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Abstract
The disconnect between tokenizer creation and001
model training in language models has been002
known to allow for certain inputs, such as003
the infamous _SolidGoldMagikarp token, to004
induce unwanted behaviour. Although such005
‘glitch tokens’ that are present in the tok-006
enizer vocabulary, but are nearly or fully ab-007
sent in training, have been observed across a008
variety of different models, a consistent way009
of identifying them has been missing. We010
present a comprehensive analysis of Large011
Language Model tokenizers, specifically tar-012
geting this issue of detecting under-trained to-013
kens. Through a combination of tokenizer014
analysis, model weight-based indicators, and015
prompting techniques, we develop effective016
methods for automatically detecting these017
problematic tokens. Our findings demonstrate018
the prevalence of such tokens across various019
models and provide insights into improving020
the efficiency and safety of language models.021

https://github.com/[redacted]022

1 Introduction023

Large Language Models (LLMs) have undergone024

remarkable advancements, becoming increasingly025

capable of understanding and generating human-026

like text. While most components of these mod-027

els are trained in an unsupervised fashion on vast028

amounts of data, the tokenizer typically remains029

a separately trained component based on custom030

algorithms and smaller datasets.031

GPT-2 laid the foundation for much of current-032

day transformer-based language modelling (Rad-033

ford et al., 2019), including a framework for tok-034

enization building on previous work in byte-pair035

encoding (BPE) (Sennrich et al., 2016), that has036

since been widely adopted. Tokenization using037

BPE converts input text to a sequence of subword038

tokens by iteratively merging two neighbouring to-039

kens using a fixed set of merge rules. These rules040

are learned using a greedy training algorithm on041

                 Fix the syntax error. Change nothing else:

locatorSection.AddLanguageSpecificText("glitch!"

Chatbot 🏭.лекопит Fawcett("glitch!")

😈

🤖

User

Figure 1: Example of ‘glitch’ tokens.

a smaller dataset, which is ideally representative 042

of the LLM’s training data. Recent work in this 043

area has primarily focused on techniques to re- 044

move the need for tokenization altogether by mov- 045

ing to raw byte input (Xue et al., 2022). This 046

choice typically comes at a significant cost in in- 047

ference speed, which can be compensated for by 048

specialized architectures at the initial and final lay- 049

ers (Yu et al., 2023), or variable compute at in- 050

termediate layers (Slagle, 2024). However, these 051

techniques have not been widely adopted, and the 052

vast majority of current models still rely on sub- 053

word tokenization. The main alternative to BPE 054

for subword tokenization is the Unigram method 055

(Kudo, 2018), which despite work suggesting it 056

outperforms BPE (Bostrom and Durrett, 2020) is 057

not in common use. For an in-depth overview 058

of tokenization methods and their history, see 059

Mielke et al. (2021). Despite its widespread use, 060

the tokenization step has generally been found to 061

be unsatisfactory, being at the root of many un- 062

wanted behaviours and problems of LLMs (Karpa- 063

thy, 2024). In particular, the disconnect between 064

tokenizer and model training creates the potential 065

for some tokens to rarely or never be seen in train- 066

ing. Including such tokens in model inputs can 067

lead to unexpected model behaviour including as 068

hallucination or the generation of garbled outputs, 069

leading to such tokens commonly being referred to 070

as ‘glitch tokens’ (Geiping et al., 2024). We refer 071

to these as ‘under-trained’ or ‘untrained’ tokens, 072

reserving the latter term only for cases in which 073

we have clear indication that the specific token had 074

no model training data occurrences. 075
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The presence of such under-trained tokens has076

