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INJECTING INDUCTIVE BIAS TO 3D GAUSSIAN
SPLATTING FOR GEOMETRICALLY ACCURATE
RADIANCE FIELDS
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RaDe-GS IBGS (Ours)GOF2DGS

Figure 1: Our approach enhances geometric accuracy of 3D Gaussian Splatting by parameteriz-
ing covariance, the key determinant of surface normal, with distribution of adjacent Gaussians.
Zoom in for detailed comparison.

ABSTRACT

3D Gaussian Splatting (3DGS) has significantly advanced high-fidelity, real-time
novel view synthesis. However, its discrete nature limits the accurate reconstruc-
tion of geometry. To address this issue, recent methods have introduced rendering
and regularization of depth and normal maps from 3D Gaussians, leading to plau-
sible results. In this paper, we argue that computing normals from independently
trainable Gaussian covariances contradicts the strict definition of normals, which
should instead be derived from the distribution of neighboring densities. To ad-
dress this, we introduce an inductive bias into 3DGS by explicitly parameterizing
covariances of Gaussians using principal axes and variances of distribution com-
puted from neighboring Gaussians. These axes and variances are then regularized
to ensure local surface smoothness. Our approach achieves state-of-the-art perfor-
mance on multiple datasets.

1 INTRODUCTION

Along with the advancements made by Neural Radiance Fields (NeRF) (Mildenhall et al., 2021),
3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) has significantly influenced novel view syn-
thesis research, enabling high-fidelity and real-time rendering from a collection of posed 2D im-
ages. Progress in NeRF research naturally led to advances such as NeuS (Wang et al.) and Neu-
ralangelo (Li et al., 2023) for accurate geometry representation via implicit Signed Distance Fields
(SDF). Similarly, the evolution of geometrically accurate Gaussian Splatting is ongoing by recent
works such as 2D Gaussian Splatting (Huang et al., 2024), Gaussian Opacity Fields (GOF) (Yu et al.,
2024b), and RaDe-GS (Zhang et al., 2024).
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RGB Depth NormalGT

Figure 2: Renderings on scenes trained with IBGS on MipNeRF-360 (top) and DTU (bottom)
dataset. IBGS is a model for geometrically accurate representation of 3D Gaussians.
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Figure 3: Normal determined by fully trainable
covariance in 3DGS does not necessarily corre-
spond to normal of local surface determined by
neighboring Gaussians. However, covariance in
IBGS is directly parameterized using the neigh-
boring Gaussians, so that the two normal vectors
are aligned. Also, updating covariance leads to the
relocation of adjacent Gaussians in IBGS.

The core insight of the recent 3DGS-based ge-
ometry reconstruction methods is to determine
the depth and normal of a Gaussian given its co-
variance. For instance, 2DGS defines a surfel
disk, so that a normal can be defined as the vec-
tor perpendicular to the disk. Meanwhile, GOF
and RaDe-GS calculate the intersection plane
between 3D Gaussian and a camera ray, so that
normal of the plane can be regarded as the nor-
mal of the Gaussian.

However, all these methods calculate normal
from a covariance matrix independently train-
able for each Gaussian. In fact, this schemat-
ics is counter-intuitive to the common under-
standing of normal estimation in computational
graphics (Shirley et al., 2009), where normal is
instead defined by the gradient of adjacent den-
sity distribution. Consider 3DGS in Figure 3.
From the distribution of the two adjacent Gaus-
sians located left and right, a geometrically rea-
sonable surface normal is the vector perpendic-
ular to the local surface formed by these Gaus-
sians. However, a fully trainable covariance in 3DGS can be oriented arbitrarily, creating a dis-
crepancy between the normal calculated from the covariance and the normal calculated from the
underlying surface formed by adjacent Gaussians. In other words, the orientation of covariance has
room to fall into local minima while satisfying the photometric loss, which is ill-posed for accurate
geometry reconstruction.

In this paper, we tackle this issue by directly injecting Inductive Bias to 3D Gaussian Splatting
(IBGS). Specifically, we parameterize the covariance matrix of a Gaussian using the distribution
of adjacent Gaussians as illustrated in the bottom left figure of Figure 3. Our design enforces a
Gaussian covariance to be oriented by the locations of the adjacent Gaussians via Singular Value
Decomposition (SVD). Thus, updating covariance requires back-propagating gradients to adjacent
Gaussian locations, as illustrated in the bottom right figure of Figure 3. As these adjacent points also
form covariances using their own neighbors, the scene eventually forms a set of globally chained
Gaussians by satisfying our inductive bias. To form a coherent and smooth local surface of this
graph-like structure, we also propose geometry regularization methods to (i) induce the neighboring
Gaussians to be distributed along a local plane and (ii) assimilate normals of adjacent local planes
to form a smooth surface. As a result, our method yields high-quality rendering of scene geometry
such as depth and normal reported in Figure 2, enabling high-quality surface reconstruction results
compared to state-of-the-arts as shown in Figure 1.
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In summary, our contribution is three-fold:

◦ We propose a novel variant of a 3DGS model, which parameterizes a covariance of a Gaussian
with neighboring Gaussians, to reflect local geometry structure to the Gaussian covariance.

