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ABSTRACT

I present a simple but informative approach to gain insight into the Bayesian neu-
ral network (BNN) trained parameters. I used 2000 dynamic rupture simulations
to train a BNN model to predict if an earthquake can break through a simple 2D
fault. In each simulation, fault geometry, stress conditions, and friction parame-
ters vary. The trained BNN parameters show that the network learns the physics
of earthquake rupture. Neurons with high positive weights contribute to the earth-
quake rupture and vice versa. The results show that the stress condition of the fault
plays a critical role in determining its strength. The stress is also the top source of
uncertainty, followed by the dynamic friction coefficient. When stress and friction
drop of a fault have higher value and are combined with higher weighted neurons,
the prediction score increases, thus fault likely to be ruptured. Fault’s width and
height have the least amount of uncertainty, which may not be correct in a real
scenario. The study shows that the potentiality of BNN that provides data pat-
terns about rupture physics to make an additional information source for scientists
studying the earthquake rupture.

1 INTRODUCTION

Because of the limited observational data and computational cost, geoscientists often rely on simple
low-resolution simulations to study physical systems such as dynamic earthquake rupture, long-term
tectonic process, etc. Such simplified models are indeed a powerful tool beside the observational
data but sometimes cannot capture the proper physics of the system. As a result, it becomes difficult
to accurately identify and understand the underlying causes.

Machine learning (ML) approaches have been successfully used to solve many such geophysical
problems with limited data and require computational overhead. For example, Ahamed & Daub
(2019) used neural network and random forest algorithms to predict if an earthquake can break
through a fault with geometric heterogeneity. The authors used 1600 simulated rupture data points
to train the models. They identified several patterns responsible for earthquake rupture.

Machine learning approaches are also used in seismic event detection (Rouet-Leduc et al., 2017),
earthquake detection (Perol et al., 2018), identifying faults from unprocessed raw seismic data (Last
et al., 2016) and to predict broadband earthquake ground motions from 3D physics-based numerical
simulations (Paolucci et al., 2018). All the examples show the potential application ML to solve
many unsolved geophysical problems.

However, the machine learning model’s performance usually depends on the quality and quantity
of data. Bad quality or insufficient data increases the uncertainty of the predictions (Hoeting et al.,
1999; Blei et al., 2017; Gal et al., 2017). Therefore, estimating the source of uncertainty is vital to
understanding the physics of earthquake rupture and seismic risk. On top of that black-box nature
of the ML algorithms inhibits mapping the input features with model output prediction. As a result,
it becomes challenging for scientists to make actionable decisions.

To overcome insufficient earthquake rupture data, I used the Bayesian neural network algorithm to
develop a model reusing the simulations data of Ahamed & Daub (2019). I present an exciting ap-
proach to learning the patterns of earthquake ruptures from the trained model parameters. Unlike
regular neural networks, BNN works better with a small amount of data and provides prediction
uncertainty. The approach gives more information on rupture physics than the traditional geophys-
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ical methods. I also describe the workflow of (1) developing a BNN and (2) estimating prediction
uncertainty.

2 EARTHQUAKE RUPTURE SIMULATIONS
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Figure 1: (a) A zoomed view of the two-dimensional fault geometry. The domain is 32 km long
along the strike of the fault and 24 kilometers wide across the fault. The rupture starts to nucleate
10 km to the left of the barrier and propagates from the hypocenter towards the barrier, (b) Linear
slip-weakening friction law for an earthquake fault. The fault begins to slip when the shear stress
reaches or exceeds the peak strength of τs. τs decreases linearly with slip to a constant dynamic
friction τd over critical slip distance (dc). The shear strength is linearly proportional to the normal
stress σn, and the friction coefficient varies with slip between µs and µd.