several drawbacks. Firstly, they occupy capac-077

ity in a fixed-size tokenizer that could be better078

utilized for more common tokens, reducing aver-079

age input/output length and inference costs. Sec-080

ondly, their deliberate or accidental presence in081

input data has the potential to cause unwanted082

outputs and break downstream applications. Ro-083

bustness to such unexpected or malicious input084

data is increasingly important with the prolifera-085

tion of tool use and agents in LLMs that retrieve086

and process external data. Lastly, these tokens087

can potentially be exploited to more easily cir-088

cumvent guardrails by pushing the model beyond089

its trained distribution (Geiping et al., 2024). Al-090

though some work has been done on identifying091

such tokens through model and tokenizer analy-092

sis (Rumbelow and Watkins, 2023; Watkins and093

Rumbelow, 2023; Fell, 2023), there is a lack of re-094

liable and well-explained automated methods that095

are tested across a wide range of models. Auto-096

mated tools for detecting tokenizer problems pro-097

vide not only a way to test and iteratively improve098

the development of tokenizers, but can also pro-099

vide a way to protect deployed models from un-100

wanted input via input sanitization. In this work,101

we present effective and efficient techniques for102

identifying such problematic tokens based on the103

model embedding weights and tokenizer configu-104

ration. We apply these methods to a wide range of105

popular and recent open-weight models. Finally,106

we include a brief exploration of extensions of107

these techniques to closed-source models. We also108

publish a general analysis tool compatible with109

Hugging Face models, along with detailed results110

for each analyzed model.111

2 Methods112

Our method consists of three steps; i) first, we113

perform a tokenizer analysis by inspecting its vo-114

cabulary and observing its encoding/decoding be-115

haviour, ii) second, we calculate a number of in-116

dicators that identify candidate under-trained to-117

kens, and iii) third, we verify whether identified118

candidate tokens are indeed out of distribution by119

prompting the the target model.120

2.1 Tokenizer analysis121

We start by defining a number of useful categories122

for tokens. PARTIAL UTF-8 SEQUENCES are to-123

ken representing sequences of bytes that can not be124

converted to Unicode characters, due to containing 125

only part of a UTF encoding for a character. This 126

is typical for ‘fallback byte’ tokens in the 0x80- 127

0xFF range, but depending on whether BPE was 128

applied directly to bytes, can also include tokens 129

with other partial Unicode characters. 130

UNREACHABLE TOKENS are those which are 131

never the result of tokenizing text. We test this by 132

checking if decoding the token to a string, and re- 133

tokenizing this string, results in the token id. Such 134

tokens are typically the result of tokenizer configu- 135

ration errors or conflicts between trained and man- 136

ually added vocabulary. As this test does not work 137

when tokens can not be decoded to a string, we ex- 138

clude partial UTF-8 sequences from this category. 139

SPECIAL TOKENS are manually defined tokens 140

that typically bypass the normal (pre-)tokenization 141

pipeline, and often carry specific meanings as con- 142

trol tokens, such as <s>. We identify special to- 143

kens using the patterns <...> and [...] and list 144

them separately from unreachable tokens, even if 145

they might be considered as such due to input san- 146

itization in tokenizer preprocessing. 147

We detect and exclude partial UTF-8 sequences 148

and unreachable tokens from our under-trained to- 149

ken detection pipeline, as they are not suitable for 150

automatically building verification prompts. Our 151

published model reports include tables with such 152

tokens, and we briefly discuss some interesting 153

model-specific results in section 3.2. 154

2.2 Under-trained token indicators 155

This section outlines our model architecture- 156

dependent indicators, which we use to identify po- 157

tentially under-trained tokens. An key distinction 158

is made based on whether or not a model uses 159

‘tied’ embeddings (Inan et al., 2017), i.e. uses the 160

same matrix for its input embeddings Ein and the 161

‘output embeddings’ matrix Eout in the final ‘lan- 162

guage modelling head’ layer. 163

Regardless of the use of tied embeddings, all 164

weights of the output embeddings influence the 165

token predictions at every training step. All un- 166

trained tokens will see similar updates in training, 167

‘moving away’ from the mean output vector of the 168

model (Biś et al., 2021)1. Alternatively, we can ex- 169

pect the model to learn to include a constant direc- 170

tion in its outputs, regardless of context (e.g. via 171

the residual stream), to consistently output highly 172

negative logits for tokens that are never a correct 173

1We assume the common setup with no bias term.
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prediction. Thus, we can expect to find that under-174

trained token embeddings share a similar direction175

in output embedding space, and can identify them176

by using the distance to the embeddings of refer-177

ence untrained tokens.178

When embeddings are not tied, input embed-179

dings for tokens which do not appear in the input180

for a training step are only affected by a poten-181

tial weight decay term. If such a term is applied182

to the input embedding matrix, those embeddings183

corresponding to under-trained tokens will decay184

to zero over training. Alternatively, they will stay185

at a (typically low) initial value. The norm of the186

input embeddings thus provides an additional in-187

dicator for under-trained tokens with potentially188

higher sensitivity, and which does not require a set189

of known untrained tokens. Specifically, we ex-190

pect it will not predict control tokens such as <s>191

that are only seen in inputs.192

We use the norm of the input embeddings, and193

the cosine distance between output embeddings as194

our default under-trained token indicators for mod-195

els with untied and tied embeddings, respectively.196

In addition we calculate and visualize a number of197

different indicators and correlation between them,198

including the Euclidean distance between output199

embeddings. More formal definitions and experi-200

ments with more complex output embedding indi-201

cators are outlined in Appendix A.202

2.3 Verification of candidate tokens203

Our proposed indicators naturally provide a rank-204

ing of candidate under-trained tokens, but do not205

give a definitive threshold, and their relative sim-206

plicity is likely to result in a somewhat noisy207

relation between indicator and model behaviour.208

To confirm that candidate tokens indeed induce209

unwanted model outputs, we verify all tokens210

which rank among the most likely 2% according211

to the chosen indicator, excluding partial UTF-8212

sequences and unreachable tokens. This verifica-213

tion process involves constructing specific repeti-214

tive prompts that induces a high output probability215

for normal tokens, and checking if a candidate to-216

ken has a very low (< 1%) output probability. See217

Appendix B for model prompts.218

2.4 Effectiveness of token indicators219

This section validates our proposed indicators by220

relating them to both model behaviour, and train-221

ing data statistics Although such training data222

statistics are rarely available, the we are able to do223

such a three-way comparison on the open OLMo 224

v1.7 model (Groeneveld et al., 2024). Figure 2 225

shows a strong correlation between all proposed 226

indicators and training data, not only predicting 227

under-trained tokens, but extending to the entire 228

range of token frequencies. Applying our verifi- 229

cation step to all tokens, shows that despite their 230

relative simplicity, our indicators are highly pre- 231

dictive of the maximal probability of token pre- 232

diction (Figure 3). More precisely, 191 out of 233

49,575 tokens pass our verification step, compared 234

to 175/993 when testing only the top 2% candi- 235

date tokens, showing the 2% threshold is a reason- 236

able trade-off between computational cost and de- 237

tecting the majority of highly under-trained tokens. 238

Finally, Figure 4 shows examples of the visualiza- 239

tions we perform on all model indicators. These 240

show a clear secondary peak near zero across mod- 241

els, as well as high correlation between alternative 242

indicators, further validating their effectiveness. 243

3 Results 244

In this section, we present a summary of our key 245

findings regarding under-trained token detection. 246

Table 1 presents verification statistics and example 247

verified tokens for a wide range of models. The 248

number of verified under-trained tokens varies sig- 249

nificantly across different model families and to- 250

kenizer vocabulary size, as well as depending on 251

the number of unused special tokens a model’s to- 252

kenizer allows as plain-text input. The percentage 253

of verified tokens typically ranges between 5–50% 254

of tested candidate tokens, corresponding to 0.1– 255

1% of the total vocabulary. 256

Given the model-specific nature and the exten- 257

sive volume of results, we discuss some common 258

findings as well as showcase some representative 259

examples for particular models. Detailed reports 260

covering an increasing number of tested models 261

and token types are available in our repository. 262

3.1 Common observations 263

Although many of our findings are dependent on 264

model-specific details such as tokenizer training 265

and configuration, model architecture, and train- 266

ing data, there are a number of commonalities that 267

appear across many different models. 268

3.1.1 Single-byte tokens 269

Tokens representing a single byte are a common 270

source of untrained tokens. The most common oc- 271

currence are the bytes 0xF5–0xFF which are not 272
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Model #Tokens Tied Emb. #Confirmed Examples
GPT-2 Medium (0.4B) 50,257 Yes 49/999 InstoreAndOnline reportprint _externalToEVA

