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ABSTRACT
Recent advances in Multimodal Large Language Models (MLLMs)
have constituted a significant leap forward in the field, particularly
in the processing of videos, which encompasses inherent challenges
such as spatiotemporal relationships. However, existing MLLMs
are predominantly focused on the comprehension of video inputs,
with limited capabilities in generating video content. In this pa-
per, we present GPT4Video, a unified framework that seamlessly
and lightly integrates with LLMs, visual feature extractors, and sta-
ble diffusion generative models for cohesive video understanding
and generation. Moreover, we explore a text-only finetuning
approach to equip models for instruction-following and safeguard-
ing in multimodal conversations, enhancing training efficiency
and generalization capabilities. Additionally, we construct multi-
turn and caption-interleaved datasets for finetuning and bench-
marking MLLMs, which serve as solid resources for advancing this
field. Through quantitative and qualitative assessments, GPT4Video
demonstrates the following advantages: 1) The framework incorpo-
rates video generation ability without adding extra training parame-
ters, ensuring seamless compatibility with various video generators.
2) The model achieves superior performances across a variety of
benchmarks. For instance, it outperforms Valley [28] by 11.8% on
video question answering, and surpasses NExt-GPT [48] by 2.3%
on text-to-video generation. 3) As safety pioneers in open-source
MLLMs, we developed finetuning and evaluation datasets, securing
an F1 score exceeding 80% in blocking harmful content during un-
derstanding and generating videos. In general, GPT4Video shows
potential to function as a real-life assistant, marked by its effective-
ness, adaptability, and safety. We will open-source our code, data,
and models.

CCS CONCEPTS
• Computing methodologies; • Artificial intelligence; • Philo-
sophical/theoretical foundations of artificial intelligence; •
Cognitive science;

KEYWORDS
Multimodal Large Language Model, Video Understanding and Gen-
eration, Instruction-Following, Safeguarding, Data Construction.
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Figure 1: Pipeline comparison of our GPT4Video with the
current LLMs and MLLMs.

1 INTRODUCTION
Large language models (LLMs) such as LLaMA [43], ChatGLM [13],
Vicuna [11] (in Figure 1 (a)), have undergone significant advance-
ments, paving the way for general artificial intelligence (AGI) and
showcasing remarkable zero-shot capabilities across diverse lin-
guistic tasks. Based on this foundation, multimodal large language
models (MLLMs) like MiniGPT-4 [63], Video-LLaMA [55], Macaw-
LLM [30] (in Figure 1 (b)) have been successively introduced. These
models are capable not only of processing textual information but
also of handling data across various modalities such as images,
audio, and videos, demonstrating exceptional performance in mul-
timodal tasks [54]. Nevertheless, current MLLMs primarily focus
on processing multimodal inputs, yet they fall short in generating
multimodal information on the output side. For a refined AGI sys-
tem [17], it is crucial not only to understand multimodal inputs but
also to efficiently generate them, mirroring human interaction in
real-world settings.

Nonetheless, endowing LLMs with multimodal generation capa-
bilities presents a significant challenge: what content aligns with
user requirements, and when to generate it appropriately. Sev-
eral recent studies have made preliminary forays in this direc-
tion [23, 48, 62]. GILL [23] initially investigated leveraging LLMs
for image generation, introducing "generative vokens" (i.e. the spe-
cial token “<IMG>”) into the text vocabulary of LLMs. NExt-GPT [48]
further extends the concept of “generative vokens" to a variety of
modalities (e.g. image, audio, and video). Though the approaches
have demonstrated certain efficacy, they have several inherent lim-
itations:

(1) The representational capacity of “generative vokens" is lim-
ited. Due to the constraints of their training mechanism, they
fail to fully harness the outstanding potential of LLMs in
text generation and emergence ability.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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(2) Adding new vocabulary to the LLM’s lexicon may disrupt
the LLM’s original capabilities.

(3) These methods lack the flexibility to adapt different genera-
tion models. For instance, upgrading the text-to-image/video
model necessitates retraining the LLM.

Note that, quantitative analyses on the representative method [48]
in Section 5 provide support for the above claims.

