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Abstract

The disconnect between tokenizer creation and
model training in language models has been
known to allow for certain inputs, such as
the infamous _SolidGoldMagikarp token, to
induce unwanted behaviour. Although such
‘glitch tokens’ that are present in the tok-
enizer vocabulary, but are nearly or fully ab-
sent in training, have been observed across a
variety of different models, a consistent way
of identifying them has been missing. We
present a comprehensive analysis of Large
Language Model tokenizers, specifically tar-
geting this issue of detecting under-trained to-
kens. Through a combination of tokenizer
analysis, model weight-based indicators, and
prompting techniques, we develop effective
methods for automatically detecting these
problematic tokens. Our findings demonstrate
the prevalence of such tokens across various
models and provide insights into improving
the efficiency and safety of language models.
O https://github.com/[redacted]

1 Introduction

Large Language Models (LLMs) have undergone
remarkable advancements, becoming increasingly
capable of understanding and generating human-
like text. While most components of these mod-
els are trained in an unsupervised fashion on vast
amounts of data, the tokenizer typically remains
a separately trained component based on custom
algorithms and smaller datasets.

GPT-2 laid the foundation for much of current-
day transformer-based language modelling (Rad-
ford et al., 2019), including a framework for tok-
enization building on previous work in byte-pair
encoding (BPE) (Sennrich et al., 2016), that has
since been widely adopted. Tokenization using
BPE converts input text to a sequence of subword
tokens by iteratively merging two neighbouring to-
kens using a fixed set of merge rules. These rules
are learned using a greedy training algorithm on
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Figure 1: Example of ‘glitch’ tokens.

a smaller dataset, which is ideally representative
of the LLM’s training data. Recent work in this
area has primarily focused on techniques to re-
move the need for tokenization altogether by mov-
ing to raw byte input (Xue et al., 2022). This
choice typically comes at a significant cost in in-
ference speed, which can be compensated for by
specialized architectures at the initial and final lay-
ers (Yu et al., 2023), or variable compute at in-
termediate layers (Slagle, 2024). However, these
techniques have not been widely adopted, and the
vast majority of current models still rely on sub-
word tokenization. The main alternative to BPE
for subword tokenization is the Unigram method
(Kudo, 2018), which despite work suggesting it
outperforms BPE (Bostrom and Durrett, 2020) is
not in common use. For an in-depth overview
of tokenization methods and their history, see
Mielke et al. (2021). Despite its widespread use,
the tokenization step has generally been found to
be unsatisfactory, being at the root of many un-
wanted behaviours and problems of LLMs (Karpa-
thy, 2024). In particular, the disconnect between
tokenizer and model training creates the potential
for some tokens to rarely or never be seen in train-
ing. Including such tokens in model inputs can
lead to unexpected model behaviour including as
hallucination or the generation of garbled outputs,
leading to such tokens commonly being referred to
as ‘glitch tokens’ (Geiping et al., 2024). We refer
to these as ‘under-trained’ or ‘untrained’ tokens,
reserving the latter term only for cases in which
we have clear indication that the specific token had
no model training data occurrences.
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The presence of such under-trained tokens has
several drawbacks. Firstly, they occupy capac-
ity in a fixed-size tokenizer that could be better
utilized for more common tokens, reducing aver-
age input/output length and inference costs. Sec-
ondly, their deliberate or accidental presence in
input data has the potential to cause unwanted
outputs and break downstream applications. Ro-
bustness to such unexpected or malicious input
data is increasingly important with the prolifera-
tion of tool use and agents in LLMs that retrieve
and process external data. Lastly, these tokens
can potentially be exploited to more easily cir-
cumvent guardrails by pushing the model beyond
its trained distribution (Geiping et al., 2024). Al-
though some work has been done on identifying
such tokens through model and tokenizer analy-
sis (Rumbelow and Watkins, 2023; Watkins and
Rumbelow, 2023; Fell, 2023), there is a lack of re-
liable and well-explained automated methods that
are tested across a wide range of models. Auto-
mated tools for detecting tokenizer problems pro-
vide not only a way to test and iteratively improve
the development of tokenizers, but can also pro-
vide a way to protect deployed models from un-
wanted input via input sanitization. In this work,
we present effective and efficient techniques for
identifying such problematic tokens based on the
model embedding weights and tokenizer configu-
ration. We apply these methods to a wide range of
popular and recent open-weight models. Finally,
we include a brief exploration of extensions of
these techniques to closed-source models. We also
publish a general analysis tool compatible with
Hugging Face models, along with detailed results
for each analyzed model.

2 Methods

Our method consists of three steps; i) first, we
perform a tokenizer analysis by inspecting its vo-
cabulary and observing its encoding/decoding be-
haviour, ii) second, we calculate a number of in-
dicators that identify candidate under-trained to-
kens, and iii) third, we verify whether identified
candidate tokens are indeed out of distribution by
prompting the the target model.

2.1 Tokenizer analysis

We start by defining a number of useful categories
for tokens. PARTIAL UTF-8 SEQUENCES are to-
ken representing sequences of bytes that can not be

converted to Unicode characters, due to containing
only part of a UTF encoding for a character. This
is typical for ‘fallback byte’ tokens in the 0x80-
OxFF range, but depending on whether BPE was
applied directly to bytes, can also include tokens
with other partial Unicode characters.

UNREACHABLE TOKENS are those which are
never the result of tokenizing text. We test this by
checking if decoding the token to a string, and re-
tokenizing this string, results in the token id. Such
tokens are typically the result of tokenizer configu-
ration errors or conflicts between trained and man-
ually added vocabulary. As this test does not work
when tokens can not be decoded to a string, we ex-
clude partial UTF-8 sequences from this category.

SPECIAL TOKENS are manually defined tokens
that typically bypass the normal (pre-)tokenization
pipeline, and often carry specific meanings as con-
trol tokens, such as <s>. We identify special to-
kens using the patterns <...>and [...] and list
them separately from unreachable tokens, even if
they might be considered as such due to input san-
itization in tokenizer preprocessing.

