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ABSTRACT

Given a trained model and a data sample, membership-inference (MI) attacks
predict whether the sample was in the model’s training set. A common counter-
measure against MI attacks is to utilize differential privacy (DP) during model
training to mask the presence of individual examples. While this use of DP is
a principled approach to limit the efficacy of MI attacks, there is a gap between
the bounds provided by DP and the empirical performance of MI attacks. In this
paper, we derive bounds for the advantage of an adversary mounting a MI attack,
and demonstrate tightness for the widely-used Gaussian mechanism. Our analysis
answers an open problem in the field of differential privacy, namely the fact that
membership inference is not 100% successful even for relatively high budgets
(ε > 10). Finally, using our analysis, we provide MI metrics for models trained
on CIFAR10 dataset. To the best of our knowledge, our analysis provides the
state-of-the-art membership inference bounds.

1 INTRODUCTION

The recent success of machine learning models makes them the go-to approach to solve a variety
of problems, ranging from computer vision (Krizhevsky et al., 2012) to NLP (Sutskever et al.,
2014), including applications to sensitive data such as health records or chatbots. Access to a
trained machine learning model, be it a white-box published model or through a black-box API, can
leak traces of information (Dwork et al., 2015) from the training data. Researchers have tried to
measure this information leakage through metrics such as membership inference (Shokri et al., 2017).
Membership inference is the task of guessing, from a trained model, whether it includes a given
sample or not. This task is interesting in its own right, as the participation of an individual in a data
collection can be sensitive information. Furthermore, it also serves as the “most significant bit” of
information: if membership inference fails, attacks revealing more information such as reconstruction
attacks (Fredrikson et al., 2014; Carlini et al., 2020) will also fail. In other words, defending against
membership inference attacks also defends against more advanced attacks.

The standard approach to provably defeat these membership privacy attacks is differential pri-
vacy (Dwork et al., 2006). The traditional variant of differential privacy defines a class of algorithms
that apply on a database D and respect a privacy budget ε and a probability of failure δ1. These pa-
rameters control the divergence between the distribution of outcome of the algorithm when applied on
two “neighboring” databases that only differ in one location. In particular, our mechanism of interest,
the Sampled Gaussian Mechanism (SGM), makes an arbitrary function f : X∗ → Rd differentially
private by first sub-sampling a database of smaller size from the original database, using Poisson sam-
pling, and then calculating f on the sub-sampled database, and finally adding Gaussian noise to the
outcome. Increasing the amount of injected noise provides stronger privacy guarantees, and enables
to trade off between privacy and utility of the trained model. To measure the privacy of a given algo-
rithm, researchers have developed advanced mathematical tools and notions such as Renyi differential
privacy (Mironov, 2017; Abadi et al., 2016) and advanced composition theorems (Dwork et al., 2010;
Kairouz et al., 2015). These tools allow us to calculate (ε, δ) values for carefully designed algorithms.

1While intuitive, describing δ as the probability of failure is mathematically inaccurate .Meiser (2018)
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(a) Without subsampling (q = 1)
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(b) With subsampling (q = 0.01)

(c) False positive vs true positive rate (d) FP v.s. TP for small FP rates

Figure 1: Comparison of advantage bounds in a Gaussian setup. We run the sampled Gaussian
Mechanism in one dimension with 50 epochs, and either no subsampling (a) or subsampling with
q = 0.01 (b). Our attack compares likelihood of the observations under both hypothesis, and chooses
the most likely (see Appendix F.1 for details). We compute the empirical advantage by measuring the
percentage of time p the adversary guesses membership correctly, and report 2p− 1. In two bottom
figures (c and d) we compare upper bounds for true positive rate obtained from differential privacy
analysis versus our direct analysis (Details are provided in Appendix A).

Previous work has shown that any differentially private algorithm will provably bound the accuracy of
any membership inference adversary. Specifically, Yeom et al. (2018), Humphries et al. (2020), and
Thudi et al. (2022) prove that any model trained with (ε, δ) differential privacy will induce an upper
bound on the accuracy of membership inference. These upper bounds help practitioners calibrate the
privacy budget ε to defeat the adversary. As can be seen in Figure 1, there is a large gap between the
best existing upper bound and the performance of empirical attacks. In this work, we use a new proof
technique to bypass DP analysis and directly bound the advantage of MI attacks, and close the gap
between theoretical guarantees and empirical performance.

The most widely-used DP algorithm in machine learning applications is DP-SGD: it is a small change
of the classical stochastic gradient descent algorithm that only requires to clip per-sample gradients,
average them and add Gaussian noise. Each iteration of DP-SGD is an instance of the sampled
Gaussian mechanism, which chooses a fraction q of a dataset and outputs a noisy sum of the desired
quantity. DP-SGD has been shown to be more accurate than other differentially private training
algorithms in the case of linear and convex models (van der Maaten and Hannun, 2020). Our analysis
mirrors the recent shift in the field of empirical membership inference, from advantage (or accuracy)
metrics (Shokri et al., 2017; Yeom et al., 2018; Sablayrolles et al., 2019) to precision/recall (true
positive/false positive) measures (Watson et al., 2022; Carlini et al., 2020). Our result shows that
no single parameter (either ε or membership inference advantage) can explain the performance of
adversaries in different settings. in other words, the same value for ε can lead to significantly different
membership inference advantages and vice versa. As shown in Figure 1.c and 1.d, this phenomenon
holds for the entire precision/recall curve; the precision of adversary at all given recall values cannot
be explained only with a ε or advantage parameter.

Our contributions in this work are as follows:
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• Our main theorem in Section 4 bounds the membership inference advantage of any adversary
for the composition of an arbitrary set of sampled Gaussian mechanisms that could adaptively
depend on each other. This bound is optimal as it reflects the membership inference
advantage for a real adversary on a particular series of Gaussian mechanisms. 2 Additionally,
we extend our bounds to the case where the prior knowledge of adversary is non-uniform
(Appendix J). We also provide upper bounds on the true positive rate for any given false
positive rate (Appendix A).

• We propose a numerical way to calculate the total variation distance (and a generalization of
it) between mixtures of Gaussians (Section 4.1). Our algorithm is computationally tractable,
works in linear time with respect to the number of mechanisms and is independent from
the dimension. We use our numerical approach to obtain concrete bounds for Gaussian
mechanisms and compare our bounds to that of Humphries et al. (2020). We also use this
algorithm to calculate upper bounds on true positive rate of adversary.

• Finally, to understand the practical implication of our bound for mainstream datasets, we use
DP-SGD to train models on CIFAR10 and MNIST and calculate the membership inference
bounds using our techniques. Our approach allows us to achieve state-of-the-art provable
membership inference privacy for any given accuracy.

2 BACKGROUND

In this section, we briefly recall the main properties of KL divergence and total variation (TV), as
well as differential privacy and membership inference.

