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Abstract
The manifestation and effect of bias in news001
reporting have been central topics in the social002
sciences for decades, and have received increas-003
ing attention in the NLP community recently.004
While NLP can help to scale up analyses or005
contribute automatic procedures to investigate006
the impact of biased news in society, we argue007
that methodologies that are currently dominant008
fall short of capturing the complex questions009
and effects addressed in theoretical media stud-010
ies. This is problematic because it diminishes011
the validity and safety of the resulting tools and012
applications. Here, we review and critically013
compare task formulations, methods and evalu-014
ation schemes in the social sciences and NLP.015
We discuss open questions and suggest possi-016
ble directions to close identified gaps between017
theory and predictive models, and their evalu-018
ation. These include model transparency, con-019
sidering document-external information, and020
cross-document reasoning.021

1 Introduction022

The depiction of complex issues in the media023

strongly impacts public opinion, politics, and poli-024

cies (Ghanem, 1997; Giles and Shaw, 2009). Be-025

cause a handful of global corporations own an in-026

creasing proportion of news outlets, the reach and027

impact of biased reporting are amplified (Hamborg,028

2020). Although perfect neutrality is neither re-029

alistic nor desirable, media bias turns into an is-030

sue when it becomes systematic. If the public is031

unaware of the presence of bias, this can lead to032

dangerous consequences, including intolerance and033

ideological segregation (Baly et al., 2020).034

Figure 1 illustrates the concepts of framing and035

media bias adopted in this paper, using the pass-036

ing of the Respect for Marriage Act as an example.037

Framing refers to the emphasis of selected facts038

with the goal of eliciting a desired interpretation039

or reaction in the reader (Entman, 2007). The left-040

leaning article in Figure 1 leads with an uplifiting041

Figure 1: Two articles about the same event written from
different political ideologies (Source: allsides.com).

picture of a wedding and emphasizes bill support, 042

evoking a positive framing of new opportunities 043

for same-sex couples; while the right-leaning ar- 044

ticle focuses on disputes in both image and text, 045

framing the issue in a more negative light. Politi- 046

cal bias refers to partisan slanted news stories, or 047

the “tendency to deviate from an accurate, neutral, 048

balanced, and impartial representation of ‘reality’ 049

of events and social world” (McQuail and Deuze, 050

2020), which can be a result of a selected framing. 051

In Figure 1, each document was flagged as far-left 052

and far-right ideological leaning, respectively, on 053

the basis of their publishing media outlets. Political 054

bias is typically deliberate (Williams, 1975) while 055

framing may be inadvertent and caused by external 056

pressures such as space limitations. 057

Framing and media bias have been under ac- 058

tive research in different subfields of the social 059

sciences. Angles of study include the manifesta- 060

tion of frames in the mass media and their effects 061

on public opinion (communication sciences); the 062

impact of frames in groups’ and individuals’ sense- 063
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making of the world (social psychology; sociology)064

or on their observable behaviour (economics and065

political science). We focus on the first notion: sys-066

tematic analyses of framing bias in the mass media,067

through manual coding, or with NLP technology.068

With the increasing pace and almost complete069

digitization of news reporting there is a need070

and opportunity to scale the analysis of media071

bias (Parasie, 2022). Besides, evidence suggests072

that exposing media bias promotes healthy public073

debate, aids journalists to increase thoroughness074

and objectivity, and promotes critical news con-075

sumption (Dallmann et al., 2015). We discuss the076

specific role of NLP in this context in Section 5.077

1.1 Contribution and Approach078

We survey work on framing and media bias pre-079

diction in NLP and relate it to typical research080

questions and hypotheses in the social sciences.081

We tease out disconnects across disciplines, and082

make concrete suggestions on how social science083

approaches can improve NLP methodology, and084

how NLP methods can more effectively aid so-085

cial science scholars in their analyses and underpin086

technology to raise awareness of media bias.087

Hamborg et al. (2019) present an overview of088

traditional and computational approaches to media089

bias, including detailed definitions of bias types090

and their emergence in the context of news produc-091

tion. We complement this survey by contextualiz-092

ing recent approaches in NLP with questions that093

dominate research on media bias and framing in the094

humanities. Ali and Hassan (2022) review compu-095

tational approaches to modelling framing providing096

a systematic overview of NLP and machine learn-097

ing methods. In contrast, we critically survey the098

methodological decisions along the higher-level099

NLP pipeline: data (Section 4.1), problem formu-100

lation (Section 4.2), and evaluation (Section 4.3),101

link all levels back to social science methodology,102

and pinpoint gaps between the two disciplines. We103

motivate our focus with a case study in Section 3.104

We obtained a comprehensive body of literature105

for this survey by strategically tracing the citation106

graph of two pivotal papers: Hamborg et al. (2019)107

and Card et al. (2015). We then recursively tra-108

verse their citations – both papers cited in these109

articles and articles which cite the papers.1 We ex-110

1Note that we intentionally depart from the standard ap-
proach of selecting the top N results from Google Scholar
or the ACL Anthology for few simple queries, as this would
would not capture the diversity of works both in terminology

