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Abstract
Personalized learner modeling uses learners’ historical behavior
data to diagnose their cognitive abilities, a process known as Cogni-
tive Diagnosis (CD) in the literature. This is a fundamental yet cru-
cial task in web-based learning services, such as learning resource
recommendation and adaptive testing. Previously, researchers dis-
covered that models improperly correlate learners’ abilities with
their sensitive attributes, resulting in unfair diagnoses for learners
from different sensitive groups (e.g., gender, region). Given the in-
put of sensitive attributes, researchers proposed decorrelating these
attributes from the modeling process, demonstrating improved fair-
ness results. However, privacy concerns make collecting sensitive
attributes impractical. This challenge is compounded by the pres-
ence of multiple sensitive attributes, making fairness improvement
under any of them difficult. In this paper, we explore how to achieve
fair personalized learner modeling without relying on any sensi-
tive attribute input. Specifically, we first introduce a novel fairness
objective tailored for personalized learner modeling. We then pro-
pose a max-min strategy that facilitates both potential sensitive
information inference and fair CD modeling. In the max step, we
propose a pseudo-label inference method based on maximizing the
designed fairness objective. Given these pseudo-labels, the min step
involves retraining a fair CD model by minimizing the designed
objective. Additionally, we provide a theoretical guarantee that
implementing our proposed framework reduces the upper bound of
fairness generalization error. Extensive experiments demonstrate
that the proposed framework significantly outperforms existing
methods in terms of fairness and accuracy. Our code is available at
https://anonymous.4open.science/r/FairWISA-40C6/.

Keywords
Fairness, User Modeling, Cognitive Diagnosis

1 Introduction
In recent years, online learning platforms such as Coursera1 and
ASSISTments2 have rapidly emerged, offering personalized web
learning services [1] like exercise recommendations [2, 3] and adap-
tive testing [4]. In these services, personalized learner modeling [5]
plays a crucial role, focusing on capturing learners’ cognitive states
through their online behavioral data. Among the various techniques
employed in personalized learner modeling, CD [6–9] has gained
widespread adoption. Through comprehensive modeling of learn-
ers, CD provides diagnostic feedback to both platforms and learners,
enabling informed decisions about learning paths and performance
improvements in personalized web learning services.

In recent research endeavors, improving the accuracy of CDmod-
els has been the central theme [6, 10, 13–17]. Despite considerable
progress in accuracy, it has been reported that existing CD models
unconsciously introduce unfairness [18, 19]. Here, unfairness refers
to situations where models show prejudice or favoritism toward

1https://www.coursera.org/
2https://new.assistments.org/

(a) OECD (b) OECD and ESCS

Figure 1: Unfairness in CD. Average Correct Rate is the aver-
age percentage of correct answers within each group. Bolding
numbers denote the average correct rate gaps between groups.
IRT [10], MIRT [11], and NCDM [12] are currently popular
CD models, respectively. OECD and ESCS4 are two sensitive
attributes.

particular learner groups based on their sensitive attributes (e.g.,
gender, region). This unfairness typically manifests as CD models
widening the proficiency gap between different learner groups. Fig.
1 (a) illustrates the existence of unfairness in three popular CD
models on PISA3 dataset. Specifically, we compare the predicted
proficiency levels of learners from OECD and non-OECD coun-
tries4. It can be observed that these CD models consistently amplify
the proficiency gap between OECD and non-OECD learners, with
the predicted correct rate gap exceeding the actual correct rate
gap between these groups. This occurs because learner records
inherently correlate with sensitive attributes. When optimizing for
accuracy, CD models may unintentionally learn these correlations,
resulting in unfair predictions [20–22]. Fairness is crucial to ensure
equitable treatment and prevent discrimination against specific
learner groups [23]. Therefore, developing fair CD models is of
paramount importance.

Algorithmic fairness has gained significant attention in recent
research, with most existing methods relying on specific sensi-
tive attribute labels [22, 24–26]. However, the CD task presents
some special challenges. First, obtaining learners’ sensitive attributes
is often impractical. Privacy concerns and legal restrictions (such
as the GDPR5 in the European Union and FERPA6 in the USA)
strictly regulate the collection and processing of students’ personal
data [27, 28]. Second, numerous hidden attributes in online learning
may lead to unfairness. Unfortunately, most existing research only
addresses unfairness caused by a single known attribute, failing
to cover all types of unfairness in CD. We find that multiple sensi-
tive attributes can exacerbate unfairness, so we need a method to

3PISA dataset is an international education dataset that is widely used in research on
intelligent education and is described in detail in Appendix C.1.
4OECD and ESCS are universally acknowledged as sensitive attributes in educational
research and assessment in PISA. Details are provided in Appendix C.1.
5The General Data Protection Regulation, a comprehensive data protection law enacted
by the European Union in 2018. For more information, visit https://gdpr.eu/.
6The Family Educational Rights and Privacy Act, a federal law on the protection
of learner privacy enacted in the United States in 1974. For more information, visit
https://www2.ed.gov/policy/gen/guid/fpco/ferpa/.
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eliminate the impact caused by all of them. As shown in Fig. 1(b),
the gap in predicted correct rates between OECD learners from
advantaged families (ESCS>0) and non-OECD learners from disad-
vantaged families (ESCS<0) is further amplified, compared to the
single-attribute scenario in Fig. 1(a). The two unique characteristics
mentioned above prompt us to develop an advanced fair CD model
that doesn’t rely on sensitive attributes.

In this paper, we investigate the challenging yet practical research
task of improving the fairness of CD models without relying on sensi-
tive attributes. The absence of labeled sensitive attributes creates sig-
nificant obstacles to achieving fair CDmodeling: (1) Lack of Fairness
Supervision Signals.Without the labeled sensitive attributes, guid-
ing the model towards fairness is difficult. Some methods attempt
to infer these labels using limited sensitive information [19, 29] or
associated non-sensitive features [30], but acquiring such substi-
tutes introduces new challenges. (2) Multiple Potentially Sensitive
Attributes. Fair CD emphasizes equitable performance across all sen-
sitive groups. Consequently, methods optimizing only for specific
groups are unsuitable for this task [31, 32]. (3) Theoretical Guaran-
tee. Establishing a theoretical guarantee for fair learner modeling
becomes problematic when using data with unavailable sensitive
attributes. (4) Framework Compatibility. A general fair framework
is needed to mitigate unfairness for existing CD models.

To bridge these gaps, we propose a model-agnostic fair CD frame-
work that does not rely on any sensitive attribute information,
named Fair cognitive diagnosisWIthout Sensitive Attributes (Fair-
WISA). Specifically, we design a novel fairness objective function
for measuring unfairness levels in CD modeling. Then, we propose
a max-min training game for both sensitive attribute inference and
unfairness mitigation. More concretely, we propose a pseudo-label
inference method based on maximizing the designed fairness objec-
tive. These inferred pseudo-labels are used as proxies for sensitive
information in fair CD modeling. Given the pseudo-labels, we re-
train a fair CD model by minimizing the designed fairness objective
across every group. Our proposed optimization method ensures
fairness across all sensitive attributes, not just specific ones. We
also provide a theoretical guarantee that the implementation of
FairWISA is equivalent to reducing the upper bound of the error op-
timization function for fairness generalization. In the experiments,
we evaluate our proposed framework under both real-world and
out-of-distribution settings, with the latter presenting more chal-
lenging conditions for CD tasks. Extensive experimental results on
these two settings clearly show the effectiveness of our proposed
framework. In summary, the primary contributions of this paper
are as follows:
• We introduce a challenging yet practical research problem of

improving CD models’ fairness without relying on any sensi-
tive attribute information. To address this, we propose a model-
agnostic fair framework.

• We design a novel fairness objective function to optimize the
CD model’s fairness. We invent a max-min training method
for both sensitive attribute inference and unfairness mitigation.
Furthermore, we give a theoretical guarantee for our proposed
framework.

• Extensive experiments on real-world datasets and challenging
datasets have been conducted to validate the effectiveness of our
proposed framework.