We detect and exclude partial UTF-8 sequences
and unreachable tokens from our under-trained to-
ken detection pipeline, as they are not suitable for
automatically building verification prompts. Our
published model reports include tables with such
tokens, and we briefly discuss some interesting
model-specific results in section 3.2.

2.2 Under-trained token indicators

This section outlines our model architecture-
dependent indicators, which we use to identify po-
tentially under-trained tokens. An key distinction
is made based on whether or not a model uses
‘tied’” embeddings (Inan et al., 2017), i.e. uses the
same matrix for its input embeddings Fj, and the
‘output embeddings’ matrix Eoy in the final ‘lan-
guage modelling head’ layer.

Regardless of the use of tied embeddings, all
weights of the output embeddings influence the
token predictions at every training step. All un-
trained tokens will see similar updates in training,
‘moving away’ from the mean output vector of the
model (Bis et al., 2021)". Alternatively, we can ex-
pect the model to learn to include a constant direc-
tion in its outputs, regardless of context (e.g. via
the residual stream), to consistently output highly
negative logits for tokens that are never a correct

'We assume the common setup with no bias term.



prediction. Thus, we can expect to find that under-
trained token embeddings share a similar direction
in output embedding space, and can identify them
by using the distance to the embeddings of refer-
ence untrained tokens.

When embeddings are not tied, input embed-
dings for tokens which do not appear in the input
for a training step are only affected by a poten-
tial weight decay term. If such a term is applied
to the input embedding matrix, those embeddings
corresponding to under-trained tokens will decay
to zero over training. Alternatively, they will stay
at a (typically low) initial value. The norm of the
input embeddings thus provides an additional in-
dicator for under-trained tokens with potentially
higher sensitivity, and which does not require a set
of known untrained tokens. Specifically, we ex-
pect it will not predict control tokens such as <s>
that are only seen in inputs.

We use the norm of the input embeddings, and
the cosine distance between output embeddings as
our default under-trained token indicators for mod-
els with untied and tied embeddings, respectively.
In addition we calculate and visualize a number of
different indicators and correlation between them,
including the Euclidean distance between output
embeddings. More formal definitions and experi-
ments with more complex output embedding indi-
cators are outlined in Appendix A.

2.3 Verification of candidate tokens

Our proposed indicators naturally provide a rank-
ing of candidate under-trained tokens, but do not
give a definitive threshold, and their relative sim-
plicity is likely to result in a somewhat noisy
relation between indicator and model behaviour.
To confirm that candidate tokens indeed induce
unwanted model outputs, we verify all tokens
which rank among the most likely 2% according
to the chosen indicator, excluding partial UTF-8
sequences and unreachable tokens. This verifica-
tion process involves constructing specific repeti-
tive prompts that induces a high output probability
for normal tokens, and checking if a candidate to-
ken has a very low (< 1%) output probability. See
Appendix B for model prompts.

2.4 Effectiveness of token indicators

This section validates our proposed indicators by
relating them to both model behaviour, and train-
ing data statistics Although such training data
statistics are rarely available, the we are able to do

such a three-way comparison on the open OLMo
v1.7 model (Groeneveld et al., 2024). Figure 2
shows a strong correlation between all proposed
indicators and training data, not only predicting
under-trained tokens, but extending to the entire
range of token frequencies. Applying our verifi-
cation step to all tokens, shows that despite their
relative simplicity, our indicators are highly pre-
dictive of the maximal probability of token pre-
diction (Figure 3). More precisely, 191 out of
49,575 tokens pass our verification step, compared
to 175/993 when testing only the top 2% candi-
date tokens, showing the 2% threshold is a reason-
able trade-off between computational cost and de-
tecting the majority of highly under-trained tokens.
Finally, Figure 4 shows examples of the visualiza-
tions we perform on all model indicators. These
show a clear secondary peak near zero across mod-
els, as well as high correlation between alternative
indicators, further validating their effectiveness.

3 Results

In this section, we present a summary of our key
findings regarding under-trained token detection.
Table 1 presents verification statistics and example
verified tokens for a wide range of models. The
number of verified under-trained tokens varies sig-
nificantly across different model families and to-
kenizer vocabulary size, as well as depending on
the number of unused special tokens a model’s to-
kenizer allows as plain-text input. The percentage
of verified tokens typically ranges between 5-50%
of tested candidate tokens, corresponding to 0.1—
1% of the total vocabulary.

Given the model-specific nature and the exten-
sive volume of results, we discuss some common
findings as well as showcase some representative
examples for particular models. Detailed reports
covering an increasing number of tested models
and token types are available in our repository.

3.1 Common observations

Although many of our findings are dependent on
model-specific details such as tokenizer training
and configuration, model architecture, and train-
ing data, there are a number of commonalities that
appear across many different models.

3.1.1 Single-byte tokens

Tokens representing a single byte are a common
source of untrained tokens. The most common oc-
currence are the bytes @xF5-0xFF which are not



Model #Tokens Tied Emb. #Confirmed Examples

GPT-2 Medium (0.4B) 50,257 Yes 49/999 InstoreAndonline reportprint _externalToEVA
GPT-2 XL (1.5B) 50,257 Yes 67/999 InstoreAndOnline _RandomRedditor embedreportprint
GPT-J 6B 50,400 No* 200/999 _attRot _externalToEVA _SolidGoldMagikarp
Phi-2 (2.7B) 50,295 No* 103/999 DragonMagazine _TheNitrome _SolidGoldMagikarp
Pythia 6.7B 50,277 No 14/993 FFIRMED _taxp _affidav

