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Abstract

In many real scenarios, data are often divided into
a handful of artificial super categories in terms of ex-
pert knowledge rather than the representations of images.
Concretely, a superclass may contain massive and vari-
ous raw categories, such as refuse sorting. Due to the
lack of common semantic features, the existing classifica-
tion techniques are intractable to recognize superclass with-
out raw class labels, thus they suffer severe performance
damage or require huge annotation costs. To narrow this
gap, this paper proposes a superclass learning framework,
called SuperClass Learning with Representation Enhance-
ment(SCLRE), to recognize super categories by leverag-
ing enhanced representation. Specifically, by exploiting
the self-attention technique across the batch, SCLRE col-
lapses the boundaries of those raw categories and enhances
the representation of each superclass. On the enhanced
representation space, a superclass-aware decision bound-
ary is then reconstructed. Theoretically, we prove that by
leveraging attention techniques the generalization error of
SCLRE can be bounded under superclass scenarios. Exper-
imentally, extensive results demonstrate that SCLRE outper-
forms the baseline and other contrastive-based methods on
CIFAR-100 datasets and four high-resolution datasets.

1. Introduction
In recent decades, basic-level raw categorization (e.g.

cats vs dogs, apples vs bananas) has greatly developed

[9, 27] while high-level or super-coarse-grained visual cat-

egorization (e.g., recyclable waste vs kitchen waste, crea-

tures vs non-creatures) has received little attention. In many

real scenarios, there often exist a handful of high-level cat-

egories, wherein numerous images from diverse basic-level

categories share one common label. We tend to define this

kind of super-coarse-grained class as Superclass.

*Corresponding Author

Figure 1. Illustration of superclass learning. The samples from
a same superclass will be scatteredly distributed in the embed-

ding space. The process of superclass learning is to break old

domains and construct new domains. Red indicates the superclass

of kitchen waste, and blue indicates the superclass of recyclable

waste.

Refuse sorting, as an example, is such a recognization

problem with four superclasses, i.e., kitchen waste, recy-

clable waste, hazardous waste, and others waste. One task

of refuse sorting is to accurately collect various items, such

as rotten fruits, bones, raw vegetables, and eggshells, into

kitchen waste. Traditional recognition needs to identify

what exact basic-level categories they are, then sort them

out. Obviously, it is wasteful and unrealistic for superclass

identification.

Essentially, high-level superclasses contain two charac-

teristics, remarkably distinct from basic-level classes. First,

the basic-level classes contained in superclass problems are

usually scattered and share few common features. As de-

picted in the top-left corner subgraph of Fig. 1, the fruit

apple, bone, and eggs are remote from each other in fea-

ture spaces, though all of them belong to kitchen waste.
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Second, the instances from two distinct superclasses may

share common features. Just as illustrated in Fig. 1, fruit

apple, from kitchen waste, and toy apple, from recyclable

waste, are close to each other as they share common seman-

tic features. Obviously, the above-mentioned characteristics

indicate that the smoothness assumption [27] under basic-

level classification (nearby images tend to have the same

label) does not hold in the superclass scenarios. Thus, the

existing classification techniques based on smoothness as-

sumption are not practically deployable and scalable and

they may suffer severe performance damage in superclass

settings. Accordingly, it is valuable and promising to inves-

tigate superclass identification.

To tackle the superclass problems, we have to address

two main challenges. First, we need to break the origi-

nal decision boundaries of basic-level classes and disclose

a superclass-aware boundary at the basic class level. As

depicted in bottom subgraph (a) of Fig. 1, the boundary of

the apple domain is original, however, it is useless and even

harmful for the refuse sorting as both fruit apples and toy

apples belong to this domain. To get the required domain

boundary, the apple domain needs to be separated into the

fruit domain and toy domain by leveraging their individ-

ual local features, as depicted in the bottom subgraph (b)

of Fig. 1. In superclass scenarios, it is not enough to in-

vestigate the boundary at a basic class level. Consequently,

the second challenge is to reconstruct a decision boundary

at a superclass level. To achieve this end, it is necessary to

merge the domain of classes, such as fruit apples, eggs, and

bones into a new rotten superclass domain, as depicted in

the bottom subgraph (c) of Fig. 1.