2 Related Works and Preliminaries
2.1 Cognitive Diagnosis
Cognitive diagnosis [13, 14] focuses on assessing learners’ profi-
ciency levels based on historical learner-exercise interaction logs,
which are important for intelligent education and web learning
[33, 34]. Let 𝑈 = {𝑢1, 𝑢2, ..., 𝑢𝑁 } and 𝐸 = {𝑒1, 𝑒2, ..., 𝑒𝑀 } be the sets
of learners and exercises, respectively. The learner-exercise inter-
action set is denoted as 𝑅 = {(𝑢, 𝑒,𝑦𝑢𝑒 ) |𝑢 ∈ 𝑈 , 𝑒 ∈ 𝐸,𝑦𝑢𝑒 ∈ {0, 1}},
where 𝑦𝑢𝑒 indicates whether 𝑢 answers exercise 𝑒 correctly. Specif-
ically, if 𝑢 answers 𝑒 correctly, then 𝑦𝑢𝑒 = 1; otherwise, 𝑦𝑢𝑒 = 0.
The inputs to the CD model consist of the learner-exercise interac-
tion records 𝑅. The CD model analyzes these records to assess the
learner’s mastery of each exercise, thereby inferring the learner’s
overall proficiency level. Generally, the CD model contains two
steps: 1) the embedding layers to obtain the diagnostic factors of
learners and exercises, 2) the interaction layer to learn the inter-
action function 𝑓 (·) among the factors and output the probability
𝑦𝑢𝑒 of learner 𝑢 correctly answering exercise 𝑒 .

𝑦𝑢𝑒 = 𝑓 (ℎ𝑢 , ℎ𝑒 ), (1)

where ℎ𝑢 is the proficiency vector of 𝑢 and ℎ𝑒 is the exercise vector.
Both the embedding layer architecture and interaction function can
be flexibly designed. Many CDmethods [6, 10–12, 35, 36] have been
proposed to model learners’ abilities more accurately. For example,
Item Response Theory (IRT) [10, 11] models learners’ abilities using
one-dimensional vectors and employs a logit function to depict
the interactions between learners and exercises. NCDM [6, 12]
employs multidimensional vectors to represent learners, with each
dimension reflecting the student’s mastery of specific knowledge,
and utilizes a neural network to capture the complex interactions
between students and exercises.

When training the CD model, for each record in the response
logs set 𝑅, the loss function L𝐶𝐷 is calculated as the cross-entropy
loss between the predicted value 𝑦𝑢𝑒 and the true label 𝑦𝑢𝑒 :

L𝐶𝐷 = −
∑︁

(𝑢,𝑒,𝑦𝑢𝑒 ) ∈𝑅
(𝑦𝑢𝑒 𝑙𝑜𝑔𝑦𝑢𝑒 + (1 − 𝑦𝑢𝑒 ) 𝑙𝑜𝑔(1 − 𝑦𝑢𝑒 )). (2)

After training, the CD model obtains learners’ proficiency levels.
However, most existing work focuses only on improving the

accuracy of cognitive diagnosis, ignoring the fairness issues that
exist in themodeling process. Recently, some scholars have begun to
focus on studying fair cognitive diagnosis [18, 19]. Our work differs
from these studies by focusing on a more challenging scenario in
which we do not use sensitive labels as supervisory signals.

2.2 Fairness in Cognitive Diagnosis
Fairness aims to ensure that models do not exhibit bias or discrim-
ination when processing data from users with different sensitive
attributes[37] such as gender and ethnicity. Existing studies on
fairness can generally be divided into two categories [38]: indi-
vidual fairness [20, 39] and group fairness [18, 40, 41]. Individual
fairness stipulates that similar individuals should be treated simi-
larly, while group fairness focuses on ensuring equitable outcomes
across different sensitive groups. Group fairness has garnered more
research attention due to its clearer definitions and measurements.
For example, Demographic Parity (𝐷𝑃 ) [20] requires that different
groups have equal correct rates. However, it is limited as the base
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correct rates of subgroups differed. Equal Opportunity (𝐸𝑂) [42]
emphasizes the need for true positive rates (TPR) across different
groups. It ensures that people with equivalent abilities have equal
opportunities to achieve positive outcomes, regardless of their sen-
sitive attributes. Recent developments in cognitive diagnosis have
introduced new perspectives on fairness, emphasizing that cogni-
tive diagnostic models should operate independently of learners’
sensitive attributes [18, 19]. These studies propose specific criteria
for fairness in CD models. Zhang et al. [18] argue that fair CD
models should not change the original correct rate gaps between
sensitive groups. Zhang et al. [19] focus on the fairness of learners’
representations in CD, asserting that these representations should
not reveal learners’ sensitive attributes. Building on these insights,
this paper focuses on group fairness in cognitive diagnosis.

2.3 Fairness-aware Models
In tackling fairness concerns, many studies [43–46] have been pro-
posed to confront the bias inherent in historical data. These works
largely address the issue of fairness in machine learning and can
generally be categorized into three types: pre-processing meth-
ods [24, 47], in-processing methods [45, 48], and post-processing
methods [42, 49]. Pre-processing methods typically alleviate bias
in data by correcting labels [47], modifying sensitive attributes
[50], and generating balanced samples [24]. Most studies assume
that sensitive attributes are fully available. However, in reality,
learner privacy protection and technical constraints often make
these attributes unavailable. Recently, researchers have focused
on improving fairness without access to sensitive attributes. To
address this challenge, some studies [19, 29] use optimal discrim-
inators to predict these attributes. Other studies [30–32, 51] en-
hance task-specific fairness without sensitive attributes. Lahoti
et al. [31] proposed adversarial reweighting learning to achieve
Rawlsian maximum-minimum fairness. Zhao et al. [30] achieved
fairness by minimizing the correlations between predictions and
non-sensitive features that are similar to sensitive features. Chai
et al. [32] used knowledge distillation to achieve fairness without
sensitive attributes by modifying the training data labels to soft
labels, which is equivalent to weighting the special sample.

Some other fairness-aware methods [52] related to our work
focus on improving model generalization when group information
is unknown. For example, [53] and [54] propose methods that learn
to weight samples, assigning higher weights to complex samples to
improve robustness. Creager et al. [55] inferred environment labels
by maximally violating the Environment Invariance Constraint,
and then use the inferred labels for invariant learning to get causal
representations. [56] and [57] obtain environment labels by clus-
tering samples and then co-optimise with the invariant learning
task to enhance generalization. These efforts aim to enhance the
model’s performance beyond its original distribution and are not
specifically designed to address fairness bias.

3 The Proposed FairWISA Framework
3.1 Overview
The core of FairWISA is a max-min training game for both sensitive
group inference and unfairness mitigation. We begin by designing
a fairness objective to quantify the unfairness in CD models. Based
on this objective, FairWISA first maximizes the degree of unfairness

Improve 

Accuracy

… …

… …

Learner-Exercise

Interactions

0.1 0.7

0.3 0.5

Trainable Matrix 

fix parameter 

pseudo-labels

Pre-training 

Basic CD 

Model

Sensitive 

Group 

Inference

Training 

Fair CD 

Model

Figure 2: The framework of FairWISA.

to infer pseudo-labels for learners’ group membership. Then, it
minimizes the gaps between different groups to achieve fair CD
modeling. As illustrated in Fig. 2, FairWISA comprises three main
procedures:

1) Pre-training a basic CD Model: This initial step involves
developing an unfair CD model by maximizing accuracy. As previ-
ously noted, this accuracy-centric approach inherently introduces
bias. The basic CD model can be selected from various established
models such as IRT [10], MIRT [11], or NCDM [12], which are
detailed in Appendix A.

2) Sensitive Group Inference: This phase involves grouping
learners by fixing the parameters of the model from Step 1) and
thenmaximizing the degree of unfairness to derive pseudo-sensitive
labels for each learner. This approach is effective because the pre-
trained model from Step 1) exhibits differential treatment towards
groups with distinct sensitive attributes. Therefore, significant per-
formance disparities between groups indicate differing sensitive
attributes. We leverage this characteristic to infer pseudo-labels as
proxies for learners’ sensitive attributes.

3) Training the Fair CDModel: In this final step, we utilize the
pseudo-labels obtained from Step 2) as fairness supervision signals
to guide the training of CD. To achieve a balance between accuracy
and fairness in the CDmodel, we employ a regularized optimization
approach that simultaneously addresses both objectives.

In the subsequent sections, we first formulate the fairness ob-
jective and then introduce our sensitive group inference method.
Following this, we provide a detailed description of the FairWISA
training process and present a theoretical analysis of its plausibility.