To address the limitations, we presentGPT4Video, a unified frame-
work for augmenting LLMs with both video understanding and
generation capabilities (in Figure 1 (Ours)). Inspired by previous
success [53], we leverage the robust capabilities of pretrained LLM
and visual feature extractor for video understanding. Considering
the the inherent complexity of video over images, we introduce a
video abstractor with a dual attention mechanism [14, 61] to facili-
tate precise alignment between video and text. For video generation,
instead of incorporating “generative vokens”, we train LLMs to pro-
duce the video descriptions with tags at the appropriate moment.
These tags and descriptions respectively act as trigger (“when”) and
input prompts (“what”) for a pre-trained text-to-video model.

Previous studies commonly created and then finetuned MLLMs
using multimodal instruction datasets for understanding abilities
(e.g. text-video interleaved data) [8, 10, 30]. In contrast, we in-
vestigate a text-only finetuning method for video generation, re-
placing video with its caption in instruction datasets during the
second-stage training.1 Accordingly, we construct datasets and
apply the proposed finetuning for two scenarios: equipping mod-
els for instruction-following (45K instances) and safeguarding (4K
instances). Our GPT4Video has the following appealing advantages:

• Seamless Integration: The framwork requires no additional
modules or training parameters, thus can be seamlessly in-
tegrated into a variety of text-to-video models (e.g. Zero-
Scope [29] and VideoCrafter [9]).

• Instruction-Followed Video Generation: Textual data
has more powerful abstraction and expression capabilities in
summarizing content. The fine-tuning with our text-based
instructions is expected to efficiently harness LLMs’ gener-
alization abilities in generating content-rich video prompts
that align with instructions.

• Safeguarding: Through a simple safety alignment, ourmodel
substantially rejects both the processing of harmful video
inputs and the generation of harmful video outputs. This
makes it one of the first models to incorporate safeguarding
features among open-source MLLMs.2

We conduct experiments on a variety of multimodal bench-
marks, including open-ended question-answer [7, 50], video cap-
tioning [50], text-to-video generation [50] and safeguarding (ours).
Results show that our model significantly and consistently out-
performs the advanced models, NExt-GPT [48], demonstrating the
effectiveness and universality of our framework and approach. Our
main contributions are:

• We propose a unified framework that enhances LLMs with
video understanding and generation capabilities through

1The assumption is that the model has acquired vision-language knowledge at the
first-stage training [27, 63].
2We primarily focus on explicit content, as pornography represents the most significant
risk in the realm of video generation.

seamless and lightweight integration with pre-trained Ab-
stractor and T2V models, demonstrating remarkable extensi-
bility.

• We explore a simple and effective method, text-only finetun-
ing, for developing instruction-followed models, showing
substantial improvements in performance. As safety pio-
neers, we further employ this approach for safety alignment,
offering an alternative to einforcement learning from human
feedback (RLHF).

• We build and release valuable datasets to facilitate future
work onmultimodal LLMs, including (1) a instruction dataset
for video generation that covers a wide range of conver-
sational scenarios; (2) a safety benchmark for evaluating
and enhancing safeguarding capabilities in video-interleaved
conversations.

