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ABSTRACT

Large language models (LLMs) with enormous pre-training tokens and parameter
amounts emerge abilities, including math reasoning, code generation, and instruc-
tion following. These abilities are further enhanced by supervised fine-tuning
(SFT). The open-source community has studied on ad-hoc SFT for each ability,
while proprietary LLMs are versatile for all abilities. It is important to investigate
how to unlock them with multiple abilities via SFT. In this study, we specifically
focus on the data composition between mathematical reasoning, code generation,
and general human-aligning abilities during SFT. From a scaling perspective, we
investigate the relationship between model abilities and various factors includ-
ing data amounts, data composition ratio, model parameters, and SFT strategies.
Our experiments reveal that different abilities exhibit different scaling patterns,
and larger models generally show superior performance with the same amount
of data. Mathematical reasoning and code generation improve as data amounts
increase consistently, while the general ability is enhanced with about a thousand
samples and improves slowly. We find data composition results in various abilities
improvements with low data amounts, while conflicts of abilities with high data
amounts. Our experiments further show that composition data amount impacts
performance, while the influence of composition ratio is insignificant. Regarding
the SFT strategies, we evaluate sequential learning multiple abilities are prone to
catastrophic forgetting. Our proposed Dual-stage Mixed Fine-tuning (DMT) strat-
egy learns specialized abilities first and then learns general abilities with a small
amount of specialized data to prevent forgetting, offering a promising solution to
learn multiple abilities with different scaling patterns.

1 INTRODUCTION

Recent research has demonstrated the remarkable and versatile proficiency of large language models
(LLMs) in dealing with a variety of real-world tasks expressed in natural languages (Ouyang et al.,
2022a; Anil et al., 2023; OpenAI, 2023). Among the tasks, LLMs especially emerge with three
outstanding abilities in reasoning (Cobbe et al., 2021; Wei et al., 2022), coding (Chen et al., 2021),
and aligning general human intentions (Ouyang et al., 2022a), which have drawn much attention from
the LLM research community. In order to further incentivize such abilities, it necessitates supervised
fine-tuning (SFT) stages on annotated task data. However, existing research has mostly conducted
separate SFT investigations on each of the three tasks, where reasoning and coding abilities require
SFT on in-domain human-annotated or augmented data (Yuan et al., 2023b; Luo et al., 2023) while
diverse and complex human instructions are applauded for aligning human intentions (Wang et al.,
2023c; Taori et al., 2023; Xu et al., 2023; Zhou et al., 2023; Wang et al., 2023a; Lu et al., 2023). As
shown by the strong performance of proprietary LLMs such as GPT-4 (OpenAI, 2023) and Claude,
LLMs have the potential to master all the tasks in one model. Therefore, it is of paramount importance
to investigate the versatile performance of SFT with composite task data, and understanding and
addressing the challenges posed by the data composition problem in the SFT stage is crucial for
further enhancing the capabilities of LLMs in a comprehensive manner.

In essence, the tasks of reasoning, coding, and aligning human intentions are of different char-
acteristics. Reasoning and coding tasks require ad-hoc abilities of complex and detailed logic in
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Figure 1: The illustration of four different training strategies in this paper.

decomposing task instructions and dealing with non-linguistic and symbolic features (Chen et al.,
2021; Huang & Chang, 2023), whereas aligning human intentions requires versatility and understand-
ing obscure intentions expressed in human instructions (Lu et al., 2023). Given the fundamental
difference among the tasks, multi-task learning with composite data fine-tuning for small-scaled
pre-trained language models is prone to catastrophic forgetting (De Lange et al., 2022), hindering the
fine-tuned performance of one model on separate tasks. Many efforts have been made to compensate
for the phenomenon (Liang et al., 2021; Xu et al., 2021; Yuan et al., 2023a). There has also been
research discovering that scaling up the pre-trained language model scale and the fine-tuning data
scale are beneficial for zero-shot out-of-domain generalization on various linguistic tasks while
leaving out the assessment of in-domain performance (Sanh et al., 2022; Chung et al., 2022a; Longpre
et al., 2023). Given the increased capacity of LLMs, the multi-task performance by SFT on composite
data of essentially different downstream tasks is less studied. Understanding the SFT performance
with composite data and corresponding scaling patterns is of great utility in practice.