GPT-2 XL (1.5B) 50,257 Yes 67/999 InstoreAndOnline _RandomRedditor embedreportprint

GPT-J 6B 50,400 No∗ 200/999 _attRot _externalToEVA _SolidGoldMagikarp

Phi-2 (2.7B) 50,295 No∗ 103/999 DragonMagazine _TheNitrome _SolidGoldMagikarp

Pythia 6.7B 50,277 No 14/993 FFIRMED _taxp _affidav

GPT-NeoX 20B 50,277 No 10/993 FFIRMED _taxp _affidav

OLMo v1.7 7B 50,280 No 178/993 _ğ\\[ medscimonit FFIRMED _[****

Llama2 7B 32,000 No 20/639 _Mediabestanden _Portály oreferrer

Llama2 70B 32,000 No 32/639 _Mediabestanden _Portály ederbörd

Mistral 7B v0.3 32,000 No 53/637 \uefc0 });\r ᥀ >?[< _febbra _uitgen

Mixtral 8x7B 32,000 No 44/637 \uefc0 _/**\r ᥀ ];\r

Rakuten 7B 48,000 No 66/957 \uefc0 _/**\r ᥀ _febbra 稲田大学

Qwen1.5 32B 151,646 No 2450/2966 _ForCanBeConvertedToF (stypy $PostalCodesNL

Qwen1.5 72B Chat 151,646 No 2047/2968 _ForCanBeConverted useRalative _typingsJapgolly

StableLM2 12B 100,288 No 138/1997 _ForCanBeConverted \tTokenNameIdentifier _StreamLazy

Llama3 8B 128,256 No 556/2540 _ForCanBeConverted ЎыџNЎыџN _CLIIIK krvldkf 글상위

Llama3 70B 128,256 No 462/2540 $PostalCodesNL итися ılmaktadır ーション ;\r\r\r\n

Command R (35B) 255,029 Yes 306/5012 AddLanguageSpecificText _ARStdSong 目前尚未由人工引

Command R+ (104B) 255,029 Yes 75/5012 AddLanguageSpecificText tocguid ephritidae

Gemma 2B 256,000 Yes 3161/5117 िंह͆दीखरीदारी ˆ(@)$_ _coachTry _AcceptedLoading ICTOGRAM

Gemma 7B 256,000 Yes 800/5117 िंह͆दीखरीदारी EnglishChoose _queſto _stockfotografie 𐁘

Starcoder2 15B 49,152 No 128/968 ittrLoremipumdolorsitametconsecteturadipiscingelitIntegervelvel

Yi 9B 64,000 No 245/1278 \\+::\\+ mcited mabaochang nConsequently

Jamba v0.1 (52B) 65,536 No 6/1280 derrelsc ]{}]{} ronicsystems

Table 1: Detection of under-trained tokens. #Confirmed are the confirmed/tested numbers for the tokens tested
in verification that are predicted with a maximal probability of < 1% across verification prompts. Examples were
manually chosen for readability, similarity across models or for being particularly striking. Note that the leading
‘_’ in tokens such as _SolidGoldMagikarp indicates a leading space.
∗These models include a bias in their final layer, which does not affect our results as we use their input embeddings.

Figure 2: Under-trained token indicators are predictive of training data. The embedding based under-trained token
indicators for the OLMo v1.7 7B model and the number of times each token appears in the first epoch of the
training data are shown. All indicators correlate highly with the number of times a token is seen in training, not
only at the expected lower values, but extending across ten orders of magnitude.
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Figure 3: Under-trained token indicator are predictive
of verification probability. The rate of successful veri-
fication (p < 0.01) correlates very highly with our pro-
posed indicator, with no false positives at low values
of the indicators and a low rate of false negatives. The
dotted line indicates the default 2% threshold used for
verification.

Figure 4: Comparison of indicators. The scatter plots
are coloured by token id, from light green to dark blue.
Top: Rakuten 7B showing a separate cluster for added
tokens, and high correlation near zero. Bottom: In den-
sity plots, a clear peak appears near zero for most mod-
els, giving rise to a bimodal distribution.