cluded papers that: (a) adopt established methods 111

where the original reference was already included 112

in our list; (b) exclusively include definitions that 113

were already covered; or (c) adopt a definition of 114

framing or bias that was not directly related to our 115

survey (e.g., social rather than media bias). We 116

finally obtained 62 papers (35 framing, 27 media 117

bias). Out of these, 16 papers originate from the 118

social sciences and 46 from NLP research. Our pa- 119

per sample covers studies between 1975 and 2023, 120

with the majority stemming from the past 10 years. 121

Our survey is primarily (U.S.) English-centred, due 122

to a corresponding focus of existing datasets and 123

previous work. Diversifying research to other coun- 124

tries, cultures, and languages is an important step 125

for future work. 126

2 Background: Framing and Media Bias 127

Framing and politically biased news reporting are 128

two strategies to systematically promote specific 129

perspectives on contested issues. They are overlap- 130

ping concepts which have been addressed jointly or 131

with similar methods in NLP. As such, we include 132

both strategies in this survey. 133

Framing has been conceptualized variously in 134

different social science disciplines. Prevalent no- 135

tions of framing include equivalence framing – pre- 136

senting the same logical information in different 137

forms (Cacciatore et al., 2016) – and emphasis 138

framing – highlighting particular aspects of an is- 139

sue to promote a particular interpretation (Entman, 140

2007). Additionally, framing has been concep- 141

tualised as a process (de Vreese, 2005; Entman, 142

2007; Chong and Druckman, 2007), a communi- 143

cation tool (Scheufele, 1999), or a political strat- 144

egy (Roy and Goldwasser, 2020). Frames have 145

been conceptualised within different dichotomies. 146

de Vreese (2005) distinguishes issue-specific and 147

issue-generic frames which apply to only a single 148

or across several issues, respectively. Scheufele 149

(1999) differentiates between media frames, as em- 150

bedded in the political discourse, and audience 151

frames, as the reader’s interpretation of an issue. 152

Finally, Gross (2008) defines episodic framing as 153

portraying an issue with an individual example 154

compared to thematic framing, which takes broader 155

context into account. Here, we cover both issue- 156

specific and issue-generic frames and attach to Ent- 157

man (2007)’s notion of emphasis framing. 158

While framing is a priori detached from partisan 159

and publication venues.
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Figure 2: Illustration of the three disconnects: framing
is both local and global (blue), dynamic (green) and best
identified through comparative analysis (yellow).