2.1 TOTAL VARIATION, KL DIVERGENCE, AND PINSKER INEQUALITY

We consider a random variable X (resp. Y) with probability distribution µ (resp. ν) over a measurable
space Ω. With a slight abuse of notation, we consider quantities as function of either the random
variables X,Y or their probability distributions µ, ν. Here we recall the definition of total variation
(TV) distance and Kullback-Leibler (KL) divergence:

TV(X,Y ) = sup
A

Pr[X ∈ A]− Pr[Y ∈ A], KL(X ‖ Y ) =

∫
Ω

log

(
dµ

dν

)
dµ. (1)

Post-processing. Given a function g : E → F , applying g to X and Y can only decrease TV,

TV(g(X), g(Y )) ≤ TV(X,Y ).

In particular, if g is a bijective transform, we have TV(g(X), g(Y )) = TV(X,Y ).

Pinsker’s Inequality. For any two random variables X and Y , Pinsker (1964)’s inequality states

TV(X,Y ) ≤
√

KL(X ‖ Y )

2
. (2)

2.2 DIFFERENTIAL PRIVACY AND THE GAUSSIAN MECHANISM

Differential privacy. A randomized algorithmM satisfies (ε, δ)-differential privacy if, for any two
datasets D and D′ that differ in at most one sample, and any subset R of the output space, we have:

Pr(M(D) ∈ R) ≤ exp(ε) Pr(M(D′) ∈ R) + δ. (3)

While the probability of failure δ is often chosen to be inversely proportional to the number of
samples, there is no clear consensus in the literature over desirable values of ε.

2After submission of this work we realized (thanks to Anonymous reviewers of ICLR 3) that Theorem 4.2 in
Dong et al. (2019) and its refinements in Zhu et al. (2022) implies our Theorem 6. However, since our proof
technique is different, and perhaps simpler, we still keep our proof in the paper.
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DP-SGD with the subsampled Gaussian mechanism. DP-SGD ((Song et al., 2013)) is a modifi-
cation of Stochastic Gradient Descent that makes it differentially private. The core mechanism behind
it is the subsampled Gaussian mechanism. Given a function φ that operates on sets S with sensitivity
1 (i.e. ‖φ(S) − φ(S′)‖2 ≤ 1), the subsampled Gaussian mechanism selects sets S at random and
adds noise to the output of φ. Note that the mechanism is differentially private even if all intermediate
steps of the training process are revealed.

2.3 MEMBERSHIP INFERENCE ATTACKS

Membership Inference is the task of predicting whether a given sample was in the training set of a
given model. Homer et al. (2008) showed the first proof of concept, and Shokri et al. (2017) showed
that a wide variety of machine learning models are vulnerable to such attacks. Shokri et al. (2017)
train neural networks to attack machine learning models, and measure the success of the attack by
the percentage of correctly predicted (train/test) samples, or equivalently the advantage (Yeom et al.,
2018). Later work showed that simple heuristics such as the loss (Yeom et al., 2018; Sablayrolles
et al., 2019; Choquette-Choo et al., 2021) provide a more accurate and robust measure of membership
inference. Membership inference attacks have also been used as an evaluation mechanism for
differentially private mechanisms (Jayaraman et al., 2020; Jayaraman and Evans, 2019).

Recent works (Watson et al., 2022; Carlini et al., 2021; Rezaei and Liu, 2021) have proposed to
evaluate membership inference by the precision/recall trade-off (Watson et al., 2022) or the precision
at low levels of recall (Carlini et al., 2021). In particular, such works show that some setups which
were thought to be private because the membership accuracy is significantly less than 100% can
actually reveal membership of a small group of samples with very high precision. There is also a
line of work developed to design algorithms to specifically defend against membership inference
attacks (Nasr et al., 2018; Jia et al., 2019; Tang et al., 2021). While these works offer no theoretical
guarantees against attackers, the empirical defenses achieve better utility at the same membership
advantage than their differentially private equivalents. Finally, membership inference has been
studied in the context of differential identifiability (Bernau et al., 2021; Lee and Clifton, 2012) (see
Appendix F.1 for Gaussian experiments that correspond to differential identifiability techniques).

3 MEMBERSHIP INFERENCE AND TOTAL VARIATION

In this section, we define our security game for membership inference and show its connection to the
notion of total variation distance (or statistical distance) between probability distributions.

3.1 SECURITY GAME

We adopt the classical assumptions of membership inference (Yeom et al., 2018; Sablayrolles et al.,
2019; Humphries et al., 2020). In particular, we assume that the datasets differ by adding/removing
one element. We define a security game between an Adversary (who wants to guess training set
membership) and a Challenger (who wants to hide training set membership).

1. Adversary picks a datasets D = {z1, . . . , zn} and a data point z′

2. Challenger samples a bit b uniformly at random and creates

D′ =

{
D ∪ {z′} if b = 1
D if b = 0

3. Challenger runs the learning algorithm L on D′ to train a model and sends a transcript of
training θ to the adversary 3

4. Adversary observes θ and guesses a bit b′. Adversary wins if b′ = b.

We define the advantage of adversary A on learning algorithm L as Adv(L,A) = 2 · Pr[b = b′]− 1.
We also use Adv(L) = supAAdv(A,L) to denote the advantage of the worst-case adversary
against L.

3The transcript can only include the final model or more information like the intermediate steps of training.
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Remark 1 (Comparing with security game of Yeom et al. (2018)). The security game of Yeom et al.
(2018) for membership inference attacks (See Appendix H) is slightly weaker than ours. This means
that the upper bounds we prove in this work also apply to the security game of Yeom et al. (2018).
A curious reader might question if our security game is too strong; the worst-case advantage of
adversary might be lower in the security game of Yeom et al. (2018). In Appendix H we answer this
question negatively. Through experiments, we show that we cannot prove better upper bounds in the
alternative security game of Yeom et al. (2018), even if we assume the adversary does not control the
neighboring datasets and only sees the final model (and not the intermediate steps). This shows that
our bounds in Section 4 are tight even in the weaker security games.
Remark 2 (Non-uniform prior). One can define a similar security game where the selection of the bit
b is non-uniform. This security game captures settings that the adversary has some prior knowledge
about the inclusion of the example in the training set. This setting was studied by Thudi et al. (2022)
who provide some upper bounds for the advantage of the adversary in such a security game. In
Appendix J, we show that we can extend our analysis to this setting and provide optimal bounds.

Comparison to existing bounds. In the reminder of the paper we bound the membership inference
advantage for DP-SGD. We first recall the best existing upper bound that is proved and improved in
prior work (Jayaraman et al., 2020; Jayaraman and Evans, 2019; Humphries et al., 2020; Yeom et al.,
2018; Thudi et al., 2022).
Theorem 3 (Humphries et al. (2020)). For any (ε, δ)-DP algorithm L we have Adv(L) ≤ eε−1+2δ

eε+1 .

Note that Theorem 3 applies to any DP algorithm and hence covers DP-SGD as well. Because of its
generality, the bound is loose for DP-SGD (see Figure 3(a)). To improve on this bound, we perform a
direct analysis of the advantage instead of using the DP tools and then converting to advantage.