◦ We propose regularization losses for smooth and coherent surface reconstruction.

◦ Our method achieves competitive quantitative and qualitative results in surface reconstruction
among 3DGS-based methods, while maintaining faster training time compared to implicit neural
representation-based methods.

2 RELATED WORKS

Novel View Synthesis Given a set of posed images, NeRF (Mildenhall et al., 2021) employs a
multi-layer perceptron (MLP) to model the density and view-dependent color of a scene. Image
is rendered from the MLP via the volume rendering frameworks (Drebin et al., 1988; Kajiya &
Von Herzen, 1984), and optimized with a photometric loss for training. Following the broad impact
of NeRF on the research community, advancements have been made to enhance its efficiency and
effectiveness. Notably, several approaches have accelerated NeRF’s training and rendering process
through the integration of octree (Yu et al., 2021), sparse voxel-grid (Fridovich-Keil et al., 2022),
multi-resolution hash-grid (Fridovich-Keil et al., 2022), and factorized tensors (Chen et al., 2022).
Other lines of work successfully mitigate aliasing effect (Barron et al., 2021; 2023; Hu et al., 2023),
or model unbounded scenes (Zhang et al., 2020; Barron et al., 2022). More recently, 3DGS (Kerbl
et al., 2023) has emerged as a powerful technique for achieving real-time and high-fidelity rendering.
Representing scenes as a set of 3D Gaussians, the method employed EWA volume splatting (Zwicker
et al., 2001) to rasterize the 3D Gaussians into screen space. Subsequent research has refined this
approach by improving rendering quality through anti-aliasing (Yu et al., 2024a) or extending to
dynamic scene modeling (Wu et al., 2024; Yang et al., 2024).

Surface Reconstruction Traditionally, Multi-View Stereo (MVS) techniques (Schönberger et al.,
2016; Yao et al., 2018; Yu & Gao, 2020) addressed the 3D reconstruction problem from multi-view
images. These methods involve a series of steps, including feature matching, depth map estimation,
and the fusion of these maps into a point cloud. The point cloud is then used to reconstruct a surface,
often via approaches like screened Poisson surface reconstruction (Kazhdan & Hoppe, 2013).

Meanwhile, NeRF-based methods have been employed for accurate surface reconstruction, as novel
view synthesis from implicit scene representation is closely related to underlying 3D reconstruction.
For instance, pioneering methods such as UNISURF (Oechsle et al., 2021), NeuS (Wang et al.),
and VolSDF (Yariv et al., 2021) propose an implicit SDF for surface representation, followed by its
volume rendering for supervision with posed images. Triangle meshes can then be straightforwardly
extracted using techniques like Marching Cubes (Lorensen & Cline, 1998). Noticeable progress in
this field has been driven by Neuralangelo (Li et al., 2023), which proposed a regularization method
with numerical gradient and coarse-to-fine representation for SDFs. Other lines of work integrated
monocular priors (Yu et al., 2022) or sensor depth (Azinović et al., 2022) to integrate geometric cues
for accurate surface representations.

Although 3DGS has recently gained traction as a robust method for novel view synthesis, extract-
ing 3D surfaces from Gaussian splats presents significant challenges. To address this issue, meth-
ods such as SuGaR (Guédon & Lepetit, 2024) and NeuGS (Chen et al., 2023) have introduced the
concept of flat Gaussians, which are designed to better conform to object surfaces, thereby improv-
ing surface alignment and reconstruction quality. 2DGS (Huang et al., 2024) similarly proposes
2D Gaussian surfel, yet formulates the rasterization process into 2D-to-2D transformation, making
the splatting process more perspectively accurate. Recent works such as GOF (Yu et al., 2024b)
and RaDe-GS (Zhang et al., 2024) computes ray-Gaussian intersection to render depth and normal.
Meanwhile, a line of works improves geometry by regularizing Gaussians’ scale. Hyung et al. (2024)
regularizes effective rank of Gaussian scales, while Hwang et al. (2024) minimizes scale along the
surface normal estimated from monocular prior. However, none of them questions the importance
of the relationship between the neighboring Gaussians for geometrically accurate representation.
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3 METHOD

3.1 PRELIMINARIES

3D Gaussian Splatting 3DGS proposes scene representation and rasterization method from a col-
lection of 3D Gaussian primitives. A 3D Gaussian primitive G contains a set of trainable parameters:
the mean position µ ∈ R3×1, a covariance matrix Σ ∈ R3×3, opacity α ∈ [0, 1], and a color c ex-
pressed in spherical harmonics to model view dependency. The covariance matrix Σ is positive
semi-definite and is constructed using a rotation matrix R ∈ R3×3, which is parameterized by a
quaternion, and a diagonal scale matrix S. This Gaussian primitive in 3D space can be described as