In this paper, we propose a SuperClass Learning frame-
work with Representation Enhancement. Considering that
the semantic representation at the basic class level is not

workable for superclass recognition, we propose one cross-

instance attention module which could seize the representa-

tion across the instances with the same superclass label. By

leveraging contrastive adjustment loss, the attention mech-

anism enhances this representation. Moreover, to overcome

the imbalance distribution of superclasses, we adopt target

adjustment loss to reconstruct a superclass-aware decision

boundary on the enhanced representation space.

In summary, this paper makes the following contribu-

tions:

• We propose an under-study but realistic problem, su-

perclass identification, that has notably distinct distri-

bution from basic-level categorization.

• We propose a novel representation enhancement

method by leveraging cross-instance attention and then

exploit it in superclass identification. And by theo-

retical analyses, we verify that this self-attention tech-

nique can bound the generalization error of superclass

recognition.

• Extensive experiments demonstrate that SCLRE out-

performs the SOTA classification techniques on one

artificial superclass dataset and three real datasets.

The remainder of the paper is organized as follows: in

Sec. 2 we briefly review related work and in Sec. 3 we de-

scribe our method for superclass recognition. Then, exten-

sive experiments and generalization error analysis are con-

ducted in Secs. 4 and 5. Finally, Sec. 6 draws a brief con-

clusion.

2. Related Work
Contrastive Learning. The contrastive framework has

achieved great success on instance-level problems. Chen

et al [3] designed a simple framework to get visual repre-

sentations in a contrastive way. He et al [14] developed

a dynamic dictionary with queues and moving averages to

improve contrastive encoder quality. To learn basic-level

features and discover more semantic structures for the em-

bedding space, Li et al [22] bridge contrastive learning with

clustering. More recently, Caron et al [2] presented a con-

trastive framework without the need for pairwise compar-

ison computation. To get rid of the limitation of negative

samples, Grill et al [12] use two neural networks and pre-

dict the representation of the same image under a different

augmented view. Chen et al [4] further designed a stop-

gradient operation to prevent collapsing. Contrastive learn-

ing has also been applied to various research domains and

evolved quickly [11, 33, 34]. Instead of focusing on the

basic-level boundary, we construct a high-level superclass-

aware boundary.

Supervised Contrastive Loss. Traditional contrastive

frameworks encode data either unsupervised or self-

supervised and apply supervised information in down-

stream tasks. Khosla et al [19] extend the contrastive mode

to a fully-supervised setting and use label information more

effectively. To address the impact of long-tailed distribution

data, Li et al [23] propose a targeted contrastive loss and

guide the encoder to obtain representations based on sev-

eral preset anchors. Recently, supervised contrastive learn-

ing is used in broader research domains both in computer

vision and natural language processing [16, 25, 35]. We are

inspired by the function of pulling close or away features in

these supervised contrastive losses, and therefore propose

a new loss, which will pull the features by the superclass

labels for better performance in classification.

Self-Attention Module. Self-attention module has been
widely used in deep learning. It was first mentioned by

Vaswani et al [29] as a part of the transformer model and

is widely used in the natural language processing field

[5, 21, 24, 26]. Recently, the attention module and trans-

former also obtained great success in the computer vision
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Figure 2. Illustration of SCLRE. The images first generate their
representations through a convolutional neural network, then mix

with each other in a trainable cross-instance attention module for

enhancement. After enhancement, the representations are then ad-

justed according to their superclass labels and the target anchors.

field. Dosovitskiy et al [6] organize image patches as a

sequence and propose a vision transformer. Furthermore,

He et al [13] propose a masked auto-encoder based on vi-

sion transformers. Self-attention modules can also be inte-

grated into convolutional neural networks to improve per-

formance [1, 18, 31]. Fu et al [10] address the fine-grained

image recognition problem by using an attention network to

find the unique and pivotal features in samples(for example,

one kind of bird’s tail color). Different from focusing the

attention relationship in one sample, we propose a cross-

instance attention(CIA) module that cares more about the

relationship between instances.

3. Method

Superclass Learning with Representation Enhance-

ment(SCLRE) framework is proposed for superclass image

recognition. It exploits the self-attention technique across

instances to perform a representation enhancement, thus it

achieves the goal to break the basic-level boundary in rep-

resentations. Then SCLRE reconstructs a new superclass-

aware boundary in the enhanced representation space by a

series of adjustment losses.