I used the simulated earthquake rupture dataset created by Ahamed & Daub (2019). The simulations
are a two-dimensional rupture, illustrated in figure. 1. The domain is 32 km long and 24 km wide.
Figure 1a shows the zoomed view of the original domain for better visualization of the fault barrier.
Rupture is nucleated 10 km to the left of the barrier and propagates towards the barrier. In each
simulation, eight parameters were varied: x and y components of normal stress (sxx and syy), shear
stress (sxy), dynamic friction coefficient, friction drop (µs − µd), critical slip distance (dc), and
width and height of the fault. The fault starts to break when the shear stress (τ ) on the fault exceeds
the peak strength τs = µsσn, where µs and σn are the static friction coefficient and normal stress,
respectively. Over a critical slip distance dc, the friction coefficient reduces linearly to constant
dynamic friction µd.

1600 simulation data points were used to train, and 400 were used to test the model performance.
The training dataset has an imbalance class proportion of rupture arrest (65%) and rupture propaga-
tion (35%). To avoid a bias toward rupture arrest, I upsampled the rupture propagation examples.
Before training, all the data were normalized by subtracting the mean and dividing by the standard
deviation.

3 BAYESIAN NEURAL NETWORK

In a traditional neural network, weights are assigned as a single value or point estimate. In a BNN,
weights are considered as a probability distribution. These probability distributions are used to
estimate the uncertainty in weights and predictions. Figure 2 shows a schematic diagram of a BNN
where weights are normally distributed. The posterior network parameters are calculated using the
following equation:

P (W |X) =
P (X|W )P (W )

P (X)
(1)

Where X is the data, P (X|W ) is the likelihood of observing X, given weights (W ). P (W ) is the
prior belief of the weights, and the denominator P (X) is the probability of data which is also known
as evidence. The equation requires integrating over all possible values of the weights as:
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Figure 2: The schematic diagram shows the architecture of the Bayesian neural network used in this
work. The network has one input layer with eight parameters, one hidden layer with twelve nodes,
and an output layer with a single node. Weights between input and hidden layers are defined by w0

ij ,
which are normally distributed. i, j are the node input and hidden layer node index. Similarly, w1

jk

is the normal distribution of weights between the hidden and the output layer. µ and σ are the mean
and standard deviation. At the output node, the network produces a distribution of prediction scores
between 0 and 1.

P (X) =

∫
P (X|W )P (W )dW. (2)

Integrating over the indefinite weights in evidence makes it hard to find a closed-form analytical
solution. As a result, simulation or numerical based alternative approaches such as Monte Carlo
Markov chain (MCMC) and variational inference(VI) are considered. MCMC sampling is an infer-
ence method in modern Bayesian statistics, perhaps widely studied and applied in many situations.
However, the technique is slow for large datasets and complex models. Variational inference (VI),
on the other hand, is faster. It has been applied to solve many large-scale computationally expensive
neuroscience and computer vision problems (Blei et al., 2017).

In VI, ar new distribution Q(W |θ) is considered that approximates the true posterior P (W |X).
Q(W |θ) is parameterized by θ over W and VI finds the right set of θ that minimizes the divergence
of two distributions through optimization:

Q∗(W ) = argmin
θ

KL [Q(W |θ)||P (W |X)] (3)

In equation-3, KL or Kullback–Leibler divergence is a non-symmetric and information theoretic
measure of similarity (relative entropy) between true and approximated distributions (Kullback,
1997). The KL-divergence between Q(W |θ) and P (W |X) is defined as:

KL [Q(W |θ)||P (W |X)] =

∫
Q(W |θ) log Q(W |θ)

P (W |X)
dW (4)

Replacing P (W |X) using equation-1 we get:
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KL [Q(W |θ)||P (W |X)] =

∫
Q(W |θ) log Q(W |θ)P (X)

P (X|W )P (W )
dW

=

∫
Q(W |θ) [logQ(W |θ)P (X)− logP (X|W )P (W )] dW

=

∫
Q(W |θ) log Q(W |θ)