used in UTF-8 encoded text2, and are a convenient 273

source for quickly locating reference untrained to- 274

kens for indicators which require them. In addi- 275

tion, many tokenizers including from the Gemma, 276

Llama2 and Mistral families include every byte as 277

a token, with many of them in the normal ASCII 278

range 0x00–0x7F being redundant and unreach- 279

able due to the existence of a token for the corre- 280

sponding character. These issues are not universal, 281

and we also find models which include precisely 282

the 243 bytes used in UTF-8 as tokens. Untrained 283

single byte tokens are typically classified as ‘par- 284

tial UTF-8 sequences’ or ‘unreachable’, and our 285

indicators are effective in revealing which ones are 286

never or rarely seen in training. 287

3.1.2 Intermediate BPE fragments 288

All tested models use BPE based tokeniza- 289

tion, which retains the original tokens after a 290

merge, often causing intermediate ‘junk’ tokens 291

(Bostrom and Durrett, 2020). When detecting 292

these as under-trained, will denote the more com- 293

plete token in parentheses, e.g. _TheNitrome 294

(_TheNitromeFan) in the GPT-2 tokenizer. In 295

some occasions the longest token is also under- 296

trained, alongside a variety of fragments. The 297

same mechanism appears to explain many under- 298

trained partial UTF-8 sequences in byte-level BPE 299

tokenizers, with multiple bytes being merged over 300

several steps, leaving potentially many intermedi- 301

ate tokens with partial Unicode characters. 302

3.1.3 Special tokens 303

Many models include untrained special tokens, 304

such as <pad>, <unk>, or <|unused_123|>. In 305

the following discussion we generally omit men- 306

tioning them, unless their status as an (un)trained 307

token is particularly surprising, as their inclusion 308

in the tokenizer and training data is typically delib- 309

erate, for purposes such as the ability to fine-tune 310

models without changing tokenizers. One com- 311

mon observation is that on many occasions tokens 312

such as <mask>, which we expect to be completely 313

untrained, nevertheless appear to have been seen 314

in training. A likely source for this is code reposi- 315

tories or guides about language models using these 316

tokens in normal text, along with tokenizers allow- 317

ing such special control tokens in input text. 318

Special tokens can be unreachable due to input 319

sanitization as well as configuration errors. In par- 320

ticular, both the Gemma and Yi models include 321

2See Appendix C for a primer on UTF-8 encoding.
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special tokens relating to HTML tags, which were322

initially detected as unreachable, with the tags be-323

ing split up in pre-tokenization3.324

3.2 Model-specific observations325

In this section we outline some model-specific ob-326

servations, grouped by the tokenizer used. These327

examples are mainly intended to illustrate the va-328

riety of different under-trained tokens and configu-329

ration issues that can be found using our methods,330

and are not exhaustive.331

GPT-2 (Radford et al., 2019) introduced the332

framework for much of current-day LLMs, and the333

tokenizer has been re-used extensively. We con-334

firm previous findings with a significant number335

of tokens related to (fragments of) usernames (e.g.336

_TheNitrome, _RandomRedditor). We also find a337

number of under-trained non-English tokens. We338

also detect that all ASCII control characters except339

for the newline character, but including the tab and340

carriage return characters, appear untrained. This341

suggests a potential mismatch in data normaliza-342

tion between training and inference.343

GPT-J 6B (Wang and Komatsuzaki, 2021) and344

Phi-2 (Microsoft, 2023) are independent models345

which both also use the GPT-2 tokenizer, and have346

significantly more under-trained tokens, likely347

due to their training data being further removed348

from the data used to train the tokenizer. These349

additional tokens include _SolidGoldMagikarp,350

which is not among verified candidates in GPT-2.351

GPT-NeoX is an open-source library and asso-352

ciated family of models which uses a tokenizer353

with the same vocabulary size as GPT-2, but354

trained on the same ‘The Pile’ dataset also used for355

model training, and with added tokens for multiple356

spaces (Black et al., 2022). The GPT-NeoX 20B357

model has very few under-trained tokens, likely in358

part due to this alignment between tokenizer and359

model training, with the fragment FFIRMED show-360

ing up most consistently. The Pythia 6.7B model361

based on the same library (Biderman et al., 2023)362

also shows very similar results.363

OLMo open language models (Groeneveld364

et al., 2024) also use the GPT-NeoX tokenizer,365

but have a much higher rate of under-trained to-366

kens, including a wide range of punctuation-based367

tokens. We also detect over 200 unreachable to-368

kens representing combinations of spaces and line369

3The Gemma team released a fix in response to our report,
and the 01.AI team advise not to use the ‘fast’ version. Our re-
ported results are based on the latest recommended versions.

breaks in the tokenizer, which appear to be caused 370

by the aforementioned ‘multiple spaces’ tokens 371

taking precedence. However, many of them ap- 372

pear to have been seen in training, based on both 373

our indicators and training data statistics4. 374

Furthermore, we noticed that embedding based 375

indicators are not near zero for the GPT-NeoX and 376

Pythia models, as well as v1 of the OLMo model. 377

For the GPT-NeoX/Pythia models, this was ex- 378

plained by a specific implementation of weight de- 379

cay, where only weights that are used in the for- 380

ward pass are affected, but we find that having low 381

but non-zero embeddings is still a good predictor 382

for under-trained tokens. The OLMo v1 model in- 383

stead applies no weight decay, and requires using 384

output embedding based indicators instead. How- 385

ever, the OLMo v1.7 model does apply weight de- 386

cay to embeddings, and its embedding norms are 387

near zero for untrained tokens (cf. Figure 2), and 388

we use only this more recent version in this work. 389

Llama2 models (Touvron et al., 2023) use 390

an relatively compact BPE tokenizer, and have 391

a low number of under-trained tokens, mostly 392

relating to long non-English words, including 393

_Mediabestanden, _Расподела, and _Portály. 394

We also find under-trained intermediate fragments 395

such as _gepublic (_gepubliceerd). Several of 396

these tokens were also found in previous work on 397

steering model outputs (Geiping et al., 2024). 398

Mistral models (Jiang et al., 2023, 2024) use 399

a similar tokenizer, but its vocabulary includes a 400

significant number of multi-character punctuation 401

sequences ending in a carriage return (\r), which 402

are the main source of under-trained tokens. The 403

\uefc0 token representing a single unassigned 404

Unicode character in the ‘private use area’ is con- 405

sistently among the most under-trained, along with 406

᥀, a character from the Limbu script. 407

Rakuten 7B (Rakuten Group et al., 2024) is 408

a derived model with an extended vocabulary for 409

Japanese, and continued pre-training. Among the 410

extended vocabulary we find a few under-trained 411

fragments such as 稲田大学 (早稲田大学, ‘Waseda 412

University’). Their presence is proportional to the 413

extended vocabulary, which forms a distinct clus- 414

ter when visualising their indicators (see Figure 4). 415

Gemma is a family of models by Google Deep- 416

mind (Gemma Team et al., 2024) and uses a large 417

256,000 token vocabulary, which includes a sig- 418

4This was in part traced to a breaking change in
tokenizers v0.14 (Luca Soldaini, personal communication).
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nificant number of under-trained fragments in var-419