Fig. 2 shows the overview of SCLRE. Sec. 3.1 presents

the process of breaking basic-level boundary , while

Sec. 3.2 describes the details of constructing the new high-

level superclass-aware boundary.

Figure 3. Different segmentation strategies of cross-instance
attention module. We experiment on three kinds of segmentation

strategies and choose the best for the experiment.

3.1. Representation Enhancement

To break the basic-level boundary of representations and

obtain valuable enhancements, we mix the representations

by leveraging a cross-instance attention module. Unlike the

existing attention techniques [32], the cross-instance atten-

tion module cares more about the relationship between rep-

resentations of the instances, rather than the feature repre-

sentation inside the instance.

Enhanced Representation. Let X be the data space,

RD be theD-dimensional embedding space, an encoder f :
X → RD be a mapping from the data space to the embed-

ding space, and an enhancement process EnH : RD → RD

be a mapping from the embedding space to the embedding

space. For each xj ∈ X , the representation zj = f(xj),
and Z ∈ Rn×D is the representation matrix for the batch

with size n. The enhanced representation vj is an output of
EnH. More specifically, vj is defined as follows:

vj = EnH(zj ;Z) = aj × Z, (1)

where aj is a trainable vector for representation zj com-

puted by cross-instance attention module. Actually, the

vector aj is the j-th row of the attention distribution ma-

trix(ADM) computed in the following Q-K-V mode multi-

head attention module [29]:

ADM(Z) = softmax

(
QKT

√
dk

)
. (2)

The matrix Q = Z ×WQ, where WQ ∈ RD×dq . Matrix

K = Z ×WK , whereWK ∈ RD×dk and dq = dk.
The enhancement process breaks the basic-level bound-

ary by merging the semantic features of instances. Cross-

instance attention module automatically explores the key

instances for representation enhancement and integrates

them to obtain a superclass-aware enhanced representation.

Moreover, we conduct strict theoretical analysis on the gen-

eralization ability of our model in Sec. 5, and discover that

the cross-instance module can tightly bound the generaliza-

tion error of SCLRE.

Data Segmentation Strategy. In the cross-instance

attention module, the segmentation strategy of input data

is important for representation enhancement. For each in-

stance, the segmentation strategy determines whose repre-
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sentations will be received as an enhancement. We con-

sidered three kinds of segmentation strategies for the input

data in the cross-instance attention module. Fig. 3 illustrates

the details of the strategies. In (a), images are gathered in

terms of their superclass label, we put the same label im-

ages into one batch. In (b), we randomly and evenly select

images from the different superclasses and gather them into

the batch. In (c), we keep the distribution of the dataset and

randomly select the samples to form the batch. The result

shows that (c) selecting the samples according to the distri-

bution of the dataset benefits the model most, so we fixed

this strategy in the following part of this work.

3.2. SCLRE Loss

To reconstruct the high-level superclass-aware boundary

of representations, we design a SCLRE loss to adjust the

representations after the attention-weighted enhancement.

We keep using the letter v in Eq. (1) to demonstrate rep-

resentations being enhanced by the cross-instance attention

module, and we call it enhanced representation. After that,
we adjust the representations by taking three aspects into

consideration.

Category Classification Loss. We first adopt the cross-

entropy loss as the base to obtain a category-level adjust-

ment and prevent the model from collapsing:

Lce = − 1

N

N∑
i=1

K∑
k=1

yi,k logM(vi)k, (3)

where N demonstrates batch size, yi demonstrates the su-
perclass label of the i-th sample in one-hot embedding,

M(vi) demonstrates the output prediction of vi, and the

footscript k demonstrates the k-th component of a vector.
Contrastive Adjustment Loss. Besides classification

loss, the samples belonging to the same superclass may

share few common features. To obtain a representation-

level adjustment, we design a contrastive adjustment loss to

pull close the samples in the same superclass and pull away

samples in distinct superclasses. We directly regard sam-

ples from the same superclass as positive pairs and samples

from other superclasses as negative pairs. For one sample

vi and one of its positive sample v
+ (i.e. vi and v

+ belongs

to the same superclass), the contrastive adjustment loss is:

�(vi, v
+) = − log exp(s(vi,v

+)/τ)
exp(s(vi,v+)/τ)+

∑

v− /∈P (vi)

exp(s(vi,v−)/τ) .

