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Abstract

Graph neural networks (GNNs) have achieved remarkable success but remain
limited in distinguishing non-isomorphic graphs with similar local structures, due
to their reliance on neighborhood aggregation. Higher-order or subgraph-counting
GNN s offer greater expressivity but at prohibitive computational cost. We introduce
Polynomial-time Cycle basis-GNNs (PCB-GNNs), a topology-aware architecture
that augments message passing with polynomial-time cycle-basis features, cap-
turing essential global invariants overlooked by standard MPNNs. PCB-GNNs
distinguishes challenging graph families where 1-WL and typical GNNs fail, while
incurring only polynomial overhead. Experiments across synthetic, molecular, and
protein benchmarks show that PCB-GNNs consistently outperforms state-of-the-art
models on both expressiveness and large-scale tasks. PCB-GNNs achieve classifi-
cation accuracy on MUTAG (98.53%), PTC (86.48%), PROTEINS (82.21%), and
NCI1 (88.37%) while scaling effectively to larger datasets such as IMDB-B. On
the ZINC-Subset molecular regression task, our model attains MAE of 0.054.

1 Introduction

Graph neural networks (GNNs) have become a cornerstone of machine learning on structured data,
with wide-ranging applications in social network analysis, recommender systems, and molecular
biology [Kipf and Welling| [2016], |Xu et al.| [2019], [Sharma et al.| [2024]], Wu et al.| [2022alb]].
Among the many variants, message passing neural networks (MPNNs) Scarselli et al.|[2009]] are the
most widely adopted. By iteratively aggregating information from local neighborhoods, they learn
expressive graph representations that perform well on a variety of benchmarks.

However, MPNNSs face a fundamental limitation: they are at most as powerful as the 1-dimensional
Weisfeiler—Lehman (1-WL) test for graph isomorphism Xu et al.|[2019]. The WL test refines node
labels by hashing multisets of neighbors, which allows it to separate many non-isomorphic graphs, but
it fails on entire families such as regular graphs, biconnected graphs, and strongly regular graphs(see
Figureﬂ]) Cai et al.| [[1992]], Morris et al.|[2019]. Standard MPNNSs inherit this weakness because their
aggregation is purely local.

A natural solution is to move to higher-order architectures. Indeed, k-GNNs Maron et al.[[2019a] and
subgraph-based methods Bevilacqua et al.| [2022], [Zhao et al.|[2022a] achieve the expressivity of
higher-order WL tests. While powerful, these methods suffer from exponential growth in computation
and memory as k increases, making them impractical on large graphs|Li et al.|[2023]],[Huang et al.
[2023].

Our perspective differs from this typical WL hierarchy race. Instead of competing with WL
hierarchy, we propose a complementary axis of expressivity: topology-aware features that capture
global invariants invisible to purely local aggregation. In particular, we focus on the cycle basis of a
graph—a minimal set of independent cycles that spans the entire cycle space and can be computed
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Figure 1: Illustration showing the importance of cycle length in case of non-isomorphic graphs (a)
with biconnectivity and (b) regular graphs. It is shown here that due to identical degree sequences
WL test fails to distinguish these graphs but in both cases, the graphs possess cycles of different
length irrespective of degree sequences and can be utilised to distinguish the graphs. In biconected
graph, the edge corresponding to bridge is shown red, which is responsible for different cycle lengths.

in polynomial time Harary| [1969]. Cycles are fundamental structures across domains: rings in
molecules [Duvenaud et al.|[2015]], Gilmer et al.| [2017]], motifs in social networks Jiang et al.| [2022],
and communities in communication graphs. Building on these observations, we propose Polynomial-
time Cycle Basis GNNs (PCB-GNNs), a topology-aware framework that augments message passing
with efficiently computable cycle-basis features, thereby bridging the gap between lightweight
MPNNSs and costly higher-order models.