2 RELATEDWORK
Multimodal LanguageModelsNumerous studies have previously
developed multimodal language models that can handle visual in-
puts and text outputs, or vice versa, such as [6, 52]. With these
advancements of LLMs, some researches have focused on learning
a joint embedding space for multiple modalities, as demonstrated in
[16, 36]. Others have combined pre-trained single-modality models
to showcase impressive zero-shot capabilities [1, 24]. More recently,
there has been a growing interest in enabling multi-modal LLMs to
follow instructions, as shown in [12, 53, 63]. To facilitate research
in this area, [51] introduced MultiInstruct, the first multi-modal in-
struction tuning benchmark dataset covering a wide range of tasks
and categories. Additionally, [27] explored multi-modal instruction-
tuning using machine-generated data, while [30] fine-tuned all
model parameters to allow the textual LLM to process four modali-
ties.
Large Language Models Large language models (LLMs) com-
monly refer to as Transformer-based language models with billions
of parameters [44] and have revolutionized the research paradigm
in natural language processing community [13, 43]. Furthermore,
recent works have demonstrated that supervised fine-tuning, also
known as instruction-tuning, can effectively improve the zero-shot
performance of these LLMs [11, 42]. Zhao et al. [60] present a com-
prehensive survey on the research of LLMs.
Text-to-Image/Video Generation Text-to-image/video genera-
tion refers to the task of producing realistic images or videos based
on natural language descriptions. One of the earliest approaches
to this task was the use of conditional GANs [37]. Since then, vari-
ous techniques have been developed to improve the quality of the
generated images [33]. Compared to text-to-image generation, text-
to-video generation is relative new and still remains challenging.
Previous approaches have utilized techniques such as VAEs with
recurrent attention [32] and expanding GANs from image to video
generation [26]. Diffusion models have also been used to generate
videos in recent works [2, 18, 40, 47].
Responsible AI As the AI systems become increasingly powerful,
developing responsible AI have drawn significant scientific atten-
tion recently [22]. Various works have pointed out the safety risks
of LLMs, such as toxicity [39], and hallucination [57]. The safety of
LLMs is commonly measured by specialized benchmarks, such as
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Figure 2: Architectural Overview of GPT4Video. This framework has two components for video processing. The video encoding
module employs a frozenViT-L/14model to capture rawvideo features, while the video abstractionmodule utilizes a transformer-
based cross attention layer and two novel learnable tokens, designed to condense video features. The core of GPT4Video is
powered by a frozen LLaMA model, efficiently fine-tuned via LoRA. The LLM is trained with custom video-centric and
safety-aligned data, enabling it to comprehend videos and generate appropriate video prompts (indicated by underlined text).
These prompts are then used to create videos from the Text-to-Video Model Gallery. Icons of a snowflake and a flame visually
distinguish between the non-trainable and trainable parameters within the system. The two bullet points highlight GPT4Video’s
dual capabilities in understanding and generating video content.

RealToxicityPrompts on toxicity [15]. More recently, [58] present
SafetyBench, a large-scale diverse set of multiple choice questions
across several aspects of safety concerns.

3 OUR FRAMEWORK
We introduce the GPT4Video, a unified framework designed to
endow LLMs with advanced video understanding and generation
proficiencies. As shown in Figure 2, the architecture is composed
of three integral components: 1) video understanding module that
employs a video feature extractor and a video abstractor to encode
and align video information with the LLM’s word embedding space;
2) LLM, utilizing the structure of LLaMA and employing parameter-
efficient fine-tuning (PEFT) methods, specifically LoRA [19], while
keeping the original pre-trained parameters intact; and 3) video
generation part that conditions the LLM to generate prompts for a
model from Text-to-Video Model Gallery through a meticulously
constructed instruction dataset.

3.1 Video Understanding Module
Visual Encoder Given a video denoted as v, we uniformly sam-
ple 𝑇 frames, which are represented as v = [v1, v2, ..., v𝑇 ]. For
each individual frame v𝑖 (where 𝑖 ranges from 1 to 𝑇 ), we utilize
a pre-trained CLIP visual encoder to extract its visual features,
denoted as f𝑖𝑣 = ViT(v𝑖 ). Here, ViT represents the Vision Trans-
former used in CLIP for feature extraction. After extracting the
visual features f𝑖𝑣 from each frame, we compile the video features

F𝑣 = [f1𝑣 , f2𝑣 , ..., f𝑇𝑣 ]. More specifically, GPT4Video adopts the CLIP
ViT-L/14 model [36] for the visual encoding task. This model com-
prises 24 layers, with each layer having a hidden dimension of 1024
and processing patches of size 14. Within this module, images are
uniformly resized to a standard dimension of 224 x 224 pixels and
then divided into patches using a stride of 14 pixels. These patches
are treated as input tokens for the transformer block, enabling its
self-attention mechanisms to effectively generate detailed image
embeddings. Consequently, the output of ViT contains 256 spatial
patch features and 1 global feature (identified as the “[CLS] token"),
resulting in the image features f𝑖𝑣 ∈ R257×1024 and video features
F𝑣 ∈ R(𝑇 ∗257)×1024.
Video Abstractor The input sequence for video features, denoted
as F𝑣 ∈ R(𝑇 ∗257)×1024, becomes considerably large, particularly
with an increased number of sampled frames, 𝑇 . This results in
a substantial computational challenge when processing through
a LLM. To mitigate this, we have implemented a video abstrac-
tor. This tool efficiently condenses the visual information into a
few learnable tokens, thereby generating high-level visual repre-
sentations and significantly reducing the computational demands.
Many image-based MLLMs [24, 53] achieve this by adopting a Q-
former-like structure, which incorporates learnable query tokens
to distill image features. Considering the complexity of video over
image, we further introduce a learnable enhance tokens to augment
video feature extraction by forming a dual attention mechanism.
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We have validated the effectiveness of this structure in our experi-
ments detailed in Table 5. We mathematically define query tokens
as Q𝑠 ∈ R𝑁𝑠×𝐷 and enhance tokens as Q𝑡 ∈ R𝑁𝑡×𝐷 , where 𝑁𝑠 and
𝑁𝑡 denote the counts of query and enhance tokens, respectively,
and 𝐷 signifies the dimension of the token embeddings.