GPT-NeoX 20B 50,277 No 10/993 FFIRMED _taxp _affidav

OLMo v1.7 7B 50,280 No 178/993 _&\\[ medscimonit FFIRMED _[kxx

Llama2 7B 32,000 No 20/639 _Mediabestanden _Portaly oreferrer

Llama2 70B 32,000 No 32/639 _Mediabestanden _Portaly ederbsrd

Mistral 7B v0.3 32,000 No 53/637 \uefcd };\r & >?[< _febbra _uitgen

Mixtral 8x7B 32,000 No 44/637 \uefcd _/m\r 6 TiAr

Rakuten 7B 48,000 No 66/957 \uefcd _/+*\r G _febbra FREAZ

QWCHI.S 32B 151,646 No 2450/2966 _ForCanBeConvertedToF (stypy $PostalCodesNL
Qwenl.5 72B Chat 151,646 No 2047/2968  _rorcanBeconverted useRalative _typingsJapgolly
StableLM2 12B 100,288 No 138/1997 _ForCanBeConverted \tTokenNameIdentifier _StreamLazy
Llama3 8B 128,256 No 556/2540 _ForCanBeConverted YoiyNYeiuN _CLIIIK krvldkf 24
Llama3 70B 128,256 No 462/2540 $PostalCodesNL utica imaktadir —S3> ;\r\r\rin
Command R (35B) 255,029 Yes 306/5012  addLanguagespecificText _ARStdsong EFisksmATSI
Command R+ (104B) 255,029 Yes 75/5012 AddLanguageSpecificText tocguid ephritidae
Gemma 2B 256,000 Yes 3161/5117 fedradieidt "(@)$_ _coachTry _AcceptedLoading ICTOGRAM
Gemma 7B 256,000 Yes 800/5117 fedradiedt EnglishChoose _queflto _stockfotografie [
Starcoder2 15B 49,152 No 128/968 ittrLorenipundolorsitametconsecteturadipiscingelitIntegervelvel
Yi 9B 64,000 No 245/1278 \\+::\\+ mcited mabaochang nConsequently
Jamba v0.1 (52B) 65,536 No 6/1280 derrelsc 1{(}I{} ronicsystems

Table 1: Detection of under-trained tokens. #Confirmed are the confirmed/tested numbers for the tokens tested
in verification that are predicted with a maximal probability of < 1% across verification prompts. Examples were
manually chosen for readability, similarity across models or for being particularly striking. Note that the leading
‘_’ in tokens such as _SolidGoldMagikarp indicates a leading space.

*These models include a bias in their final layer, which does not affect our results as we use their input embeddings.
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Figure 2: Under-trained token indicators are predictive of training data. The embedding based under-trained token
indicators for the OLMo v1.7 7B model and the number of times each token appears in the first epoch of the
training data are shown. All indicators correlate highly with the number of times a token is seen in training, not
only at the expected lower values, but extending across ten orders of magnitude.



Max(token probability in verification)

0.0 0.2 0.4 0.6 0.8 1.0
E;, L2 Norm

Figure 3: Under-trained token indicator are predictive
of verification probability. The rate of successful veri-
fication (p < 0.01) correlates very highly with our pro-
posed indicator, with no false positives at low values
of the indicators and a low rate of false negatives. The
dotted line indicates the default 2% threshold used for
verification.
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Figure 4: Comparison of indicators. The scatter plots
are coloured by token id, from light green to dark blue.
Top: Rakuten 7B showing a separate cluster for added
tokens, and high correlation near zero. Bottom: In den-
sity plots, a clear peak appears near zero for most mod-
els, giving rise to a bimodal distribution.

used in UTF-8 encoded text?, and are a convenient
source for quickly locating reference untrained to-
kens for indicators which require them. In addi-
tion, many tokenizers including from the Gemma,
Llama2 and Mistral families include every byte as
a token, with many of them in the normal ASCII
range 0x00—0x7F being redundant and unreach-
able due to the existence of a token for the corre-
sponding character. These issues are not universal,
and we also find models which include precisely
the 243 bytes used in UTF-8 as tokens. Untrained
single byte tokens are typically classified as ‘par-
tial UTF-8 sequences’ or ‘unreachable’, and our
indicators are effective in revealing which ones are
never or rarely seen in training.

3.1.2 Intermediate BPE fragments

All tested models use BPE based tokeniza-
tion, which retains the original tokens after a
merge, often causing intermediate ‘junk’ tokens
(Bostrom and Durrett, 2020). When detecting
these as under-trained, will denote the more com-
plete token in parentheses, e.g. _TheNitrome
(_TheNitromeFan) in the GPT-2 tokenizer. In
some occasions the longest token is also under-
trained, alongside a variety of fragments. The
same mechanism appears to explain many under-
trained partial UTF-8 sequences in byte-level BPE
tokenizers, with multiple bytes being merged over
several steps, leaving potentially many intermedi-
ate tokens with partial Unicode characters.

3.1.3 Special tokens

Many models include untrained special tokens,
such as <pad>, <unk>, or <|unused_123|>. In
the following discussion we generally omit men-
tioning them, unless their status as an (un)trained
token is particularly surprising, as their inclusion
in the tokenizer and training data is typically delib-
erate, for purposes such as the ability to fine-tune
models without changing tokenizers. One com-
mon observation is that on many occasions tokens
such as <mask>, which we expect to be completely
untrained, nevertheless appear to have been seen
in training. A likely source for this is code reposi-
tories or guides about language models using these
tokens in normal text, along with tokenizers allow-
ing such special control tokens in input text.
Special tokens can be unreachable due to input
sanitization as well as configuration errors. In par-
ticular, both the Gemma and Yi models include

2See Appendix C for a primer on UTF-8 encoding.



special tokens relating to HTML tags, which were
initially detected as unreachable, with the tags be-
ing split up in pre-tokenization?.

3.2 Model-specific observations

In this section we outline some model-specific ob-
servations, grouped by the tokenizer used. These
examples are mainly intended to illustrate the va-
riety of different under-trained tokens and configu-
ration issues that can be found using our methods,
and are not exhaustive.