In this study, we focus on the data composition problem among mathematical reasoning, code
generation, and general human-aligning abilities in SFT. We aim to comprehensively investigate
the relationship between model performance and different factors including data amount, data
composition ratio, model scales, and SFT training strategies. We also investigate how the relationship
varies under different scales. Specifically, we focus on the following four research questions:

1. How do math reasoning, coding, and general abilities scale with SFT data amounts?

2. Are there performance conflicts when combining these three abilities in SFT?

3. What are the key factors that induce the performance conflicts?

4. What are the impacts of different SFT strategies for composite data?

To answer these questions, we conduct experiments on three benchmarks, which are GSM8K (Cobbe
et al., 2021) for mathematical reasoning, HumanEval (Chen et al., 2021) for coding, and MT-Bench
(Zheng et al., 2023) for general human alignment. We fine-tune LLMs on the related training data to
activate these abilities. Furthermore, we conduct extensive analysis regarding model parameter scales
ranging from LLaMA 7B to 33B (Touvron et al., 2023) and explore four different SFT strategies
shown in Figure 1: multi-task learning, sequential training, mixed sequential training, and dual-stage
mixing fine-tuning (DMT), providing empirical guidance for learning a versatile LLM with composite
SFT. The key findings of this paper can be summarized as follows:

• Different SFT abilities exhibit distinct scaling patterns, while larger models show better
performances with the same data amount generally.
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• Compared to single ability learning, multi-task learning multiple abilities exhibits improve-
ment in low-resource and decline in high-resource. Additionally, as the model size increases,
there is a greater performance gain in low-resource settings for math and general abilities.

• Data amounts directly influence each ability, while the data ratio is insignificant.
• Multi-task learning lead to conflicts, while sequential training results in catastrophic forget-

ting. Our proposed DMT effectively alleviates both performance conflicts and catastrophic
forgetting in the SFT phrase, achieving a balance between general and specialized abilities.

2 RELATED WORKS

Supervised fine-tuning in Large Language Models Large language models (LLMs) undergo
the SFT stage to further unlock the performance in task solving and aligning human instruction.
We slightly abuse the term SFT to refer to general sequence-to-sequence fine-tuning, including but
not limited to SFT for human alignment, instruction fine-tuning, and downstream task fine-tuning.
Recent research explored multi-task instruction fine-tuning of pre-trained LLMs to enable better
zero-shot performance on various downstream NLP tasks (Sanh et al., 2022). (Chung et al., 2022a;
Longpre et al., 2023) attempted to exhaust existing NLP tasks and curated a massive dataset, FLAN,
for instruction fine-tuning. Open-sourced (Chung et al., 2022b) and proprietary LLMs (Singhal
et al., 2022) fine-tuned on FLAN exhibited improved zero-shot downstream performance on various
held-out NLP tasks. However, the influence of multi-task training of LLMs on in-domain performance
is less studied. With the success of proprietary LLMs, especially ChatGPT, there has been increasing
attention on SFT to align LLMs to human intentions (Ouyang et al., 2022b). Instead of generating
SFT data from crowd-resourcing, recent research explored to generate data from proprietary LLM
user logs (Chiang et al., 2023; Wang et al., 2023a), prompting proprietary LLM (Wang et al., 2023c;
Taori et al., 2023; Lei et al., 2023; Xu et al., 2023). Various analyses and methods have also been
proposed to increase the SFT data quality (Zhou et al., 2023; Wang et al., 2023b; Lu et al., 2023)
to achieve better alignment of open-resourced LLMs with humans. Besides, LLMs can also benefit
from SFT for mathematical reasoning (Cobbe et al., 2021; Hendrycks et al., 2021; Yuan et al., 2023b;
Yue et al., 2023) and code generation tasks (Chaudhary, 2023; Luo et al., 2023).

Scaling Laws in Large Language Models The exceptional performance of LLMs comes from
scaling up model sizes, data amounts, and computational costs to massive scales. Therefore, it is
crucial to explore the model performance across an exponential range of scales. Many endeavors
have been made to discuss the scaling laws for pre-training (Anil et al., 2023; Hoffmann et al.,
2022), transfer learning (Chronopoulou et al., 2019), preference modeling (Gao et al., 2022) and
mathematical reasoning (Yuan et al., 2023b). In this paper, we also explore the SFT performance
with composite data from the perspective of different scales of model sizes and data amounts.

3 EXPERIMENTS

We have SFT datasets {D1, D2, ..., Dk} where each Di = {qi,j , ri,j}j contains queries and responses
from one source. We consider each SFT dataset to correspond to one ability and we also have k
in-domain metrics to measure them. We investigate the performances of in-domain metrics with
different dataset compositions (D ⊂ ∪1≤i≤kDi) and training strategies on different sizes of LLMs.

