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Abstract

The ability to detect objects in images at varying scales has played a pivotal role in the
design of modern object detectors. Despite considerable progress in removing hand-crafted
components and simplifying the architecture with transformers, multi-scale feature maps
and pyramid designs remain a key factor for their empirical success. In this paper, we show
that this reliance on either feature pyramids or an hierarchical backbone is unnecessary and
a transformer-based detector with scale-aware attention enables the plain detector ‘SimPLR’
whose backbone and detection head are both non-hierarchical and operate on single-scale
features. We find through our experiments that SimPLR with scale-aware attention is plain
and simple, yet competitive with multi-scale vision transformer alternatives. Compared to
the multi-scale and single-scale state-of-the-art, our model scales better with bigger capacity
(self-supervised) models and more pre-training data, allowing us to report a consistently
better accuracy and faster runtime for object detection, instance segmentation as well as
panoptic segmentation. Code will be released.

1 Introduction

After its astonishing achievements in natural language processing, the transformer (Vaswani et al., 2017) has
quickly become the neural network architecture of choice in computer vision, as evidenced by recent success
in image classification (Liu et al., 2021; Dosovitskiy et al., 2021; Dehghani et al., 2023), object detection
(Carion et al., 2020; Zhu et al., 2021; Nguyen et al., 2022; Lin et al., 2023) and segmentation (Wang et al.,
2021a; Cheng et al., 2022; Li et al., 2023). Unlike natural language processing, where the same pre-trained
network can be deployed for a wide range of downstream tasks with only minor modifications (Brown et al.,
2020; Devlin et al., 2019), computer vision tasks such as object detection and segmentation require a different
set of domain-specific knowledge to be incorporated into the network. Consequently, it is commonly accepted
that a modern object detector contains two main components: a pre-trained backbone as the general feature
extractor, and a task-specific head that conducts detection and segmentation tasks using domain knowledge.
For transformer-based vision architectures, the question remains whether to add more inductive biases or to
learn them from data.

The spatial nature of image data lies at the core of computer vision. Besides learning long range feature
dependencies, the ability of capturing local structure of neighboring pixels is critical for representing and
understanding the image content. Building upon the successes of convolutional neural networks, a line of
research biases the transformer architecture to be multi-scale and hierarchical when dealing with the image
input, i.e., Swin Transformer (Liu et al., 2021) and others (Fan et al., 2021; Wang et al., 2021b; Heo et al.,
2021). The hierarchical design makes it easy to create multi-scale features for dense vision tasks and allows
pre-trained transformers to be seamlessly integrated into a convolution-based detection head with a feature
pyramid network (Lin et al., 2017), yielding impressive results in object detection and segmentation. However,
the inductive biases in the architectural design make it benefit less from self-supervised learning and the
scaling of model size (Li et al., 2022).

An alternative direction pursues the idea of a simple transformer with “less inductive biases” and emphasizes
learning vision-specific knowledge directly from image data. Specifically, the Vision Transformer (ViT)
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Figure 1: Object detection architectures. Left: The plain-backbone detector from (Li et al., 2022) whose input
(denoted in the dashed region) are multi-scale features. Middle: State-of-the-art end-to-end detectors (Nguyen et al.,
2022; Li et al., 2023; Hu et al., 2023) utilize a hierarchical backbone (i.e., Swin (Liu et al., 2021)) to create multi-scale
inputs. Right: Our simple single-scale detector following the end-to-end framework. Where existing detectors require
feature pyramids to be effective, we propose a plain detector, SimPLR, whose backbone and detection head are
non-hierarchical and operate on a single-scale feature map. The plain detector, SimPLR, performs on par or even
better compared to hierarchical and/or multi-scale counterparts, while also being more scaling-efficient.

(Dosovitskiy et al., 2021) stands out as a plain architecture with a constant feature resolution, and acts as the
feature extractor in plain-backbone detection. This is motivated by the success of ViTs scaling behaviours
in visual recognition (He et al., 2022; Bao et al., 2022; Dehghani et al., 2023). In addition, the end-to-end
detection framework proposed by Carion et al. (2020) with a transformer-based detection head further removes
many hand-designed components, like non-maximum suppression or intersection-over-union computation,
that encodes the prior knowledge for object detection.

The plain design of ViTs, however, casts doubts about its ability to capture information of objects across
multiple scales. While recent studies (Dosovitskiy et al., 2021; Li et al., 2022) suggest that ViTs with
global self-attention could potentially learn translation-equivariant and scale-equivariant properties during
training, leading object detectors still require multi-scale feature maps and/or an hierarchical backbone.
This observation holds true for both convolutional (Ren et al., 2015; He et al., 2017; Li et al., 2022) and
transformer-based detectors (Nguyen et al., 2022; Cheng et al., 2022; Lin et al., 2023; Li et al., 2023). Unlike
hierarchical backbones, the creation of feature pyramids conflicts with the original design philosophy of ViTs.
Therefore, our goal is to pursue a plain detector whose backbone and detection head are both single-scale
and non-hierarchical. This further simplifies the architecture for object detection and segmentation in the
pursuit of learning object representations from data (at scale).