GPT-2 (Radford et al., 2019) introduced the
framework for much of current-day LL.Ms, and the
tokenizer has been re-used extensively. We con-
firm previous findings with a significant number
of tokens related to (fragments of) usernames (e.g.
_TheNitrome, _RandomRedditor). We also find a
number of under-trained non-English tokens. We
also detect that all ASCII control characters except
for the newline character, but including the tab and
carriage return characters, appear untrained. This
suggests a potential mismatch in data normaliza-
tion between training and inference.

GPT-J 6B (Wang and Komatsuzaki, 2021) and
Phi-2 (Microsoft, 2023) are independent models
which both also use the GPT-2 tokenizer, and have
significantly more under-trained tokens, likely
due to their training data being further removed
from the data used to train the tokenizer. These
additional tokens include _SolidGoldMagikarp,
which is not among verified candidates in GPT-2.

GPT-NeoX is an open-source library and asso-
ciated family of models which uses a tokenizer
with the same vocabulary size as GPT-2, but
trained on the same ‘The Pile’ dataset also used for
model training, and with added tokens for multiple
spaces (Black et al., 2022). The GPT-NeoX 20B
model has very few under-trained tokens, likely in
part due to this alignment between tokenizer and
model training, with the fragment FFIRMED show-
ing up most consistently. The Pythia 6.7B model
based on the same library (Biderman et al., 2023)
also shows very similar results.

OLMo open language models (Groeneveld
et al., 2024) also use the GPT-NeoX tokenizer,
but have a much higher rate of under-trained to-
kens, including a wide range of punctuation-based
tokens. We also detect over 200 unreachable to-
kens representing combinations of spaces and line

3The Gemma team released a fix in response to our report,
and the 01.AlI team advise not to use the ‘fast’ version. Our re-
ported results are based on the latest recommended versions.

breaks in the tokenizer, which appear to be caused
by the aforementioned ‘multiple spaces’ tokens
taking precedence. However, many of them ap-
pear to have been seen in training, based on both
our indicators and training data statistics*.
Furthermore, we noticed that embedding based
indicators are not near zero for the GPT-NeoX and
Pythia models, as well as v1 of the OLMo model.
For the GPT-NeoX/Pythia models, this was ex-
plained by a specific implementation of weight de-
cay, where only weights that are used in the for-
ward pass are affected, but we find that having low
but non-zero embeddings is still a good predictor
for under-trained tokens. The OLMo v1 model in-
stead applies no weight decay, and requires using
output embedding based indicators instead. How-
ever, the OLMo v1.7 model does apply weight de-
cay to embeddings, and its embedding norms are
near zero for untrained tokens (cf. Figure 2), and
we use only this more recent version in this work.
Llama2 models (Touvron et al., 2023) use
an relatively compact BPE tokenizer, and have
a low number of under-trained tokens, mostly
relating to long non-English words, including
_Mediabestanden, _Pacnogena, and _Portaly.
We also find under-trained intermediate fragments
such as _gepublic (_gepubliceerd). Several of
these tokens were also found in previous work on
steering model outputs (Geiping et al., 2024).
Mistral models (Jiang et al., 2023, 2024) use
a similar tokenizer, but its vocabulary includes a
significant number of multi-character punctuation
sequences ending in a carriage return (\r), which
are the main source of under-trained tokens. The
\uefc@ token representing a single unassigned
Unicode character in the ‘private use area’ is con-
sistently among the most under-trained, along with
6, a character from the Limbu script.
Rakuten 7B (Rakuten Group et al., 2024) is
a derived model with an extended vocabulary for
Japanese, and continued pre-training. Among the
extended vocabulary we find a few under-trained
fragments such as fEHAF (BRHEKAZE, ‘Waseda
University’). Their presence is proportional to the
extended vocabulary, which forms a distinct clus-
ter when visualising their indicators (see Figure 4).
Gemma is a family of models by Google Deep-
mind (Gemma Team et al., 2024) and uses a large
256,000 token vocabulary, which includes a sig-

*This was in part traced to a breaking change in
tokenizers v(.14 (Luca Soldaini, personal communication).



nificant number of under-trained fragments in var-
ious scripts. Most notably we find many under-
trained tokens which contain ‘I’ (an archaic form
of ‘s’ in German), including _mduffen, as well as
a number of translations of ‘stock photos’ such as
_stockbilder and _stockfotos.

Command R/R+ are models by Cohere (2024)
which also have a large multi-lingual vocabulary
with over 255,000 tokens. The most notable dis-
covery in these models was that over 1,400 man-
ually added tokens of emojis are categorized as
unreachable, and are all clearly untrained accord-
ing to their indicators. Additionally, among par-
tial UTF-8 sequences are several tokens related
to the English flag followed by invisible Unicode
‘tag’ characters, which we tracked to a conversion
step from image-based flags to emojis in an open-
source pipeline for parsing Wikipedia pages, po-
tentially affecting other models as well.>

The tiktoken library by OpenAl (OpenAl,
2024), includes the ‘cl100k’ tokenizer as used
in GPT-3.5/GPT-4 as well as several other mod-
els. This tokenizer use a pre-tokenization pattern
which allows not only a starting space, but many
other single punctuation characters at the start of
a token. This choice results in tokens such as
\tTokenNameIdentifier and $PostalCodesNL,
which are highly sensitive to pre-tokenization split-
ting, with leading spaces before the token result-
ing in different tokenization. In combination with
their specific content, this is likely to have made
them more severely under-trained across models.

StableLM2 is a model by Stability Al (Bella-
gente et al., 2024) which uses a slightly modi-
fied version of this tokenizer. Due to the addition
of digit splitting, the original multi-digit tokens
were expected to show up as both unreachable and
untrained, but were initially only detected as un-
trained due to a tokenizer configuration error®.

