + δ) and

1− 2Mm(q + δ) are monotonously falling in δ, both f∗′
and g∗

′
are negative. As such, (5)

reduces to

f∗′

mg∗′ =

(
m− 1
m−1
2

)
(q + δ)

m−1
2 (1− q − δ)

m−1
2

(c1(1− 2Mm(q + δ))− c2(1− 2Mm(q)))

c1(1− 2(q + δ))− c2(1− 2q)

≤

√
f∗(δ)

(
2
√

f∗(δ) + c0

)
√
g∗(δ)

(
2
√

g∗(δ) + c0

) .
To get a better handle on this inequality, we need the following lemma:

Lemma C.5. Let c1, c2 be positive and A,B,C,D be negative constants such that c1A −
c2B < 0 and c1C − c2D < 0. Then c1A−c2B

c1C−c2D
≤ A

C is true if and only if CB ≥ DA.

Proof.

c1A− c2B

c1C − c2D
≤ A

C
⇐⇒ c1A− c2B ≥ A(c1C − c2D)

C

⇐⇒ C(c1A− c2B) ≤ A(c1C − c2D)

⇐⇒ c1CA− c2CB ≤ c1CA− c2DA

⇐⇒ −c2CB ≤ −c2DA

⇐⇒ CB ≥ DA

We set
A = (1− 2Mm(q + δ)),

B = (1− 2Mm(q)),

C = (1− 2(q + δ)),

D = (1− 2q),

such that CB ≥ DA is equivalent to

(1− 2(q + δ))(1− 2Mm(q)) ≥ (1− 2q)(1− 2Mm(q + δ)),

or

(1− 2Mm(q)) ≤ (1− 2q)
(1− 2Mm(q + δ))

(1− 2(q + δ))
,

i.e.
(1− 2Mm(q))

(1− 2q)
≥ (1− 2Mm(q + δ))

(1− 2(q + δ))
,

which is equivalent to
1 + 2σ(m, q) ≥ 1 + 2σ(m, q + δ),

which holds as σ(m,x) is clearly monotonically decreasing in x for x > 0.5.

Lemma C.5 allows us to upper bound

(c1(1− 2Mm(q + δ))− c2(1− 2Mm(q)))

c1(1− 2(q + δ))− c2(1− 2q)
≤ (1− 2Mm(q + δ))

1− 2(q + δ)

= 1 + 2σ(m, q + δ).
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Correspondingly, (5) reduces to(
m− 1
m−1
2

)
(q + δ)

m−1
2 (1− q − δ)

m−1
2 (1 + 2σ(m, q + δ))

≤

√
f∗(δ)

(
2
√

f∗(δ) + c0

)
√
g∗(δ)

(
2
√

g∗(δ) + c0

) . (15)

To control this, we need another lemma:

Lemma C.6. Let c, f1, f2, g1, g2 > 0; f1 ≤ g1 and f2 ≥ g2. Then

f1
g1

≤ 2(f1 + f2) + c
√
f1 + f2

2(g1 + g2) + c
√
g1 + g2

Proof. We first note that
(f1 − g1)f1g1 ≤ g21f2 − f2

1 g2,

as the left side is always negative because f1 ≤ g1, while the right side is always positive as
g1 ≥ f1 and f2 ≥ g2. With this, we calculate

(f1 − g1)f1g1 ≤ g21f2 − f2
1 g2

⇐⇒ f2
1 g1 + f2

1 g2 ≤ g21f1 + g21f2

⇐⇒ f2
1 (g1 + g2) ≤ g21(f1 + f2)

⇐⇒ f1
√
g1 + g2 ≤ g1

√
f1 + f2.

With this,

f1
g1

≤ 2(f1 + f2) + c
√
f1 + f2

2(g1 + g2) + c
√
g1 + g2

⇐⇒ f1
(
2(g1 + g2) + c

√
g1 + g2

)
≤ g1

(
2(f1 + f2) + c

√
f1 + f2

)
⇐⇒ f1

(
2g2 + c

√
g1 + g2

)
≤ g1

(
2f2 + c

√
f1 + f2

)
.

