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ABSTRACT

We consider the problem of unsupervised representation learning for Graph Neu-
ral Networks (GNNs). Several state-of-the-art approaches to this problem are
based on Contrastive Learning (CL) principles that generate transferable represen-
tations. Their objective function can be posed as a supervised discriminative task
using ‘hard labels,’ as they consider each pair of graphs as either ‘equally positive’
or ‘equally negative’. However, it has been observed that using ‘soft labels’ in a
Bayesian way can reduce the variance of the risk for discriminative tasks in super-
vised settings. Motivated by this, we propose a CL framework for GNNs, called
Teacher-guided Graph Contrastive Learning (TGCL), that incorporates ‘soft la-
bels’ to facilitate a more regularized discrimination. In particular, we propose a
teacher-student framework where the student network learns the representation by
distilling the representations produced by the teacher network trained using unla-
belled graphs. Our proposed approach can be adapted to any existing CL methods
and empirically improves the performance across diverse downstream tasks.

1 INTRODUCTION

Graphs are versatile data structures representing relationships between entities in various real-world
applications, e.g., social networks (Ohtsuki et al., 2006; Fan et al., 2019), bio-informatics (Muzio
et al., 2021), and knowledge graphs (Wang et al., 2014; Baek et al., 2020). Acquiring labeled
information for these applications can be a costly and time-consuming process. Towards this, self-
supervised Learning (SSL) has emerged as an important research area that leverages the inherent
structure or content of the data to learn informative representations without relying on explicit labels
(Hu* et al., 2020; Hwang et al., 2020; Grover & Leskovec, 2016).

Existing SSL methods for graphs can be broadly categorized as: (a) local similarity-based pre-
dictive learning and (b) global similarity-based contrastive learning. Predictive learning-based
methods (Hu* et al., 2020; Kim & Oh, 2021; Rong et al., 2020) produces artificial labels by cap-
turing specific local contextual information of neighborhood sub-graphical features to produce the
representations. However, it restricts them only to capture the local graph semantics. Alternatively,
contrastive learning (CL)-based models for graphs aim to maximize the agreements between in-
stances perturbed by semantic-invariant augmentations (positive views) while repelling the others
(negative views) to capture global semantics. CL-based SSL models are extremely popular in the
computer-vision community as one can easily generate such semantic-invariant perturbations using
simple techniques e.g., rotation, flipping, and color jittering (Chen et al., 2020a; Grill et al., 2020).
Several graph contrastive learning methods are also proposed where the positive pairs are produced
using transformations e.g., edge perturbation, attribute masking, and subgraph sampling. However,
unlike continuous domains (e.g., images), even “minor” modifications in the graph structures, such
as removing one edge or node, can significantly change the properties of graphs due to their discrete
nature (see Figure 1a and 1b). Recently, discrepancy-based Self-supervised Learning (D-SLA) (Kim
et al., 2022) introduces edit distance-based discrepancy measures to address these issues. How-
ever, computing the edit distance between two arbitrary graphs is NP-hard (Sanfeliu & Fu, 1983;
Zeng et al., 2009). Further, it can only provide high-level structural information without capturing
any semantic differences (Figure 1a and Figure 1b). Towards this, we aim to develop a graph rep-
resentation learning framework that incorporates more semantically-rich discriminative features to
regularize the learning.
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Figure 1: Illustrating the shortcomings of existing CL methods: (a) Even a “minor change” of
removal of one edge significantly changes the graph to two disconnected components that cannot
be captured even using edit-distance-based discrepancy (Kim et al., 2022). (b & c) Next, we see a
more specific example of correlated-structured molecules that either actively bind to a set of human
β-secretase inhibitors or inactive (Wu et al., 2018). (b) Molecules having dissimilar properties can
have smaller edit distances while (c) molecules from the same class can have larger edit distances.
In other words, edit distance remains ineffective in capturing chemical semantics. To this end, we
propose a distilled distance form a pre-trained teacher network to incorporate a “soft” perception of
semantic distances for arbitrary graphs to produce better representations for a student network.

1.1 MOTIVATION & CONTRIBUTIONS

The existing CL methods can be viewed under one umbrella since all of these techniques aim to learn
representations by contrasting different views of the input graphs. In principle, these loss functions
can be considered classification objectives by creating pseudo-labels among different views of input
graphs Oord et al. (2018); Gutmann & Hyvärinen (2010). On the other hand, in the supervised
learning literature, it has been observed that incorporating ‘soft labels’ in the form of Knowledge
Distillation (KD) leads to better generalization Menon et al. (2021); Hinton et al. (2015). Given
these prior results, we ask the following question in this work:

Whether introducing ‘soft labels’ for CL methods can produce better graph representations?

The fundamental idea of KD is to use softened labels via a teacher network while minimizing the
supervised risk of a student network by reducing the divergence between their logits Hinton et al.
(2015). Prior works have shown that Bayes-distilled risk has lower variance compared to naive
undistilled counterpart, which leads to better generalization Menon et al. (2021). Motivated by
these results, we propose a novel Teacher-guided Graph Contrastive Learning (TGCL) framework.
We design a distilled perception distance (or distilled distance) between two arbitrary input graphs
using their deep features obtained from a pre-trained “teacher” to define a softer notion of posi-
tive/negative pairs. We train the student network by incorporating such ‘soft labels’ for each pair of
graphs. We argue that by introducing distilled distance, we can introduce the regularized semantic
difference between two arbitrary graphs, addressing the shortcomings of the existing CL frame-
works for graphs. For example, Figure 1c demonstrates that our distilled distance obtained from
the “teacher” can significantly differ among molecular graphs with correlated structures, towards
capturing the chemical semantic differences for graphs. Figure 1b shows that the distilled distance
captures the chemical semantic difference of molecules with different chemical properties, however,
with a minor structural difference. The contributions of this work are summarized below:

1. We propose a novel Teacher-guided Graph Contrastive Learning (TGCL) framework for
incorporating the concept of knowledge distillation to learn graph representations.

2. The concept of “soft-labeled” pairs of graphs can be applied to any contrastive learning
framework. We propose a distilled perception distance and present two TGCL frameworks
by modifying the well-known NT-Xent loss and D-SLA method to incorporate smooth
perception from a teacher network for training the student network.

3. We conduct extensive experiments on graph classification for molecular datasets and link
prediction on social network datasets where our proposed framework consistently outper-
forms the existing methods.
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2 RELATED WORK

2.1 REPRESENTATION LEARNING ON GRAPHS

Classical Approaches: A straightforward graph representation approach considers a ‘bag of nodes’,
which falls short in capturing their overall semantics (Hamilton, 2020). Weisfeiler-Lehman kernel
(Shervashidze et al., 2011) improves upon this by utilizing the iterative neighborhood aggregation
strategy. One may also count the occurrence of small subgraph structures, called graphlets. How-
ever, it is a combinatorially challenging problem, and approximate algorithms are required (Ahmed
et al., 2015; Hočevar & Demšar, 2014). A few other approaches enumerate different kinds of paths
in graphs (Kashima et al., 2003; Borgwardt & Kriegel, 2005).

Shallow Algorithms: DeepWalk Perozzi et al. (2014) and LINE Tang et al. (2015) are random
walk-based approaches using depth-first search (DFS) and breadth-first search (BFS) algorithms,
respectively. “node2vec” Grover & Leskovec (2016) combines both BFS and DFS to learn node
embeddings that maximize the likelihood of preserving node neighborhoods.