3.2 Fairness Objective L𝑓 𝑎𝑖𝑟

Previous fairness objectives, such as 𝐸𝑂 [42] and 𝐹𝐶𝐷 [18], are
based on predicted outcomes, which can be significantly influenced
by classification thresholds. Therefore, we propose a threshold-
free fairness optimization objective based on predicted values. This
objective is motivated by the key observation: there is a correlation
between the CD model’s predicted values and learners’ sensitive
attributes.
Observation.We counted the predicted values of the CD model
for both OECD and non-OECD learners in the PISA dataset and
plotted the distribution of these predicted values as shown in Fig. 3.
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(a) Records with 𝑦 = 0 (b) Records with 𝑦 = 1

Figure 3: CD model’s predicted value distributions of differ-
ent sensitive groups. The left panel shows the distribution of
the CD model’s predicted value 𝑦 for records with incorrect-
ness (𝑦 = 0), and the right for correctness (𝑦 = 1). The model
consistently predicts higher values for the OECD group.

As can be seen from the figure, the distribution of predicted values
for OECD learners (blue area) is consistently to the right of the
distribution of predicted values for non-OECD learners (yellow
area), despite both groups having the same answer results. Specifi-
cally, the distribution of predicted values for OECD learners trends
closer to 1, while the distribution for non-OECD learners trends
closer to 0. This suggests that the CD model consistently outputs
larger predicted values for OECD learners, regardless of whether
the answers are actually incorrect (Fig. 3(a)) or correct (Fig. 3(b)).

Based on the observation presented above, we argue that the dis-
crepancies in the model’s predicted values across different learners
result in unfair diagnoses. To address this, we design a novel fairness
objective named L𝑓 𝑎𝑖𝑟 , which regularizes the model-predicted val-
ues 𝑦𝑢𝑒 across different groups. L𝑓 𝑎𝑖𝑟 ensures that the CD model
outputs similar predicted values for learners with similar profi-
ciency levels, regardless of sensitive attributes.

L𝑓 𝑎𝑖𝑟 = 𝑉𝑎𝑟 (R0
𝑔1 , ...,R

0
𝑔𝑘
) +𝑉𝑎𝑟 (R1

𝑔1 , ...,R
1
𝑔𝑘
), (3)

R0
𝑔𝑖

=
1

𝑁𝑔0
𝑖

∑︁
𝑢∈𝑔𝑖 ,𝑦𝑢𝑒=0

𝑦𝑢𝑒 , (4)

R1
𝑔𝑖

=
1

𝑁𝑔1
𝑖

∑︁
𝑢∈𝑔𝑖 ,𝑦𝑢𝑒=1

𝑦𝑢𝑒 , (5)

where𝑉𝑎𝑟 (·) denotes the variance calculation operator,R0
𝑔𝑖
andR1

𝑔𝑖

are calculated by Eq. (4) and Eq. (5), respectively. 𝑘 is the number of
sensitive attribute groups, 𝑁𝑔0

𝑖
(𝑁𝑔1

𝑖
) is the number of records with

incorrect (correct) responses in the group 𝑔𝑖 . L𝑓 𝑎𝑖𝑟 brings closer
the average values of the model’s outputs across different sensitive
groups when the true label is 0 or 1, respectively. For Eq. (4), when
𝑉𝑎𝑟 (R0

𝑔1 , . . . ,R
0
𝑔𝑘
) = 0, indicating R0

𝑔1 = R0
𝑔2 = . . . = R0

𝑔𝑘
, it can be

inferred that the CD model treats different groups comparably and
is therefore fair. The same analysis applies to Eq. (5). Therefore, a
larger L𝑓 𝑎𝑖𝑟 indicates greater unfairness with values ranging from
0 to 1. It is worth noting that although L𝑓 𝑎𝑖𝑟 is proposed for CD, it
can still be applied to other classification tasks.

Compared to some previous fairness metrics (e.g., 𝐷𝑃 [20], 𝐸𝑂
[42]), L𝑓 𝑎𝑖𝑟 has several advantages as a fairness optimization ob-
jective: (1) Previous metrics required discretizing predicted values,
a process that is generally non-differentiable for optimization and
may be affected by classification threshold (e.g., whether 𝑦 > 0.5

or 𝑦 > 0.6 is regarded as a correct answer may yield significant
differences). In contrast, L𝑓 𝑎𝑖𝑟 is based on original predicted values
and thus does not suffer significantly from such interference. (2)
Considering that in CD tasks, both correct and incorrect answers
reflect the proficiency level of the learner, L𝑓 𝑎𝑖𝑟 focuses on both
types of answers (as shown in Eq. (4) and Eq. (5)), which is not ad-
dressed by other existing fairness metrics. This suggests that L𝑓 𝑎𝑖𝑟

is better adapted to the two-sided fairness of answering correctly
or incorrectly, whereas other metrics only consider the one-sided.
Therefore, L𝑓 𝑎𝑖𝑟 is more suitable for fair CD modeling.

3.3 Sensitive Group Inference
CD models perform unfairly when processing samples from differ-
ent sensitive demographic groups, as evidenced by previous studies
[18, 19]. Leveraging this characteristic, we have devised a novel
grouping method. The core concept involves fixing the parameters
of a pre-trained CD model and using unfairness maximization as
a supervisory signal to group learners. The rationale behind this
approach is as follows: Pre-trained CD models tend to evaluate
learners similarly within sensitive attribute groups, but differently
across these groups. This leads to assessment discrepancies between
different sensitive groups. Larger discrepancies indicate higher lev-
els of model unfairness. It is worth noting that our proposed L𝑓 𝑎𝑖𝑟

serves as an effective proxy for measuring this discrepancy. When
we fix the model parameters and group learners, a larger assess-
ment gap between two groups suggests a greater dissimilarity in
the sensitive attributes of learners within these groups. Based on
this idea, we achieve learner grouping by maximizing the degree
of unfairness (as quantified by the L𝑓 𝑎𝑖𝑟 ).

Following the idea of maximizing the L𝑓 𝑎𝑖𝑟 to identify sensitive
groups, we devise a grouping approach as follows. Before inference,
a pre-trained CD model that has learned the inherent biases and
treats learners from different sensitive groups differently is required.
The grouping matrix W ∈ R𝑁×𝑘 is learned to record the group
information of all learners, where 𝑁 is the number of learners and
𝑘 is a hyperparameter representing the number of groups. Each
row ofW contains the learner’s group probabilities, and the sum
of the elements in each row ofW is 1, i.e.,

W𝑢1 +W𝑢2 + ... +W𝑢𝑘 = 1, (6)

whereW𝑢𝑔 denotes the probability that learner 𝑢 belongs to group
𝑔. Then, the group label of 𝑢 is determined by the column in row 𝑢

of W where the maximum value is located. Specifically, the group
label of 𝑢 is given by:

argmax
𝑔

W𝑢𝑔 . (7)

Initially, the elements inW are randomly initialized, meaning
learners’ groups are assigned randomly. Then, to assign learners
with similar sensitive attributes to the same group as much as
possible, we make maximizing L𝑓 𝑎𝑖𝑟 as the supervisory signal,
thereby updating W, i.e.,

argmax
W

L𝑓 𝑎𝑖𝑟 . (8)

Given the pseudo group label 𝑔𝑖 , we can feed it to Eq. (4) and Eq.
(5) to calculate L𝑓 𝑎𝑖𝑟 . Therefore, Eq. (8) transforms into:

W = argmax
W

𝑉𝑎𝑟 (R0
𝑔1 , ...,R

0
𝑔𝑘
) +𝑉𝑎𝑟 (R1

𝑔1 , ...,R
1
𝑔𝑘
) . (9)
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After training, the group labels of each learner can be obtained
from W.

As described above, frequent operations of selecting the maxi-
mum value are required to obtain the group labels for the learners
during during the training of W. However, the operation of select-
ing the maximum value is non-differentiable. Therefore, we employ
the Gumbel-Softmax [58] function to handle this issue, ensuring
that training gradients can be propagated. Gumbel-Softmax [58]
is a technique used in deep learning for handling discrete choices.
The process is formulated as:

W′
𝑢𝑔 =

𝑒𝑥𝑝

(
𝑙𝑜𝑔 (W𝑢𝑔 )+𝑔𝑏

𝜏

)
∑
𝑔′ 𝑒𝑥𝑝

(
𝑙𝑜𝑔 (W𝑢𝑔′ )+𝑔𝑏

𝜏

) , (10)

where W𝑢𝑔 denote the probability that the learner 𝑢 belongs to
group 𝑔,W′

𝑢𝑔 denotes the converted output, 𝑔𝑏 is a sample from the
Gumbel distribution, and 𝜏 is the temperature parameter controlling
the level of smoothing. This approach enables the training of neural
networks by making the discrete selection process differentiable.