The Q𝑠 and Q𝑡 respectively compute cross attention with the
video features 𝐹𝑣 . Our cross attention module [44] consists of six
encoder layers, wherein the pivotal component of each layer is the
multi-head self-attention mechanism (MSA) [44].

We treat Q𝑠 and Q𝑡 as queries, respectively, and the result of
concatenating them with the video feature F𝑣 serves as the key and
value to compute cross attention. This process yields video features
F𝑠 ∈ R𝑁𝑠×𝐷 and F𝑡 ∈ R𝑁𝑡×𝐷 , respectively. We set 𝑁𝑠 and 𝑁𝑡 to be
the same and then sum the query and enhance features to obtain
the final video feature F̂𝑣 ∈ R𝑁𝑠×𝐷 . The mathematical expression
is as follows:

F𝑠 = CrossAttention(Q𝑠 , [F𝑣 ;Q𝑠 ], [F𝑣 ;Q𝑠 ]) (1)
F𝑡 = CrossAttention(Q𝑡 , [F𝑣 ;Q𝑡 ], [F𝑣 ;Q𝑡 ]) (2)

F̂𝑣 = LN(F𝑠 + F𝑡 ) (3)

where “;” indicates concatenation, LN(·) denotes layer normaliza-
tion [3].

Finally, we employ a linear mapping layer to project the low-
dimensional video feature F̂𝑣 into the high-dimensional word em-
bedding space of the LLM, mathematically denoted as F𝑣𝑖𝑑𝑒𝑜 =

WF̂𝑣 + b, where W and b are the learnable weight matrix and bias
vector, respectively, of the linear layer.

3.2 Video Generation Module

Existing model [48] of integrating “generative vokens" only
accommodates one specific text-to-video model per training ses-
sion. This limitation arises because different text-to-video models
may utilize various text encoders. In contrast, GPT4Video replaces
“generative vokens" by generating T2V models’ textual prompts.
As demonstrated in the Text-to-Video Gallery, our approach is
compatible with the full spectrum of text-to-video models, includ-
ing Make-A-Video [40], Tune-A-Video [47], Text2Video-Zero [20],
VideoCrafter [9], ZeroScope [29]. More importantly, should more
advanced models be integrated into the Text-to-Video gallery in
the future, GPT4Video will seamlessly adapt without necessitating
any modifications. In this work, we employ ZeroScope [29] 3 as our
default video generation model. We also report VideoCrafter1 [9]
in Table 6.

3.3 Large Language Model and Integration
LLMs have demonstrated remarkable capability in understanding
and following human instructions. Thus, we leverage pretrained
LLMs as our cognitive module. It is worth noting that the cognitive
module also serves as the textual modality encoder in our approach.
We adopt Llama-7B model with LoRA [19] as the LLM component
of GPT4Video.

3https://huggingface.co/cerspense/zeroscope_v2_576w

4 OUR TRAINING METHOD AND DATASET
GPT4Video employs a two-stage training strategy. In the first phase,
we focused on enabling GPT4Video to comprehend video content.
Inspired by Video-ChatGPT’s success with LLaVA’s pretrained pa-
rameters, we used mPLUG-Qwl’s parameters for GPT4Video’s ini-
tial alignment. This laid a foundation in image comprehension. To
tailor for video understanding, our video abstractor was further
trained on VideoChat 11K, chosen for its 7K high-quality video-text
alignments. Results show that built on the model’s initial image
understanding, a modest amount of high-quality data is sufficient
to endow GPT4Video with robust video comprehension capabilities.
In the second phase, we employed text-only finetuning to equip the
model with capabilities for video generation and safety guarding.
The training pipeline for GPT4Video and examples of the training
data for stage two are illustrated in Figure 3.