P (W )
dW +

∫
Q(W |θ) logP (X)dW

−
∫
Q(W |θ) logP (X|W )dW (5)

Taking the expectation with respect to Q(W |θ), we get:

KL [Q(W |θ)||P (W |X)] = E
[
log

Q(W |θ)
P (W )

]
+ logP (X)− E [logP (X|W )] (6)

The above equation shows the dependency of logP (X) that makes it difficult to compute. An
alternative objective function is therefore, derived by adding logP (X) with negative KL divergence.
logP (X) is a constant with respect to Q(W |θ). The new function is called as the evidence of lower
bound (ELBO) and expressed as:

ELBO(Q) = E [logP (X|W )]− E
[
log

Q(W |θ)
P (W )

]
(7)

= E [logP (X|W )]−KL [Q(W |θ)||P (W |X)] (8)

The first term is called likelihood, and the second term is the negative KL divergence between a vari-
ational distribution and prior weight distribution. Therefore, ELBO balances between the likelihood
and the prior. The ELBO objective function can be optimized to minimize the KL divergence using
different optimizing algorithms like gradient descent.

4 TRAINING BAYESIAN NEURAL NETWORK

The BNN has the same NN architecture used in Ahamed & Daub (2019) to compare the performance
between them. Like NN, BNN has one input layer with eight parameters, one hidden layer with
twelve nodes, and one output layer (Figure 2). A nonlinear activation function ReLu (Hahnloser
et al., 2000) was used at the hidden layer. ReLu passes all the values greater than zero and sets the
negative output to zero. The output layer uses sigmoid activation function, which converts the
outputs between zero and one.

Prior weights and biases are normally distributed with zero mean and one standard deviation. Fig-
ure 3 shows the log density of prior and posterior weights (wkij) and biases (bkj ). i and j are the
index of the input and hidden layer nodes. i ranges from 0 to 7, and j ranges from 0 to 11. k is
the index that maps two layers. For example, w0

15 is the weight between the first input node and
the fifth hidden node. The output node of the last layer produces a distribution of prediction scores
between 0 and 1. The prediction distributions are used to compute standard deviation, which is the
uncertainty metric.

Adam optimization (extension of stochastic gradient descent) was used to minimize the KL diver-
gence by finding a suitable variational parameter θ. The initial learning rate is 0.5, which expo-
nentially decays as the training progresses. To train the BNN, I use Edward (Tran et al., 2016;
2017), TensoFlow (Abadi et al., 2015) and Scikit-learn (Pedregosa et al., 2011). Edward
is a Python-based Bayesian deep learning library for probabilistic modeling, inference, and criti-
cism. All the training data, codes, and the corresponding visualizations can be found on the Github
repository: https://github.com/msahamed/earthquake_physics_bayesian_nn
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Figure 3: The graph shows the distribution of prior and posterior mean weights (a) w0 (b) w1 and
biases (c) b0 (d) b1. Both location of the mean and magnitude of density of the posterior distributions
(weights and biases) are noticeably different from the priors which indicates that BNN has learned
from the data and adjusted the posterior accordingly.

5 PRIOR AND POSTERIOR PARAMETER DISTRIBUTION

To evaluate the parameters (weights and biases) of the BNN, 1000 posterior samples of w0
ij , w

1
jk,

b0 and b1 were used. Figure 3 shows the prior and posterior distribution of mean weight and biases.
The posterior location of the mean and density of the weights and biases are different from their
priors. For example, the location of w0 shifts toward non-negative value, while the density remains
similar. Whereas, the w1, b0, and b1 have a different posterior mean location and density than their
prior. The differences between prior and posterior indicate that the BNN has learned from the data
and adjusted the posterior distribution accordingly.

The performance of the BNN was evaluated using 400 test simulations. For a given test example,
1000 posterior samples were used to determine the class and associated uncertainty. Uncertainty is
the standard deviation of the prediction scores. The test accuracy of the BNN is 83.34%, which is
2.34% higher than NN. In the following subsection, I discuss how uncertainty can help us understand
physics and find the parameter combinations responsible for an earthquake rupture.