The inequality now holds for the second terms on each side by our previous calculations,
and for the first terms on each side as f1 ≤ g1 and g2 ≤ f2.

We set
f1 = c1Mm(q + δ)(1−Mm(q + δ)) + c4(1−Mm(q))Mm(q),

g1 = c1(q + δ)(1− q − δ) + c4(1− q)q,

as well as
f2 = c2(Mm(q)Mm(q + δ) + (1−Mm(q))(1−Mm(q + δ))),

and
g2 = c2(q(q + δ) + (1− q)(1− q − δ)),

such that
f1 + f2 = f∗(δ)

and
g1 + g2 = g∗(δ).

If we can prove the preconditions for C.6, (15) will reduce to(
m− 1
m−1
2

)
(q + δ)

m−1
2 (1− q − δ)

m−1
2 (1 + 2σ(m, q + δ)) ≤ f1

g1
. (16)

f1 ≤ g1 is easy to see, based on the increasingness of Mm(q) in m, and the decreasingness
of x(1− x) in x for x > 0.5. We can thus focus on showing g2 ≤ f2, i.e.

(q(q + δ) + (1− q)(1− q − δ)) (17)

≤ (Mm(q)Mm(q + δ) + (1−Mm(q))(1−Mm(q + δ))).
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At δ = 1− q, (17) becomes
q ≤ Mm(q),

which is clearly true. At δ = 0, we get

q2 + (1− q)
2 ≤ Mm(q)

2
+ (1−Mm(q))

2
.

We note that
x2 + (1− x)

2
= 1 + 2

(
x2 − x

)
has the derivative 4x − 2, which is positive for x > 0.5. Correspondingly, the Mm(q) term
is larger than the q term. Having shown that (17) holds at both extreme values for δ, it is
sufficient for Lemma C.6 to hold to show that the second derivative of

(q(q + δ) + (1− q)(1− q − δ))− (Mm(q)Mm(q + δ) + (1−Mm(q))(1−Mm(q + δ)))

with respect to δ is positive, such that the function is convex. As the left term is linear in
δ, this derivative equals

−Mm(q)
d2

d2δ
Mm(q + δ) + (1−Mm(q))

d2

d2δ
Mm(q + δ),

which equals

(1− 2Mm(q))
d2

d2δ
Mm(q + δ)

and thus has the opposite sign of d2

d2δMm(q + δ), which is negative due to the well-known
concavity of the majority vote in Mm(x) in x for x > 0.5 (Boland et al., 1989).

To prove (16), we need one last lemma:

Lemma C.7. Let A,B,C,D > 0 and AD ≤ BC. Then, A
C ≤ A+B

C+D

Proof.

A

C
≤ A+B

C +D
⇐⇒ AC +AD ≤ AC +BC ⇐⇒ AD ≤ BC

We set
A = c1Mm(q + δ)(1−Mm(q + δ)),

B = c4(1−Mm(q))Mm(q),

C = c1(q + δ)(1− q − δ),

D = c4(1− q)q,

such that
f1 = A+B

and
g1 = C +D.

If we can show that AD ≤ BC, (16) would reduce to(
m− 1
m−1
2

)
(q + δ)

m−1
2 (1− q − δ)

m−1
2 (1 + 2σ(m, q + δ))

≤ Mm(q + δ)(1−Mm(q + δ))

(q + δ)(1− q − δ)
, (18)

which is equivalent to (8) and true by the calculations in section C.1. AD ≤ BC is equivalent
to

Mm(q + δ)(1−Mm(q + δ))(1− q)q ≤ (1−Mm(q))Mm(q)(q + δ)(1− q − δ).