views, political bias refers to an explicit association160

of an article or media outlet with a specific polit-161

ical leaning. Both concepts result in biased news162

reporting, and correspondingly NLP researchers163

have attempted to address them jointly, either by in-164

vestigating political framing (Roy and Goldwasser,165

2020) or by identifying correlations between fram-166

ing and partisan slanted articles (Ziems and Yang,167

2021). NLP studies have attempted automatic me-168

dia bias identification under several names, includ-169

ing: hyper-partisan news detection (Kiesel et al.,170

2019), media bias detection (Spinde et al., 2021b;171

Lei et al., 2022), identification of biased terms172

(Spinde et al., 2021a), and political ideology detec-173

tion (Iyyer et al., 2014; Kulkarni et al., 2018). Their174

common goal is to detect and classify the bias of175

a data sample towards a particular political ideol-176

ogy. Many of these approaches naturally relate to177

investigating how the story is told (i.e., framing).178

3 Three Disconnects179

To illustrate the disconnects between the social sci-180

ences and NLP, we use a representative study of me-181

dia bias from the communication sciences (Hernán-182

dez, 2018) which investigates the framing of do-183

mestic violence in the South China Morning Post.184

The author formulates two research questions:185

1. Framing functions: Are femicides recognized186

as a problem of domestic violence? What are187

their causes, and the solutions proposed?188

2. Frame narratives: What are the main narra-189

tives? And which sources are cited in support?190

The first research question considers the local as-191

pects within each news article. Specifically, it stud-192

ies the causes and solutions presented, grounded193

in Entman (1993)’s conceptualisation of framing194

in terms of a problem, its cause, and its solution.195

The second research question relates these local196

aspects to a global (cross-document) view by con- 197

trasting narratives that present domestic violence 198

as isolated incidents with those that treat it as a 199

societal problem. It further connects the articles 200

to extrinsic variables, including the sources used 201

and cultural contexts of the story (e.g. whether the 202

article refers the role of women in the Chinese fam- 203

ily or understands domestic violence through the 204

lens of the Confucian philosophy). Furthermore, 205

the study considers articles over an extended pe- 206

riod, capturing the temporal development of fram- 207

ing and bias. In contrast, current NLP approaches 208

to frame prediction have predominantly adopted a 209

single-label prediction approach per unit of analy- 210

sis (Baumer et al., 2015; Naderi and Hirst, 2017; 211

Liu et al., 2019), rather than treating frames as 212

structures which could decompose into aspects like 213

cause vs. solution (but see Akyürek et al. (2020); 214

Mendelsohn et al. (2021); Frermann et al. (2023) 215

for recent exceptions). Current approaches further- 216

more treat units of analysis (sentences, articles) 217

as independent without considering links across 218

documents, across time, or to document-external 219

context. The multi-level and dynamic understand- 220

ing of bias and framing is fundamental in the social 221

science studies. In sum, we identify three funda- 222

mental properties of bias and framing that underpin 223

social science research on bias and framing, and 224

we also visually represent them in Figure 2: 225

Framing/bias is local and global It is local, be- 226

cause an article can contain several frames, and 227

it is global because understanding the framing of 228

an article may require to aggregate local frames 229

and link them with information such as cited (or 230

omitted) sources, or the outlets’ political leaning. 231

Framing/bias is dynamic Frames change across 232

time, outlets, countries, and communities. Under- 233

standing the dynamics of framing can shed light on 234

trends and the impact of a sustained exposure to 235

biased reporting on readers’ opinions. 236

Framing/bias as a comparative task Media bias 237

and framing are most apparent when directly con- 238

trasting articles from different perspectives, places 239

or times (cf., Figure 1). Formulating our task in a 240

comparative way – rather than predicting instance 241

labels in isolation – may improve the quality, relia- 242

bility and interpretability of predictions. 243

Only 14.5% of our surveyed papers (N=9) ad- 244

dress the global vs local aspect, 9.7% (N=6) ex- 245

plore the dynamics, and 1.6% (N=1) tackle fram- 246
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ing bias as a comparative task over two or more247