Qwen is a model family by Alibaba (Bai et al.,
2023) which significantly extends the ‘cl100k’ to-
kenizer to over 150,000 tokens. The added to-
kens and large inherited tokenizer results in many
under-trained tokens, and among added tokens we
find archaic Chinese characters (such as 3%) and
Korean characters which are typographically valid
but never seen in normal text (such as 2f).

Llama3 is a recent model family by Meta Al
(2024) which also extends this tokenizer with

SQur fix [link redacted] for this has been released.
SThis bug was fixed by disabling the ‘slow’ tokenizer.

28,000 additional tokens. Aside from sharing
many under-trained tokens with other models us-
ing this tokenizer, the newly added tokens in-
clude additional under-trained tokens such as
YoiuNYbIUN and krv1dkf.

StarCoder2 is a family of models resulting
from the BigCode project, an open-scientific
collaboration focused on code (Lozhkov et al.,
2024). The open nature of the project rep-
resents a great opportunity for further inves-
tigation, allowing us to determine the source
of under-trained tokens in the published tok-
enizer training data. We find a single document
which illustrates maximal variable lengths in Java
by repeating ‘Loremipumdolorsitametdconsecte-
turadipiscingelitIntegervelvelittr’ as the source of
several long under-trained tokens, a single doc-
ument with base-64 encoded strings as the ori-
gin of tokens such as BjKPZFqg, and a single
source code file with a list of solutions of a
German Wordle game with words categorized by
dialect as the source of several tokens such as
Ostschwizertutsch relating to Swiss German di-
alects. Furthermore, the tokenizer is unique in
missing the @xF1 byte as a token in addition to not
including unused UTF-8 bytes, and input text con-
taining this byte results in <|endoftext|> being
used as a fallback ‘unknown’ token.

Yi 9B is a base model by 01.AI whose train-
ing data is focused on English and Chinese (01.Al
et al., 2024). Most notable among results are a
number of strange tokens starting with ‘n’, includ-
ing nConsequently and nInterestingly which
may have been caused by incorrectly processing
newline characters in tokenizer training data. In
addition, three tokens with Chinese phrases includ-
ing &7 are unusual unreachable tokens.

Jamba v0.1 is a model from AI21 based on a
hybrid Transformer-Mamba mixture-of-experts ar-
chitecture with 52B total parameters (Lieber et al.,
2024). This model has very few tokens that pass
our strict threshold for verification, and probabil-
ities for token output are often unusually close
to one. Tokenizer analysis does reveal 1,542 un-
trained special tokens, with <|startoftext|> as
the only special token which has seen training.
The latter is also an extreme outlier in our verifi-
cation, with our indicators showing it to be clearly
seen in training, while the maximal probability of
outputting the token is ~ 10~%. The unusually
sharp probability distributions may be an effect of
the novel architecture of this model.



4 Application to closed-source models

As our techniques involve using the model
weights, they are not directly applicable to closed-
source models. However, the experience gained in
inspecting a large variety of open models has pro-
vided insight which may transfer to closed models.
For these tests, we use a custom prompt designed
to exactly repeat strings and see if models appear
incapable of doing so. Using these techniques we
can readily identify under-trained tokens in closed
OpenAl and Mistral models by using open models
which share a tokenizer, as well as in the Claude
2.1 model by only using the tokenizer to identify
candidate tokens. See Appendix D for details.

5 Discussion

The presence of under-trained tokens has several
negative consequences for language models, in-
cluding inefficient inference and the potential to
bypass guardrails. Our investigation has shown a
wide variety of untrained and under-trained tokens
present in model tokenizers. Even with our rel-
atively strict threshold for verification, we detect
the presence of such tokens across all tested mod-
els, with typically around 0.1-1% of the vocab-
ulary consisting of severely under-trained tokens,
although their prevalence varies significantly. The
most important factors in a model having many
under-trained tokens, aside from simply having a
large vocabulary, appears to be whether the tok-
enizer was trained on similar data as the model.
Models which re-use a large external tokenizer,
and then train from scratch, are among those with
the highest number of under-trained tokens.

Analyzing the tokenizer directly can detect sev-
eral of these without the need for any training,
including unreachable tokens which do not en-
code back to their representation, and unused byte
fallback tokens. This can be particularly useful
in quickly catching tokenizer configuration errors,
which appear to be particularly common when cus-
tom vocabulary is manually added. Additionally
using the model embedding weights directly is
a reliable way to detect tokens which are under-
trained, although the care should be taken to take
into account the model architecture.

Based on our findings, we can summarize a
number of recommendations within the scope of
current tooling. Firstly, ensure input data pre-
processing is identical across tokenizer training
data, model training data, and model inference. In

particular, consider carefully how to handle car-
riage returns, tab characters, and special tokens
present as plain text in training data and user input.
Secondly, carefully consider tokenization training
data, ensuring it is representative of model train-
ing data. Finally, after training a tokenizer, check
for unreachable tokens by encoding and decoding
the vocabulary to ensure manually added tokens
are handled correctly. Additionally, when training
a base model, check for under-trained tokens after
smaller test runs, or test on a different corpus, to
reveal pre-processing bugs that cause unrepresen-
tative inputs in the main training data.

In addition to providing a set of useful tools for
improving models and tokenizers, our work sug-
gests several directions for future research. Firstly,
the results from StarCoder?2 (section 3.2) highlight
a potential weakness in BPE training in that oc-
currences in a single document or repository are
able to define a token by themselves. Strategies
for preventing this, such as limiting the count for
pairs to be merged by document, should be ex-
plored to prevent this. Secondly, we note that byte-
based BPE produces more intermediate fragments
which additionally have the ability to cause out-
puts to be undecodable. The trade-off between
more efficient encoding and these downsides is
particularly under-explored. Although allowing
such tokens may lead to lower average token
counts, it also leads to more untrained ‘fragments’
and tokens which are less semantically meaning-
ful. Techniques such as BPE-dropout (Provilkov
et al., 2020) have been proposed to compensate for
under-trained intermediate fragments, but direct
comparisons on state-of-the-art models are lack-
ing. Finally, we noticed differences between mod-
els in terms of how they apply weight decay to to-
kens not present in input, including not applying
weight decay to embeddings, applying it only to
tokens seen in a batch, or applying it to all weights.
This choice may affect how well models remember
the meaning of rare tokens and likely mitigate the
severity and impact of under-trained tokens. Al-
though this choice has been known to be important
in older models (Sedhain et al., 2015), we are not
aware of systematic ablations in recent LLMs.