4.1 Text-Only Finetuning
GPT4Video employs a two-stage training strategy. In the first phase,
we freeze the parameters of LLM and focus on training the video
extractor to effectively align video features with the LLM’s feature
space, to enhance the model’s comprehension of video content. The
second stage involves pure text-based instruction tuning, where
we employ the LoRA method for efficient fine-tuning of the LLM,
focusing solely on training the newly added parameters in the LLM.
The input prompts for LLM are as follows:

###Human:<video>video_embed</video>
###Human:video_instruction
###AI:

where “video_embed" represents the video features F𝑣𝑖𝑑𝑒𝑜 , and it
was only employed in the first stage. “video_instruction" refers to
the instruction data constructed for videos.

During the first training phase, we utilized the VideoChat-11k
dataset [25], which includes 7,000 detailed descriptions and 4,000
multi-turn conversations. In the second phase, we employed our
self-constructed GPT4Video-50k dataset alongwith a safety-aligned
dataset, which will be elaborated upon in Sec. 3.2 and Sec. 4.3.

We perform instruction-tuning of the LLM only on the text
tokens, using its original auto-regressive training objective. Specifi-
cally, for a video instruction X𝑡 of length 𝐿, conditioned on visual
information F𝑣𝑖𝑑𝑒𝑜 , our loss function, captured as the negative log
likelihood, is formulated:

L(𝜃 ;X𝑡 , F𝑣𝑖𝑑𝑒𝑜 ) = −
𝐿∑︁
𝑖=1

log𝑝𝜃 (𝑥𝑖 |F𝑣𝑖𝑑𝑒𝑜 ,X𝑡,<𝑖 ), (4)

where 𝜃 is the trainable parameters, X𝑡,<𝑖 is the text tokens before
the current prediction token 𝑥𝑖 .

4.2 Instruction-Following Dataset
Our method initially trains the LLM to learn how to generate tex-
tual prompts based on contextual information, which in turn drives
a pre-trained text-to-video model to produce videos. To effectively
train the LLM to generate these prompts, we meticulously devel-
oped an instruction-following dataset named GPT4Video-50k. The
fundamental idea behind constructing this dataset is to utilize video
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Figure 3: The text-only finetuning pipeline and datasets. The left panel presents a data example for instruction tuning, while
the center and right panels show data examples for safety tuning. These latter two panels respectively illustrate the model’s
safety measures at the output and input ends.

descriptions in place of actual video content. Subsequently, we lever-
age the most advanced language model currently available, GPT-4,
to create extensive dialogue data centered around these video de-
scriptions.

More specifically, first, we randomly extracted 10,000 data ex-
amples from theWebvid10M [4] dataset and obtained their video de-
scriptions.We used the string “<video> Video Caption </video>"
as a placeholder for the actual video in the prompt to GPT-4, where
“Video Caption" served as the placeholder for the video descriptions,
and the “<video>" and “</video>" tags marked the boundaries of
the video description. In the prompt, we require GPT-4 to con-
struct three dialogue between two individuals (not a person and
an assistant like most other LLMs) centered around the provided
Video Caption (representing a real video). This approach makes
our model’s responses more reflective of real human emotions,
rather than just those of an assistant. The complete example of dia-
logues and the detailed prompt, please refer to our supplementary
materials.

Furthering our efforts, to endow the model with the capabil-
ities for multi-turn dialogues and cross-video conversations, we
developed a multi-round, interleaved instruction dataset centered
around multiple video contents. Unlike the single-video centric di-
alogue data mentioned earlier, in this setup, we tasked GPT-4 with
constructing rich conversational scenarios around the contents of
multiple videos. Similarly, we utilized the format “<videoX> Video
Caption </videoX>" to denote the actual videos, where “X" rep-
resents the video index, “Video Caption" is the description of the
content of video X, and “<videoX>" and “</videoX>" serve as the
delimiters for the description’s beginning and end. Specifically, we
randomly selected 5000 samples from the WebVid10M [4] dataset
and obtained their video descriptions. Diverging from the single-
video centric data construction approach, our multi-video centric
method requires at least two or more video descriptions as input
prompts for GPT-4. To ensure that the dialogue data constructed by
GPT-4 closely mirrors real scenarios and maintains logical coher-
ence, we posit that these video descriptions should be semantically

related. To acquire pairs of semantically related video descriptions,
we employed a text retrieval-based approach. The process involved
three steps: firstly, using sentence transformers, we extracted fea-
ture embeddings for the video descriptions of the selected 5000
samples and the remaining descriptions in the WebVid10M dataset;
secondly, we identified the top 10 similar video descriptions for
these 5000 samples by calculating the cosine similarity between
their feature embeddings; and finally, we randomly selected one or
two from these top 10 descriptions to form pairs of video descrip-
tions. For examples of the multi-video centric dialogues and the
detailed prompts used for GPT-4, please refer to the supplementary
materials accompanying this paper.