data samples on the same event. The full list of248

papers and their categorisation can be found in Ap-249

pendix A. The remainder of this article links these250

fundamental disconnects to the more practical re-251

search design decisions that arise across both disci-252

plines: data, methods and evaluation.253

4 A Critical Review of Current Practices254

in NLP and Social Science255

We critically compare approaches across NLP and256

the social sciences, pointing out discrepancies to-257

gether with practical suggestions for future work.258

4.1 Datasets259

Social science studies are characterized by care-260

fully collated data sets which are, however, typ-261

ically small in size (≪100 articles) and manual262

labels are rarely released to the public. Hence we263

focus on limitations and opportunities of NLP fram-264

ing and bias benchmarks in this section. Table 1,265

lists relevant datasets, along with details on their266

labels, size, tasks and unit of analysis.267

Media bias detection At the sentence level, Lim268

et al. (2020) used crowdsourcing to annotate sen-269

tences on 46 English-language news articles about270

4 different events with four levels of bias (not-271

biased, slightly biased, biased, or very biased).272

Spinde et al. (2021b) released BABE (“Bias An-273

notations By Experts”), a collection of sentences274

labelled by experts according to binary categories:275

biased and non-biased, at the sentence and word276

levels. Fan et al. (2019) provided the BASIL277

(“Bias Annotation Spans on the Informational278

Level”) dataset containing sentence (span) and279

word-level annotations of political leaning and sen-280

timent (stance) towards entities in the article.281

At the document level, the Bitterlemons corpus282

(Lin et al., 2006), comprises weekly issues about283

the Palestine–Israel conflict. Each issue contains284

articles from Palestinian and Israeli perspectives285

written by the portal’s editors and guest authors.286

Despite being intended for document classification,287

this dataset can be employed to explore framing288

and political bias, given the documents’ nature of289

strong bias towards one side of the conflict. Addi-290

tionally, the web portal AllSides2 categorises news291

outlets into three political ideologies: right, centre,292

and left (they also offer a finer-grained five-point293

2https://www.allsides.com/about

scale annotation: left, lean left, centre, lean right, 294

right) with the aim to provide all political perspec- 295

tives on a given story (cf., Figure 1) including ex- 296

pert manual assigned categories at the article level. 297

Several research groups have contributed datasets 298

scraped from AllSides (Chen et al., 2018; Baly 299

et al., 2020; Liu et al., 2022b; Lee et al., 2022). 300

Framing At the headline level, Liu et al. (2019) 301

released the Gun Violence Frame Corpus (GVFC). 302

It includes headlines about gun violence in news 303

articles from 2016 and 2018 in the U.S., labelled 304

with frames like politics, economics, and mental 305

health. Tourni et al. (2021) released a multi-modal 306

version of the GVFC collection, including the main 307

image associated with each article, and annotations 308

about relevance and framing at the image level. 309

At the document level, the Media Frames Corpus 310

(MFC, Card et al., 2015) is the currently most ex- 311

tensive frame-labeled data set available. It includes 312

articles from 13 U.S. newspapers on three policy 313

issues: immigration, same-sex marriage, and smok- 314

ing. This dataset is intended to enable the analysis 315

of policy issue framing, providing annotations at 316

document and span levels with frames like moral- 317

ity, economic, and cultural. Ziems and Yang (2021) 318

contribute a police violence news articles collection 319

(PVFC) that can be categorised in both domains, 320

media bias and framing. They provide annotations 321

for political leaning: conservative, liberal or none 322

and also entity-centric frames, including the vic- 323

tim’s age, race, and gender. 324

Opportunities for Future Work. In Section 3, 325

we propose three main aspects to investigate fram- 326

ing and media bias. (1) Conducting studies at 327

a local and global level. McLeod et al. (2022) 328

suggest that framing can occur at different textual 329

units in a document. Building on this idea, we 330

propose a shift from single label classification on 331

NLP datasets like AllSides, and Bitterlemons. In- 332

stead, they could be used to identify predictive 333

sentences or spans for particular frames of political 334

biases, and investigate commonalities. This can 335

directly inform social scientists in their analyses as 336

well as tools to expose biases to news consumers. 337

Roy and Goldwasser (2020) used point-wise mu- 338

tual information (Church and Hanks, 1990) over 339

bigrams and trigrams to identify spans but found 340

poor generalization of the approach. Khanehzar 341

et al. (2021) modelled latent frames at the event 342

level, whith not explicit validation. The MFC con- 343

tains sentence-level annotations for exploring local 344
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Dataset Categories Size Unit of Analysis Task

Bitterlemons (Lin et al., 2006) Perspective (Israel, Palestine) 594 Documents Classification
Flipper (Chen et al., 2018) Left, Centre, Right 6,447 Documents Classification

BASIL (Fan et al., 2019) Liberal, Conservative, Centre;
Pos, Neu, Neg

1.2k / 448
300

Spans/Words
Documents Classification

AllSides (Baly et al., 2020) Left, Centre, Right 34k Documents Classification
BiasedSents (Lim et al., 2020) not-, slightly-, very-, biased 966 Sentences Classification
BABE (Spinde et al., 2021b) Biased, Non-biased 3.7k Sentences Classification
BIGNEWSALIGN
(Liu et al., 2022b) Left, Centre, Right 1M Documents Classification

NeuS (Lee et al., 2022) Left, Centre, Right 10.6k Documents Cross-Doc
Summarisation

MFC (Card et al., 2015) 15 Frames 61.5k/
11.9k

Sentences/
Documents Classification

GVFC (Liu et al., 2019) 9 Frames 2.99k Headlines Classification
Multimodal GVFC
(Tourni et al., 2021) 9 Frames 1.3k Headlines

+ Images Classification

PVFC (Ziems and Yang, 2021) Entity frames;
Conservative, Liberal, none 82k Documents Entity frame

prediction
Narrative Frames
(Frermann et al., 2023) 3 entity roles; 5 frames 428 Documents Multi-label

frame prediction

Table 1: Prominent benchmarks for political bias (top) and framing (bottom). We report size (number of data points),
unit of analysis, supported task(s) and labels. All these data sets are in English and most of them U.S. centric.

