
Anticipation-free Training for Simultaneous Translation

Anonymous ACL submission

Abstract

Simultaneous translation (SimulMT) speeds up001
the translation process by starting to translate002
before the source sentence is completely avail-003
able. It is difficult due to limited context and004
word order difference between languages. Ex-005
isting methods increase latency or introduce006
adaptive read-write policies for SimulMT mod-007
els to handle local reordering and improve008
translation quality. However, the long-distance009
reordering would make the SimulMT models010
learn translation mistakenly. Specifically, the011
model may be forced to predict target tokens012
when the corresponding source tokens have not013
been read. This leads to aggressive anticipation014
during inference, resulting in the hallucination015
phenomenon. To mitigate this problem, we016
propose a new framework that decompose the017
translation process into the monotonic trans-018
lation step and the reordering step, and we019
model the latter by the auxiliary sorting net-020
work (ASN). The ASN rearranges the hidden021
states to match the order in the target language,022
so that the SimulMT model could learn to trans-023
late more reasonably. The entire model is opti-024
mized end-to-end and does not rely on external025
aligners or data. During inference, ASN is re-026
moved to achieve streaming. Experiments show027
the proposed framework could outperform pre-028
vious methods with less latency.1029

1 Introduction030

Simultaneous translation (SimulMT) is an exten-031

sion of neural machine translation (NMT), aiming032

to perform streaming translation by outputting the033

translation before the source input has ended. It034

is more applicable to real-world scenarios such as035

international conferences, where people could com-036

municate fluently without delay.037

However, SimulMT faces additional difficul-038

ties compared to full-sentence translation – such a039

model needs to translate with limited context, and040

1The source code is available. See Appendix A

Figure 1: Illustration of the training process. The trans-
lated output is rearranged to match the order of training
target, reducing anticipation. We use the gray part dur-
ing inference.