Advantage. Let us first mathematically characterize the notion of advantage for a general learning
algorithm. For a fixed learning algorithm L and fixed neighboring datasets, let us define X := θ |
(b = 0) and Y := θ | (b = 1) to be the distributions of the output of the learning algorithm for two
cases of the security game. A deterministic adversary A defines a region A and predicts that θ is
sampled from µ if θ ∈ A and from ν if θ /∈ A. We use µ(A) and ν(A) to denote Pr[X ∈ A] and
Pr[Y ∈ A]. For such an adversary we have

Adv(L,A) = Pr[X ∈ A]− Pr[Y ∈ A] = µ(A)− ν(A).

Note that with a simple averaging argument we can show that the best adversarial strategy in
membership security game is a deterministic strategy. Therefore, the advantage for the learning
algorithm L is then defined as

Adv(L) = sup
A
µ(A)− ν(A) = TV(X,Y ), (4)

where TV is the total variation distance. Total variation distance thus gives us an upper bound on the
advantage of any adversary. Since we do not know the exact density function for X and Y it is not
clear how to calculate or approximate the total variation distance in general. In the next subsection
we discuss how Pinsker’s inequality upper bounds total variation distance.

3.2 BOUNDING MEMBERSHIP INFERENCE USING PINSKER’S INEQUALITY

Using Equation (4) and directly applying Pinsker’s inequality (2), we have:

Adv(L) ≤ TV(X,Y ) ≤
√

KL(X ‖ Y )

2
= lim
α→1

√
Dα(X ‖ Y )

2
(5)

where Dα is the Rényi divergence at α. This bound enables us to use Rényi divergence, which is rou-
tinely calculated in DP-SGD (Mironov, 2017) to obtain numerical upper bounds on the membership
inference advantage of any adversary against adaptive composition of sampled Gaussian mechanisms.

To this end, we use RDP accounting to calculate the Dα for an α > 1. We know that for any α > 1,
Dα(X,Y ) is greater than KL(X ‖ Y ) because Dα is increasing in α. This means that for any α > 1
Dα will be a valid upper bound on the membership inference advantage and the bound becomes
better as we decrease α.
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In our evaluation (see Figures 3(a) and 5) we use this formulation to calculate numerical upper bounds
for membership inference for DP-SGD using typical parameters. We refer to this bound as the Pinsker
bound. The figure shows that it obtains better numerical values compared to the bound of Humphries
et al. (2020). However, there are two main limitations with Pinsker’s bound: 1) The bound is not
tight. 2) It is vacuous in cases where KL(X ‖ Y ) > 2. In next section, we will optimally bound the
membership inference for composition of adaptive and sampled Gaussian mechanisms.

4 OPTIMAL BOUNDS FOR COMPOSITION OF SAMPLED GAUSSIAN
MECHANISMS

In this section, we show a tighter upper-bound for the adversary’s advantage. In particular, we will
upper-bound the total variation between the transcripts of the (subsampled) Gaussian mechanism,
specifically the noisy gradients produced by the DP-SGD algorithm (Theorem 6).

As the first step of calculating our optimal bounds, we show that the adaptivity of Gaussian mecha-
nisms does not increase the membership advantage. In other words, for clipping threshold DP-SGD
with clipping threshold r, the entire process of DP-SGD can be replaced by a process where each step
is replaced by either N (0, σ2) or N (r, σ2) for the basic Gaussian mechanism, and replaced by either
N (0, σ2) or (1− q)N (0, σ2) + qN (r, σ2) for the sampled Gaussian mechanism, without decreasing
the total variation distance. Our analysis relies on a modified version of TV, that we denote by TVa.
Definition 4. For a > 0 define TVa(X,Y ) = 1

2

∫
Ω
|µ(x) − a · ν(x)|dx where µ and ν are the

probability density functions for X and Y respectively. 4

While we do not know an explicit form of the TVa divergence between Gaussians, we can still prove
that it increases with ‖u1 − u2‖2, as formalized in the following lemma.
Lemma 5. Let X ≡ N (u1, σ

2 · Id) and Y ≡ N (u2, σ
2 · Id). Then, for any a ∈ R+, TVa(X,Y )

is only a function of ‖u1 − u2‖2 and σ2. Moreover this function is monotonically increasing with
respect to ‖u1 − u2‖2. That is, for any a ≥ ‖u1 − u2‖2 we have

TVa(X,Y ) ≤ TVa(N (0, σ2),N (a, σ2)).

The proof involves some careful but standard gradient calculations and is deferred to Appendix B.

Now we focus on stating an upper bound on the membership inference advantage of an adversary on
composition of Gaussian mechanisms. But before that, we state some useful notations. Notation. We
use θ = (s1, . . . , sT ) to denote the transcript of the learning algorithm L that consists of T adaptive
steps. We use s≤t to denote the first t steps of the transcript of the random process. We use Si to
denote the union of the support set of the ith step of the mechanism M on all possible datasets. That
is Si = {si;∃D, si ∈ Supp(M(D)i)}. We also define S≤i = S1 × . . . , Si. We use B(q) to denote
a Bernoulli random variable that is equal to 1 with probability q and 0 with probability 1− q. We use
0T (or 1T ) to denote the vector of dimension T that is 0 (or 1) in each coordinate. We use B(q)n to
denote an n dimensional random variable where each coordinate is independent and distributed as
B(q). For r ∈ R, we use r ·B(q)n to denote the random variable that is sampled by the following
process: first sample from B(q)n and then multiply by r. We also use N (r ·B(q)n, σ2) to denote an
n dimensional random variable that is distributed according to a mixture of Gaussians which all have
standard deviation σ and centers are chosen at random from r ·B(q)n.

Theorem 6 (Gaussian Composition with sub-sampling). Let M1, . . . ,MT be a series of adaptive
Gaussian Mechanisms with L2 sensitivity r and Gaussian noise with standard deviation σ and
sub-sampling rate q. The membership inference risk of the composition of Mi’s is at most

TV
(
N (0T , σ2),N (r ·B(q)T , σ2)

)
Proof sketch. We first prove the proof for the case that there is no sub-sampling. Let M i(D) be the
mechanism that works on D (resp. D′) and consists of i Gaussians N (0, σ2) (resp. N (r, σ2)) steps
followed by T − i steps of SGM applied to D (resp. D′).

Specifically, the mechanism M0 corresponds to SGM, and MT to pure Gaussians. We will show in
this proof that

TV(M i(D),M i(D′)) ≤ TV(M i+1(D),M i+1(D′)) (6)
4This notion is also used by the name of Hockey stick divergenceBalle et al. (2018).
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and hence
TV(X,Y ) = TV(M0(D),M0(D′)) ≤ TV(MT (D),MT (D′)) = TV(N (0, σ2IT ),N (r1T , σ

2IT ).

To this end, we will first argue that the very final step of the mechanism M i can be replaced with a
Gaussian step without increasing the total variation distance. Then we can move this noise to the
start of the process without affecting the result, obtaining M i+1.

Let us fix a step i and let s = (s1, . . . , sT ) be a transcript. Denoting X ∼M i(D) and Y ∼M i(D′),
we have (In the following, we use

∑
instead of integral for better clarity and the steps can be replace

with integral.)