In this paper, we introduce SimPLR, a plain detector for both end-to-end detection and segmentation
frameworks. In particular, our detector extracts the single-scale feature map from a ViT backbone, which is
then fed into the transformer encoder-decoder via a simple projection to make the prediction (see Fig. 1). To
deal with objects of various sizes, we propose to incorporate scale information into the attention mechanism,
resulting in an adaptive-scale attention. The proposed attention mechanism learns to capture adaptive scale
distribution from training data. This eliminates the need for multi-scale feature maps from the ViT backbone,
yielding a simple and efficient detector.

The proposed detector, SimPLR, turns out to be an effective solution for plain detection and segmentation.
We find that multi-scale feature maps are not necessary and the scale-aware attention mechanism adequately
captures objects at various sizes from output features of a ViT backbone. Despite the plain architecture,
our detector shows competitive performance compared to the strong hierarchical-backbone or multi-scale
detectors, while being consistently faster. Moreover, the effectiveness of our detector is observed not only in
object detection but also in instance segmentation and panoptic segmentation. Finally, SimPLR shows to
be a scaling-efficient detector when moving to bigger models, indicating plain detectors to be a promising
direction for dense prediction tasks.
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2 Related Work

Backbones for object detection. Inspired by R-CNN (Girshick et al., 2014), modern object detection
methods utilize a task-specific head on top of a pre-trained backbone. Initially, object detectors (Simonyan &
Zisserman, 2015; Xie et al., 2017; He et al., 2016; Huang et al., 2017) were dominated by convolutional neural
network (CNN) backbones (LeCun & Bengio, 1995) pre-trained on ImageNet (Deng et al., 2009). With the
success of the transformer in learning from large-scale text data (Brown et al., 2020; Devlin et al., 2019),
many studies have explored the transformer for computer vision (Chen et al., 2020a; Dosovitskiy et al., 2021;
Liu et al., 2021). The Vision Transformer (ViT) (Dosovitskiy et al., 2021) with a simple design demonstrated
the capability of learning meaningful representation for visual recognition. By removing the need for labels,
methods with self-supervised learning have emerged as an even more powerful solution for pre-training general
vision representations (Chen et al., 2020b; He et al., 2022). We show through experiments that SimPLR
takes advantages of the significant progress in representation learning at scale with ViTs for object detection
and segmentation.

End-to-end detection and segmentation. The end-to-end framework for object detection proposed
in DETR (Carion et al., 2020) removes the need for many hand-crafted modules. This was made possible
by adopting the Transformer as the detection head to directly give the prediction. Follow-up works (Dong
et al., 2021; Wang et al., 2021a; Nguyen et al., 2022) extended the transformer-based head in end-to-end
frameworks for instance segmentation, and panoptic segmentation. This inspired MaskFormer (Cheng et al.,
2021) and K-Net (Zhang et al., 2021) to unify segmentation tasks with a class-agnostic mask prediction.
Pointing out that MaskFormer and K-Net lag behind specialized architectures, Cheng et al. (Cheng et al.,
2022) introduce Mask2Former, reaching strong performance on segmentation tasks. Yu et al. (Yu et al., 2022)
replace self-attention with k-means clustering, further boosting the effectiveness of the network. Another
direction is to improve the object query in the decoder via a denoising process (Zhang et al., 2023; Li et al.,
2023) or a matching process (Jia et al., 2023). While simplifying the detection and segmentation framework,
these architectures still require an hierarchical backbone along with feature pyramids. The use of feature
pyramids increases the sequence length of the input to the transformer-based detection head, making the
detector less efficient. In this work, we enable a plain detector by removing hierarchical and multi-scale
constraints.

Plain detectors. Following the goal of less inductive biases in the architecture, recent studies focus on
the non-hierarchical and single-scale detector. Motivated by the success of ViT, a line of research considers
plain-backbone detectors that replace the hierarchical backbone with a ViT. Initially, Chen et al. (Chen
et al., 2022) present UViT as a plain detector that contains a ViT backbone and a single-scale convolutional
detection head. Since the backbone architecture is modified during pre-training to adopt the progressive
window attention, UViT is unable to take the advantages of existing pre-training approaches with ViTs.
ViTDet (Li et al., 2022) tackles this problem with simple adaptations of the ViT backbone during fine-tuning.
These simple modifications allow ViTDet to benefit directly from recent self-supervised learning with ViTs
(i.e., MAE (He et al., 2022)), resulting in strong results when scaling to larger models. Despite enabling
plain-backbone detectors, feature pyramids are still an important factor in ViTDet to detect objects at various
scales.