the different word order between languages would 041

make streaming models learn translation mistak- 042

enly. The problems can often be alleviated by in- 043

creasing the context. Using more context allows 044

the model to translate with more information, trad- 045

ing off speed for quality. But the word order could 046

be very different among languages. Increasing the 047

context could only solve the local reordering prob- 048

lem. If long-distance reordering exists in training 049

data, the model would be forced to predict tokens in 050

the target language when the corresponding source 051

tokens have not been read. this is called anticipa- 052

tion (Ma et al., 2019a). Ignoring the long-distance 053

reordering may cause unnecessarily high latency, 054

or encourage aggressive anticipation, resulting in 055

the hallucination phenomenon (Müller et al., 2020). 056

It sheds light on the importance of matching 057

the word order between the source and target lan- 058

guages. Existing methods aim to reduce antici- 059

pation by using syntax-based rules to rewrite the 060

translation target (He et al., 2015). It requires addi- 061

1

tional language-specific prior knowledge and con-062

stituent parse trees. Other approaches pre-train a063

full-sentence model, then incrementally feed the064

source sentence to it to generate monotonic transla-065

tion target (pseudo reference) (Chen et al., 2021b;066

Zhang et al., 2020). However, the full-sentence067

model was not trained to translate incrementally,068

which create a train-test mismatch, resulting in069

varying prediction quality. They require combining070

with the original data to be effective.071

To this end, this work aims to address long-072

distance reordering by incorporating it directly into073

the training process, as Figure 1 shows. We de-074

compose the typical translation process into the075

monotonic translation step and the reordering step.076

Inspired by the Gumbel-Sinkhorn network (Mena077

et al., 2018), we proposed an auxiliary sorting078

network (ASN) for the reordering step. During079

training, the ASN explicitly rearranges the hidden080

states to match the target language word order. The081

ASN will not be used during inference, so that the082

model could translate monotonically. The proposed083

method reduces anticipation, thus increases the lex-084

ical precision (He et al., 2015) of the model without085

compromising its speed. We apply the proposed086

framework to a simple model – a causal Trans-087

former encoder trained with connectionist tempo-088

ral classification (CTC) (Graves et al., 2006). The089

CTC loss can learn an adaptive policy (Chousa090

et al., 2019), which performs local reordering by091

predicting blank symbols until enough information092

is read, then write the information in the target or-093

der. Even so, it still suffers from high latency and094

under-translation due to long-distance reordering in095

training data. Our ASN handles these long-distance096

reordering, improving both the latency and the qual-097

ity of the CTC model. We conduct experiments on098

CWMT English to Chinese and WMT15 German099

to English translation datasets. Our contributions100

are summarized below:101

• We proposed a new framework for SimulMT.102

The ASN could apply on various causal mod-103

els to handle long-distance reordering.104

• Experiments showed that the proposed105

method could outperform the pseudo ref-106

erence method. It indicated the proposed107

method could better handle the long-distance108

reordering.109

• The proposed model is a causal encoder,110

which is parameter efficient and could out-111

perform wait-k Transformer with less latency.112

Our implementation is based on fairseq (Ott et al., 113

2019). The instructions to access our source code 114

is provided in Appendix A. 115

2 Related Works 116

2.1 Simultaneous Translation 117

SimulMT is first achieved by applying fixed read- 118

write policies on NMT models. Wait-if-worse and 119

Wait-if-diff (Cho and Esipova, 2016) form deci- 120

sions based on the next prediction’s probability or 121

its value. Static Read and Write (Dalvi et al., 2018) 122

first read several tokens, then repeatedly read and 123

write several tokens at a time. Wait-k (Ma et al., 124

2019a) trains end-to-end models for SimulMT. Its 125

policy is similar to Static Read and Write. 126

On the other hand, adaptive policies seek to 127

learn the read-write decisions. Some works ex- 128

plored training agents with reinforcement learning 129

(RL) (Gu et al., 2017; Luo et al., 2017). Others 130

design expert policies and apply imitation learn- 131

ing (IL) (Zheng et al., 2019a,b). Monotonic atten- 132

tion (Raffel et al., 2017) integrates the read-write 133

policy into the attention mechanism to jointly train 134

with NMT. MoChA (Chiu and Raffel, 2018) en- 135

hances monotonic attention by adding soft atten- 136

tion over a small window. MILk (Arivazhagan 137

et al., 2019) extends such window to the full en- 138

coder history. MMA (Ma et al., 2019b) extends 139

MILk to multi-head attention. Connectionist tem- 140

poral classification (CTC) were also explored for 141

adaptive policy by treating the blank symbol as 142

wait action (Chousa et al., 2019). Recently, making 143

read-write decisions based on segments of mean- 144

ingful unit (MU) (Zhang et al., 2020) improves the 145

translation quality. Besides, an adaptive policy can 146

also be derived from an ensemble of fixed-policy 147

models (Zheng et al., 2020). 148

When performing simultaneous interpretation, 149

humans avoid long-distance reordering whenever 150

possible (Al-Khanji et al., 2000; He et al., 2016). 151

Thus, some works seek to reduce the anticipation 152

in data to ease the training of simultaneous mod- 153

els. These include syntax-based rewriting (He 154

et al., 2015), or generating pseudo reference by 155

test-time wait-k (Chen et al., 2021b) and prefix- 156

attention (Zhang et al., 2020). We reduce anticipa- 157

tion from a different approach: instead of rewriting 158

the target, we let the model match its hidden states 159

to the target on its own. As shown in experiments, 160

our method is comparable or superior to the pseudo 161

reference method. 162

2

2.2 Gumbel-Sinkhorn Network163

The Sinkhorn Normalization (Adams and Zemel,164

2011) is an iterative procedure that converts a165

matrix into doubly stochastic form. It was ini-166

tially proposed to perform gradient-based rank167

learning. Gumbel-Sinkhorn Network (Mena et al.,168

2018) combines the Sinkhorn Normalization with169

the Gumbel reparametrization trick (Kingma and170

Welling, 2013). It approximates sampling from a171

distribution of permutation matrices. Subsequently,172

Sinkhorn Transformer (Tay et al., 2020) applied173

this method to the Transformer (Vaswani et al.,174

2017) to model long-distance dependency in lan-175

guage models with better memory efficiency. This176

work applies the Gumbel-Sinkhorn Network to177

model the reordering between languages, in order178

to reduce anticipation in SimulMT.179

3 Proposed Method180

For a source sentence x = ⟨x1, x2, ..., x|x|⟩ and181

a target sentence y = ⟨y1, y2, ..., y|y|⟩, in order182

to perform SimulMT, the conditional probability183

of translation p(y|x) is modeled by the prefix-to-184

prefix framework (Ma et al., 2019a). Formally,185

pg(y|x) =
|y|∏
t=1

p(yt|x≤g(t),y<t). (1)186

where g(t) is a monotonic non-decreasing function.187

This way, the t-th token ŷt can be predicted with a188

limited context x≤g(t). However, if long-distance189

reordering exists in the training data, the model is190

forced to generate target tokens whose correspond-191

ing source tokens have not been revealed yet. This192

issue is known as anticipation.193

3.1 Training Framework194

To overcome this, we introduce a latent variable Z:195

a permutation matrix capturing the reordering pro-196

cess from x to y. Thus, the translation probability197

can be expressed as a marginalization over Z:198

p(y|x) =
∑
Z

pg(y|x,Z)︸ ︷︷ ︸
monotonic
translation

p(Z|x)︸ ︷︷ ︸
reordering

. (2)199

During training, since Z captures reordering, the200

pg(y|x,Z) corresponds to monotonic translation,201

which can be correctly modeled by a prefix-to-202

prefix model without anticipation. During infer-203

ence, we can translate monotonically by simply204

removing the effect of Z: 205

ŷ = argmax
y

pg(y|x,Z = I). (3) 206

where I is the identity matrix. However, equation 2 207

is intractable due to the factorial search space of 208

permutations. One could select the most likely 209

permutation using an external aligner (Ran et al., 210

2021), but such a method requires an external tool, 211

and it could not be end-to-end optimized. Instead, 212

we use the ASN to learn the permutation matrix Z 213

associated with source-target reordering. By doing 214

this, the entire model is optimized end-to-end. 215

Figure 2 shows the proposed framework applied 216

on the CTC model. It is composed of a causal 217

Transformer encoder, an ASN, and a length pro- 218

jection network. We describe each component in 219

detail below. 220

3.2 Causal Encoder 221

The encoder maps the source sequence x to hidden 222

states H = ⟨h1, h2, ..., h|x|⟩. During training, the 223

encoder uses a causal attention mask so that it can 224

be streamed during inference. To enable the trade- 225

off between quality and latency, we introduce a 226

tunable delay in the causal attention mask of the 227

first encoder layer. We define the delay in a similar 228

sense to wait-k: For delay-k, the t-th hidden state 229

ht is computed after observing the (t+ k − 1)-th 230

source token. 231

We pre-train the encoder with CTC loss (Li- 232

bovickỳ and Helcl, 2018). Since the CTC is an 233

adaptive policy already capable of local reorder- 234

ing, initializing from it encourages the ASN to only 235

handle long-distance reordering. We study the ef- 236

fectiveness of this technique in Section 5.2. 237

3.3 Auxiliary Sorting Network (ASN) 238

The ASN samples a permutation matrix Z, which 239

would sort the encoder hidden states H into the 240

target order. To do so, the ASN first computes in- 241

termediate variables Q = ⟨q1, q2, ..., q|x|⟩ using a 242

stack of M non-causal Transformer decoder lay- 243

ers. These layers use the target token embeddings 244

as the context for cross attention. Providing this 245

context guides the reordering process2, inspired by 246

the word alignment task (Zhang and van Genabith, 247

2021; Chen et al., 2021a). We randomly mask out 248

2Although ASN has decoder layers and takes target tokens
as input, which are unavailable during inference, they are only
used to assist training.

3

(a) The model consists of a causal encoder (lower left, blue), an ASN (right,
orange), and a length projection network (upper left, blue).

(b) During inference, only the en-
coder and length projection (blue)
are used.

Figure 2: The architecture of the proposed model. Add & Norm layers are omitted for simplicity.

γ% of the context in ASN to avoid collapsing to a249

trivial solution.250

Subsequently, the Sinkhorn Attention in ASN251

computes the attention scores between Q and H252

using the scaled dot-product attention:253

A =
QHT

√
dh

, (4)254

where dh is the last dimension of H. To convert255

the attention scores A to a permutation matrix Z,256

ASN applies the Gumbel-Sinkhorn operator. Such257

operator approximates sampling from a distribu-258

tion of permutation matrices (Mena et al., 2018).259

It is described by first adding the Gumbel noise260

(equation 5), then scaling by a positive temperature261

τ , and finally applying the l-iteration Sinkhorn nor-262

malization (denoted by Sl(·)) (Adams and Zemel,263

2011). We also add a scaling factor δ to adjust the264

Gumbel noise level (equation 6). The output would265

be doubly stochastic (Sinkhorn, 1964), which is a266

relaxation of permutation matrix. We leave the de-267

tailed description of the Gumbel-Sinkhorn operator268

in Appendix F.269

E ∈ RN×N i.i.d.∼ Gumbel(0, 1), (5)270

Z = Sl ((A+ δE) /τ) , (6)271

Next, we use a matrix multiplication of Z and H272

to reorder H, the result is denoted by H:273

H = ZH (7)274

Since Z approximates a permutation matrix, us- 275

ing matrix multiplication is equivalent to permuting 276

the vectors in H. This preserves the content of its 277

individual vectors, and is essential to our method 278

as we will show in Section 5.1. 279

3.4 Length Projection 280

To optimize the model with CTC loss function, we 281

tackle the length mismatch between H and y by 282

projecting H to a µ-times longer sequence via an 283

affine transformation (Libovickỳ and Helcl, 2018). 284

The µ represents the upsample ratio. For ASN 285

to learn reordering effectively, it is required that 286

the projection network and the loss must not per- 287

form reordering. Our length projection is time- 288

independent, and CTC is monotonic, both satisfy 289

our requirement. 290

3.5 Inference Strategy 291

To enable streaming, we remove the ASN during 292

inference3 (Figure 2(b)). Specifically, when a new 293

input token xt arrives, the encoder computes the 294

hidden state ht, then we feed ht directly to the 295

length projection to predict the next token(s). The 296

prediction is post-processed by the CTC collapse 297

function in an online fashion. Namely, we only 298

output a new token if 1) it is not the blank symbol 299

and 2) it is different from the previous token. 300

3While this seemingly creates a train-test discrepancy, we
address this in FAQ

4

4 Experiments301

4.1 Datasets302

We conduct experiments on English-Chinese and303

German-English datasets. For En-Zh, we use a304

subset4 of CWMT (Chen and Zhang, 2019) par-305

allel corpora as training data (7M pairs). We use306

NJU-newsdev2018 as the development set and re-307

port results on CWMT2008, CWMT2009, and308

CWMT2011. The CWMT test sets have up to 3309

references. Thus we report the 3-reference BLEU310

score. For De-En, we use WMT15 (Bojar et al.,311

2015) parallel corpora as training data (4.5M pairs).312

We use newstest2013 as the development set and313

report results on newstest2015.314

We use SentencePiece (Kudo and Richardson,315

2018) on each language separately to obtain its316

vocabulary of 32K subword units. We filter out317

sentence pairs that have empty sentences or exceed318

1024 tokens in length.319

4.2 Experimental Setup320

All SimulMT models use causal encoders. During321

inference, the encoder states are computed incre-322

mentally after each read, similar to (Elbayad et al.,323

2020). The causal encoder models follow a simi-324

lar training process to non-autoregressive transla-325

tion (NAT) (Gu et al., 2018; Libovickỳ and Helcl,326

2018; Lee et al., 2018; Zhou et al., 2019). We327

adopt sequence level knowledge distillation (Seq-328

KD) (Kim and Rush, 2016) for all systems. The329

combination of Seq-KD and CTC loss has been330

shown to achieve state-of-the-art performance (Gu331

and Kong, 2020) and could deal with the reorder-332

ing problem (Chuang et al., 2021). Specifically, we333

first train a full-sentence model as a teacher model334

on the original dataset, then we use beam search335

with beam width 5 to decode the Seq-KD set. We336

use the Seq-KD set in subsequent experiments. We337

list the Transformer and ASN hyperparameters sep-338

arately in Appendix C and D.339

We use Adam (Kingma and Ba, 2014) with an340

inverse square root schedule for the optimizer. The341

max learning rate is 5e-4 with 4000 warm-up steps.342

We use gradient accumulation to achieve an effec-343

tive batch size of 128K tokens for the teacher model344

and 32K for others. We optimize the model with345

the 300K steps. Early stopping is applied when346

the validation BLEU does not improve within 25K347

steps. Label smoothing (Szegedy et al., 2016) with348

4We use casia2015, casict2011, casict2015, neu2017.