5.1 LEARNING FROM NETWORK PARAMTERS

Estimating the uncertainty of neural network parameters (weights) helps us understand the black
box behavior. The illustration in Figure 4 shows the mean and standard deviation of W 0 and W 1.
W 0 maps the inputs to the hidden layer nodes, whereasW 1 maps the output node of the output layer
to the hidden layer’s nodes. The colors in each cell indicate the magnitude of a weight that connects
two nodes. In the input and hidden layer, the ReLu activation function was used. ReLu passes all the
positive output while setting a negative output to zero. Sigmoid activation is used at the output layer,
which pushes the larger weights toward one and smaller or negative weights toward zero. Therefore,
positive and high magnitude weights contribute to the earthquake rupture and vice versa.

In w0, nodes connected to friction drop, dynamic friction, shear, and normal stresses have variable
positive and negative weights. The corresponding node in w1 also has a strong positive or negative
magnitude. For example, node-12 has both positive and negative weights in w0, and the correspond-
ing node in w1 has a high positive weight. Similarly, node-4 has a substantial negative weight in
w1, and the corresponding nodes in w0 have both positive and negative weights. On the other hand,
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Figure 4: The illustration shows the posterior mean and standard deviations of w0 and w1. (a) w0

that map the inputs to the nodes of the hidden layer. The eight input parameters are on the horizontal
axis, and the twelve nodes are on the vertical axis. The colors in each cell are the magnitudes
of mean weight. (b) w1 maps the hidden layer to the output layer. (c) The standard deviation of
w0. Shear stress connected to node-4 of the hidden layer has the highest uncertainty. Similarly,
the weights associated with the input parameters and node-5 have high uncertainty. Whereas, the
weights associated with the input parameters and the nodes 7-11 have relatively low uncertainty. (d)
Uncertainty of the weights associated with the hidden layer nodes and the output node. Weights in
node 7 and 8 have high uncertainty while the rest of the weights have relatively low uncertainty.

width, height, and dc have a similar magnitude of weights, and the corresponding nodes in w1 have
a moderate magnitude of weights. Thus the variable weights make friction drop, dynamic friction,
shear, and normal stresses influential on the prediction score. Therefore, we can now detect the
important features and their uncertainties from any input combinations.

For example, node-10 of w1 has positive weight (Figure 4b). In w0, the corresponding connecting
input features, friction drop, and shear stress have positive weight and low uncertainty, whereas the
rest have a similar magnitude of weight. The combination of high friction drop and shear stress
weight and low weights of other features increase the prediction score, thus likely to cause rupture
to propagate. Friction drop and normal stresses also have high uncertainty (Figure 4c). For this
combination of patterns, friction drop and normal stresses influence the prediction strongly and are
also the sources of uncertainty. Thus, it gives us the ability to investigate any rupture propagation
example in terms of uncertainty.

5.2 PREDICTION UNCERTAINITY
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Figure 5: The graph shows (a) frequency and (b) standard deviation of posterior prediction scores
of the test data. Prediction scores are skewed toward the left side while slightly less on the right.
The observation is consistent with the proportion of the rupture arrest (272) and rupture propagation
(120) in the test data. Prediction scores close to zero are related to rupture arrest, and scores around
one are the rupture propagation. Standard deviations are high with scores around 0.5.

Figure 5a and b show the frequency and standard deviation of test data prediction scores. The
distribution is more skewed toward smaller scores than the higher ones. Scores close to zero are
associated with rupture arrest, whereas scores close to one are rupture propagations. The observa-
tion is consistent with the class proportion of the test data. Rupture arrest has a higher number of
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examples (272) than rupture propagation (120). Figure 5a shows that scores roughly between 0.35
and 0.75 have a fewer number of examples and thus high uncertainty. The likely reason for the high
uncertainty is that the examples have both rupture propagation and arrest properties. As a result,
the model gets confused and cannot classify the example correctly; thus, the misclassification rate is
high in this region. The network’s performance could be improved if sufficient similar example data
are added to the training dataset.