Predictive Self-supervised Graph Representation Learning: Here, the model aims to predict spe-
cific properties or relationships of graphs, such as predicting the attributes of masked nodes/edges
(Hu* et al., 2020), predicting the presence of an edge (Hwang et al., 2020), or predicting contextual
properties and presence of motifs (Hu et al., 2020; Rong et al., 2020). These predictive tasks serve
as self-supervised learning objectives, as they do not require explicit supervised labels. Instead, they
rely on the local sub-structure of the graph for producing labels.

Contrastive Self-supervised Graph Representation Learning: Deep Graph Infomax (DGI)
(Veličković et al., 2019) maximizes the mutual information between graph representation and patch
representation. InfoGraph (Sun et al., 2020) maximizes the mutual information between the graph-
level representation and the representations of substructures of different scales, such as nodes, edges,
and triangles. Several other works (You et al., 2020; 2021; Zhu et al., 2021; Yin et al., 2022; Wang
et al., 2022) generate a perturbed view of the original graph through attribute masking, edge pertur-
bation, and subgraph sampling and employ contrastive learning framework for better representation
learning. Recent works Suresh et al. (2021); Yang et al. (2021) also explore adversarial augmenta-
tion strategies to improve the contrastive frameworks’ representations further.

2.2 KNOWLEDGE DISTILLATION (KD)

KD (Hinton et al., 2015) is a popular technique to transfer knowledge from a large, complex model
(a.k.a. the teacher) to a smaller, efficient model (a.k.a. the student) while performing similarly to
the teacher. Several ongoing works also focus on improving the student’s performance on a wide
range of applications (Heo et al., 2019; Furlanello et al., 2018; Lopes et al., 2017; Li et al., 2021;
Lee et al., 2018; Bhat et al., 2021). KD allows the student to learn from both the raw data and
distilled knowledge of the teacher, improving their generalized performance (Menon et al., 2021).
A comprehensive review of KD can be found in (Wang & Yoon, 2021).

Self-supervised learning with KD is previously explored for computer vision, typically to improve
the performance of smaller models (Abbasi Koohpayegani et al., 2020; Chen et al., 2020b). Many
of these approaches combined KD with CL methods (Fang et al., 2021; Gao et al., 2022). SimCLR-
v2 (Chen et al., 2020b) applied a larger teacher model, first trained using contrastive loss followed
by supervised fine-tuning to distill a smaller model via self-supervised learning. Xu et al. (2020)
incorporates auxiliary contrastive loss to obtain richer knowledge from the teacher network. Other
approaches are proposed to transfer the final embeddings of a self-supervised pre-trained teacher
(Navaneet et al., 2022; Song et al., 2023).

Limitations & Challenges: (1) Most of these methods applied supervised labels to finetune the
teacher network, restricting their applicability. (2) Further, these methods may not be applicable to
graph inputs due to their discrete structure where even minor perturbations can significantly change
their semantics. Towards this, our proposed TGCL first aims to obtain the teacher’s distilled percep-
tion to calculate the semantic difference for any pairs, followed by formulating soft self-supervised
losses to train the student.

3



Under review as a conference paper at ICLR 2024

© 2022 Fujitsu Limited10

Positive pairs:
Learn to Attract

Negative pairs: 
Learn to Repel

Different I/P 
graph

Perturbed from 
Original I/P graph

(a) Contrastive Learning

© 2022 Fujitsu Limited12

Perturbed pairs:
Distance of 

representations 
Edit distance

Negative pairs: 
Learn to Repel Different I/P 

Graph

Perturbed from 
original I/P Graph

(b) D-SLA

© 2022 Fujitsu Limited9

Different 
I/P Graph

Perturbed from 
Original I/P GraphTeacher

Soft perception 
to attract 

representations

Teacher

Soft perception 
to repel 

representations

Original I/P 
graph

(c) Proposed TGCL

Figure 2: Comparing our proposed teacher-guided contrastive learning (TGCL) framework with the
existing contrastive learning (You et al., 2020; Xu et al., 2021), and D-SLA (Kim et al., 2022). From
the classification point of view, the standard CL methods consider the similarity between the anchor
and the perturbed graphs as “hard” positive pairs while the other graphs as “hard” negative pairs.
D-SLA introduces “hard” discrepancies using edit distance between the anchor and the perturbed
graphs, while the other graphs as “hard” negative pairs. Our proposed TGCL introduces a novel
distilled perception distance for smooth discrimination between any arbitrary graphs.

3 PROPOSED METHOD

3.1 PRELIMINARIES

Graph Neural Network (GNN). Let G = (V,E,XV , XE) be an undirected graph in the space of
graphs G, where V,E,XV , XE denote the set of nodes, edges, node attributes, and edge attributes
respectively. GNN encodes a graph G ∈ G to a d-dimensional embedding vector: f : G → Rd. f
is often composed by stacking multiple message-passing layers. Let h(l)v denote the representation
of a node v ∈ V having a neighborhood Nv in the lth layer. h(l−1)

vu represents the attributes of edge
(v, u) ∈ E in the (l − 1)th layer. Then, h(l)v can be expressed as follows:

h(l)v = ϕ
(l−1)
U

(
h(l−1)
v , ⊕

u∈Nv

ψ
(l−1)
M

(
h(l−1)
v , h(l−1)

u , h(l−1)
vu

))
, (1)

where ϕ(l−1)
U , ψ

(l−1)
M are the update and the message function of (l − 1)th layer respectively. ⊕ is a

permutation invariant aggregation operator.

Global Representations for Graphs using Contrastive Learning. Contrastive learning (CL) aims to
learn meaningful representations by attracting the positive pairs (i.e., similar instances, such as two
different perturbations of the same graph) while repelling negative pairs (i.e., dissimilar instances,
such as two different input graphs) in an unsupervised manner, as shown in Figure 2(b). Formally,
let G0 denote the original graph, Gp denote its perturbed version (i.e., a positive pair), and Gn is a
different input graph (i.e., negative sample). Then, the CL objective can be defined as follows:

LCL = − log
sim

(
f(G0), f(Gp)

)∑
Gn

sim
(
f(G0), f(Gn)

) , (2)

where f is a GNN and sim(·, ·) is a similarity measure for embeddings.

Minimization of Equation 2 brings positive pairs closer and pushes negative pairs further apart in
the embedding space. However, unlike image augmentation schemes (e.g., scaling, rotation, color
jitter), graph augmentation schemes (e.g., node/edge perturbations, subgraph sampling) may fail to
preserve the graph semantics. For example, Figure 2b illustrates that removing one edge leads to two
disconnected graphs, significantly changing the original semantics. Recently, D-SLA incorporates
edit distances between graphs to train their model, partially addressing this issue (Kim et al., 2022).

3.2 PROPOSED TEACHER-GUIDED CONTRASTIVE LEARNING (TGCL) FOR GRAPHS

The fundamental motivation of our proposed TGCL framework is based on the following results.
More formal statements can be found in the Appendix B.

• Noise contrastive Estimation, which is equivalent to solving a binary classification problem
between the samples of data and noise (Gutmann & Hyvärinen, 2010)[Proposition B.1].
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• In supervised learning, ‘soft labels’ in the form of Knowledge Distillation (KD) leads to
better generalization by reducing the variance of Bayes-distilled risk (Menon et al., 2021)
[Proposition B.2 and B.3].