ϵls = 0.1 is applied on cross-entropy and CTC loss. 349

For CTC, this reduces excessive blank symbol pre- 350

dictions (Suyoun et al., 2017). Random seeds are 351

set in training scripts in our source code. For the 352

hardware information and environment settings, 353

see Appendix E. 354

For latency evaluation, we use SimulEval (Ma 355

et al., 2020a) to compute Average Lagging 356

(AL) (Ma et al., 2019a) and Computation Aware 357

Average Lagging (AL-CA) (Ma et al., 2020b). AL 358

is measured in words or characters, whereas AL- 359

CA is measured in milliseconds. We describe these 360

metrics in detail in Appendix G. For quality eval- 361

uation, we use BLEU (Papineni et al., 2002) cal- 362

culated by SacreBLEU (Post, 2018). We conduct 363

statistical significance test for BLEU using paired 364

bootstrap resampling (Koehn, 2004). For multiple 365

references, we use the first reference to run SimulE- 366

val5 and use all available references to run Sacre- 367

BLEU. The language-specific settings for SimulE- 368

val and SacreBLEU can respectively be found in 369

Appendix H and I. 370

4.3 Baselines 371

We compare our method with two target rewrite 372

methods which generate new datasets: 373

• Pseudo reference (Chen et al., 2021b): This 374

approach first trains a full-sentence model 375

and uses it to generate monotonic transla- 376

tion. The approach applies the test-time wait- 377

k policy (Ma et al., 2019a), and performs 378

beam search with beam width 5 to generate 379

pseudo references. The pseudo reference set 380

is the combination of original dataset and the 381

pseudo references. We made a few changes 1) 382

instead of the full-sentence model, we use the 383

wait-9 model6. 2) instead of creating a new 384

dataset for each k, we only use k = 9 since it 385

has the best quality. 386

• Reorder: We use the word alignments to re- 387

order the target sequence. We use awesome- 388

align (Dou and Neubig, 2021) to obtain word 389

alignments on the Seq-KD set, and we sort 390

the target tokens based on their corresponding 391

source tokens. Target tokens that did not align 392

to a source token are placed at the position 393

after their preceding target token. 394

5we use SimulEval for latency metrics only. Only one
reference is required to run it.

6our wait-9 model has higher training set BLEU score than
applying test-time wait-k on full-sentence model.

5

We train two types of models on either the Seq-KD395

set, the pseudo reference set or the reorder set:396

• wait-k: an encoder-decoder model. It uses397

a fixed policy that first reads k tokens, then398

repeatedly reads and writes a single token.399

• CTC: a causal encoder trained with CTC loss.400

The policy is adaptive, i.e., it outputs blank401

symbols until enough content is read, outputs402

the translated tokens, then repeats.403

4.4 Quantitative Results404

Figure 3 shows the latency-quality trade-off on the405

CWMT dataset, each node on a line represents a406

different value of k. Due to space limit, the signifi-407

cant test results are reported in Appendix J.408

First of all, although the vanilla CTC model has409

high latency in terms of AL, they are comparable410

to or faster than the wait-k model according to411

AL-CA. This is due to the reduced parameter size.412

Besides, CTC models outperform wait-k in low413

latency settings. The pseudo reference method im-414

proves the quality of wait-k and CTC models, and415

it slightly improves the latency of the CTC model.416

In contrast, the reorder method harms the perfor-417

mance of both models. Meanwhile, our method418

significantly improves both the quality and latency419

of the CTC model across all latency settings, out-420

performing the pseudo reference method and the421

reorder method. In particular, our k = 1, 3 models422

outperform wait-1 by around 13-15 BLEUs with a423

faster speed in terms of AL-CA. This shows that424

our models are more efficient than wait-k models425

under low latency regimes.426

Figure 4 shows the latency-quality trade-off on427

the WMT15 De-En dataset. The vanilla CTC428

model is much more competitive in De-En. It out-429

performs vanilla wait-k in low latency settings in430

BLEU and AL-CA, and its AL is much less than431

those in En-Zh. Our method improves the qual-432

ity of the CTC model, comparable to the pseudo433

reference method. However, our method does not434

require combining with the original dataset to im-435

prove the performance.436

To understand why our method is more effective437

on CWMT, we calculate the k-Anticipation Rate438

(k-AR) (Chen et al., 2021b) on the evaluation sets439

of both datasets. For the definition of k-AR, see Ap-440

pendix G. Intuitively, k-AR describes the amount441

of anticipation (or reordering) in the corpus whose442

range is longer than k source tokens. We report k-443

AR across 1 ≤ k ≤ 9 in Figure 5. En-Zh has much444

higher k-AR in general, and it decreases slower as 445

k increases. When k = 9, over 20% of anticipa- 446

tions remain in En-Zh, while almost none remains 447

in De-En. We conclude that En-Zh has much more 448

reordering, and over 20% of them are longer than 449

9 words. The abundance of long-distance reorder- 450

ing gives our method an advantage, which explains 451

the big improvement observed on CWMT. On the 452

other hand, De-En reordering is less common and 453

mostly local, so ASN has limited effect. Indeed, 454

we found that ASN predicts matrices close to the 455

identity matrix on De-En, whereas, on En-Zh, it 456

predicts non-identity matrices throughout training. 457

4.5 Qualitative Results 458

We show some examples from the CWMT test set. 459

We compare the predictions from wait-k, CTC, and 460

CTC+ASN models in Figure 6. In the first exam- 461

ple, wait-k predicts the sentence “demonstrative 462

is one of the major languages in the world’s lan- 463

guages,” which is clearly hallucination. CTC failed 464

to translate “8000” and “assets,” which shows that 465

CTC may under-translate and ignore source infor- 466

mation. In the second example, wait-k hallucinates 467

the sentence “this is the world’s best contest, but 468

to a earthquake without earthquake, it’s the open- 469

ing remarks.” CTC under-translates “silver said 470

in a telephone interview.” Our method generally 471

provides translation that preserves the content. Al- 472

though our model prediction is a bit less fluent than 473

wait-k, they are generally comprehensible. See 474

Appendix N for more examples. 475

We study the output of the ASN to verify that 476

reordering information is being learned. Figure 7 477

shows an example of the permutation matrix Z pre- 478

dicted by the ASN. The horizontal axis is labeled 479

with the source tokens. The vertical axis is the out- 480

put positions, each are labeled with 2 target tokens 481

(due to the length projection). In the example, the 482

English phrase “for all green hands” come late in 483

the source sentence, but their corresponding Chi- 484

nese tokens appear early in target, which causes 485

anticipation. Our ASN permutes the hidden states 486

of this phrase to early positions, so anticipation 487

no longer happens, and provides the correct train- 488

ing signal for the model. We provide additional 489

examples in Appendix M. 490

5 Ablation Study 491

We perform ablation studies on the CWMT dataset. 492

6

2 4 6 8 10
AL

25

30

35

40

45
BL

EU

30 40 50 60
AL-CA

25

30

35

40

45

BL
EU

wait-k
wait-k+Pseudo
wait-k+Reorder
CTC
CTC+Pseudo
CTC+Reorder
CTC+ASN (Ours)

Figure 3: Latency-quality trade off on the CWMT En-Zh dataset. Each line represents a system, and the 5 nodes
from left to right corresponds to k = 1, 3, 5, 7, 9. The figures share the legend.

30 40 50 60 70
AL-CA

20

22

24

26

28

30

BL
EU

wait-k
wait-k+Pseudo
wait-k+Reorder
CTC
CTC+Pseudo
CTC+Reorder
CTC+ASN (Ours)

Figure 4: Latency-quality trade off on the WMT15 De-
En dataset.

Figure 5: The k-anticipation rate computed on CWMT
En-Zh and WMT15 De-En development and test sets.

5.1 Gumbel-Sinkhorn Network493

We show that the Gumbel-Sinkhorn Network is494

crucial to our method. We train CTC+ASN models495

with k = 3 under the following settings:7496

• No temperature: Set the temperature τ to 1.497

• No noise: Set the Gumbel noise factor δ to 0.498

• Gumbel softmax: Replace Sinkhorn normal-499

ization with softmax.500

• Default: The Gumbel-Sinkhorn Network.501

7we do not use weight initialization in this subsection.

Table 1 shows the result of these settings. Without 502

low temperature, the ASN output Z is not sparse, 503

which means the content of individual vectors in H 504

is not preserved after applying ASN. Because ASN 505

is removed during inference, this creates a train- 506

test mismatch for the projection network, which is 507

detrimental to the prediction quality ((a) v.s. (d)). 508

Removing the noise ignores the sampling process, 509

which hurts the robustness of the model ((b) v.s. 510

(d)). Using softmax instead of Sinkhorn normaliza- 511

tion makes Z not doubly stochastic, which means 512

H might not cover every vector in H. Those not 513

covered are not optimized for generation during 514

training. However, during inference, all vectors 515

in H are passed to length projection to generate 516

tokens. This mismatch is also harmful to the result 517

((c) v.s. (d)). 518

Settings BLEU(↑)

(a) No temperature 28.39
(b) No noise 27.88
(c) Gumbel softmax 36.54
(d) Default 38.92

Table 1: Test set BLEU scores of different settings.

5.2 Weight Initialization 519

We investigate the effectiveness of initializing en- 520

coder parameters from the CTC baseline model. 521

Specifically, we train the CTC+ASN model from 522

scratch to compare it with the weight initialized set- 523

ting. As Figure 8 reveals, the weight initialization 524

significantly improves the translation quality while 525

slightly increasing the latency. 526

This improvement comes from what was already 527

learned by the CTC baseline model. The CTC 528

baseline model learns to perform reordering, i.e., it 529

7

Figure 6: Examples from CWMT En→Zh. Text in red are hallucinations unrelated to source. We use k = 3 models.