This is again clearly true for δ = 0 where both sides are equal, such that it is sufficient to
show that

Mm(q + δ)(1−Mm(q + δ))(1− q)q

(1−Mm(q))Mm(q)(q + δ)(1− q − δ)
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or

(1− q)q

(1−Mm(q))Mm(q)

Mm(q + δ)(1−Mm(q + δ))

(q + δ)(1− q − δ)

is maximized at δ = 0. As the first term does not depend on δ, we only need to analyze the
second term. Reparameterizing x = q + δ, it is thus sufficient to show that

Mm(x)(1−Mm(x))

x(1− x)

decreases monotonously in x. We take derivatives with respect to x, obtaining

(1− 2Mm(x))m
(m−1

m−1
2

)
x

m+1
2 (1− x)

m+1
2 −Mm(x)(1−Mm(x))(1− 2x)

x2(1− x)
2 .

This is negative, whenever

(1− 2Mm(x))m

(
m− 1
m−1
2

)
x

m+1
2 (1− x)

m+1
2 ≤ Mm(x)(1−Mm(x))(1− 2x)

or equivalently

1− 2Mm(x)

1− 2x
m

(
m− 1
m−1
2

)
x

m+1
2 (1− x)

m+1
2 ≥ Mm(x)(1−Mm(x)),

i.e.

(1 + 2σ(m,x))m

(
m− 1
m−1
2

)
x

m+1
2 (1− x)

m+1
2 ≥ Mm(x)(1−Mm(x)).

As both sides tend to zero for x → 1, it is sufficient to show that the right term increases
more slowly as x decreases, i.e.

d

dq

(
(1 + 2σ(m,x))m

(
m− 1
m−1
2

)
x

m+1
2 (1− x)

m+1
2

)
≤ d

dq
(Mm(x)(1−Mm(x))). (19)

Note, that this equation is the reverse of (10), but with an additional factor of m on the
left side. Repeating the calculations from Section C.1, (19) reduces to

m

(
m+ 1

2
+

q(1− q)

1− 2Mm(q)
2
d

dq
σ(m, q)

)
≥ m

or

m+ 1

2
+

q(1− q)

1− 2Mm(q)
2
d

dq
σ(m, q) ≥ 1.

The q(1−q)
1−2Mm(q)2

d
dqσ(m, q) term is positive, as both the first and the second factor are clearly

negative, such that the equation holds, finishing our proof of

P

(
n∑
i

Gi(Mm(q), p) > 0

)
< P

(
mn∑
i

Gi(q, p) > 0

)
.

It remains to show that for fixed qb ≥ qw and m > 1 uneven, G in the heterogeneous case
stochastically dominates G for the homogeneous whenever assumption 2 holds. This would
imply that the sum of Gi follows the same dominance relation, such that the probability
of correctly identifying cb is larger for the m−label case assuming homogeneity rather than
explicitly modelling heterogeneity. We note that P(G(q, p) = 0) does not depend on q, such

20



Navigating and Addressing Data Problems for Foundation Models (DPFM) Workshop,
ICLR 2024

that it is sufficient to show that P(G(q, p) = 1) is larger in the homogeneous case. We rewrite

(1− pw)p
0
b

pw(1− p1b)

(
Mm(qb)− E

x
[Mm(q(x))|Eb]

)
≥ Mm(qw)− E

x
[Mm(q(x))|Ew]

⇐⇒ (1− pw)p
0
b

(
Mm(qb)− E

x
[Mm(q(x))|Eb]

)
≥ pw

(
1− p1b

)(
Mm(qw)− E

x
[Mm(q(x))|Ew]

)
⇐⇒ (1− pw)p

0
bMm(qb)− pw

(
1− p1b

)
Mm(qw)

≥ (1− pw)p
0
b E

x
[Mm(q(x))|Eb]− pw

(
1− p1b

)
E
x
[Mm(q(x))|Ew]

⇐⇒ (1− pw)p
0
bMm(qb)− pw

(
1− p1b

)
(1−Mm(qw))

≥ (1− pw)p
0
b E

x
[Mm(q(x))|Eb]− pw

(
1− p1b

)(
1− E

x
[Mm(q(x))|Ew]

)
⇐⇒ P(G(Mm(qb),Mm(qw), p) = 1)

≥ P
(
G
(
E
x
[Mm(q(x))|Eb],E

x
[Mm(q(x))|Ew], p

)
= 1
)
,

showing that the heterogeneous case is dominated by the homogeneous case under assump-
tion 2.
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