In conclusion, our findings highlight a range of
tokenizer issues, and the severity of these varies
across different models. By analyzing tokeniz-
ers and model embeddings, we can identify under-
trained tokens and improve the efficiency and se-
curity of LLMs.



6 Limitations

Although our pipeline for finding under-trained to-
kens is effective at finding such tokens in a wide
range of models, it still has a number of significant
limitations.

Most notably, the output embedding based indi-
cators require manually specifying a set of refer-
ence under-trained tokens, preventing the method
from being fully automated for the minority of
models with tied embeddings. Secondly, the out-
put embedding based indicators are heuristic, and
based on a hypothesis for the internal represen-
tation and training dynamics. Further research
into model interpretability could refine our un-
derstanding of such representations, and lead to
more effective indicators. The input embeddings
based indicator, while not requiring such manual
input, is only applicable to models without tied
embeddings, and depends on particular choices
for weight decay and/or initialization. Although
this constitutes the majority of models, there are
a significant number of exceptions, and the exact
weight decay used is often not well documented.

Aside from limitations in the ability to auto-
matically calculate under-trained token indicators,
the relation between our proposed indicators and
model behaviour is noisy. Both the indicators
themselves, as well as the verification results,
can be more indicative of problematic model be-
haviour on different occasions. Specifically, there
are certain cases where the indicators we use of-
fer a more reliable guide of a token’s tendency
to induce unwanted output in typical prompt-
ing compared to our verification prompting tech-
niques. These cases include input/output asymme-
try, where tokens are solely present as inputs (e.g.,
<B0S>), or situations where the model exhibits a
strong bias towards English, consistently produc-
ing translated outputs. Another common occur-
rence is output of the equivalent token without a
leading space, although the variation in our verifi-
cation prompts compensates for this. On the other
hand, there are cases where tokens are rejected
by the verification process, but can still induce in-
correct behaviour, mainly due to our strict thresh-
old and repetitive verification prompts, which are
aimed at detecting the most reliable under-trained
tokens. However, despite these limitations, verifi-
cation using prompting is highly effective in identi-
fying a threshold below which candidate tokens in-
duce unwanted behaviour, and selecting the most

effective candidate tokens.

Finally, the scope of our work is limited by fo-
cusing exclusively on models which use byte-pair
encoding based tokenization. Results for Unigram
based models are likely to be significantly differ-
ent, with both the lack of intermediate fragments,
and randomized tokenization preventing the inter-
mediate fragments which are a source of under-
trained tokens.
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A Under-trained token indicators

This section gives more precise definitions of our
propsosed under-trained token indicators we used,
as well as experiments comparing some potential
alternatives.

A.1 Definitions

To calculate the indicators based on the output em-
beddings oy, we start by defining a set of known
untrained or highly under-trained embedding in-
dices t..f, such as the token ids for tokens such as
<unused_token123>, or the space of embeddings
above the tokenizer vocabulary size.

Next, we calculate the mean unused token em-
bedding vector

1
|tref’

Z Eout,i

ietref

Uyef =

Finally, we take the cosine distances C'( Eout, Uref)
between this mean unused embedding vector and
rows in Eqy, where C(A, ) is the vector of co-
sine distances between x and rows of A

Ai-l‘

CAzr),=1— ——
(42) T

In addition to the cosine distance between out-
put embeddings, we also calculate and visualize
the the Euclidean distance between output embed-
dings to the untrained reference Lo(Eout — Uref)
where

La(A); = || 4

For models with tied embeddings, we use the
cosine distance based indicator C'( Egyt,, Uyef) to se-
lect candidate tokens. For models with tied embed-
dings, we use the norm of Ej,, denoted Lo(Fiy).
In addition we calculate and visualize all output
embedding based indicators.

A.2 Comparison of alternative indicators

For some models, in particular those in the
Gemma series (Gemma Team et al., 2024), we
noticed a very high similarity between the rows
of their (tied) embedding matrix. Such similar-
ity between embeddings has been noted before,
and has been attributed to all embeddings being
pushed in a common direction during training (Bi§
etal., 2021). Although a constant component in all
output embeddings has no effect on model predic-
tions, as softmax is invariant to a constant shift of
all logits, such similarity may affect the effective-
ness of our under-trained token indicators.
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To compensate for this, we tested two varia-
tions for reducing or removing this constant com-
ponent. Centering the embeddings by subtracting
their mean, and removing their first principal com-
ponent:

~ 1
Eout,i = Eout,i - E Eout,j
‘Eout’ j

U = PCA(Eout)

= T
Eout,i = FEout,i — (Ui Eout,i)U1

We can then take the cosine distance between
rows in these adjusted output embedding matrices

A

to obtain the additional indicators C'(Eqyt, Uret)
and C (Eout, Uref). Testing additional indicators
on a small range of models (see Table 2) shows no
consistent improvement in using these more com-

plex methods.

B Verification details

We use three repetitive prompts to induce mod-
els to output the candidate token we are testing,
shown in Table 3.

These prompts are all designed to be suitable for
base models and not require specialized instruc-
tion tuning or prompt templating. For each prompt
we generate three tokens and check the maximal
probability of our target token being predicted, and
then take the maximum of this again over all three
prompts. Variation in quoting and spacing helps
to ensure we do not detect false positives based on
models producing similar tokens without spaces,
or tokens which start with punctuation partially
merging with quotes.