(4)

By summing up all the losses of positive pairs and for a

batch with size N , we can get the total loss as:

Lca =

N∑
i=1

1

||P (vi)|| − 1

∑
v+∈P (vi)\{vi}

�(vi, v
+), (5)

where P (vi) stands for all the other data that share the

same superclass label with vi in the batch, i.e. P (vi) =

{vk|p(vk) = p(vi)}, p means the superclass label. s(·, ·)
stands for the similarity between two vectors, we use cosine

similarity for measurement, i.e. s(vs, vt) =
vT
s vt

||vs||·||vt|| . τ

is the temperature hyperparameter. ||P (vi)|| stands for the
size of set P (vi), and it aims to normalize the total loss.

Targeted Adjustment Loss. Since superclass learning

naturally faces the problem of lack of classification cen-

ters due to the scattered distribution of representations, then

follows damage to the constructing process when the con-

trastive adjustment loss works. To address this problem, we

design a targeted adjustment loss to give each superclass a

pre-defined category center(i.e. target anchors). We first

generate the target anchors and make them far away from

each other inspired by [23]. Then we pull every sample

close to its pre-defined target anchor by minimizing the fol-

lowing targeted adjustment loss:

Lta = − 1

N

N∑
i=1

log
exp(s(vi, t(vi))/τ)∑
t∈T exp(s(vi, t)/τ)

, (6)

where N stands for batch size, s(·, ·) stands for cosine sim-
ilarity function, T is the set of all the target anchors, and

t(vi) demonstrates the target anchor allocated to vi.

SCLRE Adjustment Loss. To construct the high-level
superclass-aware boundary with both category-level and

instance-level adjustments and overcome the problem of

lack of classification center, the total loss of SCLRE is a

weighted summation of the above three losses(i.e. Eqs. (3),

(5) and (6)):

LSCLRE = (1− α)Lce + αLca + λLta, (7)

where α and λ range from 0 to 1. Lce and Lca are designed

as a combination to help the encoder explore the concept of

superclasses, a larger α means a stronger adjustment strat-

egy and weaker classification ability. Lta is designed to

help the model overcome the imbalanced distribution, and

a larger λ means stronger guidance towards the destination

of adjustment.

SCLRE adjustment loss can help the model learn more

about the concept of the superclass and the high-level cat-

egorization boundary. By balancing the influence of cross-

entropy loss and contrastive adjustment loss, the model can

adjust representations properly. By controlling the utiliza-

tion of targeted adjustment loss, the model can run smoothly

and converge steadily.

4. Experiment

In this section, we conduct extensive experiments on sev-

eral artificially constructed superclass datasets to demon-

strate the effectiveness of our proposed approach, SCLRE.
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Figure 4. Illustration of superclass construction. We integrate

the initial class labels of the original dataset to superclass labels,

according to field knowledge. The constructed dataset contains a

handful of superclasses.

4.1. Experiment Setup

Datasets. In this study, superclass datasets are arti-

ficially reorganized from three benchmarks, CIFAR-100,

mini-ImageNet [30] and VOC [8], and two real-world

datasets, FMoW [20] and Adience [7]. CIFAR-100 contains

50000 training images and 10000 test images from 100 cat-

egories with a size of 32 × 32 × 3. mini-ImageNet [30]

contains 60000 images in total with a size of 84 × 84 × 3,

which are evenly distributed among 100 classes. VOC [8]

contains 2501 training images, 2510 validation images and

4952 test images from 20 categories. The real-world dataset

FMoW [20] is about a hybrid domain generalization and

subpopulation shift problem, which consists of 76863 train-

ing images, 11483 validation images and 11327 test images

with a size of 224 × 224 × 3. And the real-world dataset

Adience [7] contains 26,580 images from 2,284 people.