G(x) = e−
1
2 (x−µ)TΣ−1(x−µ). (1)

The primitives are then projected onto a 2D plane (Zwicker et al., 2001). In this projection, the
covariance matrix is transformed into screen space as Σ

′
= JWΣW⊤J⊤, where W is the world-to-

camera transformation matrix and J is the Jacobian of the affine projection matrix approximation.
The final image is then produced by alpha-blending these Gaussians based on their depth as c(u) =∑M

m=1 cmαmG2Dm (u)
∏m−1

j=1 (1−αjG2Dj (u)), where G2D is the Gaussian projected to screen-space
and u refers to the screen coordinate.

Given that the Gaussians are initially derived from sparse Structure-from-Motion (SfM) points, the
Adaptive Density Control (ADC) technique is applied to refine and densify the scene during op-
timization. ADC clone and splits Gaussians (Yu et al., 2024b) when the densification signal of a
Gaussian, ∂L′

∂u , is greater than a predefined threshold τ as following:

∂L′

∂x
:=

∑
i∈P

∥∥∥∥ ∂L

∂pi

∂pi

∂x

∥∥∥∥
2

> τ, (2)

where x, P , and pi denote the center of projected Gaussians, the list of pixel indices that the Gaus-
sian contributed to, and the following pixel, respectively. This condition ensures that regions with
significant positional gradients, which indicate incomplete reconstruction, are effectively densified
by adding more Gaussians, thereby improving the expressibility.

Rasterization of Depth and Normal Given a Gaussian primitive, RaDe-GS (Zhang et al., 2024)
proposes a method to rasterize depth and normal for a camera ray. Specifically, depth is calculated
by finding the intersection point to a Gaussian primitive. Normal can then be calculated by finding
a plane formed by the intersection point and the center of the Gaussian. Subsequently, depth d and
normal n can simply be rasterized to pixel u = (u, v) as d = zc + p⊤∆uc, n = −J⊤(q 1)⊤,
where zc is the depth of the Gaussian center, ∆uc = (uc − u, vc − v)⊤, uc and vc are Gaussian
centers projected to screen space. Here, q and p are vectors that hold the first two elements of q̂ and
p̂ respectively, which can be calculated using Gaussian center and covariance as

q̂ =
v′Σ′−1

v′⊤Σ′−1v′ , p̂ =
zc
tc
q̂, (3)

where v′ = (0, 0, 1)⊤, zc and tc are depth of Gaussian center in Euclidean space and ray space,
respectively. Readers may refer to the original paper for detailed derivation.

In fact, 2DGS (Huang et al., 2024) and GOF (Yu et al., 2024b) propose similar methods of locating
ray-Gaussian intersection, where covariance is the key determinant of depth and normal rasteriza-
tion, as exemplified in Equation 3. However, an independantly trainable covariance can be oriented
in any directions and thus can significantly differ from the distribution of adjacent Gaussians, as
illustrated in Figure 3. As a result, rasterizing depth and normal from such covariance does not
necessarily reflect local geometry.
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3.2 COVARIANCE PARAMETERIZATION WITH ADJACENT GAUSSIANS

Instead of defining a fully trainable covariance matrix for every Gaussian primitive, our method
defines the covariance as a function of adjacently located Gaussians, so that a Gaussian covariance
can reflect the local geometry formed by its neighbors.

Parameterization with Singular Value Decomposition For a given Gaussian primitive G, con-
sider the set of positions P = [µ;µ1; · · ·µK ], where µk is the mean of Gk, the kth-nearest neighbor
of G. We first calculate the covariance of these points as

Γ = Var(P ) =
1

K
(P − µ̄)(P − µ̄)⊤, (4)

where µ̄ = 1
K+1 (µ +

∑
k∈K µk). A naive approach is to simply use Γ as a covariance of the

Gaussian. However, we instead decompose Γ to retrieve the orientation of local plane that these
neighboring Gaussians form. Specifically, we decompose Γ into principal components using Singu-
lar Value Decomposition (SVD) (Klema & Laub, 1980) as

Γ = UΛV ⊤, (5)

where V = [v1;v2;v3] are orthonormal eigenvectors and Λ = diag(λ1, λ2, λ3) are eigenvalues.
These eigenvalues indicate the variance of the point distribution along each eigenvector ordered
from largest to smallest, or λ1 ≥ λ2 ≥ λ3 ≥ 0. The first two eigenvectors lie on a local plane
formed by the neighboring Gaussians, with the third eigenvector oriented perpendicular to this plane.
Therefore, we can define the covariance matrix of a Gaussian using these eigenvectors and learnable
scale S as Σ = V SS⊤V ⊤. Gradients will be back-propagated to P to update Σ, so that the means
of neighboring Gaussians are jointly optimized to form a desired Σ.