2TV(M i(D),M i(D′)) =
∑

s≤T∈S≤T

|Pr[X = s≤T ]− Pr[Y = s≤T ]|

=
∑

s≤T−1∈S≤T−1

∑
sT∈ST

|Pr[X = s≤T ]− Pr[Y = s≤T ]|

=
∑

s≤T−1∈S≤T−1

∑
sT∈ST

|Pr[XT = sT | s≤T−1] · Pr[X≤T−1 = s≤T−1]

−Pr[YT = sT | s≤T−1] Pr[Y≤T−1 = s≤T−1]| .

=
∑

s≤T−1∈S≤T−1

Pr[X≤T−1 = s≤T−1]
∑

sT∈ST

∣∣∣∣Pr[XT = sT | s≤T−1]

− Pr[YT = sT | s≤T−1]
Pr[Y≤T−1 = s≤T−1]

Pr[X≤T−1 = s≤T−1]

∣∣∣∣. (7)

We know that the last (T ’th) step of M i(D) (resp. M i(D′)) has two isotropic Gaussian distributions
centered around two points u1 and u2 such that ‖u1−u2‖2 ≤ r and with standard deviation σ. These
centers could be chosen adaptively according to the history of the mechanism. We use a(s≤T−1) to
denote Pr[Y≤T−1=s≤T−1]

Pr[X≤T−1=s≤T−1] . By Lemma 5 we have∑
sT∈ST

∣∣∣Pr[XT = sT | s≤T−1]− Pr[YT = sT | s≤T−1]a(s≤T−1)
∣∣∣

≤ 2TVa(s≤T−1)(N (0, σ2),N (r, σ2)).

Denoting by N i the mechanism that coincides with M i for the first T − 1 steps and is replaced by a
Gaussian at the last (T ’th) step, we thus have, by following Equation (7) in the reverse direction

2TV(M i(D),M i(D′)) ≤ 2TV(N i(D), N i(D′)). (8)

Given that the last step of N i does not depend on the first T − 1 steps, we can permute to put it in
first position.

Now, we focus on the proof of the case we have sub-sampling. We defer the full proof of Theorem 6
to the Appendix E. However, we provide a high level idea behind the proof based on the proof of
the case where there is no sub-sampling. The first step is to characterize the TVa for sub-sampled
mechanisms and relate it to the TVa for the case without sub-sampling.

Lemma 7. Let X ′ ≡ (1− q) · Y + q ·X . Then we have TVa(X ′, Y ) = qTV a+q−1
q

(X,Y ).

The proof of this lemma is provided in Appendix E. Now we use Lemma 7 to convert TVa of the
sub-sampled Gaussians to TVa of Gaussians and use Lemma 5 to upper bound them with TVa

of independent Gaussians. Then we use Lemma 7 again to convert the independent Gaussians to
independent sub-sampled Gaussians.

Optimality of our bound. We note that the bound of Theorem 6 is optimal. This is because
the bound is equal to the advantage of an adversary defined on sequence of independent Gaussian
mechanisms. However, one might wonder if our bound is tight in the context of classification with
DP-SGD. In Appendix H, we consider this question and show a learning problem for which our
bound is tight. We empirically verify that advantage the adversary can get close to our upper bounds.
Additionally, we show that for this learning task, an adversary who only observe the final model can
also get very close to our upper bounds.
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Varying noise levels Theorem 6 could be simply extended to composition of Gaussian mechanisms
with varying noise levels, assuming the noise levels are not selected adaptively. We leave the
composition of Gaussians with adaptive noise selection as an open question.

Extending to other monotone mechanisms. Although Theorem 6 is stated only for Gaussian
mechanism, the theorem extends to any mechanism that satisfies monotonicity under TVa according
to some notion of sensitivity. For example, if one can show that TVa(L(0, σ),L(u, σ)) is monotoni-
cally increasing with respect to some norm of u, then Theorem 6 extends to composition of Laplace
mechanisms with bounded sensitivity according to that norm.

4.1 MONTE CARLO COMPUTATION

In order to numerically approximate the upper-bound, we write the total variation as

TV(X,Y ) =

∫
Ω

(dµ(t)− dν(t))1 (dν(t) ≤ dµ(t)) (9)

=

∫
Ω

(
1− dν(t)

dµ(t)

)
1 (dν(t) ≤ dµ(t)) dµ(t) (10)

= Et∼µ
((

1− dν(t)

dµ(t)

)
1 (dν(t) ≤ dµ(t))

)
. (11)

The expectation is over the distribution µ, so we can sample a dataset from µ and approximate this
expectation using empirical averaging (or Monte-Carlo sampling):

TV(X,Y ) ≈ 1

m

m∑
i=1

(
1− dν(ti)

dµ(ti)

)
1 (dν(ti) ≤ dµ(ti)) , (12)

where ti ∼i.i.d. µ. The Monte-Carlo estimation of this quantity is very accurate, as it is bounded
between 0 and 1. Figures 3(a) and 5 show the upper bound using this Monte-Carlo simulation for
typical settings in DP-SGD. We also provide a detailed algorithm on how we this in Appendix D.
Following we provide a proposition on the accuracy of our Monte Carlo approximation which directly
follows by applying the Chernoff-Hoefding bound.
Proposition 8. Our Monte Carlo simulation (Algorithm 1 in Appendix D) returns a value η that
with high probability is close to the optimal membership inference bound η∗ of Theorem 6, namely
Pr[|η − η∗| ≥ δ] ≤ e−m·δ2/3.

5 EVALUATION
In this section we perform experiments to calculate the concrete trade-off between accuracy and
membership inference on mainstream datasets. For our experiments, we use DP-SGD (Algorithm 2)
to train models and use Algorithm 1 to calculate the corresponding membership inference bounds.

Experiments on the MNIST and CIFAR datasets. We use the MNIST (LeCun) and CI-
FAR (Krizhevsky et al., 2009) datasets to perform experiments with DP-SGD. Figures 2(a) and 2(b)
shows the result of our experiments. For MNIST, we used 3-layer convolutional neural networks
(CNN) and train it for 10 epochs with sampling rate q = 0.001 and learning rate 0.1 using the
cross-entropy loss function. We also choose the gradient clipping threshold to be 1.0 and change
the noise scale between [0.5, 1.5]. For the CIFAR-10 experiments, we use 5-layer CNNs and trained
them for 50 epochs with sampling rate 0.02 and learning rate 0.5 using the cross-entropy loss.
We set the gradient clipping threshold to 10.0 and the noise scale changed between [0.5, 2]. Our
experiments show that differentially private training using DP-SGD can obtain a significantly better
trade-off between accuracy and membership inference advantage than was previously thought. For
instance, on the MNIST dataset we obtain membership inference bounds that are close to 0.01 while
maintaining accuracy at around 93%.