In our experiments, superclass datasets are artificially

constructed by integrating the initial classes, just as il-

lustrated in Fig. 4. To be concrete, We reorganize the

100 classes of CIFAR-100 into 3 superclasses, 4 super-

classes, and 7 superclasses, respectively, forming three dis-

tinct superclass datasets, CIFAR100-3, CIFAR100-4, and

CIFAR100-7. The superclasses in the three data sets are

based on movement mode, life form, and are more complex

than the original 20 coarse classes in CIFAR-100. For mini-

Imagenet and VOC, we reorganize their subclasses into 2

superclasses based on life form. For FMoW, we drop the

original labels and turn to predict the geographical location

of the images. For Adience, we utilize the age groups as the

superclass labels. Thus, those 7 superclass datasets can well

simulate the distribution of real-world superclass problems.

More reorganization details are listed in the Appendix.

Compared Methods. We compare SCLRE with the

baseline model, i.e., ResNet [15], and two SOTA contrastive

techniques SupCon [19], and SimCLR [3]. As contrastive

Dataset Method Accuracy(%)

CIFAR100-3

Baseline 72.8

SupCon [19] 78.1

SimCLR [3] 79.0

SCLRE 80.1

CIFAR100-4

Baseline 76.0

SupCon [19] 80.1

SimCLR [3] 80.6

SCLRE 84.0

CIFAR100-7

Baseline 68.9

SupCon [19] 72.7

SimCLR [3] 73.9

SCLRE 78.1

Table 1. Classification accuracy on low pixels dataset: CIFAR-
100. We compared the classification accuracy on CIFAR100-3,

CIFAR100-4, and CIFAR100-7 datasets.

techniques perform excellently in representation learning.

We adopt the default optimal settings in the training details.

SupCon: In our experiments, SupCon adopts ResNet-

50 as backbone, and SupCon loss as the super-classification

loss.

SimCLR: It is a known self-supervised contrastive

learning framework. In superclass recognization, we keep

using ResNet-50 as the backbone and use a supervised

downstream task to keep the instance-level features pure,

wherein the upstream instance-level results are a kind of

learning of the basic level class labels.

Implementation details. We adopt ResNet-50 [15] as

our default backbone and we reduce the feature dimen-

sion from 2048 to 128 with an extra Multi-Layer Percep-

tron(MLP) projection head. We train the network using the

SGD with a momentum of 0.9 and a batch size of 64. We

set the learning rate as 0.001 and the training stage as 200

epochs. Additionally, we resize all the images to 32×32
pixels. For our SCLRE method, we set the key K = 256,

value V = 128 and 8 multi-heads are adopted in the atten-

tion module.

4.2. Classification Evaluation

Accuracy on CIFAR-100 Datasets. Tab. 1 shows the

classification accuracies of SCLRE and the compared meth-

ods on CIFAR100-3, CIFAR100-4, and CIFAR100-7, re-

spectively. And we have the following observations: 1) It

is observed that SCLRE has a great improvement compared

with the baseline. This shows that the cross-instance at-

tention module can effectively activate the contrastive ad-

justment loss. 2) SCLRE has higher classification accura-

cies than SimCLR on superclass datasets. This shows that

the instance-level semantic information learned by SimCLR

may fail in the superclass problem because the images from

the same superclass may have quite different, even con-
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Figure 5. Visualization results by t-SNE. We sampled part of the test set and encode them into representations, then visualize them in the

embedding space by t-SNE. (a) We directly generate the representations using the backbone as a baseline. (b) We use the upstream encoder

of SimCLR. (c) We use the encoder of SupCon. (d) We use part of SCLRE by removing the targeted adjustment loss. (e) We use the entire

SCLRE.

tradictory semantic information. Comparatively, SCLRE

works well by the superclass-aware decision boundary.

Accuracy on High-Resolution Datasets. Tab. 2 shows
the evaluation results on three high-resolution datasets,

from which we observe the following facts. 1) we observe

that, on the real-world dataset FMoW, SCLRE outperforms

other methods by a large margin. On FMoW, the geographic

location of building images is adopted as the superclass la-

bel, rather than their type. The methods without represen-

tation enhancement may perform worse due to the lack of

superclass-aware common features. This further confirms

the importance of representation enhancement in the super-

class problems. 2) SCLRE also outperforms other meth-

ods on real-world dataset Adience, which contains 26580

face images from 2284 people. In case every single per-

son is a raw class, the results confirm that SCLRE is also

workable in large-scale situations. 3) Moreover, we observe

that on FMoW and Adience, SimCLR performs even worse

than the baseline. Because the instance-level representation

by SimCLR is conflicted with the given superclass labels.