Contributions.

e We introduce PCB-GNNs, a novel architecture that integrates cycle-basis features into message
passing through a competitive gating mechanism, capturing global topological signals at O(n?) cost.

o We formalize Polynomial-time CycleBasis-WL, a cycle-aware variant of the Weisfeiler—Lehman
test, and show it can distinguish families of graphs (e.g., strongly regular graphs) that 1-WL cannot.

e We provide an efficient polynomial-time algorithm for extracting cycle bases, ensuring scalability
while avoiding the exponential complexity of higher-order WL and subgraph-based GNNss.

e We validate PCB-GNNs on both synthetic expressiveness benchmarks and real-world datasets,
demonstrating consistent improvements over standard MPNNs while maintaining computational
efficiency.

2 Preliminaries

We consider undirected, simple graphs G = (V, E') with n = |V vertices and m = |E| edges. The
neighborhood of v € V is N (v) = {u : {u,v} € E} and deg(v) = |N(v)|. A path of length
k is a sequence (v1,...,vk11) of distinct vertices with {v;,v;1+1} € E. A cycle is a closed path
(vi,..., v, v1) With k > 3and v; # v; for 1 <i < j < k except vp41 = v1.

Definition 1 (Cycle Space and Cycle Basis). The cycle space C(G) C 2F is the set of edge-sets
expressible (mod 2) as sums of simple cycles. A cycle basis B = {C1,...,Cy} is a minimal set of
simple cycles whose symmetric-difference span equals C(G). Every cycle can be written as a unique
sum of basis cycles over Fy.

Lemma 2. If G has n vertices, m edges, and k connected components, then any cycle basis has
size b = m —n + k. A cycle basis can be computed in O(n3) time via Gaussian elimination or



spanning tree methods|Harary| [|[1969|], and a minimum (lexicographically canonical) cycle basis can
be obtained using Horton’s polynomial-time algorithm|Horton [1987)].

Message Passing Neural Networks. An MPNN iteratively updates node features th) by aggregating

messages mEf) = Zué/\/(v) lb(hgt), hﬁf), ewv) and updating via thH) = ¢(h£f), mq(f)), where 1) and
¢ are learnable, permutation-invariant functions.

Weisfeiler-Lehman (1-WL) Test. The 1-WL test assigns node colors CEP) (often deg(v)), and
iteratively updates:

a4, ).

If two graphs yield identical multisets after convergence, 1-WL cannot distinguish them.

3 Related Work

Expressiveness and WL Hierarchy. The expressive power of standard MPNNs is bounded by the
1-WL test|Xu et al.| [2019]], which fails on numerous non-isomorphic graph pairs|Cati et al.|[1992].
To bridge this gap, higher-order GNNs and k-WL tests have been proposed Maron et al.| [2019b],
matching k-WL expressiveness at the cost of O(n*) time and memory.

Substructure and Cycle-Counting GNNs. Augmenting GNNs with explicit substructure counts
improves discrimination. |(Chen et al.|[2020] showed GNNs can count small motifs via neighborhood
sampling, while Morris et al.| [2020a] use subgraph counts to emulate higher-order WL. Cycle-
count GNNs Xu et al.| [2019], Zhang et al. [2023]] enumerate all simple cycles, but exact cycle
enumeration is #P-complete and impractical for large graphs. [Kanatsoulis and Ribeiro|[2024] have
explored the expressive capacity of GNNs to count substructures using constructive message-passing
designs. |Ji et al.|[2025]] combine persistent homology with spectral information—such as SpectRe
to enhance expressivity via topological descriptors. Theoretical work on subgraph GNNs shows
that k-hop aggregation suffices to approximate any function on graphs with bounded cycles|Chen
et al.| [2025]]. Cycle bases have a long history in graph theory Harary|[1969], yet their use in scalable
GNN architectures is largely unexplored. Prior motif- and cycle-aware GNNs Jiang et al.| [2022]],
Zhang et al.|[2023]] focus on raw counts or subgraph enumeration, while our approach systematically
integrates the minimal cycle basis, computable in O(n?) time as a compact and informative global
topological descriptor.