The first result indicates that the existing CL methods can be viewed as a supervised classification
loss where the network is trained by producing artificially generated “hard pseudo-labels” Gutmann
& Hyvärinen (2010); Oord et al. (2018). For example, Lcl (in Eq. 2) can be viewed as labeling
the similarity between positive pairs, sim(f(G0), f(Gp)) as a positive class, and negative pairs are
considered as the negative class. Similarly, we can analyze the loss components for D-SLA (Kim
et al., 2022): Their graph discrimination loss considers the original and perturbed graphs as two
different classes. Their edit-distance based-loss uses the edit distance between the anchor and the
perturbed graph as a “hard margin” to learn the representations. Finally, their margin loss acts
similar to Lcl (Eq. 2) where the similarity between the anchor and the perturbed graph is labeled as
1, and the similarity between two arbitrary graphs is labeled as 0.

The second result demonstrates that we can achieve better generalization performance by ‘softening’
the labels for an existing CL method as the Bayes-distilled risk has lower variance compared to the
naive un-distilled counterpart (Menon et al., 2021). To this end, we introduce a softer notion of
distance by proposing a distilled perception distance,Ddp for any two arbitrary graphs by comparing
their deep features from a teacher network, pre-trained using ‘hard’ pseudo-labels.

Distilled Perceptual Distance. Let Ga and Gb be two arbitrary graphs. Consider a representation
learning model with L message passing layers as the teacher. At each layer, l, we obtain the node-
embedding {h(l)v }v∈V for a graph G and apply a pooling operation (e.g., max-pool, avg-pool) to
obtain a fixed-length vector, denoted as h(l)G . We extract such fixed-length features from each layer
and concatenate them, i.e., hGa = [{h(l)Ga

}l] and hGb
= [{h(l)Gb

}l] for Ga and Gb respectively. The
distilled perception distance (or distilled distance) Ddp is then defined as the L2 distance between
these concatenated features, as follows:

Ddp(Ga, Gb) = ||hGa
− hGb

||2 (3)
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Figure 3: Block diagram of our proposed TGCL framework. We ob-
tain the representations from a pre-trained teacher model and compute
the distilled distance for each pair of inputs. These pairwise distances
are employed to “soften” the loss functions to train the student.

Notably, our proposed
distilled distance is sim-
ilar to the well-known
“perceptual distance”
from computer vision
literature. It compares
the high-level rich latent
activations extracted from
a pre-trained convolutional
neural network (CNN)
(e.g., VGG (Simonyan
& Zisserman, 2014) or
ResNet (He et al., 2016))
to incorporate semantic
differences between two
samples (Johnson et al.,
2016).

3.3 PROPOSED
LOSS FUNCTIONS

The concept of teacher-
guided loss with “softer” positive/negative pairs to train the student network can be introduced to
any contrastive learning framework for graphs. To showcase the flexibility of our proposed TGCL
framework, we present two versions of our TGCL framework using normalized temperature-scaled
cross-entropy (NT-Xent) (Chen et al., 2020a; You et al., 2020) loss and D-SLA (Kim et al., 2022):
(I) TGCL-NTXent & (II) TGCL-DSLA.
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3.3.1 TGCL-NTXENT: TGCL FRAMEWORK USING NT-XENT LOSS

We modify the NT-Xent loss for our TGCL framework as follows:

LTGCL−NTXent =
∑
Gpi

− log
exp(Ddp(G0, Gpi) · fs(G0) · fs(Gpi)/τ)∑

Gnj
exp(Ddp(G0, Gnj ) · fs(G0) · fs(Gnj )/τ)

(4)

where, fs is the student network and fs(·) is the representations obtained from fs. G0 is the anchor
sample, Gpi

is the ith perturbed sample. Gnj
is jth negative sample for the anchor, G0.

Here, we incorporate distilled distance, Ddp(G0, Gp), in both numerator and denominator. The
intuition is to produce larger similarly for positive pairs (i.e., fs(G0) · fs(Gp)) when the teacher’s
perception of distilled distance is small.

3.3.2 TGCL-DSLA: TGCL FRAMEWORK USING D-SLA

Next, we demonstrate how to introduce distilled perception distance to incorporate the concept of
teacher-guided “soft pairs” for D-SLA.

(a) Teacher-guided Soft Discrimination: We first discriminate the perturbed graphs from the orig-
inal anchor by introducing LT−Soft: It consists of two terms: the first one is a KD-based loss, LKD,
while the second component is a weighted graph discrimination loss (LwGD). We first obtain the
distilled distances: [Ddp(G0, G0), {Ddp(G0, Gpi)}i] between the anchor, G0, with itself and the ith
perturbed variations,Gpi . We obtain the similarities by taking reciprocals of the normalized distilled
distance, followed by clipping to ensure numerical stability:

s0 = clip(Ddp(G0, G0)
−1) and si = clip(Ddp(G0, Gpi

)−1) ∀i (5)

Next, we compute a probability distribution (soft labels) using the softmax-activation with tempera-
ture, τ i.e., softmax(s0, s1, · · · ;T = τ). Similarly, we obtain a score for each graph and compute a
probability distribution using temperature-scaled softmax: softmax

(
Ψ ◦ fs(Gpi

);T = τ
)
. Now, we

obtain the distillation loss, LKD by minimizing the entropy between these probability distributions:

LKD := τ2H
(

softmax
(
s0, s1, · · · ; τ

)
, softmax

(
Ψ ◦ fs(Gpi); τ

))
(6)

where,H(y, ŷ) =
∑

y −y log ŷ is the cross-entropy function. Ψ ◦ fs is the composition of the score
function, Ψ, and the student network, fs. Therefore, this loss incorporates the teacher’s smoothened
perception in the score functions to learn the student’s representations.

The second term, LwGD, is a set of binary cross-entropy functions withG0 is labeled as 1 andGpi
s’

are labeled as 0 with the associated soft-weights as wi:

LwGD =
[
H(1, σ(Ψ ◦ fs(G0))) +

∑
i

wiH(0, σ(Ψ ◦ fs(Gpi)))
]
, (7)

where, wi =
Ddp(G0,Gpi

)∑
i Ddp(G0,Gpi

) . Therefore, LwGD incorporates the teacher’s soft label via wi. Now,
LT−soft combines both aforementioned loss components with a hyper-parameter α.

LT−soft = αLKD + (1− α)LwGD (8)

(b) Teacher-guided Perception Loss: Next, we introduce a perception loss, LT−percept. It en-
sures that the embedding-level difference between original and perturbed graphs is proportional to a
teacher’s perspective of their corresponding distilled distances.

LT−percept =
∑
i,j

(
dist

(
fs(Gpi

), fs(G0)
)

Ddp

(
Gpi

, G0

) −
dist

(
fs(Gpj

), fs(G0)
)

Ddp

(
Gpj

, G0

) )2

(9)

where, dist(fs(Ga), fs(Gb)) denotes the L2 distance of graph Ga Gb in their representation space.

