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Abstract

Offline reinforcement learning is used to train policies in situations where it is
expensive or infeasible to access the environment during training. An agent trained
under such a scenario does not get corrective feedback once the learned policy starts
diverging and may fall prey to the overestimation bias commonly seen in this setting.
This increases the chances of the agent choosing unsafe/risky actions, especially
in states with sparse to no representation in the training dataset. In this paper,
we propose to leverage a safety expert to discourage the offline RL agent from
choosing unsafe actions in under-represented states in the dataset. The proposed
framework in this paper transfers the safety expert’s knowledge in an offline setting
for states with high uncertainty to prevent catastrophic failures from occurring in
safety-critical domains. We use a simple but effective approach to quantify the
state uncertainty based on how frequently they appear in a training dataset. In
states with high uncertainty, the offline RL agent mimics the safety expert while
maximizing the long-term reward. We modify TD3+BC, an existing offline RL
algorithm, as a part of the proposed approach. We demonstrate empirically that our
approach performs better than TD3+BC on some control tasks and comparably on
others across two sets of benchmark datasets while reducing the chance of taking
unsafe actions in sparse regions of the state space.

1 Introduction

Reinforcement Learning (RL) has seen advancement and achieved great success in solving complex
tasks with high dimensional state and action spaces, including games [Mnih et al., 2013, 2015,
Lillicrap et al., 2015, Gu et al., 2017], and some tasks from robotics [Levine et al., 2016]. An RL
agent trained in an online setting takes an action a in state s and interacts with the environment to
observe a reward r. It then updates its policy based on the observed reward. However, it may be risky
or costly to interact with the environment repeatedly in real-world situations. It may be infeasible in
the cases where a high quality simulator is not available or cannot be built.

In offline RL (also known as batch RL), the agent is not allowed to interact with the environment.
It has access to a fixed-sized dataset collected by any arbitrary policy which may or may not be
known [Lange et al., 2012]. Real-world applications can benefit from this setting because access to
the environment may be limited, challenging or not possible. Such applications which are already
deployed can also generate datasets to learn from. Offline RL enables the use of such logged datasets
for learning and can even allow us to leverage an expert in the form of a human operator, rule-based
systems or a policy trained with a similar objective. Some approaches such as [Lee et al., 2020] show
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that dataset collected by an expert during learning in an online setting can also be used, however,
using the expert itself to facilitate learning in offline RL eliminates the need for data collection and is
helpful in settings where data privacy needs to be enforced.

Overestimation of the values of out-of-distribution actions is a fundamental challenge in offline RL.
This also applies to certain actions which can be deemed as "unsafe" in safety-critical applications
such as autonomous driving, robotic learning, healthcare, etc. For robotic learning, the conditions for
a safety breach during an episode are easier to define (e.g. recording how many times the robot has
fallen, or a grasped object has been dropped). The challenge in this domain is to learn an optimal
policy for a task while minimizing the frequency of above-mentioned instances of catastrophic
failures during training.

In this paper, we study how to utilize a safety expert in an offline RL setting for states with high
uncertainty to minimize failures during training. This safety expert isn’t necessarily optimal and can
be learned or defined by a rule-based system for each task without reference to the underlying task
reward. We use a simple but effective approach to quantify the uncertainty of the states based on how
frequent the visited states are in a given training dataset. This information is used to conservatively
modify the critic target, therefore propagating it to the value function estimation. We believe that
incorporating a safety expert in the form of a pre-trained teacher policy along with quantifying state
uncertainty can be effective in this setting. It reduces the chances of the offline RL agent engaging in
potentially risky exploratory behavior, thus enabling robotic learning from massive datasets. We
show that it can allow the agent to learn safe behavior without explicitly defining constraints on
actions, which can be hard to do in an offline setting.

Our goal is to selectively utilize a safe teacher policy to reduce the chances of risky/unsafe behavior
encountered during the deployment of a learned offline RL policy while still maintaining high
performance. Our main contributions are summarized below:

• We propose a framework called Guided TD3+BC that trains an agent to learn efficiently
from an offline dataset while leveraging a safety expert in regions of high uncertainty.

• We evaluate our approach on a set of datasets from the D4RL benchmark of continuous
control tasks [Fu et al., 2020] and show that the proposed framework either performs better
or comparably to TD3+BC [Fujimoto and Gu, 2021], a popular SOTA offline RL algorithm
on most of the tasks.