4 Polynomial-time Cycle Basis-GNNs

Local aggregation in MPNNS, being equivalent to 1-WL, cannot capture global cyclic invariants.
Strongly regular graphs (SRGs) illustrate this limitation: for example, the 4 x 4 Rook’s graph R(4,4)
and the Shrikhande graph S(16, 6, 2, 2) both have 16 vertices, degree 6, and identical neighborhood
statistics, making them indistinguishable by 1-WL and standard MPNNs Harary|[1969]]. Yet their
cycle bases differ: R(4,4) contains only 4- and 6-cycles, while S(16, 6, 2, 2) also has 3-cycles. This
example highlights how cycle-basis features provide a compact and efficient signal for distinguishing
graphs that defeat purely local methods. To exploit this insight, we introduce PCB-GNNs, which
augments message passing with cycle-basis features. Rather than attempting to enumerate all cycles
which is computationally intractable, cycle bases can be computed in O(|V'|?) (Lemma 2).

4.1 PCB-GNNs Architecture

We first determine the cycle basis B of each graph G = (V, E'). To remove ambiguity due to non-
unique cycle bases, we compute a canonical minimum cycle basis (MCB) using lexicographically
ordered edges with deterministic tie-breaking |[Harary|[[1969], Horton| [1987]. Let B = {C1,...,Cy}
denote the resulting canonical MCB of . For each node v € V', we define a cycle-basis feature
vector .

2o = [fe)] 257 € REm2,

where f;(v) counts the number of basis cycles of length ¢ incident to node v, and Ly is the
maximum basis-cycle length in G. These statistics depend only on cycle-length distributions and
node—cycle incidences, which remain stable across all valid bases that span the same cycle space.
Hence, the features are effectively basis-invariant and reproducible across runs. At each layer ¢,



PCB-GNNs updates node states via two channels: (i) standard neighborhood aggregation, and (ii)
cycle-basis transformation, processed by a learnable MLP g:

m® = " p(hP, hd, eu), (1)
ueN (v)

) = g(z), )

AU = (A mP o(WcM)), (3)

where 1 and ¢ are learnable functions (e.g., MLPs), I, is a trainable matrix, and o is a nonlinearity.
When no edge features are present, e,,,, is omitted. To balance local and global information, we
employ a competitive gating mechanism:
A = ol (A, mM) + (1 — al?) - (W),

where the gate ot = a(w'[h lt)Hc(t) ]) is dynamically learned from the concatenation of local
and cycle-basis features. This convex combination enables the network to adaptively balance local
and global topological signals. After L layers, a permutation-invariant readout R (e.g., sum/mean)
produces the final graph embedding:

he = R({hF) v e V}).

4.2 Polynomial-time CycleBasis-WL

To analyze the expressive power of our model, we introduce a cycle-aware variant of the Weis-
feiler-Lehman test.

Definition 3 (CycleBasis-WL). Let G = (V, E) be a graph with cycle basis B. In CycleBasis-WL,
each node v € V is initialized with

O = (deg(v), {|C]: C € B,veC}),
i.e., its degree and the multiset of lengths of incident basis cycles. Colors are then refined as in 1-WL:

D = Hash(cff), {c ue N(@)}})-

This construction retains the computational efficiency of WL while incorporating global topological
signals via the cycle basis. For example, CycleBasis-WL can separate the 4 x 4 Rook’s graph and
the Shrikhande graph, which 1-WL (and hence standard MPNNs) cannot, due to their differing
basis-cycle length distributions.

5 Experiments

We conduct our experiments on a diverse set of ten publicly available real-world graph datasets of
different scales. The small-scale datasets are sourced from the TUDataset Morris et al.|[2020bf]. This
collection encompasses noteworthy datasets such as MUTAG, PTC, PROTEINS, NCI1, and IMDB-B,
originating from the realms of biology, chemistry, and social networks. The second category of
datasets comprises of large scale molecular benchmarks that are ZINC (12K graphs) [Dwivedi et al.
[2023]] and ZINC-FULL (250k molecular graphs) taken from the ZINC database |Sterling and Irwin
[2015]] and OGBG-PCBA (437k graphs) taken from Open Graph Benchmark Hu et al.|[2020]. Further
details of the datasets are provided in Table[I] To ensure the reliability of results, We repeated the
experiments 15 times for the expressiveness datasets and three times for the large-scale datasets. This
repetition helps us calculate the average values and the standard deviation. For the TUDataset, we
use 10-fold cross-validation to calculate the average and standard deviation of validation accuracy.
We conducted a hyperparameter study to determine the optimal configuration for PCB-GNNs. We
varied several key parameters, including the number of layers, embedding length, learning rate, and
epochs. We experimented with a range of layers from 2 to 20. Based on experiments, the best set of
hyperparameters are a number of layers as 6, embedding length as 64, learning rate as 0.00025, and
epochs as 200.