Most recently, Lin et al. (Lin et al., 2023) introduce the transformer-based detector, PlainDETR, which also
removes the multi-scale input. However, it still relies on multi-scale features to generate the object proposals
for its decoder. In the decoder, PlainDETR replaces the standard Hungarian matching (Kuhn, 1955) with
hybrid matching (Jia et al., 2023) to strengthen its prediction, while our decoder preserves a simple design as
in Zhu et al. (2021); Nguyen et al. (2022). Moreover, PlainDETR can only perform object detection while
SimPLR facilitates detection, instance segmentation and panoptic segmentation. We believe to be the first
to remove the hierarchical and multi-scale constraints which appear in the backbone and the input of the
transformer encoder for both detection and segmentation tasks. Our proposed scale-aware attention can
further plug into current end-to-end frameworks without significant architectural changes. Because of the
simple and plain design, SimPLR is more efficient and effective when scaling to larger models.
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3 SimPLR: A Simple and Plain Detector

Multi-scale feature maps in a hierarchical backbone can be easily extracted from the pyramid structure (Liu
et al., 2016; Lin et al., 2017; Zhu et al., 2021). When moving to a ViT backbone with a constant feature
resolution, the creation of multi-scale feature maps requires complex backbone adaptations. Moreover,
the benefits of multi-scale features in object detection frameworks using ViTs remain unclear. Studies on
plain-backbone detection (Li et al., 2022; Chen et al., 2022) conjecture the high-dimensional ViT with
self-attention and positional embeddings (Vaswani et al., 2017) is able to preserve important information for
localizing objects. From this conjecture, we hypothesize that a proper design of the transformer-based head
will enable a plain detector.

Our proposed detector, SimPLR, is conceptually simple: a pre-trained ViT backbone to extract plain
features from an image, which are then fed into a single-scale encoder-decoder to make the final prediction.
Thus, SimPLR eliminates the non-trivial creation of feature pyramids from the ViT backbone. But the
single-scale encoder-decoder requires an effective design to deal with objects at different scales. First, we
review box-attention in Nguyen et al. (2022) as our strong baseline in end-to-end detection and segmentation
using feature pyramids. Then, we introduce the key elements of our plain detector, SimPLR, including its
scale-aware attention that is the main factor for learning of adaptive object scales.

3.1 Background

Our goal is to further simplify the detection and segmentation pipeline from Zhu et al. (2021); Li et al.
(2022); Nguyen et al. (2022), and to prove the effectiveness of the plain detector in both object detection
and segmentation tasks. We utilize the sparse box-attention mechanism from Nguyen et al. (2022) as strong
baseline due to its effectiveness in learning discriminative object representations while being lightweight in
computation.

In box-attention, each query vector q ∈ Rd in the input feature map is assigned an anchor r=[x, y, w, h],
where x, y indicate the query coordinate and w, h are the size of the anchor. The box-attention refines the
anchor into a region of interest, r′. During the attention head computation, a 2×2 feature grid is sampled
from the corresponding region of interest, resulting in a set of value features vi ∈ R2×2×dh . The 2×2 attention
scores are efficiently generated by computing a dot-product between q ∈ Rd and relative position embeddings
(ki ∈ R2×2×d) followed by a softmax function. The attended feature headi ∈ Rdh is a weighted sum of
2×2 value features in vi with the corresponding attention weights. To capture objects at different scales,
the box-attention takes t multi-scale feature maps, {ej}t

j=1, as its inputs in order to produce headi. The
multi-scale box-attention shows strong performance in end-to-end object detection and instance segmentation.

Sparse attention mechanisms like box-attention lie at the core of recent end-to-end detection and segmentation
models due to their ability of capturing object information with lower complexity. The effectiveness and
efficiency of these attention mechanisms bring up the question: Is multi-scale object information learnable
within a detector that is non-hierarchical and single-scale?

3.2 Scale-aware attention

The output features of the encoder should capture objects at different scales. Therefore, unlike the feature
pyramids where each set of features encodes a specific scale, predicting objects from a plain feature map
requires its feature vectors to reason about dynamic scale information based on the image content. This can
be addressed effectively by a multi-head attention mechanism that capture different scale information in each
of its attention heads. In that case, global self-attention is a potential candidate because of its large receptive
field and powerful representation. However, its computational complexity is quadratic w.r.t. the sequence
length of the input, making the operation computationally expensive when dealing with high-resolution
images. The self-attention also leads to worse performance and slow convergence in end-to-end detection (Zhu
et al., 2021). This motivates us to propose a multi-head scale-aware attention mechanism for single-scale
input.
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Figure 2: Illustration of the proposed adaptive-scale attention. In the i-th attention head, given a query
vector and anchors of three scales, the adaptive-scale attention learns to attend to a region of interest w.r.t. each scale.
It then generates attention weights on these scales adaptively based on the query vector to produce headi. As this
mechanism allows each vector in our plain feature map to learn suitable scale information during the training process,
we no longer need an hierarchical backbone along with feature pyramids.

Scale-aware attention. In sparse multi-scale attention mechanisms, such as deformable attention (Zhu
et al., 2021) or box-attention (Nguyen et al., 2022), each feature vector is assigned to a scale in the feature
pyramid. As a result, feature vectors learn to adapt to that specific scale. While this behaviour may not
impact the multi-scale deformable attention or multi-scale box-attention – which utilizes feature pyramids for
detecting objects – it poses a big challenge in learning scale-equivariant features from a single-scale input.