(c) Teacher-guided Margin Loss for Negative Graphs: Our third component, LT−Margin is a
modified margin loss where the distilled distance acts as a regularizer, controlling the margin among
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Table 1: Performance (mean ± std) comparison on graph classification task.
Methods BBBP ClinTox MUV HIV BACE SIDER Tox21 ToxCast Avg
No Pretrain 65.8 ± 4.5 58.0 ± 4.4 71.8 ± 2.5 75.3 ± 1.9 70.1 ± 5.4 57.3 ± 1.6 74.0 ± 0.8 63.4 ± 0.6 66.96

Pr
ed

ic
tiv

e Edgepred Hamilton et al. (2017) 67.3 ± 2.4 64.1 ± 3.7 74.1 ± 2.1 76.3 ± 1.0 79.9 ± 0.9 60.4 ± 0.7 76.0 ± 0.6 64.1 ± 0.6 70.28
AttrMasking Hu* et al. (2020) 64.3 ± 2.8 71.8 ± 4.1 74.7 ± 1.4 77.2 ± 1.1 79.3 ± 1.6 61.0 ± 0.7 76.7 ± 0.4 64.2 ± 0.5 71.15
ContextPred Hu* et al. (2020) 68.0 ± 2.0 65.9 ± 3.8 75.8 ± 1.7 77.3 ± 1.0 79.6 ± 1.2 60.9 ± 0.6 75.7 ± 0.7 63.9 ± 0.6 70.89

C
on

tr
as

tiv
e

Infomax Veličković et al. (2019) 68.8 ± 0.8 69.9 ± 3.0 75.3 ± 2.5 76.0 ± 0.7 75.9 ± 1.6 58.4 ± 0.8 75.3 ± 0.5 62.7 ± 0.4 70.29
GraphCL (You et al., 2020) 69.7 ± 0.7 76.0 ± 2.7 69.8 ± 2.7 78.5 ± 1.2 75.4 ± 1.4 60.5 ± 0.9 73.9 ± 0.7 62.4 ± 0.6 70.78
JOAO (You et al., 2021) 70.2 ± 1.0 81.3 ± 2.5 71.7 ± 1.4 76.7 ± 1.2 77.3 ± 0.5 60.0 ± 0.8 75.0 ± 0.3 62.9 ± 0.5 71.89
JOAOv2 (You et al., 2021) 71.4 ± 0.9 81.0 ± 1.6 73.7 ± 1.0 77.7 ± 1.2 75.5 ± 1.3 60.5 ± 0.7 74.3 ± 0.6 63.2 ± 0.5 72.16
GraphLoG (Xu et al., 2021) 72.5 ± 0.8 76.7 ± 3.3 76.0 ± 1.1 77.8 ± 0.8 83.5 ± 1.2 61.2 ± 1.1 75.7 ± 0.5 63.5 ± 0.7 73.36
BGRL (Thakoor et al., 2022) 66.7 ± 1.7 64.7 ± 6.5 69.4 ± 2.7 75.5 ± 1.9 71.3 ± 5.5 60.4 ± 1.4 74.8 ± 0.7 63.2 ± 0.8 68.25
SimGCL (Yu et al., 2022) 67.4 ± 1.2 55.7 ± 4.7 71.2 ± 1.8 75.0 ± 0.9 74.1 ± 2.7 57.4 ± 1.7 74.4 ± 0.5 62.3 ± 0.4 67.19
SimGRACE (Xia et al., 2022) 71.3 ± 0.9 64.2 ± 4.5 71.2 ± 3.4 74.5 ± 1.1 73.8 ± 1.4 60.59 ± 0.9 74.2 ± 0.6 63.4 ± 0.5 69.13
D-SLA (Kim et al., 2022) 72.6 ± 0.8 80.2 ± 1.5 76.6 ± 0.9 78.6 ± 0.4 83.8 ± 1.0 60.2 ± 1.1 76.8 ± 0.5 64.2 ± 0.5 74.13

O
ur

s TGCL-NTXent (w/ GraphLoG) 74.9 ± 0.9 85.3 ± 2.2 78.9 ± 1.0 79.1 ± 0.5 83.7 ± 1.4 63.6 ± 0.6 76.7 ± 0.4 64.1 ± 0.4 75.79
TGCL-NTXent (w/ D-SLA) 74.0 ± 0.4 82.8 ± 2.2 77.0 ± 0.9 77.9 ± 0.3 84.3 ± 1.0 64.2 ± 0.3 76.6 ± 0.1 64.7 ± 0.4 75.19

O
ur

s TGCL-DSLA (w/ GraphLoG) 74.8 ± 0.3 80.6 ± 0.5 77.4 ± 0.1 78.6 ± 0.2 83.0 ± 1.1 61.4 ± 0.4 76.1 ± 0.1 64.0 ± 0.3 74.49
TGCL-DSLA (w/ D-SLA) 73.5 ± 0.9 84.9 ± 1.3 79.4 ± 0.9 78.8 ± 0.5 85.2 ± 0.4 61.2 ± 1.0 76.9 ± 0.1 64.9 ± 0.2 75.60

the anchor, G0, its perturbed variations, Gpi and the negative graphs, Gnj , as follows:

βij = max
(
β, Ddp(G0, Gnj

)−Ddp(G0, Gpi
)
)

(10)

LT−Margin =
∑
i,j

max

(
0, βij + dist

(
fs(Gpi

), fs(Go)
)
− dist

(
fs(Gnj

), fs(Go)
))

(11)

Overall Loss: We obtain the overall loss by combining all three components as follows:

LTGCL−DSLA = LT−soft + λ1LT−percept + λ2LT−Margin (12)

Where λ1 and λ2 are the hyper-parameters for training the student model, as used in D-SLA.

4 EXPERIMENTAL RESULTS

An effective representation of a graph should capture both the global structure and the local seman-
tics. Therefore, to gauge the efficacy of the proposed method in learning informative representations,
we conduct two sets of experiments — (i) Graph Classification and (ii) Link prediction. We provide
additional details and ablation studies in our Appendix. Our anonymized code is available [here].

4.1 GRAPH CLASSIFICATION

Datasets. Following prior works (You et al., 2021; Xu et al., 2021; Kim et al., 2022), we utilize
ZINC15 (Sterling & Irwin, 2015) to train the representation learning models. Next, we finetune the
models on eight different molecular benchmarks from MoleculeNet (Wu et al., 2018). We divide the
datasets based on the constituting molecules’ scaffold (molecular substructure) and evaluate models’
generalization ability on out-of-distribution test data samples (Wu et al., 2018).

State-of-the-art Baselines. We compare the proposed method’s performance against twelve exist-
ing methods: EdgePred (Hamilton et al., 2017), AttrMasking (Hu* et al., 2020), ContextPred (Hu*
et al., 2020), Infomax (Veličković et al., 2019), GraphCL (You et al., 2020), JOAO (You et al., 2021),
JOAOv2 (You et al., 2021), GraphLoG (Xu et al., 2021), BGRL (Thakoor et al., 2022), SimGCL
(Yu et al., 2022), SimGRACE (Xia et al., 2022) and D-SLA (Kim et al., 2022).

Evaluation Metric. We compare the Area Under Receiver Operating Characteristic curve (AU-
ROC) for benchmarking (Davis & Goadrich, 2006). AUROC quantifies the overall discriminative
power of the classifier across all possible classification thresholds. AUROC value ranges between 0
and 1, with higher values indicating better discrimination ability of the model.

Results. In Table 1, we can see that the “no pretraining” model achieves the least performance.
While predictive pretraining improves upon the no pertaining model, their performance remains
worse than the CL models. This is because predictive methods primarily focus on the local struc-
ture, while molecule property classification requires global structure. In contrast, CL methods focus
on the global structure by contrasting between original and perturbed graphs to achieve better perfor-
mance. While a few augmentation-free CL (Yu et al., 2022; Xia et al., 2022) methods are proposed,
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Figure 4: t-SNE visualization of learned representations using for BBBP dataset.

their performance remains significantly lower than the state-of-the-art. GraphLoG achieves near
state-of-the-art performance by exploring both global semantics and local substructures. However,
D-SLA achieves state-of-the-art performance by exploring the local discrete properties of graphs.