3.4 Training Process
FairWISA executes the following three steps. 1) Firstly, we pre-train
an unfair basic CDmodel F𝜃 by Eq. (2). Note that the choice of basic
model is arbitrary. 2) Then, the sensitive group inference module is
executed to get sensitive group labels. Specifically, we first initialize
the grouping matrixW randomly. Subsequently, keeping the pa-
rameters of the pre-trained CD model F𝜃 fixed, we maximize L𝑓 𝑎𝑖𝑟

to infer sensitive group labels. After training, an optimized grouping
matrix W is obtained, which can be used to get the pseudo-labels
of the learners. 3) Finally, the fair CD model is trained using the
pseudo-labels obtained from the well-learned W. Specifically, we
fix the W obtained in the previous step and optimize a new CD
model by minimizing L𝑡𝑜𝑡𝑎𝑙 , which incorporates L𝑓 𝑎𝑖𝑟 as a reg-
ularization term. This optimization yields the fair CD model F𝜃 ∗ .
The total loss function is defined as:

L𝑡𝑜𝑡𝑎𝑙 = L𝐶𝐷 + 𝛼L𝑓 𝑎𝑖𝑟 , (11)

where 𝛼 is the hyperparameter of fairness regularization. The pseu-
docode for the implementation is in Appendix B.

By leveraging L𝑓 𝑎𝑖𝑟 as the fairness objective and employing the
group label inference process, FairWISA is capable of enhancing
fairness with the inferred group labels as proxies.

3.5 Theoretical Analysis
In CD model training, sensitive attributes are mistakenly associ-
ated with the output, leading the model to learn shortcuts rather
than the learner’s actual proficiency level. This often occurs due
to biased sampling or labeling in the training data. Similarly, gen-
eralization issues occur when models rely on shortcuts, resulting
in poor performance on new data. Therefore, recent studies have
shown that fairness problems are related to out-of-distribution is-
sues [59]. From this perspective, improving model fairness can be
viewed as enhancing generalization under specific distributional
shifts. Thus, the fairness problem can be viewed as a special case
of the generalization problem. The goal of fair CD is to develop
models that do not rely on associations between sensitive attributes
and predicted outcomes, performing well across unknown target
distributions. To this end, we conduct analyses from the perspective

of out-of-distribution generalization to demonstrate that FairWISA
is theoretically supported. Our analysis demonstrates that imple-
menting FairWISA effectively reduces the upper bound of the error
optimization function for fairness generalization, thereby proving
its effectiveness. Drawing inspiration from prior research [60, 61],
we have the following proposition.

Proposition 1. (Proposition 2.1 in [60]) Let X be a space, H be
a class of hypotheses corresponding to this space, and 𝑑HΔH be the
H -divergence that measures distributional differences. Let Q be the
target distribution and the collection {P𝑖 }𝑘𝑖=1 be distributions over
X and let {𝜑𝑖 }𝑘𝑖=1 be a collection of non-negative coefficients with∑
𝑖 𝜑𝑖 = 1. Let O be a set of distributions such that for every S ∈ O

the following holds:∑︁
𝑖

𝜑𝑖𝑑HΔH (P𝑖 , S) ≤ max
𝑖, 𝑗

𝑑HΔH (P𝑖 , P𝑗 ) . (12)

Then, for any ℎ ∈ H , the error on the target domain Q, denoted as
𝜀Q (ℎ), is proven to satisfy the following [60]:

𝜀Q (ℎ) ≤ 𝜆𝜑︸︷︷︸
𝐼

+
∑︁
𝑖

𝜑𝑖𝜀P𝑖 (ℎ)︸        ︷︷        ︸
𝐼 𝐼

+ 1
2
min
S∈O

𝑑HΔH (S,Q)︸                   ︷︷                   ︸
𝐼 𝐼 𝐼

+ 1
2
max
𝑖, 𝑗

𝑑HΔH (P𝑖 , P𝑗 )︸                     ︷︷                     ︸
𝐼𝑉

,

(13)

where 𝜆𝜑 =
∑
𝑖 𝜑𝑖𝜆𝑖 and each 𝜆𝑖 is the error of an ideal joint hypothesis

for Q and P𝑖 , 𝜀P𝑖 (ℎ) is the error for a hypothesis ℎ on a distribution
P𝑖 .

From Proposition 1, the upper bound of the model’s error in the
unseen target domain Q can be expressed as Eq. (13). A lower value
of 𝜀Q (ℎ) indicates better generalization performance of the model.
Then, we analyze each term of Eq. (13).

For term 𝐼 , 𝜆𝜑 can be ignored in practice because it is small in
reality. For term 𝐼 𝐼 ,

∑
𝑖 𝜑𝑖𝜀P𝑖 (ℎ) represents the error in the train-

ing domain. Empirical Risk Minimization (ERM) is an appropriate
method for controlling this term. FairWISA optimizes it by mini-
mizing L𝐶𝐷 . For term 𝐼 𝐼 𝐼 , 12 minS∈O 𝑑HΔH (S,Q) is the smallest
H -divergence between S andQ. Given thatQ is unknown, the only
way to reduce this term is to expand the range of O, thereby increas-
ing the likelihood of finding an S that is closer toQ. According to Eq.
(12), maximizing the distribution gap between P𝑖 and P𝑗 achieves
this. In FairWISA , we infer group labels by maximizing L𝑓 𝑎𝑖𝑟 ,
which increases the distributional disparity between groups. For
term 𝐼𝑉 , 12 max𝑖, 𝑗 𝑑HΔH (P𝑖 , P𝑗 ) represents the maximum pairwise
H -divergence among the source domains. FairWISA minimizes
L𝑓 𝑎𝑖𝑟 to reduce the differences between different domains, thereby
decreasing the value of 1

2 max𝑖, 𝑗 𝑑HΔH (P𝑖 , P𝑗 ).
The above analysis provides theoretical insights into the steps

FairWISA takes: minimizing L𝐶𝐷 for improving accuracy, maxi-
mizing L𝑓 𝑎𝑖𝑟 to amplify the distribution gap between groups for
inferring sensitive group labels, and minimizing L𝑓 𝑎𝑖𝑟 for improv-
ing fairness.
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4 Experiments
4.1 Datasets and Experiment Settings
Datasets. We conduct experiments on two widely used education
datasets: PISA 7 and SLP 8. The detailed descriptions of PISA and
SLP are provided in Appendix C.1.
Evaluation metrics. In the experiments, we evaluate both the
accuracy and group fairness of the CD models using appropriate
metrics, allowing for comparison against baseline methods. For
accuracy, the Area Under the ROC Curve (AUC) and Accuracy
(ACC) are used, with higher values indicating better accuracy. For
fairness, 𝐸𝑂 [42], 𝑁𝐸𝑂 [62], and 𝐹𝐶𝐷 [18] are employed, where
values closer to 0 reflect more equitable treatment across different
groups. The detailed descriptions of the fairness metrics are as
follows:

𝐸𝑂 = |𝑃 (𝑦 = 1 | 𝑦 = 1, 𝑠 = 0) − 𝑃 (𝑦 = 1 | 𝑦 = 1, 𝑠 = 1) |, (14)
𝑁𝐸𝑂 = |𝑃 (𝑦 = 0 | 𝑦 = 0, 𝑠 = 0) − 𝑃 (𝑦 = 0 | 𝑦 = 0, 𝑠 = 1) |, (15)

where 𝑠 is the sensitive attribute, 𝑦 is the label, and 𝑦 is the model’s
prediction. In cognitive diagnosis, 𝐸𝑂 (or𝑁𝐸𝑂) reflects the disparity
in the proportion of correct predictions among records of correct
(or incorrect) answers across different groups.

𝐹𝐶𝐷 =

(
1
|𝐴|

∑︁
𝑖∈𝐴

𝑌𝑖 −
1
|𝐵 |

∑︁
𝑖∈𝐵

𝑌𝑖

)
−

(
1
|𝐴|

∑︁
𝑖∈𝐴

𝑌𝑖 −
1
|𝐵 |

∑︁
𝑖∈𝐵

𝑌𝑖

)
, (16)

where |𝐴| ( |𝐵 |) is the number of learners in group 𝐴(𝐵), 𝑌 is the
actual correct rate of learner, and 𝑌 is the predicted correct rate.
The closer 𝐹𝐶𝐷 is to 0, the less unfair bias the CD model amplifies.