4.3 Safeguarding Dataset
For MLLMs, ensuring the generation of both useful and safe con-
tent, especially visuals, is imperative for their broad adoption. Take
the handling of sexually explicit content as an example: Current
text-to-image models employ an ancillary NSFW (Not Safe For
Work) detection system. This system, upon recognizing potentially
inappropriate content, replaces the intended output with a simple
black image. While this approach effectively blocks unsafe content,
it can lead to unnecessary consumption of time and computational
resources. Moreover, when used in LLM-based models, this ap-
proach may lead to a disconnection between generated text and
visual content. To address this issue, we have developed a safety-
aligned instruction dataset that trains the model to politely refuse
to respond to inappropriate user requests, thereby eliminating the
need to initiate the generation model.

Specifically, we utilized the real-toxicity-prompts dataset [15],
which comprises 100k texts along with their corresponding Toxicity
scores. This dataset includes various categories for detection such
as sexually_explicit, identity_attack, flirtation, threat, insult, and se-
vere_toxicity. Focusing on the sexually_explicit and severe_toxicity
categories, we extracted 1,500 texts from each, selecting those with
toxicity scores exceeding 0.9. We then tasked GPT-4 to construct
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Table 1: Zero-shot videoQuestionAnswering result onMSVD-
QA, MSRVTT-QA datasets.

Model
MSVD-QA MSRVTT-QA

Accuracy Score Accuracy Score

FrozenBiLM [52] 32.2 – 16.8 –

VideoChat [25] 56.3 2.8 45.0 2.5

LLaMA Adapter [56] 54.9 3.1 43.8 2.7

Video LLaMA [55] 51.6 2.5 29.6 1.8

Video-ChatGPT [31] 64.9 3.3 49.3 2.8

Valley [28] 65.4 3.4 45.7 2.5

GPT4Video (Ours) 66.3 3.6 49.8 3.0

dialogues based on these texts, aiming to generate polite refusals
as responses to such content.

In addition to ensuring the safety of generated content, we have
also implemented safety measures at the input stage. To this end,
we introduced an additional detection model specifically designed
to assess the safety of user input. In cases where inappropriate
content is input by users, we employ a method similar to the one
described above, training the model to tactfully decline responding
to such content (see data example in the righy panel of Figure 3).
In the experimental section 5.3, we conducted an in-depth and
detailed evaluation of our model’s safety features. For examples
of more Safeguarding dataset and the detailed prompts used for
GPT-4, please refer to the supplementary materials accompanying
this paper.

4.4 Safeguarding Benchmark

To investigate the safety of MLLMs in video understanding and
generation, we construct a multimodel benchmark for not safe for
work (NSFW) content. The benchmark examines the percentage of
harmful content that is rejected by theMLLMswhen presented with
various video inputs and queried with harmful and common ques-
tions. Referring to a text-only NSFW benchmark [21], we collect a
diverse collection of video clips and queries with varying levels of
harmfulness and safety. In specific, our benchmark includes two
classification tasks focused on video understanding and generation,
respectively. Each task includes 60 queries with an equal distri-
bution of harmful and safe content. In the video generation task,
in addition to the three-level harmful contents [21], the queries
include natural scenes, human and animal activities, and real and
comic episodes to ensure a diverse range of topics. Additionally,
we design various video and question pairs to prompt MLLMs to
provide inappropriate responses in the video understanding task. In
this way, our benchmark can provide a comprehensive evaluation
of the safety capabilities of MLLMs in video understanding and
generation.