2 Related Work

Offline RL. The existing offline RL methods mainly use some approach that allows the learned policy
to stay close to the data collection policy. There are various ways of implementing this. One way
is to estimate the behavior policy and then learning a parameterized policy [Fujimoto et al., 2019b,
Ghasemipour et al., 2020]. Another line of works uses divergence regularization [Jaques et al., 2019,
Kumar et al., 2019, Fujimoto et al., 2019a] to keep the two policies close to each other. Some other
works suggest the use of a weighted version of behavior cloning to encourage choosing actions with
high advantage [Peng et al., 2019, Nair et al., 2020] or use uncertainty as weight of a state-action
pair before making updates[Wu et al., 2021]. Some methods incorporate the notion of safety and
modify the set actions that can be chosen based on their counts [Laroche et al., 2019]. promising
direction of literature looks at using pessimism and implementing divergence regularization as a part
of value estimation [Kumar et al., 2020, Buckman et al., 2020]. The goal of this work is different
from these works which focus on developing RL alorithms specifically for an offline setting. We
study knowledge transfer from a safety expert to an agent learning in the offline setting.

Reinforcement Learning from Demonstration. RL literature has many examples of learning from
teacher policies or demonstrations in an online setting, especially in hard exploration environments.
There are policy distillation techniques [Parisotto et al., 2015, Rusu et al., 2015] for training student
networks such that their outputs (e.g., Q-values) are similar to those of teacher networks. Learning
from demonstrations is another promising area. A replay buffer in an off-policy RL setting can be

2



used to hold teacher demonstrations, which can be combined with samples generated by a student
agent during training. DQfD [Hester et al., 2018] and Ape-X DQfD [Pohlen et al., 2018] are some of
the examples of such methods for a discrete setting while methods suggested by [Nair et al., 2018,
Vecerik et al., 2017] work for continuous control tasks.

3 Proposed Approach

In offline RL, the problem of extrapolation error [Fujimoto et al., 2019b] is prevalent which means
that the agent is unable to evaluate out-of-distribution actions properly. Our focus is on designing
a framework to discourage the agent from selecting unsafe OOD actions while trying to learn an
optimal policy from the dataset. We present such a framework that requires minimal modifications to
a pre-existing offline RL algorithm. Our framework builds on top of TD3+BC [Fujimoto and Gu,
2021]. We modify the critic target term to include state uncertainty. We also include a regularization
term to push the offline policy towards the safety expert in states with poor confidence. The safety
expert can be defined by any rule-based system or a pre-trained policy. We denote the agent’s
confidence w.r.t a state as conf(s) ∈ [0, 1], where the confidence is computed by using SimHash
algorithm [Tang et al., 2017]. SimHash uses Locality-Sensitive Hashing (LSH) to convert continuous,
high-dimensional data to discrete hash codes. LSH preserves the distances among data points, such
that those with similar hashes are close to each other. We use SimHash which is a computationally
efficient LSH technique and it measures the similarity of the states contained in the training dataset
D by angular distance. Here, we can use any technique which can transform the high-dimensional
continuous state space into discrete bins based on their closeness. The following equation shows how
hash codes are computed:

µ(s) = sgn(Ag(s)) ∈ [−1, 1]k. (1)

where A ∈ Rk×d is a matrix with each entry drawn i.i.d. from a standard Gaussian and g : S −→ RD

is a preprocessing function. The dimension of binary codes is k and it controls the granularity of the
state space discretization. This algorithm was originally used as an exploration method but we use it
to bin the states contained in the dataset D into hash codes of size k. We use k = 50 for all the tasks
after careful experimentation with multiple tasks. We populate the hashtable by recording the counts
of states mapped to each hash code, before training an agent. We normalize the state count values by
using max-min normalization. Further, we query the hashtable to retrieve these counts during training
and use the values as conf(s) in the below critic target update equation:

Q(s, a) = r + γ ∗max
a′

Q(s′, a′) − (1− conf(s)) ∗ (a− πT (s))
2︸ ︷︷ ︸

uncertainty weighted learning from the safety expert

. (2)

where πT (s) is a teacher policy used as the safety expert. It is trained in an online setting using a
continuous control algorithm known as TD3 [Fujimoto et al., 2018]. More details on training the
policy πT (s) to be safe are provided in the next section.

Note that the value of conf(s) is lower for under-represented states in the given dataset D and the
lower the confidence, the higher will be the push towards the safety expert, πT (s). Also, the modified
update equation reduces the values of all the (s, a) pairs in the dataset except the ones with the action
suggested by the safety expert. This discourages the agent from picking unsafe action values in
regions of high uncertainty. This completes the description of our framework called Guided Offline
RL which involves making a few small, but effective, modifications to TD3+BC.