For our proposed framework, we report the results by using GraphLoG and D-SLA as teacher mod-
ules for both TGCL-NTXent and TGCL-DSLA models, demonstrating the generalizability of our
framework. As we can see, the proposed method achieves a consistent performance boost irre-
spective of the training methodology of the teacher module. Furthermore, we observe that TGCL-
NTXent (w/ GraphLoG) achieves the best performance. Also, TGCL-DSLA (w/ D-SLA) achieves
comparable performance as TGCL-NTXent (w/ GraphLoG). In particular, we do not observe an ad-
ditional advantage of using more graph-specific D-SLA-based loss functions while learning global
graph-level representations for molecular property prediction tasks.

In Figure 4, we visualize the learned latent space of GraphLoG, D-SLA, and our TGCL-DSLA (w/
DSLA) utilizing t-SNE (Van der Maaten & Hinton, 2008). We observe that both GraphLog and
TGCL-DSLA segregate the positive and negative samples more successfully compared to DSLA.

4.2 LINK PREDICTION

Datasets. We consider COLLAB, IMDB-Binary, and IMDB-Multi from TU Benchmarks (Morris
et al., 2020). We use the same data splits as in (Kim et al., 2022).

State-of-the-art Baselines. We compare the proposed method against various predictive methods
(AttrMasking (Hu* et al., 2020), ContextPred (Hu* et al., 2020)), contrastive frameworks (Infomax
(Veličković et al., 2019), GraphCL (You et al., 2020), JOAO (You et al., 2021), GraphLoG (Xu et al.,
2021), BGRL (Thakoor et al., 2022)), SimGCL (Yu et al., 2022), SimGRACE (Xia et al., 2022) and
discriminative learning algorithm (D-SLA (Kim et al., 2022)).

Table 2: Performance (mean± std) comparison on link
prediction task.

Methods COLLAB IMDB-Binary IMDB-Multi Avg.
No Pretrain 80.01 ± 1.14 68.72 ± 2.58 64.93 ± 1.92 71.22
AttrMasking (Hu* et al., 2020) 81.43 ± 0.80 70.62 ± 3.68 63.37 ± 2.15 71.81
ContextPred (Hu* et al., 2020) 83.96 ± 0.75 70.47 ± 2.24 66.09 ± 2.74 73.51
Infomax (Veličković et al., 2019) 80.83 ± 0.62 67.25 ± 1.87 64.98 ± 2.47 71.02
GraphCL (You et al., 2020) 76.04 ± 1.04 63.71 ± 2.98 62.40 ± 3.04 67.38
JOAO (You et al., 2021) 76.57 ± 1.54 65.37 ± 3.23 62.76 ± 1.52 68.23
GraphLoG (Xu et al., 2021) 82.95 ± 0.98 69.71 ± 3.18 64.88 ± 1.87 72.51
BGRL (Thakoor et al., 2022) 76.79 ± 1.13 67.97 ± 4.14 63.71 ± 2.09 69.49
SimGCL (Yu et al., 2022) 77.46 ± 0.86 64.91 ± 2.60 63.78 ± 2.28 68.72
SimGRACE (Xia et al., 2022) 74.51 ± 1.54 64.49 ± 2.79 62.81 ± 2.32 67.27
D-SLA (Kim et al., 2022) 86.21 ± 0.38 78.54 ± 2.79 69.45 ± 2.29 78.07
TGCL-NTXent (w/ GraphLoG) 87.23 ± 0.14 75.09 ± 1.88 67.11 ± 3.73 76.48
TGCL-NTXent (w/ D-SLA) 87.51 ± 1.24 77.95 ± 3.89 67.88 ± 2.20 77.78
TGCL-DSLA (w/ GraphLoG) 91.09 ± 0.33 83.15 ± 0.89 74.11 ± 1.44 82.78
TGCL-DSLA (w/ D-SLA) 87.51 ± 0.59 80.03 ± 4.13 70.97 ± 2.42 79.50

Evaluation Metric. We compare aver-
age precision (as in (Kim et al., 2022)). It
ranges from 0 to 1, with a higher value in-
dicating better performance.

Results. Table 2 demonstrates that, un-
like graph classification tasks, local con-
text plays a crucial role in link predic-
tion. Therefore, the predictive models
typically outperformed most of the CL
methods. Among the existing CL meth-
ods, GraphLog performs similarly to Con-
textPred as it focuses on both local and
global structures. D-SLA achieves better
performance by capturing local structures
using edit-distance-based discriminations that standard CL models fail to distinguish.

In comparison, our proposed distilled distance from the teacher network incorporates a regularized
notion of both local and global semantics. The local semantics are encapsulated from the latent
features of the initial layers, while the global semantics are contained within the high-level global
features. Therefore, we can surpass existing local and global representation learning-based models
by visible margins for all three datasets. Interestingly, our TGCL-DSLA (w/GraphLog) performs
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Table 3: Impact of the capacity of the student TGCL-DSLA models (mean ± std) for graph classi-
fication. “Full-capacity” denotes the 5-layered model (i.e., the same capacity as the teacher).

BBBP ClinTox MUV HIV BACE SIDER Tox21 ToxCast Avg
D-SLA Kim et al. (2022) 72.6 ± 0.8 80.2 ± 1.5 76.6 ± 0.9 78.6 ± 0.4 83.8 ± 1.0 60.2 ± 1.1 76.8 ± 0.5 64.2 ± 0.5 74.13
w/ full-capacity 73.5 ± 0.9 84.9 ± 1.3 79.4 ± 0.9 78.8 ± 0.5 85.2 ± 0.4 61.2 ± 1.0 76.9 ± 0.1 64.9 ± 0.2 75.60
w/ 3-layer Student 74.6 ± 0.4 84.6 ± 1.4 76.4 ± 1.0 77.9 ± 0.1 82.7 ± 1.1 61.0 ± 0.3 75.0 ± 0.1 63.6 ± 0.4 74.48
w/ 2-layer Student 72.6 ± 0.5 81.4 ± 0.4 77.3 ± 1.5 77.6 ± 0.2 80.6 ± 0.4 60.8 ± 0.4 74.7 ± 0.4 63.0 ± 0.1 73.50

better than TGCL-DLSA (w/D-SLA) even though D-SLA outperformed GraphLog. Therefore, a
better teacher does not necessarily produce better distillation for the student, as previously observed
and analyzed in supervised learning (Menon et al., 2021; Kaplun et al., 2022; Zong et al., 2023).

We also observe that TGCL-NTXent produces poor performance compared to TGCL-DSLA and
often even compared to its teacher models. This is because NT-Xent loss focuses only on contrasting
the global representations, failing to capture the local graph characteristics. Therefore, even when a
regularized notion of both local and global semantics is provided in terms of the distilled distance,
NT-Xent-based TGCL models failed to utilize it efficiently for the link prediction tasks. We can
also validate this hypothesis by comparing the performance of GraphCL, which uses NT-Xent loss,
compared to the other methods (Table 2).

4.3 EXPERIMENTS WITH COMPRESSED STUDENT

Table 3 demonstrates the performance of a student TGCL-DSLA model on the downstream molec-
ular property prediction task. We can see that, with the same capacity (i.e., 5 layers of GNN) as
the teacher module of D-SLA, our proposed student network consistently outperformed the teacher.
As we decrease the capacity of our student network by reducing the number of layers, the overall
performance reduces. However, we observe that even with 3 layers of GNN, our student module out-
performs the teacher D-SLA model. Therefore, these results demonstrate that our proposed TGCL
framework can compress the student representation network by enabling smoothened knowledge
transfer from a pre-trained teacher to the student representation learning model.