ious scripts. Most notably we find many under-420

trained tokens which contain ‘ſ’ (an archaic form421

of ‘s’ in German), including _müſſen, as well as422

a number of translations of ‘stock photos’ such as423

_stockbilder and _stockfotos.424

Command R/R+ are models by Cohere (2024)425

which also have a large multi-lingual vocabulary426

with over 255,000 tokens. The most notable dis-427

covery in these models was that over 1,400 man-428

ually added tokens of emojis are categorized as429

unreachable, and are all clearly untrained accord-430

ing to their indicators. Additionally, among par-431

tial UTF-8 sequences are several tokens related432

to the English flag followed by invisible Unicode433

‘tag’ characters, which we tracked to a conversion434

step from image-based flags to emojis in an open-435

source pipeline for parsing Wikipedia pages, po-436

tentially affecting other models as well.5437

The tiktoken library by OpenAI (OpenAI,438

2024), includes the ‘cl100k’ tokenizer as used439

in GPT-3.5/GPT-4 as well as several other mod-440

els. This tokenizer use a pre-tokenization pattern441

which allows not only a starting space, but many442

other single punctuation characters at the start of443

a token. This choice results in tokens such as444

\tTokenNameIdentifier and $PostalCodesNL,445

which are highly sensitive to pre-tokenization split-446

ting, with leading spaces before the token result-447

ing in different tokenization. In combination with448

their specific content, this is likely to have made449

them more severely under-trained across models.450

StableLM2 is a model by Stability AI (Bella-451

gente et al., 2024) which uses a slightly modi-452

fied version of this tokenizer. Due to the addition453

of digit splitting, the original multi-digit tokens454

were expected to show up as both unreachable and455

untrained, but were initially only detected as un-456

trained due to a tokenizer configuration error6.457

Qwen is a model family by Alibaba (Bai et al.,458

2023) which significantly extends the ‘cl100k’ to-459

kenizer to over 150,000 tokens. The added to-460

kens and large inherited tokenizer results in many461

under-trained tokens, and among added tokens we462

find archaic Chinese characters (such as 𬳽) and463

Korean characters which are typographically valid464

but never seen in normal text (such as 앐).465

Llama3 is a recent model family by Meta AI466

(2024) which also extends this tokenizer with467

5Our fix [link redacted] for this has been released.
6This bug was fixed by disabling the ‘slow’ tokenizer.

28,000 additional tokens. Aside from sharing 468

many under-trained tokens with other models us- 469

ing this tokenizer, the newly added tokens in- 470

clude additional under-trained tokens such as 471

ЎыџNЎыџN and krvldkf. 472

StarCoder2 is a family of models resulting 473

from the BigCode project, an open-scientific 474

collaboration focused on code (Lozhkov et al., 475

2024). The open nature of the project rep- 476

resents a great opportunity for further inves- 477

tigation, allowing us to determine the source 478

of under-trained tokens in the published tok- 479

enizer training data. We find a single document 480

which illustrates maximal variable lengths in Java 481

by repeating ‘Loremipumdolorsitametdconsecte- 482

turadipiscingelitIntegervelvelittr’ as the source of 483

several long under-trained tokens, a single doc- 484

ument with base-64 encoded strings as the ori- 485

gin of tokens such as BjKPZFq, and a single 486

source code file with a list of solutions of a 487

German Wordle game with words categorized by 488

dialect as the source of several tokens such as 489

Ostschwizertütsch relating to Swiss German di- 490

alects. Furthermore, the tokenizer is unique in 491

missing the 0xF1 byte as a token in addition to not 492

including unused UTF-8 bytes, and input text con- 493

taining this byte results in <|endoftext|> being 494

used as a fallback ‘unknown’ token. 495

Yi 9B is a base model by 01.AI whose train- 496

ing data is focused on English and Chinese (01.AI 497

et al., 2024). Most notable among results are a 498

number of strange tokens starting with ‘n’, includ- 499

ing nConsequently and nInterestingly which 500

may have been caused by incorrectly processing 501

newline characters in tokenizer training data. In 502

addition, three tokens with Chinese phrases includ- 503

ing 毛泽东 are unusual unreachable tokens. 504

Jamba v0.1 is a model from AI21 based on a 505

hybrid Transformer-Mamba mixture-of-experts ar- 506

chitecture with 52B total parameters (Lieber et al., 507

2024). This model has very few tokens that pass 508

our strict threshold for verification, and probabil- 509

ities for token output are often unusually close 510

to one. Tokenizer analysis does reveal 1,542 un- 511

trained special tokens, with <|startoftext|> as 512

the only special token which has seen training. 513

The latter is also an extreme outlier in our verifi- 514

cation, with our indicators showing it to be clearly 515

seen in training, while the maximal probability of 516

outputting the token is ≈ 10−8. The unusually 517

sharp probability distributions may be an effect of 518

the novel architecture of this model. 519
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4 Application to closed-source models520