To address this limitation, we propose two variants of multi-head scale-aware attention (i.e., fixed-scale and
adaptive-scale) that integrate different scales into each attention head, allowing query vectors to choose the
suitable scale information during training. Our proposed attention mechanism is simple: we assign anchors of
m different scales to attention heads of each query. We use m anchors with size w=h ∈ {s · 2j}m−1

j=0 , where s
is the size of the smallest anchor, and m is the number of scales. Surprisingly, our experiments show that the
results are not sensitive to the size of the anchor, as long as a sufficient number of scales is used.

i) Fixed-Scale Attention. Given anchors of m scales, we distribute them to n attention heads in a round-robin
manner. Thus, in multi-head fixed-scale attention, n

m attention heads are allocated for each of the anchor
scales. This uniform distribution of different scales enables fixed-scale attention to learn diverse information
from local to more global context. The aggregation of n heads results in scale-aware features, that is
suitable for predicting objects of different sizes.

ii) Adaptive-Scale Attention. Instead of uniformly assigning m scales to n attention heads, the adaptive-scale
attention learns to allocate a scale distribution based on the context of the query vector. This comes from
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the motivation that the query vector belonging to a small object should use more attention heads for
capturing fine-grained details rather than global context, and vice versa.
In each attention head, given the query vector q ∈ Rd in the input feature map and m anchors of different
scales, {rj}m−1

j=0 , the adaptive-scale attention predicts offsets of all anchors, {∆xj
, ∆yj

, ∆wj
, ∆hj

}m−1
j=0 .

Besides, we apply a scale temperature to each set of offsets before the transformations:

Fscale(rj , q) =
[
x, y, w + ∆w · 2j

λ
, h + ∆h · 2j

λ

]
, (1)

Ftranslate(rj , q) =
[
x + ∆x · 2j

λ
, y + ∆y · 2j

λ
, w, h

]
, (2)

where 2j

λ is the scale temperature corresponding to rj . The scale temperature allows the transformation
functions to capture regions of interest, r′

j , corresponding to the scale of anchors. The adaptive-scale
attention produces a feature vector per scale from the corresponding region of interest. The attention
weights on scales are then generated by applying a linear projection on query vector q followed by softmax
normalization. The attended feature, headi, is the weighted sum of feature vectors with the corresponding
attention scores of m scales (see Fig. 2). This allows the attention mechanism to learn suitable scale
distribution based on the content of query vector. The adaptive-scale attention provides efficiency due to
sparse sampling and strong flexibility to control scale distribution via its attention computation.

3.3 Object representation for panoptic segmentation

Panoptic segmentation proposed by Kirillov et al. (2019) requires the network to segment both “things” and
“stuff”. To enable the plain detector on panoptic segmentation, we make an adaptation in the mask prediction
of SimPLR. Following Cheng et al. (2022), we predict segmentation masks of both types by computing the
dot-product between object queries and a high-resolution feature map (i.e., 1

4 feature scale). As the ViT and
SimPLR encoder features are of lower resolution, we simply interpolate the last encoder layer to 1

4 scale and
stack K=1 scale-aware attention layer on top. This simple modification produces a high resolution feature
map that is beneficial for learning fine-grained details.

Masked instance-attention. In order to learn better object representation in the decoder, we propose
masked instance-attention that is also a sparse attention mechanism for efficiency. The masked instance-
attention follows the grid sampling strategy of the box-attention in Nguyen et al. (2022), but improves the
attention computation to better capture objects of different shapes.

To be specific, the region of interest r′ is divided into 4 bins of 2 × 2 grid, each of which contains a m
2 × m

2
grid features sampled using bilinear interpolation. Instead of assigning an attention weight to each feature
vector, a linear projection (Rd → R2×2) is adopted to generate the 2 × 2 attention scores for 4 bins. The
m
2 × m

2 feature vectors within the same bin share the same attention weight. Inspired by Cheng et al. (2022),
we utilize the mask prediction of the previous decoder layer as the attention mask to the attention scores (see
Fig. 3).

A = repeat(α) (3)
headi = softmax(A + M)V, (4)

where αk is the attention weight corresponding to k-th bin with k ∈ {1, ..., 4}, A ∈ Rm·m is the attention
scores expanded from α, M ∈ {0, − inf} indicates whether to mask out the value, and V ∈ Rm·m×d is
the value features sampled from r′. By utilizing the mask prediction from previous decoder layer, masked
instance-attention can effectively capture objects of different shapes.

3.4 Network architecture

SimPLR follows the common end-to-end detection and segmentation framework with a two-stage design (Carion
et al., 2020; Zhu et al., 2021; Nguyen et al., 2022). Specifically, we use a plain ViT as the backbone with
14 × 14 windowed attention and four equally-distributed global attention blocks as in Li et al. (2022). In the
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Figure 3: Masked Instance-Attention. Left: Box-attention (Nguyen et al., 2022) samples 2 × 2 grid features in
the region of interest. Right: Proposed masked instance-attention for dense grid sampling. The 2 × 2 attention scores
are denoted in four colours and the masked attention scores are in white. The masked instance-attention preserves the
efficiency by sparse sampling while better capturing objects of different shapes.

detection head, the SimPLR encoder receives input features via a projection of the last feature map from the
ViT backbone. The object proposals are then generated using single-scale features from the encoder and
top-scored features are initialized as object queries for the SimPLR decoder to predict bounding boxes and
masks.