5 EXPERIMENTS

5.1 Experimental Settings
Datasets and Evaluation Metrics. To ensure a fair comparison,
we followed work [28, 31] and assessed the model’s understanding
abilities through the Zero-shot Video Question Answering task.
We conducted a comprehensive quantitative assessment using two
widely-accepted open-ended question-answer datasets: MSRVTT-
QA [50], MSVD-QA [7]. These evaluations were conducted in a
zero-shot setting, utilizing GPT-assisted assessments to gauge the
model’s performance. This process aims to quantify the accuracy
of the model’s predictions, assigning scores from 1 to 5. We further
conducted video captioning task on MSRVTT [50] dataset, using
BLEU-4 [34] and METEOR [5] as evaluation metrics.

On the other hand, in terms of evaluating video generation capa-
bilities, we followed NExt-GPT [48] and conducted Text-to-Video
Generation tasks on the MSRVTT [50] dataset, using Fréchet incep-
tion distance (FID) [35] and CLIPSIM [46] (average CLIP similarity
between video frames and text) as evaluation metrics.
Implementation Details.We leveraged the pre-trained parame-
ters of mPLUG-Owl [53] to enhance our model’s capability in video
understanding. We uniformly sample four frames from the video
and set the number of temporal and spatial tokens to 64. In the first
phase, we set the learning rate to 1e-4 and trained GPT4Video for
two epochs. In the second phase, we adjusted the learning rate to
2e-5 and continued fine-tuning for an additional three epochs. All
the experiments are conducted on 8×A100 40G GPUs.

5.2 Instruction-Following Results
Zero-shot Video Question Answering. To assess the compre-
hension capabilities of GPT4Video, following VideoChat [25], we
conducted comparative experiments on twomost widely-used video
question answering benchmarks. The experimental results of zero-
shot inference are presented in Table 1. Specifically, we compare
GPT4Video with six State-of-the-art models, including Frozen-
BiLM [52], VideoChat [25], LLaMAAdapter [56], Video LLaMA [55],
Video-ChatGPT [31] and Valley [28]. As can be observed, our pro-
posed model GPT4Video reaches SOTA on all four benchmarks.
Zero-shot Video Captioning. We further compared the model’s
performance on the video captioning task using the MSR-VTT
dataset. We evaluated two traditional transformer-based meth-
ods, ORG-TRL [59] and GIT [45], along with three LLM-based ap-
proaches, including mPLUG-2 [49], CoDi [41], and NExT-GPT [48].
As shown in Table 2, our model achieved better performance on
both the BLEU-4 and METEOR metrics.
Zero-shot Text-to-Video Generation.We compare GPT4Video
on the MSR-VTT [50] dataset for text-to-video generation task
in a zero-shot manner quantitatively in Table 3. Following prior
works [2, 48], we assess the visual quality using the FID metric and
evaluate semantic consistency through the average CLIP similar-
ity between video frames and the corresponding text. We bench-
marked GPT4Video against four text-to-video specialized mod-
els: CogVideo [18], MakeVideo [40], Latent-VDM [38], and Latent-
Shift [2], as well as two LLM-based methods, including CoDi [41]
and NExt-GPT [48]. The results, presented in Table 3, demonstrate
that GPT4Video outperforms the aforementioned models across all
evaluated metrics. It is noteworthy that while NExt-GPT integrates
ZeroScope as the video decoder in its video generation process,
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Table 2: Video-to-text generation (video captioning) results
on MSR-VTT [50].

Method BLEU-4 (↑) METEOR (↑)
ORG-TRL [59] 0.436 0.288

GIT [45] 0.548 0.331

mPLUG-2 [49] 0.578 0.349

CoDi [41] 0.521 0.325

NExT-GPT [48] 0.584 0.385

GPT4Video (Ours) 0.587 0.391

Table 3: Text-to-video generation results (zero-shot) on MSR-
VTT [50].

Method FID (↓) CLIPSIM (↑)
CogVideo [18] 23.59 0.2631

MakeVideo [40] 13.17 0.3049

Latent-VDM [38] 14.25 0.2756

Latent-Shift [2] 15.23 0.2773

CoDi [41] - 0.2890

NExT-GPT [48] 13.04 0.3085

GPT4Video (Ours) 12.91 0.3194

GPT4Video demonstrates enhanced precision in generating video
content. This observation reinforces the claims we made in the
introduction 1. For qualitative comparison results, please refer to
Figure 5.

5.3 Safeguarding Results

Table 4: Performance comparison of safety Evaluation. “VU"
and “VG" represent Video Understanding and Video Genera-
tion.