Figure 7: The Z predicted by ASN. The horizontal axis
is the source tokens. The vertical axis is the output
positions, each corresponds to 2 target tokens.

outputs blank symbols when reading the informa-530

tion, then outputs the content in the target language531

order. Such information might span several source532

tokens, so the AL of the CTC baseline model is533

high (Figure 3). In our weight initialized setting,534

ASN handles the long-distance reordering that CTC535

was struggling with, while the local reordering al-536

ready learned by CTC is preserved. In contrast,537

when trained from scratch, ASN would learn most538

of the reordering, so the encoder would not learn539

to perform local reordering. We hypothesize that540

if the model performs local reordering during in-541

ference, its latency might increase, but the higher542

order n-grams precision can improve, which ben-543

efits its quality. Indeed, Figure 9 indicates that544

the weight initialization mostly improves the 2,3,4-545

Figure 8: Latency and quality comparison between the
model trained from scratch and one with weight initial-
ization.

Figure 9: The n-gram precision improvement of weight
initialization compared to Scratch across different de-
lays (k).

gram precision of the BLEU score. 546

6 Conclusion 547

We proposed a framework to alleviate the impact 548

of long-distance reordering on simultaneous trans- 549

lation. We apply our method to the CTC model and 550

show that it improves the translation quality and 551

latency, especially English to Chinese translation. 552

We verified that the ASN indeed learns the correct 553

alignment between source and target. Besides, we 554

showed that a single encoder can perform simulta- 555

neous translation with competitive quality in low 556

latency settings and enjoys the speed advantage 557

over wait-k Transformer. 558

8

References559

Ryan Prescott Adams and Richard S Zemel. 2011.560
Ranking via sinkhorn propagation. arXiv preprint561
arXiv:1106.1925.562

Raja Al-Khanji, Said El-Shiyab, and Riyadh Hussein.563
2000. On the use of compensatory strategies in si-564
multaneous interpretation. Meta: Journal des traduc-565
teurs/Meta: Translators’ Journal, 45(3):548–557.566

Naveen Arivazhagan, Colin Cherry, Wolfgang567
Macherey, Chung-Cheng Chiu, Semih Yavuz, Ruom-568
ing Pang, Wei Li, and Colin Raffel. 2019. Monotonic569
infinite lookback attention for simultaneous machine570
translation. In Proceedings of the 57th Annual571
Meeting of the Association for Computational572
Linguistics, pages 1313–1323.573

Lukas Biewald. 2020. Experiment tracking with574
weights and biases. Software available from575
wandb.com.576

Ond rej Bojar, Rajen Chatterjee, Christian Federmann,577
Barry Haddow, Matthias Huck, Chris Hokamp,578
Philipp Koehn, Varvara Logacheva, Christof Monz,579
Matteo Negri, Matt Post, Carolina Scarton, Lucia580
Specia, and Marco Turchi. 2015. Findings of the581
2015 workshop on statistical machine translation. In582
Proceedings of the Tenth Workshop on Statistical583
Machine Translation, pages 1–46, Lisbon, Portugal.584
Association for Computational Linguistics.585

Chi Chen, Maosong Sun, and Yang Liu. 2021a. Mask-586
align: Self-supervised neural word alignment. In587
Proceedings of the 59th Annual Meeting of the Asso-588
ciation for Computational Linguistics and the 11th589
International Joint Conference on Natural Language590
Processing (Volume 1: Long Papers), pages 4781–591
4791, Online. Association for Computational Lin-592
guistics.593

Jiajun Chen and Jiajun Zhang. 2019. Machine Transla-594
tion: 14th China Workshop, CWMT 2018, Wuyishan,595
China, October 25-26, 2018, Proceedings, volume596
954. Springer.597

Junkun Chen, Renjie Zheng, Atsuhito Kita, Mingbo Ma,598
and Liang Huang. 2021b. Improving simultaneous599
translation by incorporating pseudo-references with600
fewer reorderings. In Proceedings of the 2021 Con-601
ference on Empirical Methods in Natural Language602
Processing, pages 5857–5864.603

Chung-Cheng Chiu and Colin Raffel. 2018. Monotonic604
chunkwise attention. In International Conference on605
Learning Representations.606

Kyunghyun Cho and Masha Esipova. 2016. Can neu-607
ral machine translation do simultaneous translation?608
arXiv preprint arXiv:1606.02012.609

Katsuki Chousa, Katsuhito Sudoh, and Satoshi Naka-610
mura. 2019. Simultaneous neural machine transla-611
tion using connectionist temporal classification.612

Shun-Po Chuang, Yung-Sung Chuang, Chih-Chiang 613
Chang, and Hung-yi Lee. 2021. Investigating the re- 614
ordering capability in CTC-based non-autoregressive 615
end-to-end speech translation. In Findings of the 616
Association for Computational Linguistics: ACL- 617
IJCNLP 2021, pages 1068–1077, Online. Association 618
for Computational Linguistics. 619

Fahim Dalvi, Nadir Durrani, Hassan Sajjad, and Stephan 620
Vogel. 2018. Incremental decoding and training 621
methods for simultaneous translation in neural ma- 622
chine translation. In NAACL-HLT (2). 623

Zi-Yi Dou and Graham Neubig. 2021. Word alignment 624
by fine-tuning embeddings on parallel corpora. In 625
Conference of the European Chapter of the Associa- 626
tion for Computational Linguistics (EACL). 627

Maha Elbayad, Laurent Besacier, and Jakob Verbeek. 628
2020. Efficient Wait-k Models for Simultaneous Ma- 629
chine Translation. In Proc. Interspeech 2020, pages 630
1461–1465. 631

Alex Graves, Santiago Fernández, Faustino Gomez, and 632
Jürgen Schmidhuber. 2006. Connectionist temporal 633
classification: labelling unsegmented sequence data 634
with recurrent neural networks. In Proceedings of the 635
23rd international conference on Machine learning, 636
pages 369–376. 637

Jiatao Gu, James Bradbury, Caiming Xiong, Victor OK 638
Li, and Richard Socher. 2018. Non-autoregressive 639
neural machine translation. In International Confer- 640
ence on Learning Representations. 641

Jiatao Gu and Xiang Kong. 2020. Fully non- 642
autoregressive neural machine translation: Tricks of 643
the trade. arXiv preprint arXiv:2012.15833. 644

Jiatao Gu, Graham Neubig, Kyunghyun Cho, and Vic- 645
tor OK Li. 2017. Learning to translate in real-time 646
with neural machine translation. In Proceedings of 647
the 15th Conference of the European Chapter of the 648
Association for Computational Linguistics: Volume 649
1, Long Papers, pages 1053–1062. 650

He He, Jordan Boyd-Graber, and Hal Daumé III. 2016. 651
Interpretese vs. translationese: The uniqueness of 652
human strategies in simultaneous interpretation. In 653
Proceedings of the 2016 Conference of the North 654
American Chapter of the Association for Computa- 655
tional Linguistics: Human Language Technologies, 656
pages 971–976. 657

He He, Alvin Grissom II, John Morgan, Jordan Boyd- 658
Graber, and Hal Daumé III. 2015. Syntax-based 659
rewriting for simultaneous machine translation. In 660
Proceedings of the 2015 Conference on Empirical 661
Methods in Natural Language Processing, pages 55– 662
64. 663

Yoon Kim and Alexander M Rush. 2016. Sequence- 664
level knowledge distillation. In EMNLP. 665

Diederik P Kingma and Jimmy Ba. 2014. Adam: A 666
method for stochastic optimization. arXiv preprint 667
arXiv:1412.6980. 668

9

https://www.wandb.com/
https://www.wandb.com/
https://www.wandb.com/
http://aclweb.org/anthology/W15-3001
http://aclweb.org/anthology/W15-3001
http://aclweb.org/anthology/W15-3001
https://doi.org/10.18653/v1/2021.acl-long.369
https://doi.org/10.18653/v1/2021.acl-long.369
https://doi.org/10.18653/v1/2021.acl-long.369
http://arxiv.org/abs/1911.11933
http://arxiv.org/abs/1911.11933
http://arxiv.org/abs/1911.11933
https://doi.org/10.18653/v1/2021.findings-acl.92
https://doi.org/10.18653/v1/2021.findings-acl.92
https://doi.org/10.18653/v1/2021.findings-acl.92
https://doi.org/10.18653/v1/2021.findings-acl.92
https://doi.org/10.18653/v1/2021.findings-acl.92
https://doi.org/10.21437/Interspeech.2020-1241
https://doi.org/10.21437/Interspeech.2020-1241
https://doi.org/10.21437/Interspeech.2020-1241