Formally, we apply a projection f to the last feature map of the pre-trained ViT backbone, resulting in
the input feature map e ∈ RHe×We×d where He, We are the size of the feature map, and d is the hidden
dimension of the detection head. In SimPLR, the projection f is simply a single convolution projection,
that provides us a great flexibility to control the resolution and dimension of the input features e to the
encoder. The projection allows SimPLR to decouple the feature scale and dimension between its backbone
and detection head to further improve the efficiency. This practice is different from the creation of SimpleFPN
in Li et al. (2022) where a different stack of multiple convolution layers is used for each feature scale. We
show by experiments that this formulation is key for plain detection and segmentation while keeping our
network efficient.

Plain backbone. SimPLR deploys ViT as its plain backbone for feature extraction. We show that SimPLR
can take advantages of recent progress in self-supervised learning and scaling ViTs. To be specific, SimPLR
generalizes to ViT backbones initialized by MAE (He et al., 2022) and BEiTv2 (Peng et al., 2022). The
efficient design of SimPLR allows us to effectively scale to larger ViT backbones which recently show to be
even more powerful in learning representations (He et al., 2022; Zhai et al., 2022; Dehghani et al., 2023).

4 Implementation Details

The creation of input features. In Fig. 4, we compare the creation of input features to detection head
between SimpleFPN and our method. In Li et al. (2022), the multi-scale feature maps are created by different
sets of convolution layers. Instead, SimPLR simply applies a deconvolution layer following by a GroupNorm
layer (Wu & He, 2018).

Losses in training of SimPLR. We use focal loss (Lin et al., 2017) and dice loss (Milletari et al., 2016) for
the mask loss: Lmask = λfocalLfocal +λdiceLdice with λfocal = λdice = 5.0. The box loss is the combination of ℓ1
loss and GIoU loss (Rezatofighi et al., 2019), Lbox = λℓ1Lℓ1 + λgiouLgiou, with λℓ1 = 5.0 and λgiou = 2.0. The
focal loss is also used for our classification loss, Lcls. Our final loss is formulated as: L = Lmask +Lbox +λclsLcls
(λcls = 2.0 for object detection and instance segmentation, λcls = 4.0 for panoptic segmentation).

Hyper-parameters of SimPLR. SimPLR contains 6 encoder and decoder layers. The adaptive-scale
attention in SimPLR encoder samples 2 × 2 grid features per region of interest. In the decoder, we compute
masked instance-attention on a grid of 14 × 14 features within regions of interest. The dimension ratio of
feed-forward sub-layers is 4. The number of object queries is 300 in the decoder as suggested in Nguyen et al.
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Figure 4: The creation of input features. Left: The creation of feature pyramids from the last feature of the
plain backbone, ViT, in SimpleFPN (Li et al., 2022) where different stacks of convolutional layers are used to create
features at different scales. Right: The design of our single-scale feature map with only one layer.

model size backbone detection head
dim. # heads feature scale encoder dim. decoder dim. # heads feature scale

Base 768 12 1
16 384 256 12 1

8
Large 1024 16 1

16 768 384 16 1
8

Huge 1280 16 1
16 960 384 16 1

8

Table 1: Hyper-parameters of backbone and detection head for different sizes of SimPLR (base – large – huge models).
Note that these settings are the same for all three tasks.

(2022). The size of the input image is 1024 × 1024 in both training and inference. Note that we also use this
setting for the baseline (i.e., BoxeR with ViT backbone).

In the experiment, we show that the decouple between feature scale and dimension of the ViT backbone and
the detection head helps to boost the performance of our plain detector while maintaining the efficiency. This
comes from the fact that the complexity of global self-attention in the ViT backbone increases quadraticaly
w.r.t. the feature scale and the detection head enjoys the high-resolution input for object prediction. Note
that with ViT-H as the backbone, we follow Li et al. (2022) to interpolate the kernel of patch projection from
the pre-trained 14 × 14 into 16 × 16. The hyper-parameters for each SimPLR size (Base, Large, and Huge)
are in Tab. 1.

5 Experiments

Experimental setup. We evaluate our method on COCO (Lin et al., 2014), a commonly used dataset for
object detection, instance segmentation, and panoptic segmentation tasks. In addition, we also report the
performance of our method on panoptic segmentaion using the CityScapes dataset (Cordts et al., 2016). By
default, we use plain features with adaptive-scale attention as described in Sec. 3 due to its strong performance
and ability to perform both detection and segmentation; and initialize the ViT backbone from MAE (He
et al., 2022) pre-trained on ImageNet-1K without any labels. In both fixed-scale and adaptive-scale attention,
we set the number of scale m=4 and the anchor size s=32. Unless specified, our hyper-parameters are the
same as in (Nguyen et al., 2022). The frames per second (FPS) of all methods are measured on an A100 GPU.
For all experiments, our optimizer is AdamW (Loshchilov & Hutter, 2019) with a learning rate of 0.0001. The
learning rate is linearly warmed up for the first 250 iterations and decayed at 0.9 and 0.95 fractions of the
total number of training steps by a factor 10. ViT-B (Dosovitskiy et al., 2021) is set as the backbone. The
input image size is 1024 × 1024 with large-scale jitter (Ghiasi et al., 2021) between a scale range of [0.1, 2.0].
Due to the limit of our academic computational resources, we report the ablation study using the standard
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Method FPS ∆ FPS [%] APb APm