However, defining the rotation factor of Σ solely from K Gaussian neighbors may limit the ex-
pressiveness of the scene. To address this, we introduce a residual rotation term, ∆R. This term
is initialized as an identity matrix and is learned by integrating it into V , leading to the updated
transformation V ′ = ∆RV . Our Gaussian covariance is then computed as follows:

Σ = V ′SS⊤V ′⊤. (6)

It is crucial to regularize the residual rotation to preserve the inductive bias we have established. To
achieve this, we introduce the following regularization term:

Lr = |∆r − ridentity|, (7)

where ∆r represents ∆R in quaternion form, and ridentity is the identity quaternion. Note that we do
not train ∆R during the earlier optimization stages, where most geometry is determined, to prioritize
inductive bias over expressibility. Details and analysis on the residual rotation regularization can be
found in Appendix A.3.

3.3 EIGENSYSTEM REGULARIZATION FOR LOCALLY SMOOTH PLANE ASSUMPTION

In this section, we introduce methods to regularize the eigensystem, the set of the eigenvectors paired
with their eigenvalues calculated from Equation 5, in order to generate smooth and coherent local
surfaces. We first regularize the smallest eigenvalue to align the neighboring Gaussians along a local
plane. Furthermore, we enhance surface smoothness by assimilating the normals of adjacent planes
proportional to the surface planarity.

3.3.1 EIGENVALUE REGULARIZATION

Since photometric loss by itself is geometrically ill-posed, there can be cases when a set of neighbor-
ing Gaussians do not form a plane (i.e. distributed uniformly toward all directions). Thus, positions
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of these neighboring Gaussians need to be optimized toward a local plane to make the set of locally
distributed Gaussians to behave as a surface.

Meanwhile, an eigenvalue reflects the amount of variance along its corresponding eigenvector. Thus,
smaller λ3 indicates that the Gaussians are distributed closer to the local plane whose normal is
defined by the third eigenvector v3. To optimize our model as such, we simply minimize λ3 using
the following loss:

Leigval = λ3. (8)

3.3.2 EIGENVECTOR REGULARIZATION

In order to form locally smooth surfaces, we propose a regularization loss to assimilate the nor-
mals of neighboring local planes. Specifically, we minimize the cosine distance between the third
eigenvectors of adjacent Gaussians using the following loss:

Leigvec =
1

K

∑
k∈K

γ2(1− v3 · vk
3), (9)

where vk
3 is the third eigenvector of covariance calculated with K nearest neighbors of the k-th

neighboring Gaussian using Equation 5. Note that cosine distance is computed proportional to local
planarity γ, which we elaborate in the next paragraph.

Local Planarity Estimation with Eigenvalues When Gaussians express complex surface geom-
etry, adjacent local planes do not necessarily share similar normal vectors. To quantify such cases,
we define the local planarity formed by the neighboring Gaussians by leveraging the eigenvalues
calculated from Sec. 3.2. Formally, γ is defined as follows:

γ = 1− 3λ3∑
j={1,2,3} λj

. (10)

Note that 0 ≤ γ ≤ 1 since eigenvalues are positive and descending. A value of γ = 1 indicates
a completely planar surface, while lower values suggest otherwise. Also, γ is detached from the
optimization graph, as minimizing γ can increase λ1 and λ2, which is irrelevant to accurate geometry
reconstruction.

3.4 SPARSITY-AWARE ADAPTIVE DENSITY CONTROL

ADC densifies Gaussians with a high densification signal as in Equation 2. However, for homoge-
neously colored regions with low view-dependency (i.e., extremely shadowed region as Figure 7),
Gaussians yield low densification signals even when they are sparsely distributed, as a few number
of points are enough to express the color of this relatively simple regions. However, such a case
is problematic for accurate geometry reconstructions, as planes formed by these sparse neighbors
are not local anymore, which may cause over-smoothing. We propose an additional densification
algorithm to prevent such cases by selectively augmenting the number of Gaussians in regions with
low densification signals and high sparsity. We term this strategy Sparsity-aware Adaptive Density
Control (SADC) and use this along with the existing ADC (Kerbl et al., 2023).

Specifically, Gaussians with densification signal lower than τ are first selected. Then, we calculate
the mean distance with its K-nearest Gaussians. The region these K neighbors cover is considered
sparse if the distance is greater than ηmin · τs. We borrow the split threshold τs to measure sparsity
(Gaussian is split into two if its scale is larger than τs (Kerbl et al., 2023)) as τs can be regarded as
the maximal expectation of a Gaussian size. We also set the upper bound of sparsity ηmax · τs to
reject background points. ηmin = 3.0 and ηmax = 10.0 are hyper-parameters.