framing, however to the best of our knowledge345

no study has attempted to aggregate those labels346

to a global level. Regarding datasets providing347

sentence-level (BABE) and headline (GVFC) an-348

notation, this can be considered as a local dimen-349

sion. However, they generalise from the headline350

to the entire document, which ignores the subtle351

signals in the local dimension. (2) The dynamics352

of framing on various levels are captured by cur-353

rent data sets: the MFC, BASIL, GVFC and BABE354

provide article timestamps, supporting diachronic355

modeling of bias and framing. While some studies356

exist in this domain (Kwak et al., 2020; Card et al.,357

2022), the majority of NLP framing considers ar-358

ticles in isolation. Other dynamics, e.g., across359

countries, communities or media types (e.g., news360

vs. blogs) are of central interest in communication361

studies but less achievable with existing data sets.362

Constructing cross-language and/or cross-cultural363

data sets with articles aligned on the event level364

is an important first step. (3) Framing as a com-365

parative task. We propose that researchers explore366

cross-document differences in their presentation of367

a specific issue. Several of the datasets obtained368

from AllSides include event-level alignment and369

hence enable comparison across documents on the370

left–centre–right spectrum at a finer granularity.371

4.2 Methodologies372

In NLP, researchers have approached media bias373

as political ideology detection or framing categori-374

sation using different task formulations. The first 375

and most common strategy is single-label classi- 376

fication, i.e. assigning a single label to each data 377

point. At the word level, Recasens et al. (2013) 378

learn linguistic features from word removal edit- 379

logs in Wikipedia. Spinde et al. (2021a) compared 380

the Euclidean distance of word embeddings to iden- 381

tify biased words in articles from Huffington Post 382

(left wing) and Breitbart News (right wing). And 383

Liu et al. (2021) experimented with identifying and 384

replacing bias-inducing words with neutral ones 385

using salience scores over word embeddings. 386

At the sentence level, Iyyer et al. (2014) used 387

RNNs to identify political ideology in sentences in 388

congressional debate transcripts and articles from 389

the Ideological Book corpus. Using the BASIL 390

corpus, Hartmann et al. (2019) correlated sentence 391

and document distributions using a Gaussian mix- 392

ture model (Reynolds, 2009) to identify biased sen- 393

tences; Chen et al. (2020a) classified biased spans 394

by calculating their probability distributions on 395

news articles; and Guo and Zhu (2022) applied con- 396

trastive learning and created sentence graphs to cat- 397

egorise biased sentences. Other researchers trans- 398

lated keywords from GVFC into several languages, 399

and fine-tuned mBERT to classify frames in news 400

headlines in languages other than English (Akyürek 401

et al., 2020; Aksenov et al., 2021). 402

At the document level, there has been substan- 403

tial work building on the MFC corpus. The task 404

has been approached with RNNs (Naderi and Hirst, 405
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2017), attention and discourse information (Ji and406