As our techniques involve using the model521

weights, they are not directly applicable to closed-522

source models. However, the experience gained in523

inspecting a large variety of open models has pro-524

vided insight which may transfer to closed models.525

For these tests, we use a custom prompt designed526

to exactly repeat strings and see if models appear527

incapable of doing so. Using these techniques we528

can readily identify under-trained tokens in closed529

OpenAI and Mistral models by using open models530

which share a tokenizer, as well as in the Claude531

2.1 model by only using the tokenizer to identify532

candidate tokens. See Appendix D for details.533

5 Discussion534

The presence of under-trained tokens has several535

negative consequences for language models, in-536

cluding inefficient inference and the potential to537

bypass guardrails. Our investigation has shown a538

wide variety of untrained and under-trained tokens539

present in model tokenizers. Even with our rel-540

atively strict threshold for verification, we detect541

the presence of such tokens across all tested mod-542

els, with typically around 0.1–1% of the vocab-543

ulary consisting of severely under-trained tokens,544

although their prevalence varies significantly. The545

most important factors in a model having many546

under-trained tokens, aside from simply having a547

large vocabulary, appears to be whether the tok-548

enizer was trained on similar data as the model.549

Models which re-use a large external tokenizer,550

and then train from scratch, are among those with551

the highest number of under-trained tokens.552

Analyzing the tokenizer directly can detect sev-553

eral of these without the need for any training,554

including unreachable tokens which do not en-555

code back to their representation, and unused byte556

fallback tokens. This can be particularly useful557

in quickly catching tokenizer configuration errors,558

which appear to be particularly common when cus-559

tom vocabulary is manually added. Additionally560

using the model embedding weights directly is561

a reliable way to detect tokens which are under-562

trained, although the care should be taken to take563

into account the model architecture.564

Based on our findings, we can summarize a565

number of recommendations within the scope of566

current tooling. Firstly, ensure input data pre-567

processing is identical across tokenizer training568

data, model training data, and model inference. In569

particular, consider carefully how to handle car- 570

riage returns, tab characters, and special tokens 571

present as plain text in training data and user input. 572

Secondly, carefully consider tokenization training 573

data, ensuring it is representative of model train- 574

ing data. Finally, after training a tokenizer, check 575

for unreachable tokens by encoding and decoding 576

the vocabulary to ensure manually added tokens 577

are handled correctly. Additionally, when training 578

a base model, check for under-trained tokens after 579

smaller test runs, or test on a different corpus, to 580

reveal pre-processing bugs that cause unrepresen- 581

tative inputs in the main training data. 582

In addition to providing a set of useful tools for 583

improving models and tokenizers, our work sug- 584

gests several directions for future research. Firstly, 585

the results from StarCoder2 (section 3.2) highlight 586

a potential weakness in BPE training in that oc- 587

currences in a single document or repository are 588

able to define a token by themselves. Strategies 589

for preventing this, such as limiting the count for 590

pairs to be merged by document, should be ex- 591

plored to prevent this. Secondly, we note that byte- 592

based BPE produces more intermediate fragments 593

which additionally have the ability to cause out- 594

puts to be undecodable. The trade-off between 595

more efficient encoding and these downsides is 596

particularly under-explored. Although allowing 597

such tokens may lead to lower average token 598

counts, it also leads to more untrained ‘fragments’ 599

and tokens which are less semantically meaning- 600

ful. Techniques such as BPE-dropout (Provilkov 601

et al., 2020) have been proposed to compensate for 602

under-trained intermediate fragments, but direct 603

comparisons on state-of-the-art models are lack- 604

ing. Finally, we noticed differences between mod- 605

els in terms of how they apply weight decay to to- 606

kens not present in input, including not applying 607

weight decay to embeddings, applying it only to 608

tokens seen in a batch, or applying it to all weights. 609

This choice may affect how well models remember 610

the meaning of rare tokens and likely mitigate the 611

severity and impact of under-trained tokens. Al- 612

though this choice has been known to be important 613

in older models (Sedhain et al., 2015), we are not 614

aware of systematic ablations in recent LLMs. 615

In conclusion, our findings highlight a range of 616

tokenizer issues, and the severity of these varies 617

across different models. By analyzing tokeniz- 618

ers and model embeddings, we can identify under- 619

trained tokens and improve the efficiency and se- 620

curity of LLMs. 621
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6 Limitations622

Although our pipeline for finding under-trained to-623

kens is effective at finding such tokens in a wide624

range of models, it still has a number of significant625

limitations.626

Most notably, the output embedding based indi-627

cators require manually specifying a set of refer-628

ence under-trained tokens, preventing the method629

from being fully automated for the minority of630

models with tied embeddings. Secondly, the out-631

put embedding based indicators are heuristic, and632

based on a hypothesis for the internal represen-633

tation and training dynamics. Further research634

into model interpretability could refine our un-635

derstanding of such representations, and lead to636

more effective indicators. The input embeddings637

based indicator, while not requiring such manual638

input, is only applicable to models without tied639

embeddings, and depends on particular choices640

for weight decay and/or initialization. Although641

this constitutes the majority of models, there are642

a significant number of exceptions, and the exact643

weight decay used is often not well documented.644

Aside from limitations in the ability to auto-645

matically calculate under-trained token indicators,646

the relation between our proposed indicators and647

model behaviour is noisy. Both the indicators648

themselves, as well as the verification results,649

can be more indicative of problematic model be-650

haviour on different occasions. Specifically, there651

are certain cases where the indicators we use of-652

fer a more reliable guide of a token’s tendency653

to induce unwanted output in typical prompt-654

ing compared to our verification prompting tech-655

niques. These cases include input/output asymme-656

try, where tokens are solely present as inputs (e.g.,657

<BOS>), or situations where the model exhibits a658

strong bias towards English, consistently produc-659

ing translated outputs. Another common occur-660

rence is output of the equivalent token without a661

leading space, although the variation in our verifi-662

cation prompts compensates for this. On the other663

hand, there are cases where tokens are rejected664

by the verification process, but can still induce in-665

correct behaviour, mainly due to our strict thresh-666

old and repetitive verification prompts, which are667

aimed at detecting the most reliable under-trained668

tokens. However, despite these limitations, verifi-669

cation using prompting is highly effective in identi-670

fying a threshold below which candidate tokens in-671

duce unwanted behaviour, and selecting the most672

effective candidate tokens. 673

Finally, the scope of our work is limited by fo- 674

cusing exclusively on models which use byte-pair 675

encoding based tokenization. Results for Unigram 676

based models are likely to be significantly differ- 677

ent, with both the lack of intermediate fragments, 678

and randomized tokenization preventing the inter- 679

mediate fragments which are a source of under- 680

trained tokens. 681
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A Under-trained token indicators958