Diederik P Kingma and Max Welling. 2013. Auto-669
encoding variational bayes. arXiv preprint670
arXiv:1312.6114.671

Philipp Koehn. 2004. Statistical significance tests for672
machine translation evaluation. In Proceedings of673
the 2004 conference on empirical methods in natural674
language processing, pages 388–395.675

Taku Kudo and John Richardson. 2018. Sentencepiece:676
A simple and language independent subword tok-677
enizer and detokenizer for neural text processing. In678
Proceedings of the 2018 Conference on Empirical679
Methods in Natural Language Processing: System680
Demonstrations, pages 66–71.681

Jason Lee, Elman Mansimov, and Kyunghyun Cho.682
2018. Deterministic non-autoregressive neural se-683
quence modeling by iterative refinement. In Proceed-684
ings of the 2018 Conference on Empirical Methods685
in Natural Language Processing, pages 1173–1182.686

Jindřich Libovickỳ and Jindřich Helcl. 2018. End-to-687
end non-autoregressive neural machine translation688
with connectionist temporal classification. In 2018689
Conference on Empirical Methods in Natural Lan-690
guage Processing, pages 3016–3021. Association for691
Computational Linguistics.692

Yuping Luo, Chung-Cheng Chiu, Navdeep Jaitly, and693
Ilya Sutskever. 2017. Learning online alignments694
with continuous rewards policy gradient. In 2017695
IEEE International Conference on Acoustics, Speech696
and Signal Processing (ICASSP), pages 2801–2805.697
IEEE.698

Mingbo Ma, Liang Huang, Hao Xiong, Renjie Zheng,699
Kaibo Liu, Baigong Zheng, Chuanqiang Zhang,700
Zhongjun He, Hairong Liu, Xing Li, et al. 2019a.701
Stacl: Simultaneous translation with implicit antici-702
pation and controllable latency using prefix-to-prefix703
framework. In Proceedings of the 57th Annual Meet-704
ing of the Association for Computational Linguistics,705
pages 3025–3036.706

Xutai Ma, Mohammad Javad Dousti, Changhan Wang,707
Jiatao Gu, and Juan Pino. 2020a. Simuleval: An708
evaluation toolkit for simultaneous translation. In709
Proceedings of the 2020 Conference on Empirical710
Methods in Natural Language Processing: System711
Demonstrations, pages 144–150.712

Xutai Ma, Juan Pino, and Philipp Koehn. 2020b.713
Simulmt to simulst: Adapting simultaneous text714
translation to end-to-end simultaneous speech trans-715
lation. In Proceedings of the 1st Conference of the716
Asia-Pacific Chapter of the Association for Compu-717
tational Linguistics and the 10th International Joint718
Conference on Natural Language Processing, pages719
582–587.720

Xutai Ma, Juan Miguel Pino, James Cross, Liezl Pu-721
zon, and Jiatao Gu. 2019b. Monotonic multihead722
attention. In International Conference on Learning723
Representations.724

Gonzalo Mena, David Belanger, Scott Linderman, and 725
Jasper Snoek. 2018. Learning latent permutations 726
with gumbel-sinkhorn networks. In International 727
Conference on Learning Representations. 728

Mathias Müller, Annette Rios Gonzales, and Rico Sen- 729
nrich. 2020. Domain robustness in neural machine 730
translation. In Proceedings of the 14th Conference 731
of the Association for Machine Translation in the 732
Americas (AMTA 2020), pages 151–164. 733

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, 734
Sam Gross, Nathan Ng, David Grangier, and Michael 735
Auli. 2019. fairseq: A fast, extensible toolkit for 736
sequence modeling. In Proceedings of the 2019 Con- 737
ference of the North American Chapter of the Associa- 738
tion for Computational Linguistics (Demonstrations), 739
pages 48–53. 740

Kishore Papineni, Salim Roukos, Todd Ward, and Wei- 741
Jing Zhu. 2002. Bleu: a method for automatic evalu- 742
ation of machine translation. In Proceedings of the 743
40th annual meeting of the Association for Computa- 744
tional Linguistics, pages 311–318. 745

Maja Popović. 2015. chrf: character n-gram f-score for 746
automatic mt evaluation. In Proceedings of the Tenth 747
Workshop on Statistical Machine Translation, pages 748
392–395. 749

Maja Popović. 2016. chrf deconstructed: beta param- 750
eters and n-gram weights. In Proceedings of the 751
First Conference on Machine Translation: Volume 2, 752
Shared Task Papers, pages 499–504. 753

Matt Post. 2018. A call for clarity in reporting BLEU 754
scores. In Proceedings of the Third Conference on 755
Machine Translation: Research Papers, pages 186– 756
191, Belgium, Brussels. Association for Computa- 757
tional Linguistics. 758

Colin Raffel, Minh-Thang Luong, Peter J Liu, Ron J 759
Weiss, and Douglas Eck. 2017. Online and linear- 760
time attention by enforcing monotonic alignments. 761
In International Conference on Machine Learning, 762
pages 2837–2846. PMLR. 763

Qiu Ran, Yankai Lin, Peng Li, and Jie Zhou. 2021. 764
Guiding non-autoregressive neural machine transla- 765
tion decoding with reordering information. Proceed- 766
ings of the AAAI Conference on Artificial Intelligence, 767
35(15):13727–13735. 768

Richard Sinkhorn. 1964. A relationship between arbi- 769
trary positive matrices and doubly stochastic matri- 770
ces. The annals of mathematical statistics, 35(2):876– 771
879. 772

Kim Suyoun, L Seltzer Michael, Jinyu Li, and Rui 773
Zhao. 2017. Improved training for online end-to-end 774
speech recognition systems. In INTERSPEECH. 775

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, 776
Jon Shlens, and Zbigniew Wojna. 2016. Rethinking 777
the inception architecture for computer vision. In 778
Proceedings of the IEEE conference on computer 779
vision and pattern recognition, pages 2818–2826. 780

10

https://www.aclweb.org/anthology/W18-6319
https://www.aclweb.org/anthology/W18-6319
https://www.aclweb.org/anthology/W18-6319
https://ojs.aaai.org/index.php/AAAI/article/view/17618
https://ojs.aaai.org/index.php/AAAI/article/view/17618
https://ojs.aaai.org/index.php/AAAI/article/view/17618

Yi Tay, Dara Bahri, Liu Yang, Donald Metzler, and781
Da-Cheng Juan. 2020. Sparse sinkhorn attention.782
In International Conference on Machine Learning,783
pages 9438–9447. PMLR.784

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob785
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz786
Kaiser, and Illia Polosukhin. 2017. Attention is all787
you need. In Advances in neural information pro-788
cessing systems, pages 5998–6008.789

Jingyi Zhang and Josef van Genabith. 2021. A bidirec-790
tional transformer based alignment model for unsu-791
pervised word alignment. In Proceedings of the 59th792
Annual Meeting of the Association for Computational793
Linguistics and the 11th International Joint Confer-794
ence on Natural Language Processing (Volume 1:795
Long Papers), pages 283–292, Online. Association796
for Computational Linguistics.797

Ruiqing Zhang, Chuanqiang Zhang, Zhongjun He, Hua798
Wu, and Haifeng Wang. 2020. Learning adaptive799
segmentation policy for simultaneous translation. In800
Proceedings of the 2020 Conference on Empirical801
Methods in Natural Language Processing (EMNLP),802
pages 2280–2289.803

Baigong Zheng, Kaibo Liu, Renjie Zheng, Mingbo Ma,804
Hairong Liu, and Liang Huang. 2020. Simultane-805
ous translation policies: From fixed to adaptive. In806
Proceedings of the 58th Annual Meeting of the Asso-807
ciation for Computational Linguistics, pages 2847–808
2853, Online. Association for Computational Lin-809
guistics.810

Baigong Zheng, Renjie Zheng, Mingbo Ma, and Liang811
Huang. 2019a. Simpler and faster learning of adap-812
tive policies for simultaneous translation. In Proceed-813
ings of the 2019 Conference on Empirical Methods814
in Natural Language Processing and the 9th Inter-815
national Joint Conference on Natural Language Pro-816
cessing (EMNLP-IJCNLP), pages 1349–1354.817

Baigong Zheng, Renjie Zheng, Mingbo Ma, and Liang818
Huang. 2019b. Simultaneous translation with flexi-819
ble policy via restricted imitation learning. In Pro-820
ceedings of the 57th Annual Meeting of the Asso-821
ciation for Computational Linguistics, pages 5816–822
5822.823

Chunting Zhou, Jiatao Gu, and Graham Neubig.824
2019. Understanding knowledge distillation in non-825
autoregressive machine translation. In International826
Conference on Learning Representations.827