4 Experiments

We evaluate our proposed approach on the D4RL benchmark of OpenAI gym MuJoCo tasks [Fu
et al., 2020]. We use the TD3+BC algorithm trained on MuJoCo tasks (Hopper-v2 and Walker2d-v2)
as the baseline. We train a teacher policy πT to be used as the safety expert using TD3 for 1M online
steps. For the policy to be safe, we add a step penalty of the form ctrl_cost_weight ∗ sum(action2)
which is simply a cost for penalizing the agent if it takes actions that are too large. We observe that
by doing so, we can discourage the agent from applying high values of torques to various joints of
a MuJoCo robot and hence prevent it from making jittery moves. We choose ctrl_cost_weight as
0.1 and 0.01 for Hopper-v2 and Walker2d-v2, respectively, after tuning. These environments have
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in-built rewards which penalise the agent when it falls or when the height of the top (along the z-axis)
becomes too high or too low. Further, we train the offline RL agent on various environment-dataset
pairs using the safety expert policy πT as a part of the framework described in the previous section.

Dataset Environment TD3+BC Guided TD3+BC

Random
Hopper-v2 8.53 ±0.23 6.03 ±2.03
Walker2d-v2 0.95 ±0.33 2.83 ±3.57

Medium
Hopper-v2 60.12 ±1.35 57.77 ± 3.07
Walker2d-v2 86.17 ±0.3 83.78 ±2.91

Medium-Replay
Hopper-v2 56.71 ±19.16 85.61 ±5.14
Walker2d-v2 73.56 ±11.19 84.67 ±0.77

Medium-Expert
Hopper-v2 95.16 ±9.85 106.11 ±5.92
Walker2d-v2 110.26 ±0.65 110.6 ±0.21

Expert
Hopper-v2 110.97 ± 1.45 111.62 ±0.37
Walker2d-v2 110.12 ± 0.47 109.91 ±0.13

Total 712.55 ±44.98 758.93 ±24.12

Table 1: Average normalized score using the D4RL -v2 datasets. The highest performing scores are highlighted.
± captures the standard deviation over seeds. TD3+BC algorithm is re-run using author-provided implementation.
The results are after averaging over the final 10 evaluations and 3 seeds. No additional hyperparameter tuning
was performed. TD3+BC and Guided TD3+BC achieve comparable performance.

We use the author-provided implementations for both TD3 and TD3+BC. We use the same base
hyperparameters as the respective authors for these algorithms and train the baseline and the offline
RL agent for three random seeds. In all experiments, the offline agent and the baseline agent do
10 evaluation episodes after every 5000 offline training steps till they reach 1M training steps. We
use the normalized score from D4RL for evaluation and we average the scores of all seeds for each
environment. We report the final performance results in Table 1. In Figure 1, we report the percentage
difference between Guided Offline RL and TD3+BC w.r.t. the total number of times the agent falls or
its agent’s height crosses the safe range (Walker2d-v2) during all the evaluation episodes occurring
within 1M training steps. We also report the percentage difference between the cumulative sum of
the actions across all evaluation steps for each dataset-environment pair.

Our results show that including a safe teacher policy can help in reducing the number of falls that
an agent has. We also show that the approach can keep the sum of actions low in most cases, as
compared to the baseline. The proposed approach works better in reducing the number of falls
in Walker2d environment as compared to Hopper (left). Here, our approach works better for the
dataset-environment pairs for which the dataset collection policy is less similar to the safe teacher
policy. The reduction of the cumulative sum of the actions is more pronounced for Hopper. We
believe that if πT is trained using a constrained method to keep the sum of the actions low, the results
could be better. We find our approach only marginally increases the training time as compared to that
of the baseline. All run time experiments were run with a single GeForce GTX 1080 Ti GPU and an
Intel(R) Xeon(R) CPU E5-2640 v4.

5 Conclusion

In this paper, we present Guided Offline RL framework which relies on state uncertainty estimation
and safety expert knowledge to discourage an offline RL agent from choosing risky/unsafe actions.
We have shown that an existing offline RL algorithm called TD3+BC can be easily modified to design
the proposed framework. Our experiments show that our approach performs comparably or better
on multiple MuJoCo tasks from D4RL benchmark while trying to minimize unsafe incidents during
evaluation. We believe that our framework can be used as an add-on to help to achieve better results
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Figure 1: Percent difference of performance of Guided Offline RL w.r.t baseline TD3+BC algorithm. Here, h =
Hopper-v2, w = Walker2d-v2, r = random, m = medium, mr = medium-replay, me = medium-expert, e = expert.
The proposed approach works better in reducing the number of falls in Walker2d environment as compared to
Hopper (left). The reduction of the cumulative sum of the actions is more pronounced for Hopper (right).

while adhering to safety. As future work, we consider using other forms of the safety expert such as
human interventions, heuristics etc. and evaluate them on a diverse set of safety tasks. We also plan
on studying the effectiveness of the framework when coupled with other SOTA offline RL algorithms.