Study of the role of noise scale and sampling rate. To understand the role of sub-sampling on
membership inference advantage we perform experiments with varying sub-sampling rates. In
Figure 5 we show the results of our experiments where we change the sampling rate between [0, 1] at
three different values of noise scale. Our experiments are done for 5 epochs of training. Note that
although the number of epochs are fixed, the number of iterations are different for different sampling

8
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(a) Membership Inference v.s. Accuracy on CIFAR10. (b) Membership inference v.s. Accuracy on MNIST.

Figure 2: Empirical results on membership advantage

(a) σ = 0.5 (b) σ = 1.0 (c) σ = 1.5

Figure 3: Effect of sub-sampling rate at various noise scales with 5 epochs.

rates. One interesting observation is that our optimal bound is less dependent on very small sampling
rate. For instance at noise scale σ = 0.5, both the Pinsker and Humphries et al. (2020) bounds
become vacuous abruptly as the sampling rate grows but our optimal membership inference bound
remains meaningful. Another interesting phenomenon is the oscillations that happens at certain
locations for the optimal and Pinsker bounds. These oscillations happen independently for both the
Pinsker and optimal bound. As these two bounds are calculated using completely different techniques,
we believe this phenomenon is not due to numerical issues.

Monte Carlo error for the experiments. In our experiments for optimal membership bounds we
use Monte Carlo simulation (see Section 4.1 and in Algorithm 1), with m = 5e5 samples. Via Propo-
sition 8, we guarantee that with probability at least 99.999% that the bound has error less than 0.01.

6 CONCLUSION
In this paper, we directly analyzed membership inference bounds for adaptive composition of sampled
Gaussian mechanisms. Our analysis enables us to obtain bounds that are better than bounds from
prior analyses of differential privacy. Our analysis shows that although differential privacy guarantees
might sometimes lead to large/vacuous membership inference guarantees, the mechanisms that obtain
differential privacy can be in fact much more secure against membership inference attacks. Previously,
this phenomenon was observed for DP-SGD and here, for the first time, we prove it.

Our analysis is the first to directly analyze membership inference bounds. We limited our study
to membership inference attacks against sampled Gaussian mechanisms as DP-SGD, the most
widely used differentially private learning algorithm. Direct study of membership inference could be
potentially done for other mechanisms and algorithms as well. We leave this for future work.

We also note that the hyper-parameters for DP-SGD that achieve optimal membership privacy versus
utility might be different than that of differential privacy. Our new analysis opens up the possibility
of a systematic search for the hyper-parameters and architectures (using recent advancements in
privacy-preserving hyperparameter tuning and architecture search (Papernot et al., 2020; Papernot
and Steinke, 2021; Chaudhuri and Vinterbo, 2013)) that obtain optimal utility for a given upper bound
on membership inference.

Last, while our paper closes the gap between theoretical and empirical measures of an adversary’s
advantage, the bounds apply to the subsampled Gaussian mechanism. We leave the tightness of
advantage measure on other mechanisms for future work.

9
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A BOUNDING TRUE POSITIVE RATE

As argued in introduction, membership inference alone should not be used as a single measure of
privacy. Here we first show how one can use TVa to draw the false positive. Let X,Y be two
distributions and consider a set Sa = {x; Pr[Y = x] > Pr[X=x]

a }.
Proposition 9. For all sets S with Pr[X ∈ S] ≤ Pr[X ∈ Sa] we have Pr[Y ∈ S] ≤ Pr[Y ∈ Sa].

Proof. We have

Pr[Y ∈ Sa]− Pr[Y ∈ S] = Pr[Y ∈ Sa \ S]− Pr[Y ∈ S \ Sa]

. We also have,

Pr[Y ∈ S \ Sa] = Ex←X
[Pr[Y = x]

Pr[X = x]
I(x ∈ S \ Sa)

]
≤ Pr[X ∈ S \ Sa]

a

and

Pr[Y ∈ Sa \ S] = Ex←X
[Pr[Y = x]

Pr[X = x]
I(x ∈ Sa \ S)

]
≥ Pr[X ∈ Sa \ S]

a
.

By the condition of the proposition we have

Pr[X ∈ Sa] = Pr[X ∈ Sa\S]+Pr[X ∈ Sa∪S] > Pr[X ∈ S\Sa]+Pr[X ∈ Sa∪S] = Pr[X ∈ S]

. Therefore we know that Pr[X ∈ Sa \ S] ≥ Pr[E[X ∈ S \ Sa] which finishes the proof.

Proposition 10. We have

Pr[Y ∈ Sa] =
2TVa(X,Y ) + 2 Pr[X ∈ Sa] + a− 1

2a
.

Proof.

2TVa(X,Y ) =

∫
Ω

|dµ− adν|

= 2

∫
Ω

(adν − dµ)I(adν > dµ) + 1− a = 2aPr[Y ∈ Sa]− 2 Pr[X ∈ Sa] + 1− a.

Propositions 9 and 10 give us a way to argue about the true positive rates at any given false positive
rate as follows.

Corollary 11. Let X and Y be the distribution induced by applying composition of subsam-
pled Gaussian mechanisms on two neighboring datasets. Also let A be an adversary that
given an output decides whether the output was sampled from X or Y . Let FP and TP be
the false positive and true positive rates of this adversary, i.e. FP = Pr[A(X) = 1] and
TP = Pr[A(Y ) = 1]. Let a be such that Prx ← X[Pr[Y = x] > Pr[X=x]

a ] = FP Then we

have TP ≤ 2FP+2TVa

(
N (0T ,σ2),N (r·B(q)T ,σ2)

)
)+a−1

2a .

Proof. This directly follows from Theorem 6 and Propositions 9 and 10.

B PROOF OF LEMMA 5

Proof. The first part follows by the symmetry of isotropic Gaussian. For the second part (monotonic-
ity) we use the definition of TVa. Without loss of generality we can assume a ∈ [0, 1] as otherwise
we can work with TVa(P,Q)/a = TV1/a(Q,P ). Let r = ‖u1 − u2‖2. We can show that the
derivative of the integral is always positive. In the following calculations, we use c1, c2, c3 and c4 to
denote positive constants that are independent of r.
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First note that x∗ = r2−2σ2 ln(a)
2r is a middle point where e−

x2

2σ2 − ae−
(x−r)2

2σ2 goes from positive to
negative as x increases. By our assumption that a ∈ [0, 1], we have that x∗ > 0. Recalling that
erf(z) = 2√

π

∫ z
0

exp(−t2)dt, and that erf(∞) = 1 so that (by symmetry) 2√
π

∫ 0

−∞ exp(−t2)dt = 1,
we can write

TVa(P,Q) = c1

(∫ ∞
−∞

∣∣∣∣e− x2

2σ2 − ae−
(x−r)2

2σ2

∣∣∣∣ dx)
By breaking the integral in an intermediate point we have

= c1

(∫ x∗

−∞
e−

x2

2σ2 − ae−
(x−r)2

2σ2 +

∫ ∞
x∗

ae−
(x−r)2

2σ2 − e−
x2

2σ2

)
By replacing the integrals with the CDF of Gaussian distribution we have

= c1

(
1 + erf

(
x∗/
√

2σ
)
− aerf((x∗ − r)/

√
2σ)
)

+
(
a(1− erf

(
(x∗ − r)/

√
2σ
)

+ (1− erf
(
x∗/
√

2σ
))

= c2

(
erf

(
r2 − ln(a)σ2

2
√

2σr

)
+ 1− aerf

(
−r2 − ln(a)σ2

2
√

2σr

)
− a
)
.