4) The performance on mini-ImageNet appears to be less

attractive.This may be because the mini-ImageNet dataset

is divided into 2 distinct superclasses: animals and non-

animals. For such kind of distribution, basic-level methods

mini-ImageNet [30] FMoW [20] Adience [7] VOC [8]

Baseline 87.7 56.5 65.7 78.3

SupCon 87.0 58.3 66.2 78.2

SimCLR 90.1 51.5 52.9 80.0

SCLRE 89.3 64.8 68.7 81.5

Table 2. Classification accuracy on high-resolution datasets.
We compared the accuracy on datasets with more complex and

informative content.

can also easily sort them out by exploring the obvious com-

mon features inside each superclass(e.g. whether the im-

age contains eyes), which makes it more like a traditional

instance-level problem, and SimCLR may perform compa-

rably or even slightly better than SCLRE.

4.3. Visualization

Here we generate the visualization results on representa-

tion space by the t-SNE technique [28]. The CIFAR100-3,

CIFAR100-4, and CIFAR100-7 datasets are adopted for the

visualization experiments.

We observe the following facts from Fig. 5. 1) It is ob-

served that in columns (a) and (b) the images are scattered

in their respective representation space, although the images

(b) cluster slightly closer than the ones in (a). This further

shows that the instance-level representation of SimCLR is
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little related to superclass labels. Consequently, in super-

class scenarios, SimCLR performs a little better than base-

line but worse than SCLRE, just as illustrated in Tab. 1. 2)

We observed that the images in column (c) have a more ob-

vious cluster structure than in columns (a) and (b). This

shows that the use of superclass labels is important for con-

structing clear boundaries. But due to the diverse and com-

plex superclass contents, the representations are mostly in-

accurate and thus result in less favorable results as reported

in Tab. 1. 3) It is also observed that the images in columns

(d) and (e) are notably closer than the ones in (a), (b), and

(c). This shows that the enhanced representation of SCLRE

is superclass-aware. 4) Furtherly, we observe that the im-

ages in column (e) are obviously closer than the ones in

column (d). This shows that the targeted adjustment loss,

one important component of SCLRE, can furtherly cluster

images in the same superclasses, accordingly, it benefits re-

constructing a superclass-aware decision boundary.

4.4. Sensitivity Analysis

We discuss the hyperparameters α and λ of SCLRE

by evaluating their sensitivity on the CIFAR100-7 dataset.

When analyzing α, to avoid the influence of target anchors,
we removed targeted adjustment loss by fixing λ to 0. We

test the sensitivity of α by ranging it from 0 to 1. When

analyzing λ, we fix α to 0.5 to avoid its influence.

α 0 0.1 0.3 0.5 0.7 1

Accuracy 69.2 72.1 73.7 75.1 73.6 -

Table 3. Sensitivity analysis of α. We range α from 0 to 1 and

calculate the accuracy of SCLRE respectively. When α = 1, the
cross-entropy loss is invalid and the model will lose its classifica-

tion ability.

λ 0 0.1 0.2 0.4 0.8 1

Accuracy 75.1 76.7 77.9 76.9 78.1 76.0

Table 4. Sensitivity analysis of λ. We range λ from 0 to 1 and

calculate the accuracy of SCLRE respectively.

Batch Size 64 128 256 512

Accuracy 76.7 76.9 77.3 77.9

Table 5. Sensitivity analysis of batch size. We vary batch size

from 64 to 512 and calculate the accuracy of SCLRE respectively.

Sensetivity of α. Tab. 3 shows the sensitivity of α. Be-
sides extreme situations, we find that α has a little influence

on the accuracy. The optimal value of α falls around 0.5

and we fix it in our experiments.

In the case of α = 0, the contrastive adjustment loss is
invalid and the model degenerates into the baseline. In the

case of α = 1, the cross-entropy loss is invalid and then the
model is not workable for classification.

Architecture Params.(M) FLOPs(G) Acc.(%)
Baseline 23.51 1.30 68.9

+CIA 37.21 1.31 69.2

+Lca - - 72.7

+CIA, Lca - - 75.1

SCLRE
(+CIA,Lca,Lta)

37.21 1.32 77.9

Table 6. Ablation study on SCLRE. We calculated the model

size (Params.), computational complexity (FLOPs) and accuracy

contributions of four components of SCLRE.