5.3 ROLE OF INPUT FEATURES
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Figure 6: The illustration shows (a) permutation feature importance and (b) their uncertanitities.

I used the permutation importance method to determine the source of uncertainty in the test data.
Permutation importance is a model agnostic method that measures a feature’s influencing capacity
by shuffling it and measuring corresponding global performance deviation. If a feature is a good
predictor, altering its values reduces the model’s global performance significantly. The shuffled
feature with the highest performance deviation is the most important and vice versa. In this work,
the F-1 score is the performance measuring metric.

Figure 6(a) shows the permutation importance of all the features. Normal stresses (sxx and syy)
have the highest F-1 score deviation, which is approximate 7% less than the base performance,
followed by the dynamic friction coefficient. Geometric feature width has the least contribution
role to determine the earthquake rupture. These observations are consistent with the observation
of Ahamed & Daub (2019), where the authors rank the features based on the random forest feature
importance algorithm.

From the distribution of prediction scores, the standard deviation was calculated for each shuffled
feature. Figure 6(b) shows the uncertainty of each feature of earthquake rupture propagation and
arrest. All features have higher uncertainty in the rupture propagation compare to the rupture ar-
rest. In both classes, the major portion of uncertainty comes from normal stresses. Shear stress,
height, width, and critical distance (dc) have a similar amount of uncertainty in both classes. The
dynamic friction coefficient and friction drop are also the comparable uncertainty sources in rupture
to propagate while slightly less in earthquake arrest.

The above observations imply that normal stress and friction parameters have a more considerable
influence in determining the earthquake rupture. Although the height and width of a fault are not a
significant source of uncertainty, they play a more influential role in influencing other features. For
example, in a complex rough fault, the variation of the bending angle of barriers affects stress per-
turbation, consequently increasing the uncertainty. If the angle near the bend is sharp, the traction
variation at the releasing and restraining bend is more prominent. On the other hand, if the barrier
is broad, the stress perturbation at the restraining and releasing bend is less noticeable. Chester &
Chester (2000) found a similar observation that fault geometry impacts the orientation and magni-
tude of principal stress.

6 DISCUSSION AND CONCLUSION

In recent years, deep learning has been used to solve many real-life problems and achieve a state of
the art performance. Some examples are facial recognition, language translation, self-driving cars,
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disease identification, and more. Such successful applications require millions of data points to train
the model and achieve a state of the art performance. However, in many situations, data is limited
data like earthquake rupture.

In this work, I used a Bayesian neural network to overcome the small data problem and estimate
prediction uncertainty. Rupture simulation created by Ahamed & Daub (2019) was used to develop
a model to predict if an earthquake can break a fault. Each 2D simulation fault has a Gaussian
geometric heterogeneity at the center. The eight fault parameters of normal shear stress, height, and
width of the fault, stress drop, dynamic friction coefficient, critical distance were varied in each of
the simulations. Sixteen hundred simulations were used to train the BNN, and 400 were used to test
the model’s performance.

The test F1 score is 0.8334, which is 2.34% higher than the NN. All the features have a higher
uncertainty in rupture propagation than the rupture arrest. The highest sources of uncertainty came
from normal stresses, followed by a dynamic friction coefficient. Therefore, these features have a
higher influencing capacity in determining the prediction score. Shear stress has a moderate role,
but the geometric features such as the fault’s width and height are least significant in determining
rupture. Test examples with prediction scores around 0.5 have a higher uncertainty than those with
low (0-0.30) and high (0.7-1.0) prediction scores. Cases with prediction scores around 0.5 have
mixed properties of rupture propagation and arrest.
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