11

https://doi.org/10.18653/v1/2021.acl-long.24
https://doi.org/10.18653/v1/2021.acl-long.24
https://doi.org/10.18653/v1/2021.acl-long.24
https://doi.org/10.18653/v1/2021.acl-long.24
https://doi.org/10.18653/v1/2021.acl-long.24
https://doi.org/10.18653/v1/2020.acl-main.254
https://doi.org/10.18653/v1/2020.acl-main.254
https://doi.org/10.18653/v1/2020.acl-main.254

A Source Code828

Our source code is available on Anonymous Github829

at https://anonymous.4open.science/830

r/sinkhorn-simultrans, and will be made831

publicly available on Github upon acceptance.832

Please follow the instructions in README.md to833

reproduce the results.834

B Datasets835

We use the CWMT English to Chinese836

and WMT15 German to English datasets837

for experiments. They can be down-838

loaded in the following links: 1) CWMT839

http://nlp.nju.edu.cn/cwmt-wmt/)840

2) WMT15 http://www.statmt.org/841

wmt15/translation-task.html. The842

WMT15 De-En is a widely used corpus for843

simultaneous machine translation, in the news844

domain. Another popular dataset is the NIST845

En-Zh corpus, however, NIST is not publicly846

available, thus we use CWMT corpus instead.847

CWMT is also in the news domain.848

Both datasets are publicly available. We didn’t849

find any license information for both. We adhered850

to the terms of use for both. We didn’t find any851

information on names or uniquely identified indi-852

vidual people or offensive content and the steps853

taken to protect or anonymize them.854

C Transformer Hyperparameters855

Our architecture related hyperparameters are listed856

in Table 2. We follow the base configuration of857

Transformer for encoder-decoder models. For mod-858

els without decoder, we follow the same configura-859

tion for its encoder. The total parameter count for860

Transformer is 76.9M. For encoder-only models861

without ASN, it is 52.2M. The ASN has 12.6M862

parameters.863

Hyperparameter (A) (B)

encoder layers 6 6
decoder layers 6 0

embed dim 512 512
feed forward dim 2048 2048

num heads 8 8
dropout 0.1 0.1

Table 2: Transformer architecture related hyperparame-
ters for each model. (A) full-sentence and wait-k model
(B) CTC encoder model.

D ASN Hyperparameters 864

We perform a Bayesian hyperparameter optimiza- 865

tion on both datasets using the sweep utility pro- 866

vided by Weights & Biases (Biewald, 2020). Ta- 867

ble 3 shows the search range and the selected val- 868

ues. We found a well performing set in the 7th run 869

for CWMT and 1st run for WMT15. It is possi- 870

ble that different k might prefer different hyperpa- 871

rameters. However, we use the same set to fairly 872

compare to wait-k, and to reduce the cost. All sub- 873

sequent results are obtained using this set of values 874

if not specified. 875

Hyperparameter CWMT WMT15 Range

layers M 3 3 1, 3
iterations l 16 16 4, 8, 16

temperature τ 0.25 0.13 [0.05, 0.3]
noise factor δ 0.3 0.45 [0.1, 0.3]

upsample ratio µ 2 2 2, 3
mask ratio γ 0.5 0.5 [0., 0.7]

Table 3: ASN related hyperparameters and the search
range. We use Bayesian hyperparameter optimization,
so the combinations are not exhaustively searched.

E Hardware and Environment 876

For training, each run are conducted on a container 877

with a single Tesla V100-SXM2-32GB GPU, 4 878

CPU cores and 90GB memory. The operating 879

system is Linux-3.10.0-1127.el7.x86_ 880

64-x86_64-with-glibc2.10. The version 881

of Python is 3.8.10, and version of PyTorch is 882

1.9.0. We use a specific version of fairseq (Ott 883

et al., 2019) toolkit, the instructions are provided 884

in README.md of our source code. All run uses 885

mixed precision (i.e. fp16) training implemented 886

by fairseq. All training took 10-15 hours to con- 887

verge (early stopped). 888

For inference, the evaluation are conducted on 889

another machine with 12 CPU cores (although we 890

restrict the evaluation to only use 2 threads), 32GB 891

memory and no GPU is used. The operating sys- 892

tem is Linux-5.11.0-25-generic-x86_ 893

64-with-glibc2.10. 894

F Gumbel-Sinkhorn Operator 895

The Sinkhorn normalization (Adams and Zemel, 896

2011) iteratively performs row-wise and column- 897

wise normalization on a matrix, converting it to a 898

12

https://anonymous.4open.science/r/sinkhorn-simultrans
https://anonymous.4open.science/r/sinkhorn-simultrans
https://anonymous.4open.science/r/sinkhorn-simultrans
http://nlp.nju.edu.cn/cwmt-wmt/
http://www.statmt.org/wmt15/translation-task.html
http://www.statmt.org/wmt15/translation-task.html
http://www.statmt.org/wmt15/translation-task.html
Linux-3.10.0-1127.el7.x86_64-x86_64-with-glibc2.10
Linux-3.10.0-1127.el7.x86_64-x86_64-with-glibc2.10
Linux-3.10.0-1127.el7.x86_64-x86_64-with-glibc2.10
Linux-5.11.0-25-generic-x86_64-with-glibc2.10
Linux-5.11.0-25-generic-x86_64-with-glibc2.10
Linux-5.11.0-25-generic-x86_64-with-glibc2.10

doubly stochastic matrix. Formally, for a N dimen-899

sional square matrix X ∈ RN×N , the Sinkhorn900

normalization S(X) is defined as:901

S0(X) = exp(X), (8)902

Sl(X) = Tc
(
Tr

(
Sl−1(X)

))
, (9)903

S(X) = lim
l→∞

Sl(X). (10)904

where Tr and Tc are row-wise and column-wise905

normalization operators on a matrix, defined below:906

Tr(X) = X ⊘ (X1N1⊤N), (11)907

Tc(X) = X ⊘ (1N1⊤NX). (12)908

The ⊘ denotes the element-wise division, and 1N909

denotes a column vector full of ones. As the910

number of iterations l grows, Sl(X) will eventu-911

ally converge to a doubly stochastic matrix (equa-912

tion 10) (Sinkhorn, 1964). In practice, we often913

consider the truncated version, where l is finite.914

On the other hand, the Gumbel-Sinkhorn915

operator adds the Gumbel reparametrization916

trick (Kingma and Welling, 2013) to the Sinkhorn917

normalization, in order to approximate the sam-918

pling process. It can be used to estimate marginal919

probability via sampling. Formally, suppose that920

a noise matrix ε is sampled from independent and921

identically distributed (i.i.d.) Gumbel distributions:922

923

E ∈ RN×N i.i.d.∼ Gumbel(0, 1). (13)924

The Gumbel-Sinkhorn operator is described by925

first adding the Gumbel noise E , then scaling by926

a positive temperature τ , and finally applying the927

Sinkhorn normalization:928

S((X + E)/τ). (14)929

By taking the limit τ → 0+, the output converges930

to a permutation matrix. The Gumbel-Sinkhorn931

operator approximates sampling from a distribution932

of permutation matrices. Thus, the equation 2 can933

be estimated through sampling:934

p(y|x) = EZ∼p(Z|x) [pg(y|x,Z)] . (15)935

In practice, we sample from p(Z|x,y) instead, as936

it is easier to perform word alignment (p(Z|x,y))937

than directly predicting order (p(Z|x)).938

G Details on Evaluation Metrics 939

G.1 Average Lagging (AL) 940

The AL measures the degree the user is out of sync
with the speaker (Ma et al., 2019a). It measures
the system’s lagging behind an oracle wait-0 policy.
For a read-write policy g(·), define the cut-off step
τg(|x|) as the decoding step when source sentence
finishes:

τg(|x|) = min{t| g(t) = |x|}

Then the AL for an example x,y is defined as:

ALg(x,y) =
1

τg(|x|)

τg(|x|)∑
t=1

g(t)− t− 1

|y|/|x|

The second term in the summation represents the 941

ideal latency of an oracle wait-0 policy in terms of 942

target words (or characters for Chinese). The AL 943

averaged across the test set is reported. 944

G.2 Computation Aware Average Lagging 945

(AL-CA) 946

Originally proposed for simultaneous speech-to- 947

text translation (Ma et al., 2020b), the AL-CA is 948

similar to AL, but takes the actual computation 949

time into account, and is measured in milliseconds. 950

ALCA
g (x,y) 951

=
1

τg(|x|)