Sensetivity of λ. Tab. 4 demonstrates the sensitivity

analysis of λ. λ is a hyperparameter that controls the in-

fluence of targeted adjustment loss.

Unlike α, there are two most proper λ values which fall

around 0.2 and 0.8. When λ is too small or too large, the

performance is both less satisfactory. As a too large λ may

be harmful to the accuracy of the model, a too small λ may

be short of guidance and has limited performance improve-

ment.

Sensetivity of Batch Size. Intuitively, a larger batch size
can bring more abundant samples of superclasses, thus mak-

ing it easier to construct superclass-aware representations.

The experimental results are conducted to verify this state-

ment. Tab. 5 illustrated the results of the sensitivity study of

the batch size. The results show that a larger batch size can

improve the performance of SCLRE, though the improve-

ment is not significant.

4.5. Ablation Study

Here ablation studies are conducted to demonstrate the

contribution of each component in our proposed SCLRE.

Just as designed in Sec. 3, SCLRE is composed of the

baseline model, contrastive adjustment loss (Lca), cross-

instance attention module(CIA), and targeted adjustment

loss(Lta). The baseline model is the same as our SCLRE

without Lca, Lta and CIA.

According to the results reported in Tab. 6, we have the

following observations:

1) It is observed that only CIA itself has an observable

contribution to the performance improvements, but CIA

joint with Lca brings notable improvements. This indicates

that the CIA module is workable to break the basic class

boundary with the great assistance of Lca. They enhance

the representation of the superclass by cross-instance at-

tention mechanism. 2) With CIA, Lca and Lta, SCLRE

achieves the optimal improvements. It shows that the

targeted adjustment loss does function on reconstructing

superclass-aware boundary on the enhanced representation

space.
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ResNet-18 ResNet-34 ResNet-50 ResNet-101 ResNet-152
Baseline 83.9 83.7 78.2 83.4 82.6

SCLRE 86.8 87.6 82.9 87.7 87.2

Improve.(%) +2.9 +2.9 +4.7 +4.3 +4.6

Table 7. Robustness research of SCLRE on different backbones. We calculated the accuracy on a CIFAR100-3 superclass dataset of

baseline and SCLRE. We also calculated the improvement SCLRE gets in the different backbones.

4.6. Robustness for Different Backbones

We investigate the robustness of SCLRE by changing the

backbone to other convolutional neural networks. Tab. 7

shows the result of the experiments on robustness. The

experiments are performed on a CIFAR100-3 superclass

dataset and we vary the backbone from smaller networks

to larger networks. The result shows that SCLRE can make

stable improvements on different backbones.

5. Analysis of Generalization Ability
We conduct an analysis of the generalization ability of

SCLRE and prove that the cross-instance attention module

can further compress the upper bound of the generalization

error. The details of the proof are in the Appendix.

Based on the contrastive adjustment loss in Sec. 3.2, and

with ignoring the constant items, we can rewrite the con-

trastive loss into an expectation form:

Lca ∝ −Ev,v′E v1,v2∈P (v)

v−∈P (v
′
)

log
exp(vT1 v2)

exp(vT1 v2) + exp(vT1 v
−)

= −EvEv1,v2∈P (v)v
T
1 v2︸ ︷︷ ︸

L1

+ Ev,v′E v1,v2∈P (v)

v−∈P (v
′
)

log
(
exp(vT1 v2) + exp(vT1 v

−)
)

︸ ︷︷ ︸
L2

where L1 measures the alignment between two transformed

features and L2 is the regularizer preventing the collapse of

representation.

Lemma 1. As a conclusion in [17], if L2 is trained to be

small than the threshold, which is easily satisfied, the gen-

eralization error of downstream classifier Gf has an upper

bound:

Err(Gf ) � (1− σ) + η(ε)
√
2− 2EvEv1,v2∈P (v)v

T
1 v2

= (1− σ) + η(ε)
√
2 + 2L1

Lemma 2. Sample pairs with the same coarse label con-
sist of two parts: those share the same fine label (O1) and

those have different fine labels (O2). The former can be

closely aligned after contrastive learning. We focus on the

latter and prove that:

EvEv1,v2∈P (v)v
T
1 v2 � Cϕ +

(1− ρ)K

M1M2
s(a1, a2)

where Cϕ is a constant determined by the data distribution.