Baselines. We evaluate PCB-GNNs against a wide spectrum of state-of-the-art GNNs. On small-scale
TU datasets, we include strong expressive baselines: DGCNN [Zhang et al.| [2018]], IGN |Maron et al.



Table 1: Dataset statistics. v, € = average nodes and edges.

Dataset #Graphs v e Task
MUTAG 188 17.9 19.8  Graph classification
PTC 351 14.6 15.0  Graph classification
PROTEINS 1,113 39.1 72.8  Graph classification
NCI1 4,110 29.9 32.3  Graph classification
IMDB-B 1,000 19.8 96.5  Graph classification
ENZYMES 600 32.6 62.1  Graph classification
ZINC-Subset 12,000 23.2 24.9 Graph regression
ZINC-Full 249,456 23.1 249 Graph regression
QM9 133,885 18.0 19.4 Graph regression
ogbg-molpcba 437,929 26.0 28.1  Graph classification
ogbn-proteins 1 132,534  39M  Node classification

[2019D], GIN [Xu et al.|[2019]], GSN|Bouritsas et al.|[2022], CIN|Bodnar et al.|[2021]], GIN-AK+ Zhao
et al.| [2022b]], ESAN-GIN Bevilacqua et al.|[2022], and SAGIN Zeng et al.|[2023]]. On expressiveness
benchmarks (EXP, SR25) and large-scale molecular datasets (ZINC, ZINC-FULL, MolPCBA), we
compare to both classical and advanced baselines: GIN, PNA [Zhang et al.| [2018]], PNA-AK+ Maron
et al.|[2019b], GSN, CIN, GIN-AK+, ESAN-GIN, SAGIN, GD-WL Zhang et al.| [2023]], and I*-
GNN |Huang et al.|[2023]]. We have conducted the experiments on the Google collaboratory platform
with an Intel Xeon CPU @2.20 GHz (GeForce RTX 2080Ti) with 13GB RAM. The configurations
of our environments and packages include CUDA 11.1, PYTHON 3.9, PyTorch 1.9.1, and PyTorch
Geometric 2.0.1.

6 Results and Discussions

In this section, we validate the effectiveness of the PCB-GNNs method by assessing its performance
across diverse datasets encompassing small, large, and expressiveness datasets.

Performance of PCB-GNNs on small scale datasets. To assess the effectiveness of our proposed
PCB-GNNs on small-scale datasets, we conducted a series of experiments comparing its performance
against state-of-the-art graph representation methods. Table 2| outlines a comparative study between
the PCB-GNNs approach and several baseline methods on TUdataset. In the evaluation across
multiple datasets, our method demonstrated superior performance compared to baseline methods in
MUTAG, PTC, PROTEINS and NCI1 with 98.53%, 86.48%, 82.21%, and 88.37% accuracies. This
superior performance suggests that PCB-GNNs are more effective in capturing relevant patterns
within these datasets, resulting in better predictive accuracy.

Performance of PCB-GNNs on large and expressive datasets. To evaluate the scalability
and expressiveness of our proposed PCB-GNNs, we conducted extensive experiments on large
and expressive datasets commonly used in graph representation learning. Results indicate that
PCB-GNNs maintain competitive performance on EXP, SR25, and PTC datasets with 100% accuracy.
In the case of the ZINC-FULL, PCB-GNNs achieves MAE of 0.011 and 31.39% AP on MolPCBA
dataset. These results emphasize the potential of PCB-GNNs in addressing the challenges posed by
large and expressive datasets.