It has been shown that many studies have demonstrated an
inherent trade-off between model accuracy and fairness [24, 30,
32, 48]. As this paper focuses on fairness modeling, the accuracy
metrics across models are controlled to be comparable, enabling
clearer insights into the relative fairness performance achieved.
Baselines. We conduct comparisons with several baselines, which
are provided as follows:
• Original model. It serves as the basic CD model without addi-

tional fairness guarantees. In the experiment, three CD models
are employed: IRT [10], MIRT [11], and NCDM [6, 12].

• F_Attr . It first assumes that the sensitive attribute Attr is avail-
able and divides learners into groups based on Attr. Then, it uses
L𝑡𝑜𝑡𝑎𝑙 (Eq. (11)) as the loss function to optimize the CD models.

• Reg_EO. It first assigns group labels to learners as per the group
inference method in Section 3.3, and then uses 𝐸𝑂 [42] as the
fairness regularization for training.

• ARL [31]. It is a method based on Rawlsian fairness principle of
Max-Min welfare. It optimises by reweighting samples through
adversarial learning.

• KD [32]. This approach replaces hard labels with soft labels dur-
ing training, using knowledge distillation techniques. By doing
so, it achieves fairness through effectively weighting samples
equally. Specifically, we use an overfitting trained CD model as
the “Teacher" model in the method, and use the predicted values
of the “Teacher" model as the soft labels to train the “Student"
model.

7https://www.oecd.org/pisa/data/
8https://aic-fe.bnu.edu.cn/en/data/index.html

• EIIL [55]. It is a method of invariant learning that does not rely
on group labels, inferring environmental labels by maximizing
the violation of the invariance principle, and then using invariant
learning to acquire invariant representations, thereby enhancing
fairness.

Parameter settings. FairWISA and all baseline methods are im-
plemented using the PyTorch library. For model initialization, all
parameters are set to a Gaussian distribution with a mean of 0 and
a standard variance of 0.01. As the optimizer, Adam is used with a
learning rate of 0.001 for the IRT-based and MIRT-based methods,
and a learning rate of 0.0005 for the NCDM-based methods. The
batch size is 4096 for the PISA dataset and 2048 for the SLP dataset.
Additionally, the dimensions for both learners and exercises are set
to 8 for the MIRT-based methods.

4.2 Experimental Results
Performance on accuracy and fairness (RQ1).We compare Fair-
WISA with baselines on the three CD models as backbones. Table 1
and Table 2 show the accuracy and fairness performance on multi-
ple sensitive attributes on the PISA and SLP datasets. The results
indicate that all original CD models exhibit unfairness, underscor-
ing the imperative to investigate fairness in cognitive diagnosis.
And For all the methods, as fairness is enhanced, concomitant reduc-
tions in accuracy are observed. This is a typical fairness-accuracy
trade-off pattern.

As evidenced in both Table 1 and Table 2, FairWISA substantially
enhances the fairness while accuracy losses are constrained within
2.5% relative to backbones (IRT, MIRT, NCDM). This suggests that
FairWISA is effective in modeling CD fairness without using sensi-
tive information. And compared to baselines, FairWISA consistently
demonstrated lower values for 𝐸𝑂 , 𝑁𝐸𝑂 , and 𝐹𝐶𝐷 in the majority
of cases, while maintaining closely comparable accuracy metrics.
This suggests that FairWISA is more competitive in terms of fair-
ness performance. It is observed that there are some anomalies in
the results presented in the tables. For example, in the SLP dataset,
FairWISA performs slightly worse compared to the baselines when
NCDM is used as the backbone. This may be due to the higher
number of parameters for NCDM and the lower amount of data in
SLP, and thus the unlearned sufficient unfairness bias for getting
guidance information of grouping.

In summary, FairWISA proves effective in enhancing the fairness
of cognitive diagnosis without significant compromises in accuracy
and it is competitive with baselines.
Performance on Robustness (RQ2). Here, we introduce a "Chal-
lenging Test" scenario to evaluate performance under group distri-
butional biases. This test creates a fairness distribution that differs
from the training data by varying the correlation between sensi-
tive attribute groups and labels. Details of the design process are
in Appendix C.3. The motivation behind this design is to compre-
hensively assess FairWISA’s adaptability across diverse fairness
distributions.

Table 3 and Table 4 show the results of the experiments on PISA
and SLP, respectively. Compared to Tables 1 and 2, all methods in
Tables 3 and 4 exhibited a decrease in accuracy (AUC and ACC).
This is because the CD models tend to learn the unfair bias of the
data during training to improve the accuracy under the same distri-
bution. Thus, despite data distribution shifts, the CD models still
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Table 1: Comparison of different approaches on PISA. OECD, Gender, and ESCS serve as sensitive attributes, dividing data
samples into two groups for fairness evaluation. Bolding signifies the best performance among all methods.

IRT ARL EIIL KD FairWISA MIRT ARL EIIL KD FairWISA NCDM ARL EIIL KD FairWISA
𝐴𝑈𝐶 ↑ 0.8049 0.7833 0.7809 0.7820 0.7827 0.7995 0.7802 0.7838 0.7909 0.7813 0.7771 0.7713 0.7744 0.7666 0.7749
𝐴𝐶𝐶 ↑ 0.7316 0.7134 0.7138 0.7119 0.7130 0.7273 0.7117 0.7146 0.7202 0.7106 0.7135 0.7108 0.7064 0.7089 0.7101

𝐸𝑂 ↓
OECD 0.0970 0.0791 0.0847 0.0789 0.0491 0.0931 0.0665 0.0744 0.0828 0.0437 0.0737 0.0656 0.0644 0.0706 0.0591
Gender 0.0435 0.0360 0.0376 0.0367 0.0262 0.0419 0.0323 0.0354 0.0379 0.0246 0.0327 0.0294 0.0290 0.0316 0.0283
ESCS 0.1122 0.0926 0.0959 0.0936 0.0597 0.1062 0.0779 0.0826 0.0952 0.0529 0.0866 0.0777 0.0774 0.0846 0.0690

𝑁𝐸𝑂 ↓
OECD 0.1197 0.0969 0.1088 0.0948 0.0633 0.1204 0.0854 0.0923 0.1068 0.0566 0.0898 0.0759 0.0761 0.0794 0.0706
Gender 0.0597 0.0473 0.0539 0.0468 0.0351 0.0619 0.0437 0.0476 0.0535 0.0337 0.0435 0.0368 0.0386 0.0373 0.0368
ESCS 0.1111 0.0864 0.1017 0.0862 0.0508 0.1091 0.0723 0.0795 0.0943 0.0420 0.0788 0.0662 0.0601 0.0693 0.0581

𝐹𝐶𝐷→0
OECD 0.0498 0.0243 0.0338 0.0232 -0.0071 0.0460 0.0110 0.0210 0.0321 -0.0138 0.0182 0.0070 0.0033 0.0116 0.0006
Gender 0.0235 0.0113 0.0154 0.0109 -0.0003 0.0225 0.0071 0.0118 0.0155 -0.0013 0.0076 0.0025 0.0030 0.0041 0.0015
ESCS 0.0477 0.0208 0.0305 0.0211 -0.0130 0.0416 0.0054 0.0137 0.0272 -0.0216 0.0143 0.0035 0.0070 0.0087 -0.0052

Table 2: Comparison of different approaches on SLP. Gender and Income serve as sensitive attributes, dividing data samples
into two groups for fairness evaluation. Bolding signifies the best performance among all methods.