Once a Gaussian is considered low-signaled and sparse, we interpolate N additional Gaussians from
each neighbor. Specifically, we sample the center of the interpolated Gaussian from a Gaussian dis-
tribution, where its mean is interpolated between the center of the original Gaussian and its neighbor
and the covariance is inherited from the original Gaussian. All other properties, such as opacity α
and SH color c, are copied from the original Gaussian, except for S, which is scaled by 1

N+1 to
reflect the distance between adjacent Gaussians. The detailed algorithm is provided in Algorithm 1.
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Algorithm 1 Sparsity-aware Adaptive Density Control (SADC)

1: G, G′ = {}, K,N

2: if ∂L′

∂u < τ then ▷ Low densification signal
3: d = 1

K

∑
k∈K

∥∥µ− µk
∥∥
2

4: if d > ηmin · τs and d < ηmax · τs then ▷ High sparsity signal
5: for k ← 1 to K do
6: for n← 1 to N do
7: µ′ ∼ N (µ+ n

N+1 (µ
k − µ), 1

N+1Σ) ▷ Interpolative sampling
8: α′ ← α, c′ ← c, S′ ← 1

N+1S

9: G′.append({µ′,α′, c′,S′})
10: return G′

3.5 OPTIMIZATION

We supervise our model with RGB loss Lc = (1 − β)L1 + βLD−SSIM following Kerbl et al.
(2023). In addition, we render depth and normal maps to screen space using rasterizer from Zhang
et al. (2024), which are then supervised in screen space using depth-distortion and depth-normal
consistency loss (Huang et al., 2024):

Ld =
∑
i,j

ωiωj |zi − zj |, Ln =
∑
i

ωi(1− n⊤
i ñ), (11)

where ωi = αiG2Di (u)
∏i−1

j=1(1 − αjG2Dj (u)) is the blending weight of the i-th intersection, zi is
the depth of intersection points, ñ is the normal map estimated from gradient of depth map, and ni

is per-Gaussian normal rasterized with Equation 3. We empirically learned that employing Ld, Ln

along with Leigvec and Leigval yield the best results. We also discuss in Appendix. A.1 on distinct
behaviors of Ln and Leigvec, which may look similar. Finally, our loss can be described as:

L = Lc + weigvalLeigval + weigvecLeigvec + wrLr + wdLd + wnLn, (12)

where we set weigval = 10, weigvec = 0.4, wr = 0.01. We follow GOF (Yu et al., 2024b) and RaDe-
GS (Zhang et al., 2024) and set wd = 100, and wn = 0.05 for all experiments. We report detailed
training strategy in Appendix A.2.

4 EXPERIMENT

We compare our methods with SuGaR (Guédon & Lepetit, 2024), 2DGS (Huang et al., 2024),
GOF (Yu et al., 2024b), and RaDe-GS (Zhang et al., 2024), which are state-of-the-art surface re-
construction methods based on 3DGS (Kerbl et al., 2023). Implicit representation-based methods
such as NeRF (Mildenhall et al., 2021), VolSDF (Yariv et al., 2021), NeuS (Wang et al.), and Neu-
ralangelo (Li et al., 2023) are also compared.

Mesh Extraction Depth maps are rendered from all training views to construct Truncated Signed
Distance Fields (TSDF) (Curless & Levoy, 1996). From TSDF, Marching Cube (Lorensen & Cline,
1998) is used to construct a mesh.

Datasets and Evaluation Since our objective is an accurate surface reconstruction, we experi-
mented on DTU (Jensen et al., 2014) benchmark to compare Chamfer Distance (CD) on surface
reconstructions. To measure the accuracy of surface normal as another aspect of geometry evalu-
ation, we experimented on Synthetic NeRF (Mildenhall et al., 2021), which includes ground-truth
normal maps. We measured Normal Similarity Score (NSS) between rendered normal and ground-
truth normal maps as

NSS :=
1

∥M∥
∑
i

Mi ·
n⊤
i n

gt
i

∥ni∥
∥∥ngt

i

∥∥ , (13)

where M is an optional GT mask, ni and ngt
i are rendered normal and GT normal at i-th pixel.
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Table 1: Quantitative comparison on the DTU Dataset. We report CD and average optimization
time on different methods. Best, second best, and third best within explicit/implicit methods are
marked as red, orange, and yellow, respectively. Underlined italic bold denotes the best among all.

24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 Mean Time
im

pl
ic

it NeRF 1.90 1.60 1.85 0.58 2.28 1.27 1.47 1.67 2.05 1.07 0.88 2.53 1.06 1.15 0.96 1.49 >12h
VolSDF 1.14 1.26 0.81 0.49 1.25 0.70 0.72 1.29 1.18 0.70 0.66 1.08 0.42 0.61 0.55 0.86 >12h
NeuS 1.00 1.37 0.93 0.43 1.10 0.65 0.57 1.48 1.09 0.83 0.52 1.20 0.35 0.49 0.54 0.84 >12h
Neuralangelo 0.37 0.72 0.35 0.35 0.87 0.54 0.53 1.29 0.97 0.73 0.47 0.74 0.32 0.41 0.43 0.61 >12h