Efficiency Evaluation. We evaluate our approach by measuring efficiency in terms of parameter

Table 2: Test accuracies for TU Datasets.

Method MUTAG PTC PROTEINS NCI1 IMDB-B

DGCNN [Zhang et al.|[2018] 85.64 £ 1.45 58.72 £2.57 75.82 £ 0.56 74.82 £+ 0.83 70.46 £ 0.85
IGNMaron et al.|[2019b] 83.26 £ 13.57 5837 £6.77 76.34 £+ 5.63 74.32 £2.77 72.44 £ 553
GIN|Xu et al.|[2019] 88.67 £ 0.56 63.87 £ 5.44 75.87 £ 2.76 82.57 £ 1.53 7537 £ 5.41
GSN Bouritsas et al.|[2022] 9243 £7.55 65.25 £7.82 76.36 £ 5.20 83.77 £2.33 77.87 £3.31
CIN Bodnar et al.|[2021] 92.25 £ 6.61 68.87 £ 7.43 77.82 +4.33 83.66 £ 1.84 76.46 £ 3.87
GIN-AK+|Zhao et al.[[2022b] 90.53 £ 5.50 67.87 £ 8.34 77.84 £ 5.03 83.97 £2.74 77.51 £+ 4.46
ESAN-GIN Bevilacqua et al.|[2022]] 90.33 £ 6.67 69.38 £ 6.85 77.24 £ 533 83.72 £2.92 77.56 £ 3.70
SAGIN {Zeng et al.| [2023] 94.48 £ 3.95 72.52 +7.46 79.84 £ 3.48 85.92 £ 1.58 75.46 £ 6.28
I?-GNNHuang et al.[[2023]] 93.66 £ 2.87 71.37 £ 3.65 7742 £ 1.94 83.97 £ 2.66 72.64 +£4.29
PCB-GNNs 98.53 £ 1.65 86.48 £+ 1.64 82.21 £+ 5.63 88.37 = 1.28 75.44 £ 2.65

usage and time cost(per epoch) for ZINC-subset dataset according to Dwivedi et al| [2023].



Table 3: Test results for expressiveness datasets and large scale datasets.

Method EXP SR25 ZINC-Subset ZINC-FULL MolPCBA
(ACC)  (ACO) (MAE) (MAE) (AP)
GIN|Xu et al.|[2019] 50% 6.67% 0.164 £ 0.003 0.087 £ 0.002 26.83 £+ 0.04
GSN Bouritsas et al.|[2022] N/A N/A 0.107 £ 0.0180 N/A 27.98 + 0.33
CINBodnar et al.[[2021]] N/A N/A 0.079 £ 0.002 0.023 £ 0.004 N/A
GIN-AK+|Zhao et al.[[2022b] 100 % 6.77% 0.080 +£ 0.002 N/A 29.22 £ 0.46
ESAN-GIN Bevilacqua et al.|[2022] 100 % N/A 0.101 £ 0.002 N/A N/A
PNA [Zhang et al.|[2018] 50% 6.67% 0.1414 0.006 N/A 27.44 £ 0.06
PNA-AK+|Maron et al.[[2019b] 100% 6.67% 0.085+ 0.006 N/A 28.54 £+ 0.03
SAGIN {Zeng et al.|[2023] 100 % 100% 0.0724 0.001 0.016 £ 0.06 28.55 £ 0.07
GD-WILZhang et al.[[2023] 100 % 100% 0.0814 0.009 0.025 £ 0.04 26.28 £ 0.01
I?-GNNHuang et al.[[2023] 100 % 100% 0.0834 0.001 0.023 £ 0.06 26.01 £ 0.01
PCB-GNNs 100 % 100% 0.054+ 0.001 0.011 £ 0.02 31.39 £+ 0.03

PCB-GNN:Ss strikes a balance between complexity and efficiency. With 493,672 parameters and a
training time of 15.48 seconds per epoch as shown in Table 4] it performs comparably to modern
transformer-based models while offering improved theoretical properties and possibly better
generalization.