IRT ARL EIIL KD FairWISA MIRT ARL EIIL KD FairWISA NCDM ARL EIIL KD FairWISA
𝐴𝑈𝐶 ↑ 0.8806 0.8652 0.8496 0.8650 0.8675 0.8777 0.8604 0.8594 0.8593 0.8606 0.8439 0.8399 0.8401 0.8396 0.8420
𝐴𝐶𝐶 ↑ 0.8350 0.8295 0.8119 0.8267 0.8256 0.8337 0.8229 0.8230 0.8229 0.8213 0.8153 0.8129 0.8127 0.8101 0.8112
𝐸𝑂 ↓ Gender 0.0580 0.0454 0.0532 0.0409 0.0396 0.0541 0.0519 0.0433 0.0553 0.0409 0.0564 0.0315 0.0341 0.0308 0.0476

Income 0.0417 0.0336 0.0308 0.0321 0.0299 0.0405 0.0367 0.0344 0.0385 0.0327 0.0432 0.0228 0.0270 0.0222 0.0377
𝑁𝐸𝑂 ↓ Gender 0.1124 0.0842 0.0981 0.0734 0.0572 0.1211 0.1329 0.0723 0.1260 0.0527 0.0783 0.0225 0.0296 0.0239 0.0520

Income 0.0713 0.0611 0.0556 0.0470 0.0378 0.0731 0.0649 0.0524 0.0693 0.0426 0.0527 0.0217 0.0267 0.0151 0.0381
𝐹𝐶𝐷→0

Gender 0.0241 0.0025 0.0164 -0.0053 -0.0058 0.0222 0.0171 -0.0092 0.0185 -0.0053 0.0110 -0.0268 -0.0220 -0.0287 -0.0014
Income 0.0146 0.0016 0.0051 -0.0060 -0.0058 0.0125 0.0026 -0.0035 0.0070 -0.0033 0.0068 -0.0217 -0.0156 -0.0249 -0.0011

Table 3: Comparison of different approaches on PISA challenging test. OECD, Gender, and ESCS serve as sensitive attributes,
dividing data samples into two groups for fairness evaluation. Bolding signifies the best performance among all methods.

IRT ARL EIIL KD FairWISA MIRT ARL EIIL KD FairWISA NCDM ARL EIIL KD FairWISA
𝐴𝑈𝐶 ↑ 0.7081 0.7065 0.7013 0.7073 0.7448 0.7059 0.7112 0.7155 0.7075 0.7338 0.7101 0.7204 0.7215 0.7181 0.7220
𝐴𝐶𝐶 ↑ 0.6531 0.6521 0.6464 0.6524 0.6854 0.6533 0.6596 0.6571 0.6549 0.6761 0.6571 0.6615 0.6597 0.6564 0.6655

𝐸𝑂 ↓
OECD 0.0556 0.0436 0.0491 0.0422 0.0133 0.0549 0.0373 0.0443 0.048 0.0232 0.0419 0.0361 0.0355 0.039 0.0331
Gender 0.0252 0.0217 0.0238 0.0213 0.0008 0.0238 0.0158 0.0165 0.0211 0.0045 0.0199 0.0173 0.0173 0.0198 0.0131
ESCS 0.0736 0.0610 0.0645 0.0619 0.0219 0.0704 0.0534 0.0546 0.0639 0.0337 0.0582 0.0523 0.0538 0.0577 0.0464

𝑁𝐸𝑂 ↓
OECD 0.0342 0.0285 0.0315 0.0293 0.0159 0.0346 0.0264 0.0261 0.032 0.0138 0.0266 0.0231 0.0209 0.0253 0.0208
Gender 0.0019 0.0005 0.0010 0.0001 0.0042 0.0032 0.0048 0.0080 0.0031 0.0067 0.0002 0.0003 0.0044 0.0010 0.0046
ESCS 0.0539 0.0394 0.0429 0.0397 0.0200 0.0509 0.0271 0.0332 0.0405 0.0120 0.0361 0.0296 0.0249 0.0312 0.0211

𝐹𝐶𝐷→0
OECD 0.5286 0.5057 0.5244 0.5044 0.4060 0.5282 0.4876 0.4946 0.5126 0.4377 0.4933 0.4737 0.4725 0.4815 0.4677
Gender 0.3645 0.3539 0.3642 0.3530 0.3050 0.3655 0.3468 0.3503 0.3586 0.3228 0.3468 0.3364 0.3386 0.3392 0.3355
ESCS 0.5268 0.5011 0.5223 0.5006 0.3948 0.5240 0.4803 0.4867 0.5067 0.4273 0.4887 0.4685 0.4594 0.4764 0.4588

Table 4: Comparison of different approaches on SLP challenging test. Gender and Income serve as sensitive attributes, dividing
data samples into two groups for fairness evaluation. Bolding signifies the best performance among all methods.

IRT ARL EIIL KD FairWISA MIRT ARL EIIL KD FairWISA NCDM ARL EIIL KD FairWISA
𝐴𝑈𝐶 ↑ 0.8141 0.8017 0.8009 0.8023 0.8211 0.8088 0.7864 0.7864 0.7826 0.8098 0.7822 0.7994 0.7958 0.7930 0.7915
𝐴𝐶𝐶 ↑ 0.7228 0.7136 0.7234 0.7096 0.7263 0.7169 0.6940 0.6940 0.6945 0.7198 0.7097 0.6952 0.7101 0.7002 0.7173

𝐸𝑂 ↓ Gender 0.0957 0.0773 0.0855 0.0705 0.0655 0.0918 0.0863 0.0863 0.0893 0.0735 0.1026 0.0389 0.0634 0.0546 0.0876
Income 0.0762 0.0607 0.0621 0.0562 0.0557 0.0787 0.0743 0.0743 0.0710 0.0605 0.0775 0.0307 0.0496 0.0403 0.0637

𝑁𝐸𝑂 ↓ Gender 0.1089 0.0774 0.0870 0.0699 0.0525 0.1125 0.1149 0.1149 0.1117 0.0461 0.0674 0.0002 0.0222 0.0121 0.0441
Income 0.0652 0.0402 0.0554 0.0404 0.0215 0.0637 0.0625 0.0625 0.0839 0.0352 0.0623 0.0104 0.0171 0.0214 0.0292

𝐹𝐶𝐷→0
Gender 0.1315 0.1114 0.1190 0.1065 0.0917 0.1345 0.1367 0.0966 0.1335 0.0905 0.1139 0.0537 0.0709 0.0664 0.0918
Income 0.5681 0.5640 0.5267 0.5582 0.5018 0.5783 0.6135 0.0542 0.6178 0.5184 0.5661 0.5207 0.5199 0.5220 0.5179

use learned unfair bias for predictions, resulting in reduced accu-
racy when the data is out of distribution. It is also observed that
FairWISA exhibits the highest accuracy metrics (AUC and ACC)
among all the baselines. It indicates that FairWISA is more adaptive
when faced with this fairness distribution shift; on the other hand,
it also suggests that FairWISA enables fairer cognitive diagnosis.
Additionally, FairWISA performs competitively across all fairness
metrics (𝐸𝑂 , 𝑁𝐸𝑂 , 𝐹𝐶𝐷 ) on various sensitive attributes when com-
pared to all the baselines. In conclusion, FairWISA exhibits strong
robustness when the distribution of fairness bias is shifted.

4.3 Discussion
Improving fairness of all sensitive attributes.Weuse F_𝐴𝑡𝑡𝑟 for
comparison to discuss the necessity of the study without sensitive
attributes. Specifically, for each dataset, we divide the learners
into two groups according to the known sensitive attributes and
observe the fairness performance of F_𝐴𝑡𝑡𝑟 . Taking “Gender" as
the known sensitive attribute, F_𝐺𝑒𝑛𝑑𝑒𝑟 divides learners into two
groups: “male" and “female" and utilizes L𝑡𝑜𝑡𝑎𝑙 (Eq. (11)) as the
optimization objective. Note that F_𝐴𝑡𝑡𝑟 utilizes known sensitive
attributes, while FairWISA does not.
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Table 5: Comparison of F_Attr and FairWISA on PISA. OECD,
Gender, and ESCS serve as sensitive attributes, dividing data
samples into two groups for fairness evaluation. Bolding sig-
nifies the smallest value and underlining signifies the second
smallest value among all methods.

IRT F_OECD F_Gender F_ESCS FairWISA
𝐴𝑈𝐶 ↑ 0.8049 0.8008 0.8029 0.8003 0.7827
𝐴𝐶𝐶 ↑ 0.7316 0.7277 0.7298 0.7277 0.7130

𝐸𝑂 ↓
OECD 0.0970 0.0226 0.0978 0.0847 0.0491
Gender 0.0435 0.0454 0.0081 0.0444 0.0262
ESCS 0.1122 0.1022 0.1124 0.0356 0.0597

𝑁𝐸𝑂 ↓
OECD 0.1197 0.0288 0.1199 0.1062 0.0633
Gender 0.0597 0.0623 0.0166 0.0626 0.0351
ESCS 0.1111 0.0965 0.1116 0.0153 0.0508

𝐹𝐶𝐷→0
OECD 0.0498 -0.0317 0.0499 0.0359 -0.0071
Gender 0.0235 0.0252 -0.0157 0.0248 -0.0003
ESCS 0.0477 0.0348 0.0475 -0.0369 -0.0130

Table 6: Comparison of F_Attr and FairWISA on SLP. Gen-
der and Income serve as sensitive attributes, dividing data
samples into two groups for fairness evaluation. Bolding sig-
nifies the smallest value and underlining signifies the second
smallest value among all methods.