τg(|x|)∑
i=1

dCA(yi)−
(i− 1) · Ts

|y|/|x|
(16) 952

The dCA(yi) is the the time that elapses from the 953

beginning of the process to the prediction of yi, 954

which considers computation. Ts represents the 955

actual duration of each source feature. The second 956

term in the summation represents the ideal latency 957

of an oracle wait-0 policy in terms of milliseconds, 958

without considering computation. In speech-to- 959

text translation, Ts corresponds to the duration of 960

each speech feature. However, since our source 961

feature is text, the “actual duration” for a word is 962

unavailable, so we set Ts = 1. 963

The motivation behind using AL-CA here is to 964

show the speed advantage of CTC models. When 965

calculating AL-CA, we account for variance by 966

running the evaluation 3 times and report the aver- 967

age. 968

13

G.3 Character n-gram F-score (chrF)969

The general formula for the chrF score is given by:970

971

chrFβ = (1 + β2)
chrP · chrR

β2 · chrP + chrR
. (17)972

where973

• chrP: percentage of character n-grams in the974

hypothesis which have a counterpart in the975

reference.976

• chrR: percentage of character n-grams in the977

reference which are also present in the hypoth-978

esis.979

• β: a parameter which assigns β times more980

importance to recall than to precision.981

The maximum n-gram length N is optimal when982

N = 6 (Popović, 2015), and the optimal β is shown983

to be β = 2 (Popović, 2016).984

The motivation behind using chrF2 is that 1) as985

machine translation researchers, we are encouraged986

to report multiple automatic evaluation metrics. 2)987

BLEU is purely precision-based, while chrF2 is988

F-score based, which takes recall into account. 3)989

chrF2 is shown to correlate better with human rank-990

ings than the BLEU score.991

G.4 k-Anticipation Rate (k-AR)992

For each sentence pair, we first use awesome-993

align (Dou and Neubig, 2021) to extract word994

alignments, then for each aligned target word yj ,995

it is considered a k-anticipation if it is aligned to996

a source word xi that is k words behind, in other997

words, if i − k + 1 > j. See Figure 10 for an ex-998

ample of 2-anticipation. The k-AR is calculated as999

the percentage of k-anticipation among all aligned1000

word pairs.1001

Figure 10: An example of 2-anticipation. The links are
alignments, and the red link is an instance of anticipa-
tion.

H SimulEval Configuration 1002

Table 4 show the language specific options for la- 1003

tency evaluation on SimulEval, which affect the 1004

AL calculation. 1005

Options En Zh

–eval-latency-unit word char

–no-space false true

Table 4: Configuration for SimulEval under different
target languages.

I SacreBLEU Signatures 1006

Table 5 shows the signatures of SacreBLEU evalu- 1007

ation.

Lang Metric Signature

Zh BLEU
nrefs:var|bs:1000|seed:12345

|case:lc|eff:no|tok:zh
|smooth:exp|version:2.0.0

Zh chrF2
nrefs:var|bs:1000|seed:12345

|case:lc|eff:yes|nc:6 |nw:0
|space:no|version:2.0.0

En BLEU
nrefs:1|bs:1000|seed:12345

|case:lc|eff:no|tok:13a
|smooth:exp|version:2.0.0

En chrF2
nrefs:1|bs:1000|seed:12345
|case:lc|eff:yes|nc:6 |nw:0

|space:no|version:2.0.0

Table 5: The SacreBLEU signatures for each target
language and each metric.

1008

J Detailed Statistics of Quality Metrics 1009

Table 7 shows the detailed distributional statistics 1010

of the quality metrics evaluated on the CWMT and 1011

WMT15 datasets. All settings are trained once, but 1012

we use statistical significant test using bootstrap 1013

resampling. 1014

K Latency-quality results with chrF 1015

Figure 11 show the quality-latency trade off with 1016

chrF on the CWMT En-zh dataset. Figure 12 1017

show the quality-latency trade off with chrF on 1018

the WMT15 De-En dataset. These results have 1019

similar trends with BLEU score. 1020

14

2 4 6 8 10
AL

20.0

22.5

25.0

27.5

30.0

32.5
ch

rF
2

30 40 50 60
AL-CA

20.0

22.5

25.0

27.5

30.0

32.5

ch
rF

2

wait-k
wait-k+Pseudo
wait-k+Reorder
CTC
CTC+Pseudo
CTC+Reorder
CTC+ASN (Ours)

Figure 11: Latency-quality trade off with chrF score on the CWMT En-Zh dataset. Each line represents a system,
and the 5 nodes corresponds to k = 1, 3, 5, 7, 9, from left to right. The figures share the same legend.

2 3 4 5 6 7 8
AL

48

50

52

54

56

ch
rF

2

30 40 50 60 70
AL-CA

48

50

52

54

56

ch
rF

2

wait-k
wait-k+Pseudo
wait-k+Reorder
CTC
CTC+Pseudo
CTC+Reorder
CTC+ASN (Ours)

Figure 12: Latency-quality trade off with chrF score on the WMT15 De-En dataset. Each line represents a system,
and the 5 nodes corresponds to k = 1, 3, 5, 7, 9, from left to right. The figures share the same legend.

L Performance with Oracle Reordering1021

We study our encoder models’ performance when1022

the oracle reordering is provided. To achieve this,1023

we re-use the ASN during inference, and fed the1024

(first) reference translation as the context to ASN1025

to estimate Z. The results compared to default1026

setting is shown in Table 6. This result serves as1027

a upperbound for the performance of CTC-based1028

encoder models.1029

M More on ASN Output1030

We describe how the target tokens are placed on1031

the vertical axis of the ASN output illustration.1032

Since the length projection upsamples H to 2 times1033

longer, each position of H corresponds to two tar-1034

get tokens (including repetition and blank sym-1035

bols introduced by CTC). To find the optimal po-1036

sition for each target tokens and blank symbols,1037

we use the Viterbi alignment (an implementation is1038

publicly available at https://github.com/1039

rosinality/imputer-pytorch) to align1040

the model’s logits and the actual target tokens.1041

Figure 13 shows more examples of the approx-1042

imated permutation matrix predicted by the ASN.1043

k Method BLEU 1/2/3/4-gram BP

1
Default 38.58 76.7 / 51.0 / 32.5 / 20.6 0.96
+ Oracle 41.59 76.0 / 52.7 / 35.9 / 23.9 0.96

3
Default 40.24 79.5 / 53.7 / 34.8 / 22.6 0.94
+ Oracle 41.75 77.5 / 53.7 / 36.5 / 24.4 0.95

5
Default 40.34 78.8 / 53.5 / 35.0 / 22.7 0.94
+ Oracle 41.70 76.0 / 52.4 / 35.5 / 23.6 0.98

7
Default 40.81 80.0 / 54.2 / 35.2 / 22.9 0.94
+ Oracle 43.37 78.8 / 55.2 / 37.9 / 25.8 0.96

9
Default 40.83 79.5 / 54.1 / 35.4 / 23.1 0.94
+ Oracle 41.77 76.3 / 52.7 / 35.5 / 23.6 0.98

Table 6: The BLEU score on the CWMT dataset, includ-
ing n-gram precision and brevity penalty (BP), of the
CTC+ASN system for each k with and without oracle
order.

The sentence pairs are from CWMT En-Zh test set. 1044

N More CWMT Examples 1045

Figure 14 shows more examples from CWMT 1046

test set and the predictions of wait-k, CTC and 1047

CTC+ASN models. 1048

15

https://github.com/rosinality/imputer-pytorch
https://github.com/rosinality/imputer-pytorch
https://github.com/rosinality/imputer-pytorch