Smith, 2017), and pre-trained transformer mod-407

els (Khanehzar et al., 2019). Baly et al. (2020) com-408

bined adversarial adaptation and adapted triple loss409

with features like Twitter and Wikipedia informa-410

tion about the readers and the outlet to classify the411

political ideology of news articles. More recently,412

Chen et al. (2020b) analysed patterns at different413

granularities (from word to discourse) to identify414

media bias and Hong et al. (2023) developed a415

multi-head hierarchical attention model to identify416

biased sentences focusing on their semantic and417

aggregating those for political bias document clas-418

sification. Scholars have performed similar tasks419

on languages other than English, e.g. by translating420

English keywords in MFC to Russian to investi-421

gate the U.S. framing in Russian media over 13422

years (Field et al., 2018).423

Some work has formalized framing/bias detec-424

tion as multi-label classification, typically adopt-425

ing unsupervised methods like clustering (Ajjour426

et al., 2019) or topic modelling (Tsur et al., 2015;427

Menini et al., 2017) which allows to ‘softly’ assign428

documents to more than one cluster. In a super-429

vised manner, Mendelsohn et al. (2021) employ430

RoBERTa to classify multiple framing typologies431

on immigration-related tweets. Similarly, Akyürek432

et al. (2020) address multi-label framing over head-433

lines using different configurations of BERT. Both434

works focus on short documents (headlines or ar-435

ticles capped at 280 characters). The very recent436

work of Frermann et al. (2023) is the first to ad-437

dress document-level multi-label frame classifica-438

tion. Rather than unstructured, ‘topic-like’ frame439

detection, some works anchored framing in the de-440

piction of important stakeholders, also referred to441

as entity framing (Ziems and Yang, 2021; Khane-442

hzar et al., 2023).443

While we focus on frame and bias detection,444

NLP has also proposed methods for mitigation,445

e.g., by flipping of bias of headlines (Chen et al.,446

2018) or generating neutral summaries from a col-447

lection of biased articles on the same topic (Lee448

et al., 2022). These applications come with their449

own sets of methodological and evaluation chal-450

lenges, as well as ethical risks, and are beyond the451

scope of this paper. We advocate for the alternative452

approach of highlighting frames in multiple articles453

and presenting them side-by-side as illustrated in454

Figure 1, as a safer and potentially more effective455

approach in raising awareness of bias and framing.456

In the social sciences, approaches tend to be457

manual, with fewer data samples. One common 458

approach is to reason across many documents 459

from a high-level perspective. For example, Chyi 460

and McCombs (2004) design and evaluate a two- 461

dimensional framework (spatial and temporal) to 462

investigate framing changes over time in 170 news 463

articles in American English about a U.S. school 464

shooting event. They manually annotated articles 465

with the signals indicating both of the frame ty- 466

pologies, quantified those annotations and draw 467

conclusions about the temporal and spatial fram- 468

ing behaviour in the inspected articles. Muschert 469

and Carr (2006) assessed the previously-proposed 470

framework based on 290 news documents, and con- 471

firmed that the present temporal dimension frame 472

still holds when using data from more than one 473

school shooting. Hernández (2018) analysed the 474

framing of 124 news stories from the South China 475

Morning Post (SCMP) about femicides by manu- 476

ally coding the articles and quantifying those obser- 477

vations. The author explored whether those cases 478

were portrayed as isolated cases or part of a system- 479

atic social problem, by manually analysing signals 480

like narratives, sources, and the role of the entities. 481

Communication science studies often correlate 482

features of news reports with extra-textual infor- 483

mation to formulate or validate their hypotheses. 484

For example, McCarthy et al. (2008) assess media 485

bias in reporting on demonstrations. They examine 486

media coverage of protests during Belarus’s tran- 487

sition from communism, considering factors like 488

protest size, sponsors’ status, arrests, and their cor- 489

relation with media coverage. Similarly, Gentzkow 490

and Shapiro (2010) investigate media bias by cal- 491

culating think tank citation frequencies in media 492

outlets and correlating them with U.S. Congress 493

members mentioning the same groups. 494

Opportunities for Future Work. There is a 495

stark disconnect between largely local approaches 496

to frame modelling in NLP and the focus on 497

dynamic and global questions explored in fram- 498

ing/bias studies in the social sciences. These ar- 499

guably more complex questions emerging from 500

the social sciences can guide the development of 501

NLP methodologies. Capturing subtle signals, in- 502

cluding the metaphoric or technical (legal) lan- 503

guage use, the correlation with external features, 504

e.g. a report’s sources, and the broader cultural con- 505

text in which an article emerged can enrich news 506

framing and bias analysis. On a linguistic level, 507

framing models could be enriched with notions of 508
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metaphoric (Chakrabarty et al., 2022; Liu et al.,509