IRT F_Gender F_Income FairWISA
𝐴𝑈𝐶 ↑ 0.8806 0.8788 0.8791 0.8675
𝐴𝐶𝐶 ↑ 0.8350 0.8329 0.8344 0.8256
𝐸𝑂 ↓ Gender 0.0580 0.0329 0.0547 0.0396

Income 0.0417 0.0381 0.0256 0.0299
𝑁𝐸𝑂 ↓ Gender 0.1124 0.0386 0.1136 0.0572

Income 0.0713 0.0607 0.0190 0.0378
𝐹𝐶𝐷→0

Gender 0.0241 -0.0142 0.0204 -0.0058
Income 0.0146 0.0067 -0.0113 -0.0058

Table 5 shows that F_𝑂𝐸𝐶𝐷 , F_𝐺𝑒𝑛𝑑𝑒𝑟 , and F_𝐸𝑆𝐶𝑆 get a good
fairness improvement on “OECD", “Gender", and “ESCS", respec-
tively, and ensure a good accuracy, which suggests that the proposed
L𝑓 𝑎𝑖𝑟 as a fairness regularization is effective in improving the fair-
ness of CD. In addition, the fairness of F_𝑂𝐸𝐶𝐷 , F_𝐺𝑒𝑛𝑑𝑒𝑟 and
F_𝐸𝑆𝐶𝑆 on other unknown sensitive attributes is not effectively im-
proved, e.g., F_𝐺𝑒𝑛𝑑𝑒𝑟 improves the group fairness of the attribute
“Gender", but still shows unfairness on “OECD" and “ESCS". Since
sensitive attributes in the real world are diverse and difficult to be
fully accounted for, F_𝐴𝑡𝑡𝑟 does not enable a truly fair cognitive
diagnosis. In comparison, FairWISA gets a good fairness improve-
ment on all the sensitive attributes. Similar results are also evident

in Table 6. In summary, only improving the fairness of known sen-
sitive attributes does not yield a fair CD model, which illustrates
the necessity of the study without sensitive attributes.
Effectiveness of group inference. To validate the effectiveness of
group inference of FairWISA , the group labels inferred by Section
3.3 are employed for fairness method Reg_EO. Fig. 4 shows the ex-
perimental results on SLP dataset: It can be seen that both FairWISA
and Reg_EO exhibit comparable accuracy and get a substantial im-
provement in the fairness metrics across backbones. This suggests
that the group labels inferred by FairWISA are decently general and
can be applied to different fairness methods. In addition, we find
that on the 𝑁𝐸𝑂 metric (Fig. 4c), FairWISA outperforms Reg_EO.
This is because Reg_EO only takes into account the consistent true
positive rate of different groups, which focuses on the rate of an-
swering questions correctly, while FairWISA also takes into account
the fair rate of answering questions incorrectly. In conclusion, the
group inference of FairWISA is effective and the inferred group
labels are general.
Supplementary discussion. In addition to the above, we also
discuss the relationship between inferred pseudo-labels and real
sensitive attributes in Appendix C.4.1, which shows that they are
not in one-to-one correspondence. Furthermore, we analyze the
impact of 𝑘 (the number of groups in group inference) and 𝛼 (the
fairness regularization weight in Eq.(11)) in Appendix C.4.2. The
results show that the performance of FairWISA varies regularly
with these two hyperparameters.

5 Conclusion
In this paper, we have studied a novel and challenging problem:
How to achieve fair learner modeling when sensitive attributes are
unavailable. To tackle this challenge, we proposed a fair cognitive di-
agnosis framework named FairWISA that operates without relying
on any known sensitive attributes. Specifically, to group learners
without sensitive attributes, we introduced a pseudo-group label
inference method based on leveraging unfairness maximization. To
ensure fairness, we designed a fairness regularization constraint
based on the principle that the model’s predicted values should
be similar for different groups. We theoretically demonstrated the
effectiveness of FairWISA in improving fairness. Extensive experi-
ments on two educational datasets have shown that our method
enables achieving improved fairness without significantly degrad-
ing accuracy when sensitive attributes are unavailable.
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A Basic CD models used in this paper
Given the learner’s proficiency vector as ℎ𝑠 , the exercise difficulty
as ℎdiff, and the exercise discrimination as ℎdisc, we present the
details of the three representative CD models as follows.

• IRT [10]. It calculates the likelihood 𝑦𝑢𝑒 of a learner 𝑢
answering exercise 𝑒 correctly using the following logistic
function:

𝑦𝑢𝑒 =
1

1 + 𝑒ℎ
disc×(ℎ𝑠−ℎdiff )

. (17)

• MIRT [11]. It is an optimized version of IRT that replaces
learner proficiency ℎ𝑠 and exercise difficulty ℎdiff with mul-
tidimensional vectors to accommodate more complex situ-
ations.

• NCDM [12]. It is a deep CD model that uses neural net-
works to learn complex interactions between learners and
exercises. Then, NCDM predicts the likelihood of a learner
𝑢 answering exercise 𝑒 correctly:

𝑦𝑢𝑒 = 𝑀𝐿𝑃 (𝑄 ◦ (ℎ𝑠 − ℎdiff) × ℎdisc), (18)

where𝑀𝐿𝑃 (·) is the multiple layer fully connected neural
network and 𝑄 is the knowledge matrix labeled by experts.

B Pseudocode for FairWISA
Algorithm 1 presents the pseudocode for the implementation of
FairWISA.

Algorithm 1 FairWISA
Input: Set of learners𝑈 , set of exercises 𝐸, learners-exercises
interaction records 𝑅
Output: A fair CD model
1: Randomly initialize the parameters 𝜃 of the CD model, group

matrixW
2: PRE-TRAIN A BASIC CD MODEL
3: while L𝐶𝐷 not converge do
4: Sample a batch of training data (𝑢, 𝑒,𝑦), (𝑢 ∈ 𝑈 , 𝑒 ∈ 𝐸)
5: Compute loss L𝐶𝐷 by Eq. (2)
6: Optimize the unfair CD model parameters 𝜃 by minimizing

L𝐶𝐷

7: end while
8: INFER SENSITIVE GROUP LABELS
9: while L𝑓 𝑎𝑖𝑟 not converge do
10: Sample a batch of training data (𝑢, 𝑒,𝑦), (𝑢 ∈ 𝑈 , 𝑒 ∈ 𝐸)
11: Obtain learners’ pseudo-labels according toW
12: Compute L𝑓 𝑎𝑖𝑟 by Eq. (3)
13: Update W to maximize L𝑓 𝑎𝑖𝑟 with 𝜃 fixed
14: end while
15: TRAIN THE FAIR CD MODEL
16: while L𝑡𝑜𝑡𝑎𝑙 not converge do
17: Sample a batch of training data (𝑢, 𝑒,𝑦), (𝑢 ∈ 𝑈 , 𝑒 ∈ 𝐸)
18: Obtain pseudo-labels as learners’ group labels according to

the optimal W
19: Compute L𝑡𝑜𝑡𝑎𝑙 by Eq. (11)
20: Optimize the fair CD model parameters 𝜃∗ by minimizing

L𝑡𝑜𝑡𝑎𝑙

21: end while

Table 7: Statistics of the datasets.

Dataset #learners #Exercises #Records Sensitive Attributes
PISA 550,655 244 17,569,594 Gender, OECD, ESCS
SLP 3,186 339 673,471 Gender, Family Income

C Experimental Supplements
C.1 Datasets
Table 7 shows the basic information of PISA and SLP, and the
detailed descriptions of them are as follows:

• PISA is a globally renowned assessment, with participation
from approximately 100 regions or countries. It assesses the
cognitive abilities of 15-year-old students (i.e. learners) in
various areas such as reading and science through learner-
answered exercises. Additionally, it includes questionnaires
to collect sensitive information.We use the PISA2018 dataset,
which focuses on the “reading" diagnostic theme. Besides,
it contains three sensitive attributes, including “Gender,"
“OECD" (Organisation for Economic Co-operation and De-
velopment), and “ESCS" (Economic, Social, and Cultural
Status). Gender is a sensitive attribute where students are
divided into male and female groups. OECD is a sensi-
tive attribute determined by nationality, where a learner’s
OECD=1 (or OECD=0) indicates that they are from an
OECD (or non-OECD) country. OECD countries usually
have better educational resources. ESCS is a sensitive at-
tribute determined by the household wealth index, where
a higher ESCS indicates a better household economy. Sth-
dents with a high household wealth index usually receive
better education.