Feature pyramids
DETR (Carion et al., 2020) 6 50% 46.5 n/a
DeformableDETR (Zhu et al., 2021) 12 100% 54.6 n/a
BoxeR (Nguyen et al., 2022) 12 100% 55.4 47.7
Plain detector
PlainDETR (Lin et al., 2023) 12 100% 53.8 n/a
SimPLR 17 140% 55.7 47.9

Table 2: SimPLR is an effective end-to-end detector. Our comparison is between SimPLR with adaptive-scale
attention and other end-to-end detectors (e.g., BoxeR with box-attention, DeformableDETR with deformable attention,
and PlainDETR with self-attention). For a fair comparison, we report results of all methods using the same ViT-B
pre-trained with MAE as backbone. For methods that take feature pyramids as input, we employ SimpleFPN with
ViT from (Li et al., 2022). Despite being a plain detector, SimPLR shows competitive performance compared to
multi-scale alternatives, while being 40% faster during inference.

5× schedule setting with a batch size of 16 as in Nguyen et al. (2022). In the main experiments, we follow
the finetuning recipe from Li et al. (2022).

SimPLR is an effective end-to-end detector. In Tab. 2, we first show the comparison between SimPLR
and other end-to-end object detectors, with all of them using the plain ViT backbone. Note that SimPLR
with scale-aware attention removes the need for multi-scale adaptation of the ViT.

We observe that SimPLR is better than multi-scale end-to-end detectors in both detection and segmentation.
Specifically, SimPLR reaches 55.7 in APb and 17 frame-per-second using only single-scale input. In terms of
accuracy, we outperform DeformableDETR and are slightly better than BoxeR (55.4). Notably, our plain
detector is ∼40% faster in runtime. We also compare with PlainDETR (Lin et al., 2023) which is a recent
plain object detection method. As discussed in Sec. 2, PlainDETR and our work approach the plain detector
in different ways. PlainDETR designs a strong decoder that compensates for single-scale input, while our
goal is to learn scale equivariant features in the backbone and the encoder. As shown in Tab. 2, SimPLR
improves over PlainDETR by ∼ 2 AP point in object detection. Moreover, SimPLR also supports instance
segmentation, where PlainDETR does not. Despite the different approaches, both PlainDETR and our work
indicate that plain detection holds a great potential.

Scaling efficiency comparison. Fig. 5 illustrates the tradeoffs between accuracy and runtime for various
recent detectors, plotted on a log-scale graph. The y-axis represents Average Precision (AP), while the x-axis
shows runtime in milliseconds. Different models are indicated using colored markers, with larger circles
representing bigger model sizes (Base, Large, Huge). The detectors compared include feature pyramid-based
models such as Swin, MViT, ViTDet, and Mask2Former, as well as our plain-feature detector, SimPLR.
The graph demonstrates that SimPLR achieves considerable improvements in both accuracy and runtime
efficiency as model size increases.

Specifically, the huge model of SimPLR reaches an accuracy of 51.9 AP, maintaining a similar runtime to the
large model of ViTDet, which achieves 49.9 AP. Moreover, SimPLR’s huge model is faster than Mask2Former,
which achieves an accuracy of 50.1 AP in instance segmentation. These results highlight SimPLR’s scaling
efficiency and effectiveness as a detector. The graph and corresponding data support the conclusion that
SimPLR is a scale-efficient detector, offering enhanced performance and faster runtimes compared to its
multi-scale counterparts.

State-of-the-art comparison. We show in Tab. 3 that SimPLR obtains strong performance on object
detection and instance segmentation. When moving to a huge model, our method outperforms multi-scale
counterparts like the Mask2Former segmentation model (Cheng et al., 2022) by 1.8 AP point. Despite
involving more advanced attention blocks designs, i.e., shifted window attention in Swin (Liu et al., 2021)
and pooling attention in MViT (Fan et al., 2021), detectors with hierarchical backbones benefit less from
larger backbones. SimPLR is better than the plain-backbone detector, ViTDet, across all backbones in terms
of both accuracy (by ∼ 1 AP point) and inference speed. It also worth noting that SimPLR provides good
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Figure 5: Scaling efficiency comparison. We compare our plain detector, SimPLR, with recent multi-scale detectors
including both end-to-end detector like Mask2Former and plain-backbone detector like ViTDet. Larger circles indicate
bigger models (Base, Large, Huge). Because of its plain and simple architecture, SimPLR is more scaling-efficient.
Our biggest model achieves stronger performance and faster runtime than all its multi-scale counterparts.

method backbone pre-train Object Detection Instance Segmentation FPS
APb APb

S APb
M APb

L APm APm
S APm

M APm
L

Feature pyramids
Swin (Liu et al., 2021) Swin-L sup-21K 55.0 38.3 59.4 71.6 47.2 28.7 50.5 66.0 10
Mask2Former (Cheng et al., 2022) Swin-L sup-21K n/a 50.1 29.9 53.9 72.1 4
MViT (Fan et al., 2021) MViT-L sup-21K 55.7 40.3 59.6 71.4 48.3 31.1 51.2 66.3 6
ViTDet (Li et al., 2022) ViT-L MAE 57.6 40.5 61.6 72.6 49.9 30.5 53.3 68.0 7
MViT (Li et al., 2022) MViT-H sup-21K 55.9 40.8 59.8 70.8 48.3 30.1 51.1 66.6 6
ViTDet (Li et al., 2022) ViT-H MAE 58.7 41.9 63.0 73.9 50.9 32.0 54.3 68.9 5
Plain features
SimPLR ViT-L MAE 58.5 42.2 62.5 73.4 50.6 32.1 54.2 69.8 9
SimPLR ViT-L BEiTv2 58.7 40.4 63.2 74.8 50.9 30.4 55.1 70.9 9
SimPLR ViT-H MAE 59.8 42.2 63.8 74.9 51.9 32.2 55.7 71.0 7