Task Method Acc. Prec. Rec. F1

VU

Video LLaMA [55] 0.51 0.13 0.57 0.22

Video-Chat [25] 0.50 0.06 0.50 0.12

NExT-GPT [48] 0.55 0.13 0.80 0.23

GPT4Video (Ours) 0.82 0.83 0.81 0.82

VG
NExT-GPT [48] 0.65 0.37 0.85 0.51

GPT4Video (Ours) 0.85 0.90 0.82 0.86

In Table 4, we test the safety performance of recent MLLMs in
terms of popular classification metrics on our constructed safety
benchmark. The understanding (VU) results show that mostMLLMs
had a low precision score, below 0.15, when it came to rejecting
harmful queries (refusal was treated as a positive in our experiment).

Table 5: Comparison of Abstractors for V2T tasks on MSR-
VTT.

Abstractor mode BLEU-4 METEOR
#0 GPT4Video (Ours) 0.587 0.391
#1 Ours\Temporal token 0.568 0.358
#2 Q-former-64 0.572 0.369
#3 Q-former-128 0.583 0.389
#4 S&T Pooling 0.581 0.388

Table 6: Text-to-video generation on MSR-VTT.

Method T2V Model FID (↓) CLIPSIM (↑)
NExT-GPT ZeroScope 13.04 0.3085

GPT4Video ZeroScope 12.91 0.3194

GPT4Video VideoCrafter1 12.73 0.3263

Differently, our method demonstrates a strong ability to reject
harmful queries, while maintaining a high recall rate for general
queries. Upon examining the failure cases, we find that current
MLLMs can only refuse to respond to harmful queries with textual
hints, such as ’this is a harmful video?’ It suggests that theseMLLMs’
ability to detect harmful content is mainly derived from LLMs. In
the generation tasks with text-only queries, our method achieves a
high Precision of 90%, compared to NExT-GPT with only 37%. Our
method takes a more conservative approach to generating content,
which may result in the refusal to generate some general queries
related to harmful content, such as sexual dancing. Despite this,
our method still achieves a slightly lower but comparable recall
Recall compared to NExT-GPT.

5.4 Analysis
Qualitative Analysis. In this section, we present some cases to
demonstrate the superior video understanding and generation ca-
pabilities of GPT4Video, as shown in Figure 4, 5. More cases are
provided in supplementary materials.
Ablation Study. In our ablation study presented in Table 5, we eval-
uated various configurations of the video abstractor. Experiment #1
omitted temporal tokens; #2 and #3 used Q-former with 64 and 128
query tokens, respectively; and #4 applied spatial and temporal pool-
ing, a method used in Video-ChatGPT [31] and Valley [28]. Results
on the V2T task clearly demonstrate that our GPT4Video’s video
abstractor achieves superior performance, validating its efficacy.
Comparison of T2V models. We initially selected ZeroScope
model for evaluation due to its use in Next-GPT, ensuring a fair
comparison. We have now incorporated evaluations using a more
advanced VideoCrafter1 model. The results, as detailed in Table 6,
demonstrate superior performance of our GPT4Video in text-to-
video tasks. This enhancement underscores our method’s capacity
for seamless T2V model upgrades without necessitating modifi-
cations to the underlying LLM, unlike Next-GPT which requires
complete retraining.
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Figure 4: Visual examples of GPT4Video’s responses on three tasks. The text in red represents the Ground-Truth.

Figure 5: A demonstration comparing GPT4Video and NExt-GPT in multi-turn and interleaved conversation. The input video is
about young women dancing tap. We highlighted key information using different colors to facilitate presentation.

6 CONCLUSIONS
We present GPT4Video, a novel framework that significantly en-
hances Large Language Models with advanced video understanding
and generative functions. Our approach leverages the descriptive
power of LLMs to create detailed prompts for generative models,
maintaining model simplicity and flexibility. The framework’s effec-
tiveness is underscored by its superior performance on multimodal
benchmarks and its innovative approach to addressing content

safety issues. The release of the specialized multi-modal instruction
dataset promises to catalyze future research in the field. Limitation:
GPT4Video currently specializes in video modality, with plans to
expand to more modalities like image and audio in future updates.
Additionally, while we have initiated steps to address content safety,
our consideration of safety aspects is not yet exhaustive. In future
work, we will strive to further refine and enhance this aspect.
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