Now, let f1(r) = erf
(
r2−ln(a)σ2

2
√

2σr

)
and f2(r) = −aerf

(
−r2−ln(a)σ2

2
√

2σr

)
. Taking the derivative with

respect to r we have

∂f1

∂r
= c3

(
1

2
√

2σ
+

ln(a)σ

2
√

2r2

)
e
−
(
r2−ln(a)σ2

2
√

2σr

)2

∂f2

∂r
= c3a

(
1

2
√

2σ
− ln(a)σ

2
√

2r2

)
e
−
(
−r2−ln(a)σ2

2
√

2σr

)2

Now note that we have e
−
(
r2−ln(a)σ2

2
√

2σr

)2

= a1/2 · e
−
(
−r2−ln(a)σ2

2
√

2σr

)2

. Therefore, we have

c4
∂TVa

∂r
= e
−
(
−r2−ln(a)σ2

2
√

2σr

)2

·
(

1 +
√
a

2
√

2σ
+

ln(a) (
√
a− 1)σ

2
√

2r2

)
.

Now since a ∈ [0, 1], we have ln(a) ≤ 0 and
√
a−1 < 0, which means the term 1+

√
a

2
√

2σ
+ ln(a)(

√
a−1)σ

2
√

2r2

is positive. This implies that the whole gradient is positive.

C ESTIMATING KL WITH RÉNYI DIVERGENCE

For two probability distributions µ and ν, the Rényi divergence of order α > 1 is

Dα(µ ‖ ν) ,
1

α− 1
log Et∼ν

(
dµ

dν
(t)

)α
, (13)

Rényi divergence is non-decreasing in α, and limα→1Dα(P ‖ Q)=KL(P ‖ Q).

RDP accounting for DP-SGD. (Abadi et al., 2016; Mironov, 2017) propose methods to account
for RDP for the Gaussian mechanism. Implementations of DP-SGD such as Opacus make use of
these accounting procedures. This is important as we use these accounting methods to calculate the
bound in Equation 13. Specifically, we calculate the Dα for α = 1 + τ for a very small τ , using the
Opacus implementation of Rényi accounting.

D ALGORITHMS
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Algorithm 1 Optimal MI
Require: sample rate vector q, number of iterations T , learning rate vector η, noise scale

vector σ, gradient norm clip vector r, sample size m
1: for all j ∈ [m] do
2: ηj ← 0
3: for i ∈ [T ] do
4: for j ∈ [m] do
5: sample ti,j ∼ N (0, σ[i]2 · r[i]2 · I)

6: ηj ← ηj+ln
(
1+q[i](e

2ti,j/r[i]−1
2σ[i]2 −1)

)
7: η ← 0
8: for j ∈ [m] do
9: ηj = max(ηj , 0).

10: η ← η + 1−eηj
m

11: return η

Algorithm 2 DP-SGD (Abadi et al., 2016)
Require: training dataset D, sample rate vector q, number of iterations T , learning rate

vector η, noise scale vector σ, gradient norm clip vector r, loss function L
1: Initiate θ randomly
2: for i ∈ {T} do
3: Bi ← Sample batch via Poisson sampling with rate q[i]
4: ∇[t]← ~0
5: for all (x, y) ∈ Bt do
6: ∇(x,y) ← gradient of L(x, y)

7: ∇(x,y) ← r[t] · (∇(x,y))
max(r[t],‖∇(x,y))‖2)

8: ∇[t]← ∇[t] +∇(x,y)

9: ∇̃[t]← ∇[t] +N (0, σ[t]2r[t]2I)
10: θ ← θ − η∇̃[t].
11: return θ

E PROOF OF THEOREM 6

Proof of Lemma 7. We have

2TVa(X ′, Y ) =

∫
Ω

|dµ′ − adν| =
∫

Ω

|qdµ− (q + a− 1)dν|

= q

∫
Ω

∣∣∣∣dµ− (q + a− 1)

q
dν

∣∣∣∣
= 2qTV a+q−1

q
(X,Y ).

Proof of Theorem 6. The proof steps are similar to there is no sub-sampling. First, we have

2TV(X,Y ) =
∑

s≤T−1∈S≤T−1

Pr[X≤T−1 = s≤T−1]·

(∑
sT

∣∣∣Pr[XT = sT | s≤T−1]− Pr[YT = sT | s≤T−1]
Pr[Y≤T−1 = s≤T−1]

Pr[X≤T−1 = s≤T−1]

∣∣∣)
= 2

∑
s≤T−1∈S≤T−1

Pr[X≤T−1 = s≤T−1]TVa(s≤T−1)(XT | s≤T−1, YT | s≤T−1).
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But since XT and YT are subsampled Gaussian mechanisms we have XT ≡ (1− q)YT + qX ′T where
Y and X ′ are mixtures of Gaussians. Therefore, by Lemma 5 and Lemma 7 we have

TV(X,Y )

=
∑

s≤T−1∈S≤T−1

Pr[X≤T−1 = s≤T−1 ∈ S≤T−1]qTV a(s≤T−1)+q−1

q

(X ′T | s≤T−1, YT | s≤T−1) (By Lemma 7)

≤
∑

s≤T−1∈S≤T−1

Pr[X≤T−1 = s≤T−1 ∈ S≤T−1]qTV a(s≤T−1)+q−1

q

(N (0, σ),N (r, σ)) (By Lemma 5)

=
∑

s≤T−1∈S≤T−1

Pr[X≤T−1 = s≤T−1]TVa(s≤T−1)(N (0, σ), (1− q)N (0, σ) + qN (r, σ)) (By Lemma 7)

=
∑

s≤T−1∈S≤T−1

Pr[X≤T−1 = s≤T−1]TVa(s≤T−1)(N (0, σ),N (r ·B(q), σ)).

Therefore, we can replace XT with a mixture of two Gaussians centered at 0 and r and YT with a
single Gaussian centered at 0. Now we can use the same technique used in the proof of the case
without sub-sampling and move XT and YT to the first round and repeat this process. At the end, Y
is replaced by a n-dimensional Gaussian centered at 0 and standard deviation σ, and X by a mixture
of Gaussians with center randomly selected according to a n-dimensional Bernoulli distribution with
probability q. That is, the advantage is bounded by

TV(N (0T , σ),N (rB(q)T , σ)).

F EXPERIMENTAL DETAILS

F.1 GAUSSIAN EXPERIMENT

The simple Gaussian experiment is aimed at stripping away parts of the machine learning pipeline
that can interfere with privacy / membership inference, such as the particularities of neural networks
or optimization algorithms.