C A short primer on UTF-8 encoding

UTF-8 is the most prevalent encoding scheme
used to represent text in computers and communi-
cation protocols worldwide. It efficiently encodes
Unicode characters, which encompass a vast range
of characters from various writing systems and
symbols (The Unicode Consortium, 2023). Encod-
ing to UTF-8 is often the first step in tokenization.

UTEF-8 encoding can be summarized as follows:

* ASCII (code points below 128): Single byte,
binary Oxxxxxxx representing up to 7 bits.

* 2-byte sequences: 110xxxxx, 10XxXxxxx rep-
resenting up to 11 bits.



Number of verified under-trained tokens using metric
Model C(Eout7 uref) C(Eout7 ﬂref) C(Eout7 ﬂref) Lo (Eout - Uref) Lo (Ein)
Command R 306 302 301 309 n/a
Command R+ 75 79 74 83 n/a
Gemma 2B 3161 3310 2889 3052 n/a
Gemma 7B 800 802 797 800 n/a
GPT-2 Medium 49 49 49 49 n/a
Mistral 7B v0.3 63 54 63 60 53
Olmo 7B v1.7 177 178 177 179 175

Table 2: Effectiveness of different indicators. For each under-trained token indicator, we verified the top 2% of
tokens, and show the number of these that pass our 1% verification threshold. No consistent pattern is seen to
justify the more complex alternatives.

Verification prompt #1.
<token> is replaced with the token we are testing.

7

This device repeats its input exactly, as shown in these 100 identical trials.
Input: «<token>»
Output: «<token>»
<repeated 18 additional times>
Input: «<token>»
Output:

\.

Verification prompt #2
<token> is replaced with the token we are testing.

7

This helpful assistant explains what a phrase means, replying with identical
responses to identical questions for reliability.
User: What does ’edslfkj’ mean?
Assistant: ’edslfkj’ has no specific meaning I am aware of.
User: what does ’<token>’ mean?
Assistant:

\

Verification prompt #3
<token> is replaced with the token we are testing.

~

Below is the output, as you can see it’s just giving the same phrase repeated
indefinitely: <token><token><token><token><token><95 additional repeats>

~

\.

Prompt used for API-based testing

Please help me reformat this Python code.
I want to have every element in the array on a separate line.
Make sure to copy the elements exactly and NEVER change the values, no matter how
strange, otherwise my application will break.

*“python
passwords = <list of strings with multiple elements per line>

Table 3: Prompts
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* 3-byte sequences: 1110xxxx, 10XxXxXXxX,
10xxxxxx representing up to 16 bits.

* 4-byte sequences: 11110xxx, 10xXxXxXXxX,
10xxxxxx, 10xxxxxx representing up to 21
bits.

Where the bits indicated by ‘x’ are concatenated
to form the Unicode code point.

This encoding naturally gives rise to some byte
values that are not used:

e 111110xx, 1111110x, 11111110, 11111111
would represent the first byte of sequences
of 5-8 bytes, which are not in use. This cor-
responds to decimal 245-255 or hexadecimal
OxF5—-0xFF.

11000000, 11000001 are not in use, as the
possible two-byte encodings that start with
this fit in 7 bits due to the five leading zeros.
These are 192/193 in decimal and @xC0/0xC1
in hexadecimal.

Additionally, other starting bytes can be cov-
ered entirely by other tokens, and also turn
out to be unused. A common example of
this is @xC2/0xC3 which are only used for
Unicode points 128-255. In addition, since
code points U+323B@ to U+@xDFFFF are unas-
signed, the @xF1 and @xF2 bytes are not used
in UTF-8 representations of currently defined
Unicode characters. Similarly, 0xF4 is only
used through the “Supplementary Private Use
Area”. However, even if not defined in the
current Unicode standard, such characters
can be easily inserted in text and are found
on web pages.

D API-based verification in

closed-source models

We use a specific prompt for API based testing
of under-trained tokens, show in Table 3. The
‘password’ strings consist of the problematic to-
ken, occasionally prefixed to help identify their
source, and to avoid starting the string with a lead-
ing space, as we noticed that models often drop
the leading space after a quotation mark, even for
normal tokens. Although many other prompt for-
mats are effective, we have found this code-based
approach to more clearly avoid false positives. Fig-
ure 5 shows the result for Mistral, Anthropic and
OpenAl models.
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D.1 Mistral Medium and Large

Although tokenizers are available for Mistral’s
open models, their flagship API models do not
include information about tokenizers. However,
due to a confirmed leak of an early version of
their ‘medium’ model as ‘miqu’, we have some
knowledge of the ‘medium’ model being poten-
tially derived from Llama2 70B. By prompting
both the ‘medium’ and ‘large’ models, we confirm
that the ‘medium’ model is unable to repeat strings
that are typically under-trained in Llama2 mod-
els, and the ‘large’ model fails on typical tokens
from the ‘small’ and ‘Mixtral’ series. In addition,
in experimenting with such prompts we found
that the ‘large’ model occasionally responds with
apparent undocumented special tokens including
[TOOL_CALLS] and [control_331], which were
recently confirmed to be part of the tokenizer for
the 8x22B model.

D.2 Anthropic Claude 2 and 3

Although documentation on tokenization in these
models is limited, the Anthropic SDK contains
some tokenizer utilities for Claude 2, with re-
marks that they are not accurate for Claude 3.
Using the tokenizer provided for Claude 2, we
can identify some candidates for intermediate
fragments that are likely under-trained by looking
for long tokens which are included in even
longer tokens. This results in candidates such
as CandidateFaciNum (iCandidateFaciNum),
TrileptonPatTuple (TrileptonPatTupleMC),
BFrontend (DVBFrontend) and others. Some of
these tokens can be confirmed as problematic in
Claude 2.1, although none appear effective in the
Claude 3 family of models, consistent with the
change in tokenizer implied by their SDK code.