6.1 Expressivity and Complexity

Expressivity. CycleBasis-WL extends 1-WL by initializing nodes with incident cycle-basis features.
This allows it to separate families of graphs indistinguishable by 1-WL, such as the 4 x 4 Rook’s
graph and the Shrikhande graph, which share degree distributions but differ in cycle-basis structure.
Thus, PCB-GNNs inherits strictly greater power than 1-WL on such families. Importantly, this
approach is complementary to higher-order WL tests: short motifs may be better captured by 3-WL,
while global cycle statistics are efficiently captured by basis features.

Expressivity conditions. PCB-GNNs distinguish any pair of graphs that are 1-WL~indistinguishable
yet differ in the multiset of incident basis-cycle lengths at one or more nodes. Specifically, if
there exists a node v such that {|C| : C € B(G1),v € C} # {|C] : C € B(Gz),v € C}, then
CycleBasis-WL assigns distinct node colors and separates G; and G. Conversely, when two non-
isomorphic graphs have identical degree distributions and identical node-level cycle-basis statistics,
their CycleBasis-WL color refinements coincide. These limiting cases include (i) acyclic graphs,
where B = @ and PCB-GNN reduces to its MPNN backbone, (ii) cycle-regular graphs in which all
nodes share identical basis-cycle incidences, and (iii) cospectral graph pairs with identical cycle-basis
statistics. In these settings, the expressivity of PCB-GNN collapses to that of 1-WL.

Complexity. A cycle basis of size |B| = e — v + k can be Table 4: Efficiency of GNN models.
computed in O(n?®) time using standard polynomial-time algo- -
rithms Harary| [1969]]. Once precomputed, forming per-node

#Params Time (s)

- Ny . GCN 516,153 592
cycle-basis features is linear in |B|, and each PCB-GNNs layer G yphsace 503396 625
costs O(ed) (message passing) + O(vd) (gating), matching stan-  GIN 510448 857
dard MPNNSs up to a negligible additive term. Hence, the only =~ GAT 342,639 883
) . ) SAGPool 529544 26.54
overhead is a one-time preprocessing step. 3WLGNN 507543 17977
. e . . . . .. Graphormer 489,638 14.66
Limitations. While PCB-GNN achieves higher expressivity than Graphormer-GD 502,884 15.31
1-WL, its gains are most pronounced on graphs where global ~ I°-GNNs 511,684 2073
cyclic structure is informative. In extremely dense graphs, the  pcp-GNNs 493,672 15.48

cycle-basis preprocessing step may become memory-intensive,
though it remains polynomial-time and performed only once.

7 Conclusion

We introduced Polynomial-time Cycle Basis-GNNSs, a topology-aware architecture that augments
message passing with efficiently computable cycle-basis features. Our analysis shows that CycleBasis-
WL strictly extends 1-WL on families of graphs with distinct basis-cycle statistics, while remaining
complementary to higher-order refinements. Empirically, PCB-GNNs improves over strong MPNN
baselines on synthetic, molecular, and biological datasets, with negligible overhead and increased
robustness to perturbations.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [TODO]
Justification: [TODO]
Guidelines:
¢ The answer NA means that the abstract and introduction do not include the claims

made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [TODO]
Justification: [TODO]



Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

 If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [TODO]
Justification: [TODO]
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [TODO]
Justification: [TODO]
Guidelines:

* The answer NA means that the paper does not include experiments.
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* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [TODO]
Justification: [TODO]
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [TODO]
Justification: [TODO]
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [TODO]
Justification: [TODO]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [TODO]
Justification: [TODO]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.
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* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [TODO]
Justification: [TODO]
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [TODO]
Justification: [TODO]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [TODO]
Justification: [TODO]
Guidelines:

* The answer NA means that the paper poses no such risks.
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* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [TODO]
Justification: [TODO]
Guidelines:

» The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [TODO]
Justification: [TODO]
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [TODO]
Justification: [TODO]
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Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [TODO]
Justification: [TODO]
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [TODO]
Justification: [TODO]
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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