In this setup, D = {0, 0, . . . , 0} and D′ = D ∪ {1}. The (clean) summed gradient, before noise
addition, is therefore either 0 (on D or on D′ if the batch does not contain 1) or 1 (if the batch
contains 1). The adversary observes the noisy sums and infers whether they come from D or D′.
Given that the adversary knows the distribution is either N (0, σ2) or (1− q)N (0, σ2) + qN (1, σ2),
they can perform a simple likelihood test to determine whether the noisy sums come from D or D′,
and predict the more likely dataset. We report the advantage of this adversary in the “empirical"
curve of Figure 5.

G MEMBERSHIP INFERENCE PRECISION

In this section, we refine the analysis of Sablayrolles et al. (2019) for the accuracy of a membership
attack.

Upper-bound on precision. Let us first derive a bound on the precision of membership inference.
We assume that there are two datasets D and D′ and that a differentially-private mechanismM trains
a model represented by θ.

With probability (1− δ) over the choice of θ, we have:

−ε ≤ log

(
Pr(M(D) = θ)

Pr(M(D′) = θ)

)
≤ ε (14)

Given that there is a balanced prior Pr(D) = Pr(D′), using Bayes rule, we have:

Pr(D | θ) =
Pr(M(D) = θ) Pr(D)

Pr(M(D) = θ) Pr(D) + Pr(M(D′) = θ) Pr(D′)
(15)
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=
Pr(M(D) = θ)

Pr(M(D) = θ) + Pr(M(D′) = θ)
(16)

= σ

(
log

(
Pr(M(D) = θ)

Pr(M(D′) = θ)

))
, (17)

with σ(u) = 1/(1 + exp(−u)) the sigmoid function.

Hence the precision Pr(D | θ) is bounded between σ(−ε) and σ(ε), as σ(·) is non decreasing.

Upper-bound on attack accuracy. The accuracy of the Bayes classifier is

Acc = max(Pr(D | θ), 1− Pr(D | θ)), (18)

and thus

Acc ≤ max(σ(ε), σ(−ε)) (19)
= σ(ε) (20)

This means that the attack accuracy is bounded by σ(ε) with probability 1 − δ. Empirically, we
see that the sigmoid function closely matches the bound given by Humphries et al. (2020). Simply
stated, this derivation shows that the bound proven by Humphries et al. (2020) actually holds with
probability 1− δ instead of on average.

Acc =
1

2
(Pr(X ∈ A) + Pr(Y ∈ Ac))

=
1

2
(Pr(X ∈ A) + 1− Pr(Y ∈ A))

=
1

2
(1 + Adv)

H COMPARING SECURITY GAMES

In what follows, we write multiple variants of security games specifically defined for DP-SGD. Then
we proceed to compare the security games based on an example. We perform experiments on this
examples by running an attack and show that our upper bounds are tight even for the weaker security
games.

H.1 OUR SECURITY GAME WITH ALL INTERMEDIATE GRADIENTS (OIG)

1. Adversary picks a datasets D = {z1, . . . , zn} and a pair of data points z′0, z
′
1.

2. Challenger samples a bit b uniformly at random and creates

D′ =

{
D ∪ {z′1} if b = 1
D ∪ {z′0} if b = 0

3. Challenger runs DP-SGD on D′ to train a model and sends a transcript of training, including
all intermediate gradients, θ (The transcript could only include the final model or more
information like the intermediate steps of training) to the adversary.

4. Adversary observes θ and and guesses a bit b′. Adversary wins if b′ = b.

Remark 12. In this paper we are interested in analyzing the membership inference advantage for
algorithms that could be stated as adaptive composition of sampled Gaussian mechanisms. DP-SGD
(Algorithm 2) is a widely used example of such algorithm. Note that we assume that the output of
DP-SGD includes all the intermediate gradients that are used to train the model. In other words, the
parameter θ in the security game contains all the intermediate gradients (not only the final model).
However, in what follows we still define the security game for the case that the adversary only sees
the final model. We define these more restricted security game so as to experimentally compare it
with our security game.
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Remark 13 (Replacing vs addition/removal). We also note that in this section we define the notion
of advantage for neighboring datasets where one dataset replaces a single example with another
example (i.e. the replacement game). The reason for this choice is that the security game of Yeom et.
al. is based on replacement and we want to make a fair comparison.

In the main body, we use the addition/removal definition of neighboring datasets because it is stronger.
Namely, we can convert an upper bound on addition/removal security game to an upper bound for
the replacement security game.
Remark 14 (Alternative notion of inference in Humphries et al. (2020)). Humphries et al. (2020),
propose a new definition for inference attacks. This definition (They call it "Experiment with Data
Dependencies".) is distinct from the previously known notions of membership inference and deals
with the ability of an adversary in distinguishing samples from two different distributions. As this
notion is a model of distributional inference, the power of adversary in this model is not bounded
by differential privacy. The only way to bound this notion of privacy with DP is to pay the cost of
group privacy for groups that are almost the same size as of the entire dataset. Hence, we do not
study this model in this work.

H.2 OUR SECURITY GAME WITH FINAL MODEL (OFM)

1. Adversary picks a datasets D = {z1, . . . , zn} and a pair of data points z′0, z
′
1.

2. Challenger samples a bit b uniformly at random and creates

D′ =

{
D ∪ {z′1} if b = 1
D ∪ {z′0} if b = 0

3. Challenger runs DP-SGD on D′ to train a model and sends the final model θ (The transcript
could only include the final model or more information like the intermediate steps of training)
to the adversary.

4. Adversary observes θ and and guesses a bit b′. Adversary wins if b′ = b.

H.3 YOEM ET. AL’S SECURITY GAME WITH FINAL MODEL (YFM)

1. Challenger samples a dataset D = {z1, . . . , zn+1} from a distribution D .
2. Challenger runs DP-SGD on D to train a model and sends a the final model θ to the

adversary.
3. Challenger samples a bit b uniformly at random and creates

z′ =

{
z ← D if b = 1
z ← D if b = 0

4. Adversary observes (θ, z′) and and guesses a bit b′. Adversary wins if b′ = b.

H.4 YOEM ET. AL’S SECURITY GAME WITH ALL INTERMEDIATE GRADIENTS (YIG)

1. Challenger samples a dataset D = {z1, . . . , zn+1} from a distribution D .
2. Challenger runs DP-SGD onD to train a model and sends a transcript of training θ, including

all intermediate gradients, to the adversary.
3. Challenger samples a bit b uniformly at random and creates

z′ =

{
z ← D if b = 1
z ← D if b = 0

4. Adversary observes (θ, z′) and and guesses a bit b′. Adversary wins if b′ = b.

Notation. For a security model T we use T (L, n,D) to denote the advantage of strongest adversary
in that threat model with learning algorithm L, dataset size n and data distribution D (our threat
models do not use this parameter but we include it for symmetry).
Proposition 15. For any learning algorithm L, any n ∈ N and data distribution D we have
OFM(L, n,D) ≤ OIG(L, n,D) and YFM(L, n,D) ≤ YIG(L, n,D).
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Proposition 16 (Proved in Humphries et al. (2020)). For any learning algorithm L, any n ∈ N and
data distribution D we have YIG(L, n,D) ≤ OIG(L, n,D) and YFM(L, n,D) ≤ YIG(L, n,D).