Table 3: State-of-the-art comparison and scaling behavior for object detection and instance segmentation.
We compare methods using feature pyramids vs. plain features on COCO val (n/a: entry is not available). Backbones
with MAE pre-trained on ImageNet-1K while others pre-trained on ImageNet-21K. With only single-scale features,
SimPLR shows strong performance compared to multi-scale detectors including transformer-based detectors like
Mask2Former and the plain-backbone detector like ViTDet.

predictions on small objects for both detection and segmentation, despite its reliance on single-scale input
only.

Tab. 4 shows the comparison for the panoptic segmentation on COCO and CityScapes datasets. We observe
the similar trend that SimPLR indicates good scaling behavior. Specifically, in the large model, SimPLR
outperforms Mask2Former by 1 PQ point while running 2× faster. We also explore the influence of supervised
pre-training on the plain ViT backbone. To keep it simple, we compared Mask2Former with Swin-B and
SimPLR with ViT-B both using supervised pre-training on ImageNet-1K. We find that SimPLR still indicates
stronger results when using only single-scale input.
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method backbone pre-train COCO CityScapes FPS
PQ PQth PQst PQ

Feature pyramids
Panoptic FCN (Li et al., 2021) Swin-L sup-21K - - - 65.9 -
Panoptic DeepLab (Cheng et al., 2020) SWideRNet sup-1K - - - 66.4 -
MaskFormer (Cheng et al., 2021) Swin-B sup-1K 51.1 56.3 43.2 - -
MaskFormer (Cheng et al., 2021) Swin-B sup-21K 51.8 56.9 44.1 - -
Mask2Former (Cheng et al., 2022) Swin-B sup-1K 55.1 61.0 46.1 - 7
Mask2Former (Cheng et al., 2022) Swin-B sup-21K 56.4 62.4 47.3 66.1 7
Mask2Former (Cheng et al., 2022) Swin-L sup-21K 57.8 64.2 48.1 66.6 4
Plain features
SimPLR ViT-B sup-1K 55.5 61.4 46.2 - 13
SimPLR ViT-B BEiTv2 56.7 62.8 47.4 66.7 13
SimPLR ViT-L BEiTv2 58.8 65.3 48.8 67.4 8

Table 4: State-of-the-art comparison and scaling behavior for panoptic segmentation. We compare between
methods using feature pyramids (top row) vs. single-scale (bottom row) on COCO val and CityScapes val. FPS is
reported on COCO. SimPLR with single-scale input shows better results when scaling to larger backbones, while
being ∼ 2× faster compared to Mask2Former.

data strategy Object Detection Instance Segmentation
APb APb

S APb
M APb

L APm APm
S APm

M APm
L

Supervised pre-training
IN-1K DEiT 53.6 33.7 58.1 71.5 46.1 24.5 50.4 67.2
IN-1K DEiTv3 54.0 34.3 58.8 70.5 46.4 24.8 51.1 66.7
IN-21K DEiTv3 54.8 35.4 59.0 72.4 47.1 25.8 51.2 68.5
Self-supervised pre-training
IN-1K MAE 55.4 36.1 59.1 70.9 47.6 26.8 51.4 67.1
IN-21K BEiTv2 55.7 36.5 60.2 72.4 48.1 26.7 52.7 68.9

Table 5: Ablation on SimPLR pre-training data and strategies with the plain ViT-B backbone evaluated on
COCO object detection and instance segmentation. We compare the plain backbone pre-trained using supervised
methods (top row) vs. self-supervised methods (bottom row) with different sizes of pre-training dataset (ImageNet-1K
vs. ImageNet-21K). It can be seen that SimPLR with the plain ViT backbone benefits more pre-training data (e.g.,
ImageNet-1K vs. ImageNet-21K) and better pre-training approaches (e.g., supervised learning vs. self-supervised
learning). Here, we use the 5× schedule.

Ablation on SimPLR pre-training data and strategies. Tab. 5 compares the ViT backbone of SimPLR
when pre-trained using different strategies with varying sizes of pre-training data. As expected, SimPLR with
the ViT backbone benefits from better supervised pre-training methods. Among them, DEiTv3 (Touvron
et al., 2022) shows better results than DEiT (Touvron et al., 2021), and pre-training on more data (i.e.,
ImageNet-21K) further improves DEiTv3 performance. SimPLR with the ViT backbone benefits even more
from self-supervised methods like MAE (He et al., 2022), which already provide strong pre-trained backbones
when only pre-trained on ImageNet-1K. The best performance is reported with self-supervised method,
BEiTv2 (Peng et al., 2022) with more pre-training data of ImageNet-21K. This further confirms that SimPLR,
profits from the progress of self-supervised learning and scaling ViTs with more data.