This section gives more precise definitions of our959

propsosed under-trained token indicators we used,960

as well as experiments comparing some potential961

alternatives.962

A.1 Definitions963

To calculate the indicators based on the output em-964

beddings Eout, we start by defining a set of known965

untrained or highly under-trained embedding in-966

dices tref, such as the token ids for tokens such as967

<unused_token123>, or the space of embeddings968

above the tokenizer vocabulary size.969

Next, we calculate the mean unused token em-970

bedding vector971

uref =
1

|tref|
∑
i∈tref

Eout,i972

Finally, we take the cosine distances C(Eout, uref)973

between this mean unused embedding vector and974

rows in Eout, where C(A, x) is the vector of co-975

sine distances between x and rows of A976

C(A, x)i = 1− Ai · x
∥Ai∥∥x∥

977

In addition to the cosine distance between out-978

put embeddings, we also calculate and visualize979

the the Euclidean distance between output embed-980

dings to the untrained reference L2(Eout − uref)981

where982

L2(A)i = ∥Ai∥983

For models with tied embeddings, we use the984

cosine distance based indicator C(Eout, uref) to se-985

lect candidate tokens. For models with tied embed-986

dings, we use the norm of Ein, denoted L2(Ein).987

In addition we calculate and visualize all output988

embedding based indicators.989

A.2 Comparison of alternative indicators990

For some models, in particular those in the991

Gemma series (Gemma Team et al., 2024), we992

noticed a very high similarity between the rows993

of their (tied) embedding matrix. Such similar-994

ity between embeddings has been noted before,995

and has been attributed to all embeddings being996

pushed in a common direction during training (Biś997

et al., 2021). Although a constant component in all998

output embeddings has no effect on model predic-999

tions, as softmax is invariant to a constant shift of1000

all logits, such similarity may affect the effective-1001

ness of our under-trained token indicators.1002

To compensate for this, we tested two varia- 1003

tions for reducing or removing this constant com- 1004

ponent. Centering the embeddings by subtracting 1005

their mean, and removing their first principal com- 1006

ponent: 1007

Êout,i = Eout,i −
1

|Eout|
∑
j

Eout,j 1008

U = PCA(Eout) 1009

Ẽout,i = Eout,i − (UT
1 Eout,i)U1 1010

1011

We can then take the cosine distance between 1012

rows in these adjusted output embedding matrices 1013

to obtain the additional indicators C(Êout, ûref) 1014

and C(Ẽout, ũref). Testing additional indicators 1015

on a small range of models (see Table 2) shows no 1016

consistent improvement in using these more com- 1017

plex methods. 1018

B Verification details 1019

We use three repetitive prompts to induce mod- 1020

els to output the candidate token we are testing, 1021

shown in Table 3. 1022

These prompts are all designed to be suitable for 1023

base models and not require specialized instruc- 1024

tion tuning or prompt templating. For each prompt 1025

we generate three tokens and check the maximal 1026

probability of our target token being predicted, and 1027

then take the maximum of this again over all three 1028

prompts. Variation in quoting and spacing helps 1029

to ensure we do not detect false positives based on 1030

models producing similar tokens without spaces, 1031

or tokens which start with punctuation partially 1032

merging with quotes. 1033

C A short primer on UTF-8 encoding 1034

UTF-8 is the most prevalent encoding scheme 1035

used to represent text in computers and communi- 1036

cation protocols worldwide. It efficiently encodes 1037

Unicode characters, which encompass a vast range 1038

of characters from various writing systems and 1039

symbols (The Unicode Consortium, 2023). Encod- 1040

ing to UTF-8 is often the first step in tokenization. 1041

UTF-8 encoding can be summarized as follows: 1042

• ASCII (code points below 128): Single byte, 1043

binary 0xxxxxxx representing up to 7 bits. 1044

• 2-byte sequences: 110xxxxx, 10xxxxxx rep- 1045

resenting up to 11 bits. 1046
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Number of verified under-trained tokens using metric
Model C(Eout, uref) C(Êout, ûref) C(Ẽout, ũref) L2(Eout − uref) L2(Ein)
Command R 306 302 301 309 n/a
Command R+ 75 79 74 83 n/a
Gemma 2B 3161 3310 2889 3052 n/a
Gemma 7B 800 802 797 800 n/a
GPT-2 Medium 49 49 49 49 n/a
Mistral 7B v0.3 63 54 63 60 53
Olmo 7B v1.7 177 178 177 179 175

Table 2: Effectiveness of different indicators. For each under-trained token indicator, we verified the top 2% of
tokens, and show the number of these that pass our 1% verification threshold. No consistent pattern is seen to
justify the more complex alternatives.

Verification prompt #1.
<token> is replaced with the token we are testing.

This device repeats its input exactly, as shown in these 100 identical trials.
Input: «<token>»
Output: «<token>»
<repeated 18 additional times>
Input: «<token>»
Output:

Verification prompt #2
<token> is replaced with the token we are testing.

This helpful assistant explains what a phrase means, replying with identical
responses to identical questions for reliability.
User: What does ’edslfkj’ mean?
Assistant: ’edslfkj’ has no specific meaning I am aware of.
User: what does ’<token>’ mean?
Assistant:

Verification prompt #3
<token> is replaced with the token we are testing.