• SLP consolidates learners’ academic performance data in
eight subjects, including Chinese, Mathematics, English,
Physics, Chemistry, Biology, History, and Geography, col-
lected over a three-year study period through an online
learning platform. Additionally, sensitive attributes regard-
ing learners’ gender, home environment, and school back-
ground are documented. SLP also contains two sensitive
attributes: “Gender” and “Family Income”. Family Income
is a sensitive attribute based on the income level of a family.
Learners with higher family incomes receive better educa-
tion. Specifically, we group learners whose family income
exceeds 100,000 RMB per year into one group, and the rest
into another group.

For both datasets, all records are partitioned into training and test
sets with an 8:2 ratio. In our experiments, the educational fairness
performances of all methods is evaluated under each sensitive at-
tribute. Please note that FairWISA does not utilize sensitive attribute
information during the training process; instead, the sensitive at-
tribute information is only used to assess the fairness performance
during the evaluations.

C.2 Fairness Metrics
The fairness metrics 𝐸𝑂 [42], 𝑁𝐸𝑂 [62], and 𝐹𝐶𝐷 are introduced
as follows:
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a) Equal Opportunity (𝐸𝑂) [42]. It requires that the model has
equal true positive rates across the two sensitive subgroups.

𝐸𝑂 = |𝑃 (𝑦 = 1|𝑦 = 1, 𝑠 = 0) − 𝑃 (𝑦 = 1|𝑦 = 1, 𝑠 = 1) |, (19)

where 𝑠 is the sensitive attribute, 𝑦 is the label, and 𝑦 is the model’s
prediction. In cognitive diagnosis, it represents the difference in
the proportion of correctly predicted answers by the model in the
record of correct answers among different groups.

b) Negative Equal Opportunity (𝑁𝐸𝑂) [62]. It requires that the
true-negative rate is the same for s=0 samples as for s=1 samples,
which is calculated as follows:

𝑁𝐸𝑂 = |𝑃 (𝑦 = 0|𝑦 = 0, 𝑠 = 0) − 𝑃 (𝑦 = 0|𝑦 = 0, 𝑠 = 1) |. (20)

𝑁𝐸𝑂 represents the difference in the proportion of correctly pre-
dicted answers by the model in the record of incorrect answers
among different groups.

c) 𝐹𝐶𝐷 [18]. It requires that the CD model does not amplify
discrimination in the data, which is calculated as follows:

𝐹𝐶𝐷 =

(
1
|𝐴 |

∑︁
𝑖∈𝐴

𝑌𝑖 −
1
|𝐵 |

∑︁
𝑖∈𝐵

𝑌𝑖

)
−

(
1
|𝐴 |

∑︁
𝑖∈𝐴

𝑌𝑖 −
1
|𝐵 |

∑︁
𝑖∈𝐵

𝑌𝑖

)
, (21)

where |𝐴| ( |𝐵 |) is the number of learners in group𝐴(𝐵),𝑌 is the real
correctness rate of learner, and 𝑌 is the predicted correctness rate.
The closer 𝐹𝐶𝐷 is to 0, the less unfair bias the CD model amplifies
in the data.

C.3 Challenging Test
To evaluate the robustness of FairWISA , we devise a “Challenging
Test” scenario that assesses performance given distributional biases
between groups. In the “Challenging Test”, the fairness distribution
of the data differs from the data distribution during model training.
To ensure the reliability of the labels in the “Challenging Test”, the
interaction records are sampled from the real test data. Specifically,
we change the distribution of the test set so that the correlation
between the sensitive attributes and the labels is different from
that in the training set. For example, in the training set, the female
group may have higher correct rates, while the male group has
lower correct rates. To create the challenge test data, we sampled
the data so that the male and female groups in the test set had
equal true correct rates. Thus, the correlation between gender and
the labels no longer exists. We applied this strategy to all other
sensitive attributes, thereby creating the “Challenging Test”. This
controlled introduction of an extreme distributional shift allows
us to rigorously assess model robustness to divergent group-based
patterns between training and evaluation.

C.4 Additional Experimental Analysis
C.4.1 Pseudo-labels and sensitive attributes.This part analyzes the
relationship between sensitive attributes and pseudo-labels inferred
by FairWISA . In the setup, both pseudo-labels and sensitive at-
tribute labels are binary-valued to facilitate comparison. The label
accuracy in Fig. 5 is the metric to measure the correlation between
these two labels. It can be seen from Fig. 5 that the accuracy of
the pseudo-labels remains approximately 60% for each sensitive
attribute across both the PISA and SLP datasets. It indicates that the
pseudo-labels have captured sensitive attribute information to some
extent. As shown in Fig. 5, the label accuracy for a single sensitive
attribute is not very high, whereas the accuracy for “Mixture" is

(a) PISA (b) SLP

Figure 5: Label accuracy of sensitive group inference. “Mix-
ture” is the combination ofmultiple sensitive attributes. Take
Fig. 5(b) as example, Mixture = 0 means Gender = 0 and In-
come = 0, while Mixture = 1 means Gender = 1 and Income =
1.

(a) Gender (b) Income

Figure 6: Impact of groups number 𝒌.

higher. The reason is that the pseudo-labels are inferred from biases
in the global data, reflecting the combined validity of all sensitive
attributes rather than just a single one. For example, when the
learner’s attribute is “Gender=1, OECD=0", since the pseudo-label
can only be either 0 or 1, it is not possible to predict both sensitive
attributes correctly in this case.

Moreover, the results presented in Fig. 5 and Table 1 and Table
2 reveal that the label accuracy on a certain sensitive attribute
correlates with the level of fairness impact that attribute has on
the CD model. For instance, the label accuracy for “Gender" in Fig.
5(a) is the lowest, and “ESCS" is the highest. This aligns with the
corresponding fairness metric values for the IRT model in Table 1,
where “Gender" has the smallest value of 𝐸𝑂 (0.0435) and “ESCS"
has the largest value of 𝐸𝑂 (0.1122). This suggests that in the PISA
dataset, “ESCS" has a greater impact on the fairness bias compared
to “Gender", and thus FairWISA learns more bias about “ESCS".

Overall, the inferred pseudo-labels exhibit some correlation with
the sensitive attributes, but this correlation is not a direct one-to-
one correspondence due to the inherent complexity of the learners’
sensitive attributes.
C.4.2 Parameter analysis.We analyze the impact of the number of
groups 𝑘 and the fairness regularization weight 𝛼 on the perfor-
mance of FairWISA , using IRT as the backbone for experiments on
SLP.

Impact of groups number k. By varying the value of 𝑘 from 2
to 8, the performance of FairWISA in terms of accuracy and fairness
of sensitive attributes (“Gender",“Family Income") is observed. Fig.
6 shows that as 𝑘 increases, AUC, ACC, 𝐸𝑂 and 𝑁𝐸𝑂 gradually
increase. These observations suggest that a larger value of 𝑘 favors
higher accuracy for FairWISA , albeit at the expense of fairness.
This is because, with an increasing 𝑘 , the supervisory signal for
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Figure 7: Impact of the weight of fairness regularization 𝜶 .

inferring pseudo-labels weakens, leading to a less stringent fairness
regularization constraint, thereby impacting the fairness perfor-
mance of FairWISA . Concurrently, the accuracy is improved as

FairWISA focuses on improving the accuracy due to the reduction
of the fairness regularization weights.

Impact of fairness weight 𝜶 . The value of 𝛼 is varied from 5
to 100 to observe the performance of FairWISA in terms of accu-
racy and fairness of sensitive attributes (“Gender",“Family Income").
From Fig. 7, it can be seen that as 𝛼 increases, AUC and ACC gradu-
ally decrease, and 𝐸𝑂 and 𝑁𝐸𝑂 also have a slight decreasing trend.
This indicates that as 𝛼 increases, the fairness of FairWISA improves
while the accuracy decreases. This is because a larger 𝛼 increases
the weight of fairness regularization, which makes the FairWISA
focus more on fairness. Therefore, we assert that selecting an appro-
priate value for 𝛼 is crucial, as it determines a balance between the
accuracy and fairness performance of CD models, aligning them
with the specific requirements of real-world applications.
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