2022a) or subjective (Barrón-Cedeño et al., 2023)510

language. On the cross-document and dynamic511

level, we propose to address bias and frame classi-512

fication as a comparative task rather than classify-513

ing documents in isolation. This can help induce514

frames from data by analyzing axes of largest vari-515

ation; and can naturally support tools and applica-516

tions to raise readers’ bias awareness by exposing517

them to contrasting perspectives on the same issue.518

Contextualizing framing models with extra-textual,519

cultural context is arguably the most challenging520

gap to fill. While it is tempting to suggest the use of521

large language models to draw some of these con-522

nections, we strongly argue for using them at most523

as an aid for human domain experts, and to scruti-524

nize any automatic predictions due to the known525

intrinsic biases in these models.526

4.3 Evaluation527

We consider two levels of validation: validating528

data annotations, and validating model predictions.529

Validating annotations Validating the quality of530

labelled data applies to both the social sciences and531

NLP. In a typical social science study, the distribu-532

tion of manual labels is the main factor for accept-533

ing or rejecting hypotheses. As such, measures for534

data quality such as inter-coder reliability (ICR) are535

routinely reported and a core requisite of the study536

to ensure that the codebook was correctly concep-537

tualised. Coding often includes discussions and538

several iterations on trial data (Hernández, 2018),539

leading to relatively high ICR scores from carefully540

trained annotators, often with domain knowledge.541

For robust NLP model training and validation, re-542

liable annotations are essential. While the assess-543

ment of bias or framing are subjective to some544

extent – as the assessment of framing depends on545

the annotator’s predispositions – the development546

of scalable annotation frameworks that minimise547

subjectivity is an important open problem.548

Validating (model) predictions Social science549

studies are largely analytical examining labelled550

data, qualitatively based on manual analysis, and551

quantitatively based on statistical tests. In contrast,552

NLP framing studies primarily rely on empirical553

methods, evaluating through numerical compar-554

isons with ground truth labels. We propose a shift555

towards deeper insights, assessing a model’s ability556

to capture framing and political bias on a higher,557

more abstract level, while also fostering fresh in-558

sights into the data. Current approaches fall short 559

of drawing inferences from explicit information, 560

such as assessing story objectivity and factuality. 561

These nuanced, graded strategies require more com- 562

prehensive metrics than binary accuracy. 563

Opportunities for Future Work. We suggest 564

the consequent adoption of three levels of evalu- 565

ation: (1) model performance, (2) error analysis, 566

and (3) measuring model certainty. While the three 567

levels are by no means new, NLP work continues 568

to focus on (1), with (2) and (3) given less thought 569

and rigor. NLP research on media bias would ben- 570

efit from established standards that guide the error 571

analysis well as measures of model reliability and 572

(un)certainty. Such standards might include report- 573

ing of ‘most challenging’ classes and/or instances; 574

categorization of errors; as well as exploring rea- 575

sons for such short comings (Vilar et al., 2006; 576

Kummerfeld and Klein, 2013). Finally, with the in- 577

creasing impact of NLP technology on the broader 578

public, users of resulting models (be it news con- 579

sumers or social science researchers), must have 580

access model confidence scores to assess the relia- 581

bility of model predictions, as per point (3). 582

5 Discussion 583

Harmonizing depth and scale The differences 584

in data sets and evaluation between the disci- 585

plines naturally follow from their respective goals. 586

Framing studies in the social sciences aim to un- 587

cover the principles underlying framing and its ef- 588

fects through careful, manual analysis of limited 589

amounts of data, typically grounded in theoreti- 590

cal constructs. The primary goal of NLP in the 591

space of media analysis is automation and scala- 592

bility. Complex annotation of large training data 593

sets as required for supervised approaches is infea- 594

sible. Besides, the required structured annotation 595

paradigms would result in sparse observations of 596

label co-occurrence which in turn would require 597

even larger labelled corpora – and exploding anno- 598

tation costs. Harmonizing the goal of scalability 599

with depth and theoretical rigour is a difficult prob- 600

lem (that is not specific to the domain of framing 601

and media bias). One approach towards addressing 602

this problem is the use of semi- or unsupervised ap- 603

proaches, which limit the annotations to evaluation 604

sets of more manageable size. Incorporating small 605

amounts of labelled data with powerful pre-trained 606

models is an obvious methodological approach, 607

however, ensuring the validity of predictions and 608

7



interplay of biases encoded in these models with609

the target task at hand is an open and important re-610

search problem – particularly in a sensitive domain611

like media bias analysis.612

Feasible yet valid annotation How can we ob-613

tain ecologically valid annotations in an efficient614

way and sufficient quantity? We suggest to follow615

a common strategy in the social sciences: break ar-616

ticles into self-contained segments, on the event or617

argument level (Muschert and Carr, 2006). While618

recent work on argumentation in online debates has619

followed a similar approach of segmenting contri-620

butions into arguments and annotating frames on621

the argument level (Ajjour et al., 2019), it has not622

been applied in the news media context. Local-623

ized rather than article-level annotations have three624

advantages: (1) a cognitively easier task for anno-625

tators; (2) interpretability through the possibility to626

provide local, extractive evidence for frame predic-627

tions; and (3) a richer document-model of framing628

that goes beyond the single most likely frame.629

Cross-disciplinary expertise for document-630

external grounding Section 3 pointed to a need631