D.3 OpenAl GPT-3.5 and GPT-4

that share a tokenizer

we already have an

candidates,  including
_ForCanBeConverted, $PostalCodesNL,
useRalative, _typingsJapgolly, and oth-
ers. We find that all OpenAl models older than
GPT-4o fail to handle many of them correctly,
resulting in hallucinations followed by an inability
to tell the difference between the inputs and in-
correct outputs, or degrading into repetition. The
latest GPT-40 model uses a different tokenizer
with a larger vocabulary, but similar techniques

By wusing models
(cf. section 3.2),
list of potential


https://github.com/anthropics/anthropic-sdk-python/blob/8e3d8a68d309424238ae54e03ee962f7147cfc60/src/anthropic/_client.py#L276
https://github.com/anthropics/anthropic-sdk-python/blob/8e3d8a68d309424238ae54e03ee962f7147cfc60/src/anthropic/_client.py#L276
https://github.com/anthropics/anthropic-sdk-python/blob/8e3d8a68d309424238ae54e03ee962f7147cfc60/src/anthropic/_client.py#L276

for tokenizer analysis as described in the previous
section are effective in finding under-trained
tokens.
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Please help me reformat this Python code.
I want to have every element in the array on a separate line.
Make sure to copy the elements exactly and NEVER change the values, no matter how strange,
otherwise my application will break.
passwords = [
[*Llama2: Mediabestanden®, 'LLama2: Portly","LLama2:oreferrer”,

"Mistral: febbra®, "Mistral:iNdEx", "Mistralic" ]
1

mistral-medium

Here is the reformatted Python code with each element on a separate line:
passwords =

[*L1ama2: javase"

"LLama2: javase"

"LLama2: javase"

"Mistral:febbra",

"Mistral:Index",

"Mistral:c"

]

Note that | have only added line breaks and did not change any of the values.

However, | noticed that the second and third elements n the list are identical to the first one.
If this is not intentional, you may want to double-check your code.

Also, please note that the last element i the list contains a special character ("6"). If this s not
intended, you may want to replace it with a valid character or remove it altogether.

mistral-large-2402

Sure, | can help you with that. Here's your Python code reformatted with each element in the
array on a separate line:

passwords = [
[

“Llama2: Mediabestanden"

This format should maintain the exact values of your elements while improving readability.

(a) Mistral API prompting results.

Please help me reformat this Python code.

Iwant to have every element in the array on a separate line.

Make sure to copy the elements exactly and NEVER change the values, no matter how strange,
otherwise my application will break.

passwords =
"Quen: ForCanBeConverted en: ForCanBeConvertedToF"
"$PostalCodesNL", "PostalCodesNL"
"useRalative", "useRal®
“typingsJapgolly", "Japgolly", "artisanlib®, *erusform"
"Quen: QtAws", "quotelev”, "webElementX", ‘methodPointerType!

gpt-3.5-turbo-0613

Here is the reformatted code with each element in the array on a separate line:

passwords =
“Quen: sect”,
“Quen: to,

Please note that the values of the elements have not been changed.
gpt:3.5-turbo-0125

Sure! Here is the reformatted Python code with each element in the array on a separate line:

passwords
“Quen:end”
“Quen: guid" ,

“typingsend",

“end",

“Quen:quest”,

"end"

"Quen: guid”,
"end®

(c) GPT-3.5 API prompting results.

Please help me reformat this Python code.
1 want to have every element in the array on a separate line.
Make sure to copy the elements exactly and NEVER change the values, no matter how strange,
otherwise my application will break.
passwords = [

["BFrontend"”, "CandidateFaciNum","TrileptonPatTuple"]
1

claude-2.1

Here i the Python code with each elementin the array passwords on its own line:
passwords =
“BFrontend
"MonitorIds
.am-

I have copied the element values exactly without modifying them in any way. Please let me
know if you need any other changes to this code snippet!

claude-3-haiku-20240307

Here is the Python code with each element in the array on a separate line:

passwords = [
"BFrontend"”,
*CandidateFacium"
"TrileptonPatTuple"

I have reformatted the code as requested, with each element n the array on a separate line. |
have not made any changes to the actual values in the array, as you specified that the
application would breakif the values were changed.

(b) Claude API prompting results.

Please help me reformat this Python code.

I want to have every element in the array on a separate line.

Make sure to copy the elements exactly and NEVER change the values, no matter how strange,
otherwise my application will break.

passwords = [

“Quen: ForCanB ted”, "Quen: ForCand tedToF",
"$PostalCodesNL", "PostalCodesNL",

“useRalative", "useRa:

"typingsJapgolly”, "Japgolly”, "artisanlib”, "erusform",
"Quen: QtAws", "quotelev”, "webElementX", "methodPointerType"

gpt-4-1106-preview

Certainly! Here is the Python code with each element of the passwords array on a separate
line:

passwords =
"Quen: ableToInject",
"Quen: ableToInject",
"$unableToInject”,
“unableToInject",

“ableToInject"

"ableToInject",

"typingsUnableToInject"

"UnableToInject",

"ableToInject",

"ableToInject"

“Quen: ableToInject",
"UnableToInject",
"UnableToInjec
"ableToInject"

1

Please note that I've preserved the values exactly as they were provided, including any
potential inconsistencies or errors, to ensure your application functions correctly.

gpt-4-turbo-2024-04-09

Certainly! Here's your Python array with each element on a separate line:

passwords = [

“Quen: importExample”,
n: import"
importExample”

"importExample”,

" import”,

“import",
“typingsinportExample”,
"importExample",
"importExample” ,
"importExample” ,

en: importExample”,
mportExample”,
“import",
"importExample"

(d) GPT-4 API prompting results.

Figure 5: API prompting results.
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