5 CONCLUSION & DISCUSSION

We utilize Knowledge distillation (KD) for graph representation learning, where a self-supervised
pre-trained teacher model is used to guide the training of a student model to obtain more generalized
representations. Extensive experimentation demonstrates the effectiveness of the proposed method
in improving the performance of graph classification and link prediction tasks. However, there are
still many open challenges in graph representation learning, such as the efficient handling of large-
scale graphs, the ability to handle heterogeneity and multimodality, and the development of robust
methods for noisy or incomplete data. Probing these challenges further and developing new graph
representation learning techniques are in the scope of future research direction.

Limitations. The performance of a student network heavily depends on the teacher’s quality.
While a more accurate ‘teacher’ does not necessarily lead to better distillation, a ‘bad’ teacher can
reduce the student’s performance. In particular, a better teacher yields a better approximation of
the Bayes class probability distribution while leading to higher variance (i.e., unstable predictions)
(Menon et al., 2021). Further, the teacher-student architecture is computationally expensive as we
first need to train the teacher, followed by the student.

Broader Impact. KD can significantly impact graph representations, with broader implications for
various fields including bioinformatics, drug discovery, social network analysis, recommendation
systems, etc. A few potential impacts of our work are as follows:

(a) Improves the efficiency and scalability of graph representation learning by enabling “soft” knowl-
edge transfer from a pre-trained teacher model to a smaller, more efficient student network.

(b) Improves the generalization performance of graph representation learning models by leveraging
the ‘dark knowledge’ encoded in a pre-trained teacher model’s representations.

Overall, KD has the potential to significantly impact graph representations, therefore on various
applications that rely on graphs and network analysis.
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Reproducibility Statement. To ensure that the proposed work is reproducible, we have included an
Algorithm (Refer to Appendix Algorithm 1). We have clearly defined the loss functions in Section
3.3. The implementation details and hyperparameters are specified in Section D. The code of the
proposed method is available at: https://anonymous.4open.science/r/TGCL-400E/.
This is an anonymous link that doesn’t reveal the author’s identity. We have also included ReadMe
files (inside each folder) to reproduce our results for convenience.

Ethics statement. The ideas and techniques proposed in this paper can be useful in several real-
world applications including the medical domain and e-commerce applications. We have touched
on both the theoretical as well as experimental aspects of this problem in our work. We believe our
results/findings should be available for all scientific communities for further research and develop-
ment in this area, independent of their background (e.g., race, caste, creed, gender, nationality, etc.).
The datasets used in our experiments are purely academic, and we do not think our work poses any
specific ethical questions or creates potential biases against any particular groups.

REFERENCES

Soroush Abbasi Koohpayegani, Ajinkya Tejankar, and Hamed Pirsiavash. Compress: Self-
supervised learning by compressing representations. Advances in Neural Information Processing
Systems, 33:12980–12992, 2020.

Nesreen K Ahmed, Jennifer Neville, Ryan A Rossi, and Nick Duffield. Efficient graphlet counting
for large networks. In 2015 IEEE international conference on data mining, pp. 1–10. IEEE, 2015.

Jinheon Baek, Dong Bok Lee, and Sung Ju Hwang. Learning to extrapolate knowledge: Transduc-
tive few-shot out-of-graph link prediction. Advances in Neural Information Processing Systems,
2020.

Prashant Bhat, Elahe Arani, and Bahram Zonooz. Distill on the go: online knowledge distillation in
self-supervised learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 2678–2687, 2021.

K.M. Borgwardt and H.P. Kriegel. Shortest-path kernels on graphs. In Fifth IEEE International
Conference on Data Mining (ICDM’05), 2005.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning,
pp. 1597–1607. PMLR, 2020a.

Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geoffrey E Hinton. Big
self-supervised models are strong semi-supervised learners. Advances in neural information pro-
cessing systems, 33:22243–22255, 2020b.

Jesse Davis and Mark Goadrich. The relationship between precision-recall and roc curves. In
Proceedings of the 23rd international conference on Machine learning, pp. 233–240, 2006.

Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural
networks for social recommendation. In The world wide web conference, pp. 417–426, 2019.

Zhiyuan Fang, Jianfeng Wang, Lijuan Wang, Lei Zhang, Yezhou Yang, and Zicheng Liu. Seed:
Self-supervised distillation for visual representation. arXiv preprint arXiv:2101.04731, 2021.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.
arXiv preprint arXiv:1903.02428, 2019.

Tommaso Furlanello, Zachary Lipton, Michael Tschannen, Laurent Itti, and Anima Anandkumar.
Born again neural networks. In International Conference on Machine Learning, pp. 1607–1616.
PMLR, 2018.

Yuting Gao, Jia-Xin Zhuang, Shaohui Lin, Hao Cheng, Xing Sun, Ke Li, and Chunhua Shen. Disco:
Remedying self-supervised learning on lightweight models with distilled contrastive learning. In
European Conference on Computer Vision, pp. 237–253. Springer, 2022.

10

https://anonymous.4open.science/r/TGCL-400E/


Under review as a conference paper at ICLR 2024

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
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A APPENDIX

B THEORETICAL DISCUSSION

Proposition B.1. [Gutmann & Hyvärinen (2010); Section 2.1] Noise contrastive estimation of the
density of a given random variable is equivalent to binary classification between the samples from
that distribution and samples drawn from another arbitrary noisy distribution.

Proposition B.2. [Menon et al. (2021); Lemma 1] In supervised learning, the variance of Bayesian-
distilled risk, obtained using the soft labels, weighted by the likelihood from the Bayes teacher in
the form of knowledge distillation (KD), remains lower than the variance of empirical risk, obtained
using the ‘hard’ class-labels, i.e.,

VG∼G [R̂∗(f,G)] ≤ VG∼G [R̂(f,G)] (13)

where, f is a GNN model. V[·] denotes the variance of a random variable. G denotes the input
graph dataset, sampled from the space of graphs, G. |G| denots the cardinality of G. eGi are the
hard labels for input graph Gi and p∗(Gi) is the Bayes class-probability distribution, predicted
using the Bayes teacher. R̂∗(f,G) and R̂(f,G) denotes the Bayesian-distilled risk and the empirical
risk respectively and defined as follows:

R̂∗(f,G) =
1

|G|

∑
G∈G

p∗(G)T ℓ(f(G)) (14)

R̂(f,G) = 1

|G|

|G|∑
G∈G

eTGℓ(f(G)) (15)

ℓ is the empirical loss on f (e.g., softmax cross-entropy). The equality holds iff ∀G ∈ G, the loss
values ℓ(f(G)) are constant on the support of p∗(G).

Proposition B.3. [Maurer & Pontil (2009); Theorem 6 & Menon et al. (2021); Proposition 3] For
any δ ∈ (0, 1) with probability at least 1 − δ over the sample space, the reduction of variance for
Bayesian-distilled risk, R̂∗(f,G) upper-bounds the population risk, R(f), leading towards better
model generalization, as follows:

R(f)− R̂∗(f,G) ≤ O
(√

V∗
|G|(f)/|G| ·

√
log(M∗

|G| + log(M∗
|G|/δ)/|G|)) (16)

where, f is the GNN model from a fixed hypothesis class, with induced class H∗ ⊂ [0, 1]G of
functions ⟨(G) = p∗(G)T ℓ(f(G)) and H∗ has uniform covering number N∞. ℓ is a bounded loss
(which can be enforced in practice using regularization). M∗

|G| = N∞( 1
|G| ,H

∗, 2|G|) and V∗
|G| is

the empirical variance of {p∗(Gi)
T ℓ(f(Gi))}i∈G .