M1,M2,K are constants. ρ is the ratio of sample pairs with
same fine label in all positive pairs.

Theorem 1. The generalization error has another upper
bound based on attention vectors according to lemma 1 and

lemma 2:

Err(Gf ) � (1− σ)+

√
2η(ε)

√
1− Cϕ − (1− ρ)K

M1M2
Ev1,v2∈O2s(a1, a2))

The attention vector is a representation of the importance

between samples. When we define a superclass, the repre-

sentation vector z with the same coarse label will be pulled
together by the contrastive loss. During this process, sam-

ples in the superclass will focus on the same important en-

hanced representations, thus leading to similar vectors and

declining the upper bound of generalization error.

6. Conclusion

In this study, we explore the high-level categories recog-

nition problem, i.e., superclass categorization. And a super-

class learning framework, that exploits self-attention tech-

niques cross the instances to enhance the representation, is

proposed. Thus, the distribution of superclass is modified

in the enhanced representation space and a new superclass-

aware decision boundary is then reconstructed. In theory,

the generalization error of SCLRE can be bounded by at-

tention constraints. In extensive experiments, SCLRE out-

performs the SOTA classification methods.

In the near future, we would like to tackle the superclass

problems under the scenarios without full annotation by

leveraging semi-supervised learning and active learning.

Acknowledgements. This work was supported by the Na-
tional Key Research & Develop Plan(2018YFB1004401);
National Natural Science Foundation of China
(62276270,62072460, 62172424); Beijing Natural
Science Foundation (4212022). it is also partially
supported by the Opening Fund of Hebei Key Labora-
tory of Machine Learning and Computational Intelli-
gence.

24067

Authorized licensed use limited to: Renmin University. Downloaded on October 11,2023 at 01:15:04 UTC from IEEE Xplore.  Restrictions apply. 



References
[1] Amjad Almahairi, Nicolas Ballas, Tim Cooijmans, Yin

Zheng, H. Larochelle, and Aaron C. Courville. Dynamic

capacity networks. In ICML, 2016. 3
[2] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Pi-

otr Bojanowski, and Armand Joulin. Unsupervised learning

of visual features by contrasting cluster assignments. Ad-
vances in Neural Information Processing Systems, 33:9912–
9924, 2020. 2

[3] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-

offrey E. Hinton. A simple framework for contrastive learn-

ing of visual representations. ArXiv, abs/2002.05709, 2020.
2, 5

[4] Xinlei Chen and Kaiming He. Exploring simple siamese rep-

resentation learning. 2021 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 15745–
15753, 2021. 2

[5] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina

Toutanova. Bert: Pre-training of deep bidirectional trans-

formers for language understanding. In NAACL, 2019. 2
[6] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,

Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,

Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-

vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is

worth 16x16 words: Transformers for image recognition at

scale. ArXiv, abs/2010.11929, 2021. 3
[7] Eran Eidinger, Roee Enbar, and Tal Hassner. Age and gender

estimation of unfiltered faces. IEEE Transactions on infor-
mation forensics and security, 9(12):2170–2179, 2014. 5,

6

[8] Mark Everingham, Luc Van Gool, Christopher K. I.

Williams, JohnM.Winn, and Andrew Zisserman. The pascal

visual object classes (voc) challenge. International Journal
of Computer Vision, 88:303–338, 2009. 5, 6

[9] Pedro F Felzenszwalb, Ross B Girshick, David McAllester,

and Deva Ramanan. Object detection with discriminatively

trained part-based models. IEEE transactions on pattern
analysis and machine intelligence, 32(9):1627–1645, 2010.
1

[10] Jianlong Fu, Heliang Zheng, and Tao Mei. Look closer to

see better: Recurrent attention convolutional neural network

for fine-grained image recognition. 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
4476–4484, 2017. 3

[11] Tianyu Gao, Xingcheng Yao, and Danqi Chen. Simcse:

Simple contrastive learning of sentence embeddings. ArXiv,
abs/2104.08821, 2021. 2

[12] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin
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