for multi-level bias analysis, incorporating lo-632

cal, cross-document and broader cultural contexts.633

Most NLP work models individual articles without634

integrating external information or other articles635

in the collection. A few exceptions exist, includ-636

ing Baly et al. (2020) who incorporate readership637

demographics from Twitter and publisher informa-638

tion from Wikipedia; and Kulkarni et al. (2018)639

who incorporate article link structure into their640

models. Both works still model data points in isola-641

tion, and fall short of incorporating the more subtle642

cultural, political or societal contexts that inevitably643

interact with news framing. We argue for a strong644

role of cross-disciplinarity and human oversight645

when incorporating those factors, involving domain646

experts at every step from formulating research647

questions to model design, transparency, robust-648

ness, and evaluation. Cross-disciplinary projects649

would guide NLP researchers to develop novel650

methods that are valid and useful for studying the651

fundamentals of framing and media bias, and equip652

social scientists with enlarged data sets of high653

quality and relevance to enrich their research.654

Open data NLP has a strong culture of sharing655

code and annotated data sets to encourage collabo-656

ration and reproducibility. This is less common in657

the humanities. Sharing this data more explicitly658

through cross-disciplinary dialogue could provide 659

critical assessment and feedback from domain ex- 660

perts. It could drive research into combining large 661

(and potentially noisier) data with small-scale (but 662

high-quality) data sets from the social sciences, 663

to address increasingly complex questions on the 664

emergence and effects of media biases and framing. 665

The role of NLP in media bias analysis Despite 666

a surge in data sets and models for automatic anal- 667

ysis of frames and media bias, the ultimate goal 668

of these works receives surprisingly little attention. 669

With the broader adoption of NLP methods diverse 670

applications emerge – from supporting social scien- 671

tists in scaling their research to larger data samples, 672

to tools that highlight (or even edit) biased news to 673

general public news consumers to expose slanted 674

reporting. An explicit notion of goals and appli- 675

cations (and corresponding statement in research 676

papers) will inform model evaluation, risks and 677

ethical concerns to be discussed in the paper. A 678

mandatory adoption of model cards (Mitchell et al., 679

2019) is one step in this direction. Irrespective of 680

the final application of NLP research, we argue 681

that NLP can contribute safe and valuable tools 682

and methods only if it recognizes the complexity of 683

bias an framing both in its data sets and annotations 684

as well as in its evaluation procedures. 685

6 Conclusion 686

We surveyed recent work in NLP on framing and 687

media bias, and identified disconnects and syn- 688

ergies in datasets, methodologies, and validation 689

techniques to research practices in the social sci- 690

ences. Despite the opportunities for NLP to support 691

and scale social science scholarship on media bias, 692

a current oversimplification in conceptualisation, 693

modelling, and evaluation limits the validity and 694

reliability of contributions. We have teased out 695

three disconnects and proposed directions for fu- 696

ture work, including: (1) analysing news articles 697

from a local and global perspective, incorporating 698

external non-textual features; (2) taking into ac- 699

count the dynamics of framing and bias across doc- 700

uments, cultures or over time; and (3) tackling the 701

issue of media bias as a comparative task, defining 702

frames on the basis of systematic differences be- 703

tween articles whose origins differ on pre-defined 704

characteristics. This would allow for a more com- 705

plex characterisation of bias than the currently dom- 706

inant approach of single-label classification. 707
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Limitations708

This survey focuses on media bias and ‘frame build-709

ing’, i.e. the manifestation of biases and frames in710

news articles. This constrains the scope of our anal-711

ysis to mainstream print news outlets; and leaves712

aside the dimension of ‘frame setting’, i.e. the ef-713

fects of those frames on the news consumers. Ad-714

ditionally, we are aware that regardless of the ap-715

proach taken for sampling the body of previous716

work included in this paper, given the vast litera-717

ture in the social sciences, there will be remaining718

bias in our selection. With the aim of mitigating719

this bias, we point the reader to complementary720

surveys in this field, e.g. Hamborg et al. (2019) and721

Ali and Hassan (2022).722

Ethics Statement723

Identifying framing and political bias in news arti-724

cles is a sensitive application area, and inevitably725

influenced by social and structural biases in the726

academic investigators and the pool of annotators.727

Datasets and technologies intending to tackle these728

phenomena comprise the social bias of annotators729

and researchers developing them in an environment730

lacking diversity. Besides there is a potential for731

dual use of models and benchmarks to promote732

polarisation and misinformation through framing,733

rather than reduce it. We see this paper as an op-734

portunity to identify new directions to diversify735

NLP methodologies and data sets, grounded in best-736

practices from the media sciences which have been737

developed for decades. We anticipate that these738

steps will, together with a better documentation of739

models and intended use cases, will help to address740

the above concerns.741
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Total 9 6 1

Table 2: Cited Literature. Papers marked as ‘Local/Global’ analyse media bias or framing, or provide data at
different levels of granularity, ranging from words and sentences (or spans) to entire documents. For a paper to
consider ‘Dynamics’, we required the study to include an analysis of the development of a topic across a specific
axis, either temporal or spatial (across countries). Papers marked in the ‘Comparison’ column characterise bias or
framing by explicitly contrasting data samples from different ideologies or political leanings.
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