C METHOD OVERVIEW & PSEUDO-CODE

In this section, we present the pseudo-code in Algorithm 1.

D EXPERIMENTAL SETUP

D.1 MOLECULAR GRAPH CLASSIFICATION

This section presents the implementation details and dataset descriptions of our experiments on
molecular graph classification and link prediction tasks. For all experiments, we use PyTorch
(Paszke et al., 2019) and PyTorch Geometric libraries (Fey & Lenssen, 2019) with a single NVIDIA
A30 Tensor Core GPU for all of our experiments.
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Algorithm 1: PROPOSED TEACHER-GUIDED GRAPH LEARNING (TGCL-DSLA)

Input: fteacher: Teacher model, Dtrain: Training set of graphs (unlabelled)
Output: fs: Student model

1 for sampled mini-batch, GB := {Gi}i ∈ Dtrain do
/* Create multiple perturbations for each (anchor) graph. */

2 {Gpij}j
perturbed←−−−−−−−
variations

Gi

/* Compute distilled perception distances from fteacher. */
3 D(Gi, Gpij

) ∀i, j between anchor, Gi and the perturbations, Gpij

4 D(Gi, Gnij ) ∀i, j where Gnij ∈ GB −Gi

/* Obtain student’s representations */
5 Obtain representations for anchor graphs, fs(Gi) and the perturbations, fs(Gpij

)
/* Compute loss functions. */

6 Compute
∑

i LT−soft(Gi) among the anchor graphs, Gi and its perturbations, Gpij

7 Compute
∑

i LT−percept(Gi) among the anchor graphs, Gi and its perturbations, Gpij

8 Compute
∑

i LT−Margin(Gi) among the anchor graphs, Gi, its perturbations, Gpij and
negative instances, Gnij .

9 Minimize total mini-batch loss to update student fs:∑
i LT−soft(Gi) + λ1

∑
i LT−percept(Gi) + λ2

∑
i LT−Margin(Gi)

10 Return fs

Datasets. For our first experiments on molecular graph classification, we use the ZINC dataset
(Sterling & Irwin, 2015), a large corpus of 2 million unlabelled molecules for pretraining the teacher
and student network. For the downstream tasks, we experimented with 8 labeled molecular datasets
from MolecularNet (Wu et al., 2018). The molecule classes are determined using the biophysical
and physiological properties. In Table 4, we present the details of these molecular datasets used for
our experiments.

Implementation details. For our proposed framework, we use the same network architecture for
both the teacher and the student model. In particular, we use Graph Isomorphism Networks (GINs)
(Xu et al., 2019) as applied in the previous works Hu* et al. (2020); Xu et al. (2021); Kim et al.
(2022). These networks consist of 5 layers with 300 dimensional embeddings for nodes and edges
along with average pooling strategies for obtaining the graph representations. To obtain distilled
perception distance from the teacher network, we use global average pooling to extract the fixed-
length features from each layer.

Table 4: Descriptions of Molecular
datasets.

Datasets #Compounds Tasks
ZINC15 2,000,000 -
BBBP 2,039 1
ClinTox 1,478 2
MUV 93,087 17
HIV 41,127 1
BACE 1,513 1
SIDER 1,427 27
Tox21 7,831 12
ToxCast 8,575 617

We use the official D-SLA codes1 provided by Kim et al.
(2022) as the backbone for our experiments and apply
the same perturbation strategies as used in (Kim et al.,
2022). In particular, their perturbation strategy aims to
minimize the risk of creating unreasonable cycles, reduc-
ing the chance of significant change in the chemical prop-
erties. For our experiments, we use three perturbations for
each input sample.

We report results using two different teacher modules,
trained using existing GraphLog (Xu et al., 2021) and
D-SLA (Kim et al., 2022) while training the following
student network using the loss functions as proposed in
Section 3.3. We divide the perceptual distances by 4
and 1 as we use GraphLog (Xu et al., 2021) and D-SLA
(Kim et al., 2022) as the teacher, respectively. For TGCL-
NTXent, we use τ = 10 in Equation 4. For TGCL-DSLA, we use λ1 and λ2 to 1.0 and 0.5 respec-
tively for the student model. For LT−soft loss, we set the temperature, τ = 10 (Equation 6) and
α = 0.95 (Equation 8). For LT−margin, we set β = 5. Both teacher and student models are trained

1https://github.com/dongkikim95/d-sla
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Table 5: Impact of individual loss components. (at α = 0.95, τ = 10)

LT−soft LT−percept LT−margin BBBP ClinTox MUV HIV BACE SIDER Tox21 ToxCast Avg
✓ ✗ ✗ 72.9 ± 1.4 79.8 ± 1.2 79.1 ± 0.7 77.7 ± 0.6 81.9 ± 0.3 62.1 ± 0.7 76.9 ± 0.2 64.1 ± 0.3 74.31
✗ ✓ ✗ 71.6 ± 0.8 74.5 ± 0.7 76.6 ± 1.3 78.5 ± 1.1 81.7 ± 0.9 61.7 ± 0.6 75.7 ± 0.6 62.9 ± 0.3 72.90
✗ ✗ ✓ 72.7 ± 0.6 77.9 ± 2.0 74.1 ± 0.9 76.6 ± 0.4 82.9 ± 0.6 62.8 ± 0.5 74.2 ± 0.1 61.9 ± 0.8 72.89
✗ ✓ ✓ 73.6 ± 0.5 81.2 ± 1.1 75.7 ± 0.4 77.3 ± 1.4 83.2 ± 0.3 62.8 ± 0.6 75.2 ± 0.2 63.3 ± 0.5 74.04
✓ ✓ ✗ 72.8 ± 0.1 81.6 ± 0.5 79.2 ± 0.5 78.8 ± 0.9 81.4 ± 1.2 59.7 ± 0.5 76.3 ± 0.2 63.8 ± 0.1 74.20
✓ ✗ ✓ 72.1 ± 0.5 84.0 ± 2.3 76.7 ± 1.3 77.9 ± 0.7 82.5 ± 0.5 61.4 ± 0.3 76.3 ± 0.2 64.3 ± 0.7 74.40
✓ ✓ ✓ 73.5 ± 0.9 84.9 ± 1.3 79.4 ± 0.9 78.8 ± 0.5 85.2 ± 0.4 61.2 ± 1.0 76.9 ± 0.1 64.9 ± 0.2 75.60

using batch-size of 256 and for 25 epochs with learning rate 1e − 3 and Adam optimizer (Kingma
& Ba, 2014).

D.2 LINK PREDICTION

Datasets. For this task, we select three datasets i.e., COLLAB, IMDB-Binary, and IMDB-Multi
from the TU dataset benchmark Morris et al. (2020).

COLLAB is a dataset of scientific collaboration networks. It contains 4, 320 graphs where the
researcher and their collaborators are nodes and an edge indicates collaboration between two re-
searchers. A researcher’s ego network has three possible labels: High Energy Physics, Condensed
Matter Physics, and Astro Physics, representing the field of the researchers.