Ablation of scale-aware attention. Next, we ablate the scale-aware attention mechanism. As baseline
we compare to the standard box-attention from Nguyen et al. (2022) with single-scale feature input directly
taken from the last feature of the ViT backbone (denoted as “base”).

From Tab. 6a, we first conclude that both scale-aware attention strategies are substantially better than the
baseline, increasing AP by up to 1.8 points. We note that while fixed-scale attention distributes 25% of its
attention heads into each of the anchor scales, adaptive-scale attention decides the scale distribution based
on the query content. By choosing feature grids from different scales adaptively, the adaptive-scale attention
is able to learn a suitable scale distribution through training data, yielding better performance compared to
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attention APb APm

base 53.6 46.1
fixed-scale 55.0 47.2
adaptive-scale 55.4 47.6

(a) Scale-aware attention.

s APb APm

base 53.6 46.1
16 55.1 47.4
32 55.4 47.6
64 55.1 47.4

(b) Anchor size.

n APb APm

base 53.6 46.1
2 54.6 47.0
4 55.4 47.6
6 55.2 47.6

(c) Number of anchor scales.

scale APb APm

base 53.6 46.1
1/4 55.4 47.7
1/8 55.4 47.6
1/16 54.3 46.7

(d) Scales of input features.

(e) Visualization of scale distribution
learnt in multi-head adaptive-scale
attention of object proposals. Objects
are classified into small, medium, and
large based on their area.

Table 6: Ablation of scale-aware attention in SimPLR using a plain ViT backbone on COCO val. Tables (a-d):
Compared to the baseline, which employs BoxeR and box-attention (Nguyen et al., 2022) with single-scale features,
SimPLR, with scale-aware attention improves performance consistently for all settings (default setting highlighted).
Figure (e): our adaptive-scale attention captures different scale distribution in its attention heads based on the
context of query vectors. Specifically, queries of small objects tends to focus on anchors of small scales (i.e., mainly
32 × 32), while query vectors of medium and large objects distribute more attention computation into larger anchors.
All experiments are with 5× schedule.

fixed-scale attention. This is also verified in Fig. 6e where queries corresponding to small objects tend to pick
anchors of small sizes for its attention heads. Interestingly, queries corresponding to medium and large objects
pick not only anchors of their sizes, but also ones of smaller sizes. A reason may be that performing instance
segmentation of larger objects still requires the network to faithfully preserve the per-pixel spatial details.

In Tab. 6b, we compare the performance of SimPLR across several sizes (s) of the anchor. They all improve
over the baseline, while the choice of a specific base size makes only marginal differences. Our ablation reveals
that the number of scales rather than the anchor size plays an important role to make our network more
scale-aware. Indeed, in Tab. 6c, the use of 4 or more anchor scales shows improvement up to 0.8 AP over
2 anchor scales; and clearly outperforms the naïve baseline. Last, we show in Tab. 6d that the decouple
between feature scale and dimension of the ViT backbone and the detection head features helps to boost the
performance of our plain detector by ∼1 AP point, while keeping its efficiency. This practice makes scaling of
SimPLR to larger ViT backbones more practical.

We provide qualitative results for object detection, instance segmentation, and panoptic segmentation on the
COCO dataset in Fig. 6 and panoptic segmentaion on the CityScapes dataset in Fig. 7.

Limitations. Our final goal is to simplify the detection pipeline and to achieve competitive results at
the same time. We find that the adaptive-scale attention mechanism that adaptively learns scale-aware
information in its computation plays a key role for a plain detector. However, our adaptive-scale attention
still encodes the knowledge of different scales. In the future, we hope that with the large-scale training data,
a simpler design of the attention mechanism could also learn the scale equivariant property. Furthermore,
SimPLR faces difficulties in detecting and segmenting large objects in the image. To overcome this limitation,
we think that a design of attention computation which effectively combines both global and local information
is necessary.
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Instance Panoptic Instance Panoptic

Figure 6: Qualitative results for SimPLR instance detection and segmentation (left) and panoptic segmentation
(right) on the COCO val set. SimPLR gives good predictions on small objects (e.g., the first three rows). However, it
is still challenging for the model to detect individual objects in the crowded scenes (e.g., the last row).

Figure 7: Qualitative results of panoptic segmentation generated by SimPLR on Cityscapes val. It can be seen
that SimPLR correctly predicts small objects like pedestrians in various scenes.

6 Conclusion

We presented SimPLR, a simple and plain object detector that eliminates the requirement for handcrafting
multi-scale feature maps. Through our experiments, we demonstrated that a transformer-based detector,
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equipped with a scale-aware attention mechanism, can effectively learn scale-equivariant features through
data. The efficient design of SimPLR allows it to take advantages of significant progress in scaling ViTs,
reaching highly competitive performance on three tasks on COCO: object detection, instance segmentation,
and panoptic segmentation. This finding suggests that many handcrafted designs for convolution neural
network in computer vision could be removed when moving to transformer-based architecture. We hope this
study could encourage future exploration in simplifying neural network architectures especially for dense
vision tasks.
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