Corollary 17. Any upper bound on the advantage of adversaries in security game OIG is also an
upper bound on the advantage of adversaries in the security games YIG, YFM and OFM.

Our analysis above shows that upper bounds for our security model are valid upper bounds for the
security game of Yoem et al and Shokri et al as well. Now, to analyze the tightness of our upper
bound we perform experiments with attacks in these threat models. We argue that one cannot get
a better upper bound on membership inference, unless they make extra assumptions on the data
distribution. In what follows, we experimentally verify this.

I EXPERIMENTS ON THE OPTIMALITY OF OUR BOUND

In this section, we construct a data distribution and study logistic regression on this distribution.

Definition 18. We define Hd be the uniform distribution over the hamming ball of radius 1 and
centered at zero. Thus, the samples fromHd have the form, (0, . . . , 0, 1, 0, . . . , 0) with only one of
the coordinates being 1 and other being 0. For an arbitrary Boolean function f : {−1, 1}d → {0, 1}
we also define Hfd to be the distribution of samples from H that are labled w.r.t. f , namely, Hfd =
(Hd, f(Hd)).

Experiment setup: We run experiments for membership inference on DP-SGD when trying to
learnHfd , using logistic regression, and for an arbitrary function f . We set the learning rate to 0.001,
the clipping threshold to .1 and vary the sub-sampling rate and noise multiplier. We run the models
for either 5 or 50 epochs.

Attacks. We implement a simple attack that only looks at the final model. This adversary looks
at the final model θ and the target instance x in hand which is equal to 1 in coordinate i and zero
everywhere else. If the ith coordinate of θ is larger than Tqc/2 + mTqc/d (T is the number of
iterations, q is sub-sampling rate, n is the number of examples in the training set, and c is the clipping
threshold) then the attack predicts b′ = 1 otherwise it predicts b′ = 0. We call this attack the “final
model attack” (FMA). We also implement another attack that looks at all the intermediate models.
This attack basically performs the FMA attack at each iteration and takes majority vote at the end.
We call this attack the “Intermediate models attack” (IMA).

Evaluation. We evaluate our FMA attack in the threat models of Yoem et al. and Shokri et al. in
the setting where the adversary only sees the final model. We also evaluate this attack in our threat
model, in the setting that the adversary only sees the final model. We also report the accuracy of the
stronger IMA attack.

I.1 RESULTS

We now summarize our findings in our experiments

Increasing d reduces the gap between threat models. We instantiate our data distribution Hfd
with a random function f and select the dimension from {2000, 10000, 10000}. We set the sample
size to 1000, set the sub-sampling rate to .1 and vary the noise multiplier to obtain the attack curve.
We run the models for 5 epochs and report the attack in various threat models. Our results in Figure
I.1 show that by increasing the dimension, the gap between the performance of all attacks and our
upper bound shrinks to almost 0. This verifies the optimality of our bound. It also shows that there is
no fundamental gap between the threat models and we cannot hope to achieve stronger upper bounds
in the weaker threat models, unless we make further assumptions.

Small sub-sampling rate results in a small gap between the performance of FMA and IMA.
We instantiate our data distributionHfd with a random function f and set dimension to 2000 while
keeping the number of instances at 1000. We set the sub-sampling rate to .01 and the number of
epochs to 50. We vary the noise multiplier to obtain the attack curve. Our results in Figure I.1 show
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(a) d = 2000

(b) d = 10000

(c) d = 100000

Figure 4: Decreasing d results in smaller gap between all threat models and the upper bound. This
shows the optimality of our bound in all threat models.
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Without subsampling (d = 2000, m = 1000, q = 0.01)

Figure 5: Small sampling rate can produce a gap between FMA and IMA, but this gap tightens as
we increase the noise.

that small sub-sampling rate can create a gap between the performance of two attacks. This gap
shrinks as we increase the noise multiplier.
Remark 19. Our experiments in this section are verification of the observation made in Nasr et al.
(2021) that an adversary with enough capabilities (e.g. poisoning the dataset and observing the
models in different iterations) can achieve high membership inference advantage. Our result in this
section show that if we allow the adversary to pick the classification problem (the data distribution
and the architecture), it can achieve high advantages that are close to theoretical upper bounds, even
without seeing the intermediate models or poisoning the data.

J SECURITY GAME WITH NON-UNIFORM PRIOR

Here, we extend our result to the setting where the prior distribution for the bit b in the security game
for membership inference is non-uniform. This setting is recently studied in the work of .
Definition 20 (Non-uniform membership inference.). We define a security game between an Adver-
sary (who wants to guess training set membership) and a Challenger (who wants to hide training set
membership).

1. Adversary picks a datasets D = {z1, . . . , zn} and a data point z′

2. Challenger samples a bit b from a bernouli distribution with probability p and creates

D′ =

{
D ∪ {z′} if b = 1
D if b = 0

3. Challenger runs the a learning algorithm L on D′ to train a model and sends a transcript
of training θ (The transcript could only include the final model or more information like the
intermediate steps of training) to the adversary.

4. Adversary observes θ and guesses a bit b′. Adversary wins if b′ = b.

We define the advantage of adversary A on learning algorithm L as Adv(L,A, p) = 2 · Pr[b =
b′] − 2 max(p, 1 − p). We also use Adv(L, p) = supAAdv(A,L, p) to denote the advantage of
any adversary against L.

Note that similar to the uniform setting, with a simple averaging argument we can show that the
best adversarial strategy in the non-uniform membership security game is a deterministic strategy.
Therefore, assuming p < 0.5, the advantage for the learning algorithm L is then defined as

Adv(L, p)

2
= sup
A
µ(A) · p+ (1− ν(A)) · (1− p)− (1− p) (21)
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= sup
A

(1− p)
(
ν(A)− p

1− p
µ(A)

)
(22)

= sup
A

(1− p)
(
ν(A)− p

1− p
µ(A)

)
− (1− p)

(
ν(Ā)− p

1− p
µ(Ā)

)
(23)

+ (1− p)
(
ν(Ā)− p

1− p
µ(Ā)

)
(24)

= 2(1− p)TV p
1−p

(X,Y ) + (1− 2p− Adv(L, p)

2
). (25)

Therefore we have

Adv(L, p) = 2(1− p)TV p
1−p

(X,Y ) + 1− 2p (26)

Now using this, we can prove the following Theorem.
Theorem 21 (Non-uniform gaussian Composition with sub-sampling). Let M1, . . . ,MT be a series
of adaptive Gaussian Mechanisms with L2 sensitivity r and Gaussian noise with standard deviation
σ and sub-sampling rate q. The non-uniform membership inference risk of the composition of Mi’s is
at most

2(1− p)TV p
1−p

(
N (0T , σ),N (r ·B(q)T , σ)

)
+ 1− 2p

where p < 0.5 is the probability of sampling of the additional example in the non-uniform security
game.

Proof. The proof is similar to the proof of Theorem 6 except that we use Equation 26 instead of
Equation 4.
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