ex
pl

ic
it

3DGS 2.14 1.53 2.08 1.68 3.49 2.21 1.43 2.07 2.22 1.75 1.79 2.55 1.53 1.52 1.50 1.96 13.8m
SuGaR 1.47 1.33 1.13 0.61 2.25 1.71 1.15 1.63 1.62 1.07 0.79 2.45 0.98 0.88 0.79 1.33 82.1m
2DGS 0.46 0.80 0.33 0.37 0.95 0.86 0.80 1.25 1.25 0.73 0.67 1.24 0.39 0.65 0.47 0.75 14.1m
GOF 0.45 0.76 0.37 0.37 0.95 0.84 0.74 1.18 1.30 0.70 0.81 0.80 0.40 0.73 0.48 0.72 71.0m
RaDe-GS 0.46 0.74 0.34 0.38 0.81 0.76 0.76 1.21 1.22 0.66 0.70 0.86 0.36 0.68 0.47 0.69 16.2m
IBGS (Ours) 0.49 0.68 0.37 0.38 0.78 0.73 0.73 1.12 1.24 0.61 0.61 0.90 0.37 0.65 0.46 0.67 91.2m

4.1 COMPARISON TO STATE-OF-THE-ARTS

We compare CD on DTU, and report the results in Table 1. Our method achieves the best perfor-
mance among 3DGS-based methods. Compared to Neuralangelo, our method takes faster training
time, while outperforming on a few scenes within dataset. This means that our method is a more
computationally efficient choice while having a potential to outperform on some scenarios. We also
report qualitative comparisons on DTU in Figure 1 and Figure 4. As can be observed, our method is
robust against broken surface geometry reconstruction. We also observed that our method success-
fully reconstruct surface with curvature such as round foot instep of the doll, as observed in second
row result in Fig 4.

Table 2: Quantitative comparison on Synthetic
NeRF dataset. Our method yields the best Nor-
mal Similarity Score (NSS) among state-of-the-
art 3DGS-based methods.

NSS ↑ PSNR↑ SSIM↑ LPIPS↓

2DGS 0.695 33.65 0.969 0.0317
GOF 0.697 33.71 0.969 0.0308
RaDe-GS 0.700 33.68 0.970 0.0304
IBGS (Ours) 0.703 33.70 0.971 0.0321

We also compare NSS on NeRF-synthetic and
report the results in Table 2. We report the
complete list of NSS for each scene in Ap-
pendix A.6. Our method achieves the best NSS
among SOTA 3DGS-based methods. Such out-
performance can also be observed from quali-
tative comparison on surface reconstructions in
Figure 6. Our method yields the most complete
and smooth surface reconstructions.

Table 3: Quantitative comparison on Mip-
NeRF 360 Dataset. Our method yields compa-
rable novel view synthesis result especially on in-
door scenes.

Outdoor Scene Indoor scene
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

NeRF 21.46 0.458 0.515 26.84 0.790 0.370
Deep Blending 21.54 0.524 0.364 26.40 0.844 0.261
Instant NGP 22.90 0.566 0.371 29.15 0.880 0.216
MERF 23.19 0.616 0.343 27.80 0.855 0.271
MipNeRF360 24.47 0.691 0.283 31.72 0.917 0.180
3D GS 24.54 0.731 0.234 30.41 0.920 0.189
Mip-Splatting 24.65 0.729 0.245 30.90 0.921 0.194
2D GS 24.34 0.717 0.246 30.40 0.916 0.195
GOF 24.82 0.750 0.202 30.79 0.924 0.184
RaDe-GS 25.17 0.764 0.199 30.74 0.928 0.165
IBGS (Ours) 24.64 0.723 0.213 30.69 0.932 0.161

Although the Mip-NeRF360 dataset does not
include a quantitative evaluation of geome-
try, we have provided a qualitative compari-
son of surface reconstruction and normal ren-
dering in Fig.5. In particular, the surface recon-
struction results displayed in Fig.5-(a) highlight
the ability of our method to produce a highly
accurate and plausible surface reconstruction.
Another notable observation is the preserva-
tion of complex geometrical features, such as
the intricate and bumpy texture of cloth sur-
faces, which remains intact under our regular-
ization. Our method can thus be optimized to-
ward smooth surfaces without compromising
high-fidelity reconstructions of complex surfaces. Such balance is crucial for generating high-quality
surface representations across various geometrical complexities.

Our method demonstrates competitive performance in novel view synthesis on the MipNeRF-360
dataset, particularly for indoor scenes, as shown in Table 3. However, as observed from Figure
5-(b), PSNR does not reflect the quality of the underlying geometry. While GOF and RaDe-GS
produce visually appealing RGB renderings on the floor, the underlying geometries observed from
the normal renderings indicate inaccurate geometric structure with holes. In contrast, our approach
delivers comparable visual quality and maintains a more accurate and consistent geometric structure.
Such distinction between RGB and geometry rendering underscores the importance of evaluating
visual fidelity and geometric accuracy when assessing the model as a scene reconstruction method.
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IBGSRaDe-GSGOF2DGSReference

Figure 4: Qualitative comparisons on DTU (Jensen et al., 2014) dataset. IBGS yields the most
plausible results among 3DGS-based methods.