References
J. Buckman, C. Gelada, and M. G. Bellemare. The importance of pessimism in fixed-dataset policy

optimization. arXiv preprint arXiv:2009.06799, 2020.

J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine. D4rl: Datasets for deep data-driven
reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

S. Fujimoto and S. S. Gu. A minimalist approach to offline reinforcement learning. Advances in
neural information processing systems, 34:20132–20145, 2021.

S. Fujimoto, H. Hoof, and D. Meger. Addressing function approximation error in actor-critic methods.
In International conference on machine learning, pages 1587–1596. PMLR, 2018.

S. Fujimoto, E. Conti, M. Ghavamzadeh, and J. Pineau. Benchmarking batch deep reinforcement
learning algorithms. arXiv preprint arXiv:1910.01708, 2019a.

S. Fujimoto, D. Meger, and D. Precup. Off-policy deep reinforcement learning without exploration.
In International conference on machine learning, pages 2052–2062. PMLR, 2019b.

S. K. S. Ghasemipour, R. Zemel, and S. Gu. A divergence minimization perspective on imitation
learning methods. In Conference on Robot Learning, pages 1259–1277. PMLR, 2020.

S. Gu, E. Holly, T. Lillicrap, and S. Levine. Deep reinforcement learning for robotic manipulation
with asynchronous off-policy updates. In 2017 IEEE international conference on robotics and
automation (ICRA), pages 3389–3396. IEEE, 2017.

T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul, B. Piot, D. Horgan, J. Quan, A. Sendonaris,
I. Osband, et al. Deep q-learning from demonstrations. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 32, 2018.

N. Jaques, A. Ghandeharioun, J. H. Shen, C. Ferguson, A. Lapedriza, N. Jones, S. Gu, and R. Picard.
Way off-policy batch deep reinforcement learning of implicit human preferences in dialog. arXiv
preprint arXiv:1907.00456, 2019.

A. Kumar, J. Fu, M. Soh, G. Tucker, and S. Levine. Stabilizing off-policy q-learning via bootstrapping
error reduction. Advances in Neural Information Processing Systems, 32, 2019.

5



A. Kumar, A. Zhou, G. Tucker, and S. Levine. Conservative q-learning for offline reinforcement
learning. Advances in Neural Information Processing Systems, 33:1179–1191, 2020.

S. Lange, T. Gabel, and M. Riedmiller. Batch reinforcement learning. In Reinforcement learning,
pages 45–73. Springer, 2012.

R. Laroche, P. Trichelair, and R. T. Des Combes. Safe policy improvement with baseline bootstrapping.
In International Conference on Machine Learning, pages 3652–3661. PMLR, 2019.

S. Lee, Y. Seo, K. Lee, P. Abbeel, and J. Shin. Addressing distribution shift in online reinforcement
learning with offline datasets. 2020.

S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end training of deep visuomotor policies. The
Journal of Machine Learning Research, 17(1):1334–1373, 2016.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra. Continuous
control with deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller.
Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Ried-
miller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep reinforcement
learning. nature, 518(7540):529–533, 2015.

A. Nair, B. McGrew, M. Andrychowicz, W. Zaremba, and P. Abbeel. Overcoming exploration in
reinforcement learning with demonstrations. In 2018 IEEE international conference on robotics
and automation (ICRA), pages 6292–6299. IEEE, 2018.

A. Nair, A. Gupta, M. Dalal, and S. Levine. Awac: Accelerating online reinforcement learning with
offline datasets. arXiv preprint arXiv:2006.09359, 2020.

E. Parisotto, J. L. Ba, and R. Salakhutdinov. Actor-mimic: Deep multitask and transfer reinforcement
learning. arXiv preprint arXiv:1511.06342, 2015.

X. B. Peng, A. Kumar, G. Zhang, and S. Levine. Advantage-weighted regression: Simple and scalable
off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

T. Pohlen, B. Piot, T. Hester, M. G. Azar, D. Horgan, D. Budden, G. Barth-Maron, H. Van Hasselt,
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