Below is the output, as you can see it’s just giving the same phrase repeated
indefinitely: <token><token><token><token><token><95 additional repeats>

Prompt used for API-based testing

Please help me reformat this Python code.
I want to have every element in the array on a separate line.
Make sure to copy the elements exactly and NEVER change the values, no matter how
strange, otherwise my application will break.
ˋˋˋpython
passwords = <list of strings with multiple elements per line>
ˋˋˋ

Table 3: Prompts
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• 3-byte sequences: 1110xxxx, 10xxxxxx,1047

10xxxxxx representing up to 16 bits.1048

• 4-byte sequences: 11110xxx, 10xxxxxx,1049

10xxxxxx, 10xxxxxx representing up to 211050

bits.1051

Where the bits indicated by ‘x’ are concatenated1052

to form the Unicode code point.1053

This encoding naturally gives rise to some byte1054

values that are not used:1055

• 111110xx, 1111110x, 11111110, 111111111056

would represent the first byte of sequences1057

of 5-8 bytes, which are not in use. This cor-1058

responds to decimal 245-255 or hexadecimal1059

0xF5–0xFF.1060

• 11000000, 11000001 are not in use, as the1061

possible two-byte encodings that start with1062

this fit in 7 bits due to the five leading zeros.1063

These are 192/193 in decimal and 0xC0/0xC11064

in hexadecimal.1065

• Additionally, other starting bytes can be cov-1066

ered entirely by other tokens, and also turn1067

out to be unused. A common example of1068

this is 0xC2/0xC3 which are only used for1069

Unicode points 128-255. In addition, since1070

code points U+323B0 to U+0xDFFFF are unas-1071

signed, the 0xF1 and 0xF2 bytes are not used1072

in UTF-8 representations of currently defined1073

Unicode characters. Similarly, 0xF4 is only1074

used through the “Supplementary Private Use1075

Area”. However, even if not defined in the1076

current Unicode standard, such characters1077

can be easily inserted in text and are found1078

on web pages.1079

D API-based verification in1080

closed-source models1081

We use a specific prompt for API based testing1082

of under-trained tokens, show in Table 3. The1083

‘password’ strings consist of the problematic to-1084

ken, occasionally prefixed to help identify their1085

source, and to avoid starting the string with a lead-1086

ing space, as we noticed that models often drop1087

the leading space after a quotation mark, even for1088

normal tokens. Although many other prompt for-1089

mats are effective, we have found this code-based1090

approach to more clearly avoid false positives. Fig-1091

ure 5 shows the result for Mistral, Anthropic and1092

OpenAI models.1093

D.1 Mistral Medium and Large 1094

Although tokenizers are available for Mistral’s 1095

open models, their flagship API models do not 1096

include information about tokenizers. However, 1097

due to a confirmed leak of an early version of 1098

their ‘medium’ model as ‘miqu’, we have some 1099

knowledge of the ‘medium’ model being poten- 1100

tially derived from Llama2 70B. By prompting 1101

both the ‘medium’ and ‘large’ models, we confirm 1102

that the ‘medium’ model is unable to repeat strings 1103

that are typically under-trained in Llama2 mod- 1104

els, and the ‘large’ model fails on typical tokens 1105

from the ‘small’ and ‘Mixtral’ series. In addition, 1106

in experimenting with such prompts we found 1107

that the ‘large’ model occasionally responds with 1108

apparent undocumented special tokens including 1109

[TOOL_CALLS] and [control_331], which were 1110

recently confirmed to be part of the tokenizer for 1111

the 8x22B model. 1112

D.2 Anthropic Claude 2 and 3 1113

Although documentation on tokenization in these 1114

models is limited, the Anthropic SDK contains 1115

some tokenizer utilities for Claude 2, with re- 1116

marks that they are not accurate for Claude 3. 1117

Using the tokenizer provided for Claude 2, we 1118

can identify some candidates for intermediate 1119

fragments that are likely under-trained by looking 1120

for long tokens which are included in even 1121

longer tokens. This results in candidates such 1122

as CandidateFaciNum (iCandidateFaciNum), 1123

TrileptonPatTuple (TrileptonPatTupleMC), 1124

BFrontend (DVBFrontend) and others. Some of 1125

these tokens can be confirmed as problematic in 1126

Claude 2.1, although none appear effective in the 1127

Claude 3 family of models, consistent with the 1128

change in tokenizer implied by their SDK code. 1129

D.3 OpenAI GPT-3.5 and GPT-4 1130

By using models that share a tokenizer 1131

(cf. section 3.2), we already have an 1132

list of potential candidates, including 1133

_ForCanBeConverted, $PostalCodesNL, 1134

useRalative, _typingsJapgolly, and oth- 1135

ers. We find that all OpenAI models older than 1136

GPT-4o fail to handle many of them correctly, 1137

resulting in hallucinations followed by an inability 1138

to tell the difference between the inputs and in- 1139

correct outputs, or degrading into repetition. The 1140

latest GPT-4o model uses a different tokenizer 1141

with a larger vocabulary, but similar techniques 1142

14

https://github.com/anthropics/anthropic-sdk-python/blob/8e3d8a68d309424238ae54e03ee962f7147cfc60/src/anthropic/_client.py#L276
https://github.com/anthropics/anthropic-sdk-python/blob/8e3d8a68d309424238ae54e03ee962f7147cfc60/src/anthropic/_client.py#L276
https://github.com/anthropics/anthropic-sdk-python/blob/8e3d8a68d309424238ae54e03ee962f7147cfc60/src/anthropic/_client.py#L276


for tokenizer analysis as described in the previous1143

section are effective in finding under-trained1144

tokens.1145
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(a) Mistral API prompting results. (b) Claude API prompting results.

(c) GPT-3.5 API prompting results. (d) GPT-4 API prompting results.

Figure 5: API prompting results.
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