Figure 5: Qualitative comparisons on MipNeRF360 (Barron et al., 2022) dataset over (a) surface
reconstruction, (b) novel view synthesis (top) and rendered normal maps (bottom).

4.2 ABLATION STUDY

We conducted an ablation study for our proposed methods and reported the results in Table 4. Specif-
ically, we ablate over param., Leigval, Leigvec, where param. refers to our covariance parameterization
with eigenvectors of neighboring Gaussians. Notably, full regularization without our parameteriza-
tion yields the worst result. For regularizations, we can empirically conclude that the absence of
either Leigval or Leigvec results in a bad result. Such observation corresponds to the design philoso-
phy of our method, as eigenvector assimilation is significant only when it can behave as local plane
normal, which can be achieved by minimizing the third eigenvalue.

Furthermore, SADC exhibits improvements in both quantitative and qualitative outcomes from Ta-
ble 4 and Figure 7 respectively. When SADC is not applied, certain regions, particularly the shad-
owed area between the arms, exhibit excessive smoothing, leading to the loss of geometric details.
In contrast, SADC effectively addresses this issue by ameliorating the over-smoothed surfaces. Such
observation highlights the role of SADC in successfully densifying the sparse regions suitable for
our inductive bias to assume planarity in local space.
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2DGS GOF RaDe-GS IBGSReference

Figure 6: Qualitative comparisons on NeRF-Synthetic (Mildenhall et al., 2021) dataset. IBGS
yields the most high-quality surface reconstruction results.

CD ↓
Ours w.o/ param. 0.702
Ours w.o/ Leigval 0.695
Ours w.o/ Leigvec 0.692
Ours w.o/ SADC 0.682
Ours 0.674

Table 4: Ablation study of our proposed
methods on DTU. Our parameterization
method significantly improves the perfor-
mance, followed by the regularization tech-
niques and SADC.

Figure 7: Qualitative ablation results on SADC.
Without SADC, unilluminated regions tend to be
over-smoothed.

5 CONCLUSION

In this work, we presented IBGS, a novel 3D Gaussian model incorporating geometrically accurate
parameterization and regularization. Recognizing the critical role of covariance in determining sur-
face normals, we argued that it should be parameterized based on the distribution of neighboring
Gaussians for precise geometric representation rather than being entirely trainable. To achieve this,
we applied SVD to derive the principal axes and corresponding variances of neighboring Gaussians,
or the eigenvectors and eigenvalues. The model’s covariance is then defined by combining these
eigenvectors with a learnable scaling matrix. Additionally, we introduced regularization techniques
that minimize the third eigenvalue, encouraging neighboring Gaussians to align on a local plane and
align the third eigenvectors, which approximate local plane normals, for smoother surface represen-
tations. We also proposed SADC to densify regions with low densification signal. Our experiments
on state-of-the-art benchmarks demonstrate that IBGS provides the most geometrically accurate rep-
resentation among 3D Gaussian-based methods while requiring significantly less training time than
implicit neural representations.
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our method, we provided all the hyperparametes we used in Sec-
tion 3.4 and Section 3.5. We also provide experimental details in Section 4, pseudocode on SADC
in Algorithm 1 and details on training schedules in Appendix A.2.
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A APPENDIX

A.1 COMPARING Ln WITH LEIGVEC

3DGS |  

Depth-driven normal
Normal from covariance
Smooth underlying surface
Loss

IBGS |= 0 = 0

Figure 8: Illustrations on (Left) a case when vanilla 3DGS satisfy Ln yet cannot converge toward the
underlying smooth surface, and (Right) how Leigvec induce local planes to reside on a single smooth
surface by having to adjust neighboring Gaussians (K = 2) to assimilate the third covariance axis.

In this section, we would like to clarify a potential confusion on the working mechanism between
Leigvec under our parameterization versus depth-normal consistency loss Ln, a geometry regulariza-
tion method in screen space.

Primarily, Ln is NOT EXPLICITLY designed for smooth surfaces, but is designed to make an
agreement between rendered normal and depth. In other words, if one or all of depth/normal
maps are not smooth, none of the rendered normal and depth will likely be optimized to form a
smooth surface. For example, consider the illustration in Figure 8, where green/blue Gaussians
are our optimization targets, and orange/pink Gaussians are other adjacent Gaussians. Figure 8
shows an example of vanilla 3DGS optimized with Ln. In this example, normal and depth-driven
normal completely agree with each other (depth-driven normal is calculated with a plane formed by
two closest Gaussians), but this does not guarantee the Gaussians to be converged toward a smooth
underlying surface, yielding non-planar distribution of adjacent Gaussians.