O FAQ1049

Q1 The trained ASN cannot be used during1050

inference, how to guarantee the model can1051

still perform reordering?1052

We categorize reordering into local reordering and1053

long-distance reordering. Our goal is for the ASN1054

to primarily deal with long-distance reordering. In1055

Section 5.2, we observed that employing the weight1056

initialization improves the 2,3,4-gram precision1057

(but not the unigram), and slightly increases the1058

latency. This suggest that CTC+ASN model can1059

indeed perform local reordering during inference.1060

As for long-distance reordering, we stress that in1061

simultaneous interpretation, humans actively avoid1062

long-distance reordering in order to reduce latency,1063

which is also the goal of SimulMT. This provides1064

the justification for removing the ASN during in-1065

ference. (equation 3)1066

We additionally provide the performance when1067

Z is available during inference in Appendix L.1068

Q2 Using ASN during training may cause the1069

model to rely on Z, which may cause1070

train-test discrepancy during inference?1071

In terms of the mismatch of hidden representation,1072

because Gumbel-Sinkhorn gaurantees that Z is dou-1073

bly stochastic (and almost permutation, depending1074

on τ), the representation before and after ASN1075

would only differ by a permutation. This is also1076

discussed in Section 5.1 where removing Sinkhorn1077

nomalization indeed negatively impact the perfor-1078

mance.1079

As for the mismatch of the order of the repre-1080

sentation, we note that the length projection net-1081

work is merely a position-wise affine transforma-1082

tion, which means it is independent of time, so1083

the mismatch of order between training and testing1084

would not negatively impact the prediction made1085

by the length projection network.1086

Q3 Proposed method underperform wait-k in1087

high latency.1088

Simultaneous translation aims to translate in a short1089

time, hence our work focuses on improving the1090

translation quality under low latency setting. The1091

higher latency model is less acceptable in practice.1092

For instance, a k = 9 model decodes a single word1093

after seeing 9 words. We included the results for1094

experimental completeness purpose.1095

For the reason why proposed method under-1096

perform wait-k model: Based on the observation1097

in Appendix L, 43.37 is the best performance of 1098

CTC+ASN method. It is inferior to the wait-9 1099

model’s 43.80. We suspect that it is caused by 1100

the inherent difference between non-autoregressive 1101

(NAR) model and auto-regressive (AR) model. 1102

However, CTC+ASN method’s performance is rela- 1103

tively consistent when the latency decreases, while 1104

wait-k’s performance decreases drastically. There- 1105

fore, to fit the simultaneous translation setting, our 1106

proposed method is more suitable than wait-k. 1107

Q4 Explanation for why ASN could 1108

outperform Reorder and Pseudo reference 1109

baselines? 1110

For the Reorder baseline, we suspect that since the 1111

external aligner is fixed and not jointly optimized, it 1112

may produce incorrect alignments, or miss correct 1113

ones, producing wrongful training targets. 1114

As for the Pseudo reference baseline, there are 1115

two problems that might limit its effectiveness. For 1116

one, the pseudo reference is produced from a full- 1117

sentence model while using a wait-k decoding strat- 1118

egy, which is a train-test discrepancy. For another, 1119

in order to compensate for the first issue, the orig- 1120

inal translation is included as a second target for 1121

each example. This leads to the infamous multi- 1122

modality problem for non-autoregressive models, 1123

which might be harmful to our CTC-based encoder. 1124

Q5 What are the limitations of the proposed 1125

method? 1126

First of all, for SimulMT to be applicable to a con- 1127

ference setting, we assume a streaming ASR is 1128

available. However, we did not account for ASR 1129

errors in our SimulMT models. 1130

Second, as discussed in Section 4.4, our method 1131

is only effective if the language pair includes suffi- 1132

cient long-distance reordering. For instance, when 1133

translation from English to Spanish, we there’s 1134

hardly any reason to employ our method. 1135

Finally, as discussed in Q3, our method is less 1136

advantageous when the latency budget is high. 1137

Q6 What are the risks of the proposed 1138

method? 1139

One risk is that our method may favor low-latency 1140

over high precision, which means that erroneous 1141

translation may occur, which might twist the mean- 1142

ing of source sentence. However, latency and qual- 1143

ity is inherently a trade-off, and erroneous trans- 1144

lation could be mitigated by refinement or post- 1145

editing techniques. 1146

16

(a) (b)

(c) (d)

Figure 13: More approximated permutation matrices predicted by ASN.

17

CWMT En→Zh WMT15 De→En

Delay Method BLEU µ±95%CI chrF2 µ±95%CI BLEU µ±95%CI chrF2 µ±95%CI

offline Transformer 45.85 45.85±0.60 32.46 32.46±0.45 31.67 31.70±0.77 57.65 57.67±0.61

k = 1

wait-k 24.31 24.29±0.62 18.69 18.67±0.43 19.91 19.91±0.68 46.68 46.70±0.69
wait-k+Pseudo *25.93 25.91±0.66 *19.89 19.87±0.46 *20.63 20.63±0.68 *47.34 47.35±0.68
wait-k+Reorder 23.98 23.96±0.59 18.50 18.49±0.39 *20.54 20.55±0.65 *47.59 47.61±0.68
CTC 28.44 28.42±0.56 22.24 22.24±0.35 23.08 23.09±0.69 51.11 51.13±0.56
CTC+Pseudo †30.77 30.75±0.61 †23.81 23.81±0.38 †24.48 24.49±0.69 †52.31 52.32±0.56
CTC+Reorder †24.09 24.08±0.58 †20.49 20.48±0.36 †20.77 20.78±0.65 †48.84 48.85±0.56
CTC+ASN †38.58 38.57±0.45 †27.74 27.73±0.32 †24.17 24.19±0.70 †52.08 52.10±0.54

k = 3

wait-k 32.27 32.25±0.65 23.90 23.90±0.43 25.85 25.87±0.78 51.79 51.81±0.67
wait-k+Pseudo *33.53 33.52±0.64 *24.88 24.87±0.44 25.74 25.76±0.77 51.76 51.78±0.66
wait-k+Reorder *31.47 31.46±0.66 *23.54 23.54±0.45 *25.26 25.28±0.73 51.97 51.99±0.65
CTC 32.45 32.44±0.61 24.97 24.96±0.39 26.07 26.09±0.69 53.19 53.21±0.58
CTC+Pseudo †34.03 34.03±0.61 †26.05 26.05±0.39 †26.61 26.63±0.68 †53.89 53.91±0.55
CTC+Reorder †28.52 28.50±0.62 †23.28 23.28±0.40 †23.50 23.52±0.71 †51.04 51.06±0.55
CTC+ASN †40.24 40.23±0.51 †28.88 28.87±0.34 †26.53 26.55±0.73 †53.68 53.70±0.57

k = 5

wait-k 37.40 37.39±0.65 27.19 27.19±0.44 28.52 28.54±0.82 54.66 54.68±0.64
wait-k+Pseudo *37.96 37.95±0.67 *27.56 27.56±0.46 28.68 28.71±0.78 54.92 54.95±0.60
wait-k+Reorder *36.86 36.84±0.65 27.00 26.99±0.44 *27.35 27.38±0.75 *53.78 53.81±0.63
CTC 33.64 33.63±0.62 25.67 25.66±0.39 26.51 26.53±0.77 53.66 53.68±0.58
CTC+Pseudo †34.65 34.64±0.61 †26.45 26.45±0.40 †27.48 27.49±0.76 †54.41 54.43±0.60
CTC+Reorder †29.68 29.68±0.61 †23.99 23.98±0.38 †23.90 23.91±0.72 †51.41 51.44±0.57
CTC+ASN †40.34 40.33±0.50 †28.81 28.81±0.36 †27.43 27.45±0.75 †54.24 54.27±0.57

k = 7

wait-k 40.78 40.76±0.67 29.50 29.50±0.48 30.28 30.32±0.80 56.44 56.47±0.62
wait-k+Pseudo *42.34 42.34±0.62 *30.50 30.50±0.45 30.53 30.56±0.82 56.47 56.49±0.64
wait-k+Reorder *40.23 40.23±0.61 *29.03 29.03±0.45 *28.77 28.79±0.75 *55.55 55.58±0.57
CTC 34.14 34.12±0.58 25.96 25.95±0.40 26.77 26.78±0.72 53.82 53.84±0.62
CTC+Pseudo †36.04 36.04±0.63 †27.27 27.27±0.41 †27.66 27.67±0.75 †54.70 54.72±0.58
CTC+Reorder †29.45 29.44±0.64 †23.86 23.85±0.40 †24.21 24.23±0.70 †51.50 51.53±0.57
CTC+ASN †40.81 40.80±0.49 †29.22 29.21±0.35 †27.30 27.32±0.74 †54.18 54.21±0.57

k = 9

wait-k 43.80 43.79±0.63 31.42 31.42±0.45 30.52 30.55±0.77 56.77 56.79±0.61
wait-k+Pseudo *44.99 44.98±0.57 *32.23 32.23±0.45 *30.99 31.02±0.79 *57.14 57.16±0.62
wait-k+Reorder *43.27 43.27±0.62 *30.92 30.92±0.44 *29.37 29.39±0.80 *56.25 56.27±0.58
CTC 34.20 34.18±0.60 26.03 26.02±0.41 27.37 27.38±0.74 54.37 54.39±0.59
CTC+Pseudo †36.83 36.83±0.64 †27.67 27.66±0.41 †27.72 27.74±0.75 †54.75 54.77±0.58
CTC+Reorder †29.81 29.79±0.65 †24.07 24.06±0.40 †24.32 24.33±0.71 †51.66 51.68±0.58
CTC+ASN †40.83 40.82±0.51 †29.21 29.20±0.35 †28.00 28.02±0.78 †54.71 54.74±0.60

Table 7: Detailed quality metrics statistics on both datasets. Significance tests are conducted with paired bootstrap
resampling. “*” suggests significantly different (better or worst) from the wait-k baseline with p-value < 0.05. “†”
suggests significantly different from the CTC baseline. Bold text suggests the best value in the same k. If multiple
values are in bold, it means that these values are not significantly different according to paired bootstrap resampling.

18

Figure 14: More examples from CWMT En→Zh. Text in red are hallucinations unrelated to source. We use k = 3
models.

19