IMDB-Binary is a movie collaboration dataset. It consists of the ego networks of actors/actresses
from the movies in IMDB. It consists of 2, 039 graphs. For each graph, the nodes are ac-
tors/actresses, with an edge between them if they appear in the same movie. These graphs are
derived from the Action and Romance genres.

IMDB-Multi is a relational dataset that consists of a network of actors or actresses, played in movies
in IMDB. It contains 1,478 graphs. As before, a node represents an actor or actress, and an edge con-
nects two nodes when they appear in the same movie. The edges are collected from three different
genres: Comedy, Romance, and Sci-Fi.

Implementation details. For our experiments, we use Graph Convolutional Network (GCN)
Kipf & Welling (2017) for both teacher and student models. These networks consist of three layers
with 300 dimensions for embeddings. As before, we use the same perturbation strategy as applied
in Kim et al. (2022). We have also experimented with two different teachers, i.e., D-SLA Kim et al.
(2022) and GraphLog Xu et al. (2021). We use a batch size of 32 and a learning rate of 0.001 for
training the student representation learning models. For TGCL-NTXent, we set τ = 10 (Eq. 4).
For TGCL-DSLA, we use λ1 and λ2 to 0.7 and 0.0, respectively. For LT−soft loss, we select the
temperature, τ from three different values i.e., {5, 10, 20} (Equation 6) and set α = 0.95 (Eq. 8).

E ADDITIONAL EXPERIMENTS

In this section, we present additional experiments to study the effects of different hyper-parameters
and loss components for our TGCL-DSLA framework.

Impact of different loss components. In Table 5, we first demonstrate the impact of different loss
components. The first three rows demonstrate the performance of individual loss components. We
observe that Lsoft is the most important component, providing the maximum performance boost
for the downstream molecular prediction tasks. The other two loss components, i.e. LT−percept

and LT−margin act as regularizer. While, individually they do not perform well, incorporating them
with Lsoft in Loverall, we observe a significant boost in the overall performance.

Impact of hyper-parameters of LT−soft. Since LT−soft is the most important loss component,
we further analyze hyper-parameters associated with it. We can see in Eq. 8, Lsoft is similar to
the distillation loss for classification tasks, consisting of two loss components i.e. LKD (Eq. 6) and
LwGD (Eq. 7). Here, we analyze the temperature term, τ for LKD followed by the weights of these
components, α.
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Table 6: Impact of the temperature, τ . (at α = 0.95)

τ BBBP ClinTox MUV HIV BACE SIDER Tox21 ToxCast Avg
1 75.1 ± 0.4 86.7 ± 1.6 74.4 ± 0.1 77.5 ± 0.6 83.3 ± 1.0 61.2 ± 0.4 75.6 ± 0.1 63.4 ± 0.4 74.65
5 73.4 ± 0.2 81.8 ± 1.4 77.3 ± 2.3 78.6 ± 0.6 83.8 ± 0.8 61.7 ± 0.8 76.5 ± 0.3 63.9 ± 0.4 74.63
10 73.5 ± 0.9 84.9 ± 1.3 79.4 ± 0.9 78.8 ± 0.5 85.2 ± 0.4 61.2 ± 1.0 76.9 ± 0.1 64.9 ± 0.2 75.60
20 72.9 ± 0.6 83.9 ± 2.6 77.1 ± 0.5 78.3 ± 0.7 84.0 ± 0.8 61.8 ± 0.4 76.2 ± 0.4 64.6 ± 0.5 74.85
100 73.6 ± 0.1 80.6 ± 0.2 76.8 ± 2.8 78.7 ± 1.1 84.0 ± 0.5 62.3 ± 0.5 76.1 ± 0.3 64.5 ± 0.2 74.58

Table 7: Impact of α. (at τ = 10)

α BBBP ClinTox MUV HIV BACE SIDER Tox21 ToxCast Avg
0 73.2 ± 0.7 80.2 ± 1.8 76.4 ± 0.7 78.1 ± 0.6 84.1 ± 0.9 62.3 ± 0.5 75.5 ± 0.3 63.8 ± 0.3 74.20
0.5 73.6 ± 0.7 82.5 ± 1.2 75.0 ± 1.5 78.4 ± 0.6 85.6 ± 0.5 62.4 ± 0.1 75.8 ± 0.1 64.5 ± 0.3 74.73
0.95 73.5 ± 0.9 84.9 ± 1.3 79.4 ± 0.9 78.8 ± 0.5 85.2 ± 0.4 61.2 ± 1.0 76.9 ± 0.1 64.9 ± 0.2 75.60
1.0 72.8 ± 0.6 83.6 ± 1.2 77.6 ± 1.6 78.8 ± 0.4 83.4 ± 1.3 61.3 ± 0.6 76.6 ± 0.3 64.1 ± 0.2 74.78

Table 8: Sensitivity analysis of λ1 and λ2 for TGCL−DSLA(w/DSLA) model.

λ1 = 0.3 λ1 = 0.5 λ1 = 0.7 λ1 = 1.0

BBBP 72.55 ± 0.32 72.03 ± 0.59 74.46 ± 1.54 73.5 ± 0.9
ClinTox 81.60 ± 0.21 80.33 ± 2.39 82.95 ± 0.75 84.9 ± 1.3
BACE 83.64 ± 0.71 83.18 ± 1.02 83.38 ± 0.33 85.2 ± 0.4
MUV 76.28 ± 0.91 76.00 ± 0.37 77.08 ± 1.45 79.4 ± 0.9
HIV 78.61 ± 0.62 78.93 ± 0.58 78.64 ± 0.46 78.8 ± 0.5

λ2 = 0.3 λ2 = 0.5 λ2 = 0.7 λ2 = 1.0

BBBP 72.96 ± 0.27 73.5 ± 0.9 72.85 ± 0.24 74.12 ± 0.41
ClinTox 83.53 ± 1.51 84.9 ± 1.3 81.95 ± 0.93 80.83 ± 1.68
BACE 83.33 ± 0.31 85.2 ± 0.4 83.60 ± 0.90 83.53 ± 0.72
MUV 75.79 ± 0.78 79.4 ± 0.9 76.75 ± 1.54 76.02 ± 0.11
HIV 78.66 ± 0.81 78.8 ± 0.5 78.17 ± 0.62 79.49 ± 0.84

In Table 6, we demonstrate the results by varying the temperature, τ to {1, 5, 10, 20, 100}. We
observe that at a lower temperature of τ = 1, we achieve the best performance for BBBP and
Clintox dataset, while the performance remains lower for the other datasets. On the other hand, at
τ = 100, we achieve the best performance for SIDER. Finally, we obtain the most consistent result
as we select τ = 10 and set it to report our results.

Next, in Table 7, we analyze the impact of α with fixed τ = 10. A larger value of τ provides
more weight to LKD. We can see that as we increase α to a non-zero value, it improves the overall
performance of the model. However, as we choose α = 1 to entirely removeLwGD, the performance
tends to reduce. We achieve the best performance at α = 0.95.

Sensitivity analysis of λ1 and λ2 for TGCL−DSLA(w/DSLA) model. In Table 8, we present
the performance of TGCL −DSLA(w/DSLA) model as we vary λ1 and λ2 in Eq. 12. We first
vary λ1 to {0.3, 0.5, 0.7, 1.0} as we fix λ2 = 0.5. We observe that the performance improves as we
choose larger values, i.e., when we set λ1 to 0.7 or 1.0. Next, we vary λ2 to {0.3, 0.5, 0.7, 1.0} as
we fix λ1 = 1.0. Here, we observe that we achieve the average performance as we set λ2 = 0.5
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