On the other hand, Leigvec assimilates the neighboring third covariance axes (blue and green dotted
arrows in the right-side figure of Fig 8), which requires back-propagation of gradients to adjacent
Gaussians that form these covariances. Aligning covariances then require the neighboring Gaussians
to be aligned correspondingly such that the third covariance axes become parallel. As a result, the
neighboring Gaussians are forced to form a locally smooth plane under our inductive bias. Due
to such working mechanism, Leigvec works only under our parameterization, as was empirically
validated in Table 4, where Leigvec and Leigval without our inductive bias performs worse.

Also, note that Leigvec is conducted in 3D space whereas Ln regularizes rendered maps in screen
space. Thus, they are not strictly comparable.

A.2 DETAILED TRAINING STRATEGY

Given total optimization steps I , we divide the process into multiple phases, which can be summa-
rized in Equation 14. We learned that imposing Leigval and Leigvec from the start brings unstable
training. Thus, we restore coarse geometry based on our inductive bias only, and apply our regular-
ization term afterwards. Also, when depth distortion and depth normal consistency loss is applied,
we disable our parameterization by initializing a trainable rotation matrix using the rotation matrix
determined at step I

2 .

L =


Lc i ≤ I

6

Lc + βeigvalLeigval + βeigvecLeigvec
I
6 < i ≤ I

3

Lc + βregLr
I
3 < i ≤ I

2

Lc + βdLd + βnLn
I
2 < i ≤ I

(14)
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A.3 BAG OF REGULARIZATION TECHNIQUES FOR RESIDUAL ROTATION

It is important to keep the balance between our parameterization and expressibility when introducing
residual rotation, ∆R. To prioritize inductive bias, V is used instead of V ′ until step I

3 given a total
iteration step I in order to force our inductive bias in earlier stages of training, where we empirically
learned that most geometry is determined. Then, we introduce ∆R from I

3 along with the pro-
posed regularization term for residual rotation, Lr. We may refer to these as a bag of regularization
techniques for residual rotation (BRR).

To demonstrate that BRR leads to faithful reflection of inductive bias, we visualize the angles of
residual rotation when trained with and without BRR in Figure 9, where without BRR, rotation
residual is trained throughout all iterations without Lr. As can be observed, most of the residual
rotations is very close to 0◦ under our regularization, meaning that IBGS reasonably follows the
inductive bias our parameterization forms. Also note that without BRR, chamfer distance results in
0.692 in DTU benchmark, where with BRR result in 0.674. This also implies that sticking to our
parameterization leads to more accurate geometry.
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Figure 9: Angles of residual rotation histograms with and without BRR. BRR effectively regularizes
residual rotation, which means that IBGS well retains the inductive bias formed with our parameter-
ization with eigenvectors.

A.4 K-NEAREST NEIGHBOR CALCULATION

We used Faiss-GPU (Johnson et al., 2019) library for fast computation of K nearest neighbors.
Ideally, one may calculate the kNN graph for every iteration, which also causes longer training
time. Instead, we update KNN graph for every 100-th iteration to balance between computational
efficiency and accuracy.

A.5 ABLATION ON K

In this section, we present the ablation study results for the parameter K on the DTU Dataset, which
were conducted to determine the optimal value of K for achieving the best performance. Based on
the experimental findings, we observed that setting K = 5 produced the most favorable outcomes
in terms of the Chamfer Distance (CD).

K 2 3 4 5 6 7 8 9 10
CD 0.701 0.709 0.684 0.674 0.678 0.686 0.684 0.688 0.692

Table 5: Ablation results of K on DTU Dtaset Jensen et al. (2014)

A.6 ADDITIONAL QUALITATIVE AND QUANTITATIVE RESULTS

We report additional qualitative results on DTU and NeRF-synthetic dataset in Figure 10 and Figure
11, respectively. The results demonstrate high-fidelity surface reconstructions. It is also notable that
our parameterization and geometry regularization does not disturb expressing fine geometric details.

Chair Drums Ficus Hotdog Lego Materials Mic Ship Mean
2DGS Huang et al. (2024) 0.670 0.667 0.643 0.795 0.685 0.724 0.612 0.765 0.695
GOF Yu et al. (2024b) 0.673 0.666 0.653 0.793 0.691 0.722 0.611 0.769 0.697
RaDe-GS Zhang et al. (2024) 0.686 0.662 0.658 0.792 0.679 0.738 0.609 0.778 0.700
IBGS (Ours) 0.689 0.670 0.659 0.797 0.686 0.734 0.613 0.778 0.703

Table 6: Normal Similarity Score (NSS) on all scenes of NeRF-Synthetic Mildenhall et al. (2021)



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Figure 10: Extensive surface reconstruction results of IBGS on DTU (Jensen et al., 2014)

Figure 11: Extensive surface reconstruction results of IBGS on NeRF Synthetic (Mildenhall et al.,
2021) Dataset.
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