3.1 EXPERIMENT SETUP

We collect three SFT datasets {D1, D2, D3} including GSM8K RFT (Yuan et al., 2023b), Code
Alpaca (Chaudhary, 2023), and ShareGPT (Chiang et al., 2023) to represent math reasoning, coding,
and general human-aligning ability SFT dataset respectively. We will integrate a new SFT dataset
D by these three datasets to investigate how data composition affects the model performances. We
use GSM8K test set (Cobbe et al., 2021), HumanEval (Chen et al., 2021), and MT-Bench (Zheng
et al., 2023) to measure abilities including math reasoning, coding, and general human-aligning.
We use LLaMA (Touvron et al., 2023) series as our pretrained language models and use FastChat
framework (Zheng et al., 2023) for fine-tuning. We fine-tune models with 3 epochs and a peak of
2e-5 learning rate. The batch size during SFT is 16. More details about SFT datasets, evaluation
metrics and implementations can be found in Appendix A, B and C.
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Figure 2: The scaling curve of different sizes of LLaMA in three individual domains.

3.2 RQ1. INDIVIDUAL ABILITY PERFORMANCE VS. DATA AMOUNT

The instruction following ability can be activated via SFT on datasets like ShareGPT which contain
around 100 thousand samples. However, Zhou et al. (2023) demonstrates that strong base models can
achieve human alignment with just 1000 samples. Specialized abilities such as math reasoning require
a large amount of data (Cobbe et al., 2021; Yuan et al., 2023b), unlike general abilities. Therefore, it
is crucial to investigate how each ability improves as the data amount increases.

Experimental Design: We conduct SFT on LLaMA of various sizes using {1, 1/4, 1/16, 1/64, 1/256}
proportions of the training set obtained from GSM8K RFT, Code Alpaca, and ShareGPT seperately.
This allowed us to evaluate each ability with various data sizes and model sizes.

Results and Analysis. Figure 2 shows the individual data scaling curves for different abilities
after SFT. We find that: Different abilities exhibit different scaling curves. To be more specific,
mathematical reasoning capability shows a positive correlation with the data amount across various
model sizes which is consistent with Yuan et al. (2023b). Similarly, general human-aligning ability
demonstrates an almost monotonically increasing scaling curve. However, it is noteworthy that
general ability emerges with only around 1k data samples (ranging from 1/256 to 1/64), and after
reaching a certain threshold (1/64), their performances improve slowly. This further supports Zhou
et al. (2023), indicating that a small amount of high-quality SFT data is possible for the emergence
of general human-aligning ability in LLMs. On the other hand, code ability exhibits an irregular
scaling curve when the model’s parameter count is small (7B & 13B). However, when the parameter
count increases to 33B, its coding performance shows an approximately log-linear trend with the data
amount. One possible explanation is that Code Alpaca and the samples in HumanEval have different
distributions. Larger models can capture shared knowledge across code data distributions in the
in-domain samples, which enables them to exhibit some level of generalization to out-of-distribution
(OOD) samples. Another observation is larger models show better performances with the same
data amount generally. The outlier is with very little data (1/256), smaller models may outperform
larger models. If there is enough data, larger models have stable better performances.

3.3 RQ2. PERFORMANCE DIFFERENCE VS. MIXED DATA AMOUNT

We should deliver a versatile model that requires us to mix various SFT datasets and apply SFT. We
want to ask how each ability varies due to SFT dataset mixtures. We investigate it with different
amounts of mixed data and compare them with individual ability performance.

Experimental Design: For the individual source setting, consistent with the setup in RQ1, we
performed fine-tuning on LLaMA models of different sizes using {1, 1/4, 1/16, 1/64, 1/256} amounts
of training data from GSM8K, Code Alpaca, and ShareGPT separately. For the mixed source setting,
we sampled {1, 1/4, 1/16, 1/64, 1/256} amounts of training data from GSM8K, Code Alpaca, and
ShareGPT, and directly mixed them according to the corresponding proportions. In this way, we
constructed datasets with fixed proportions of different ability domains, while varying the total data
amount. These datasets are then used for fine-tuning the LLaMA models.

Results and Analysis. Figure 3 presents results of LLaMA of different sizes on three benchmarks
under the individual source and mixed source settings. The following observations are made: Abilities
are improved with low-resource and are decreased with high-resource compared to individual
source abilities. In the case of LLaMA-7B, compared to the data scaling curve of the individual
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Figure 3: Comparative experiments between mix domains and individual domains for LLaMA.

source setting, the models fine-tuned with mixed source data consistently demonstrated performance
conflicts among the three ability domains at high resources (100%). However, as the data volume
decreased, a turning point in performance is observed between the two settings in the data range of
1/64 to 1/16. Notably, the models fine-tuned with mixed source data exhibited performance gains
at low resources (1/256), indicating that SFT data from different sources benefit each other in a
low-resource setting. However, when there is enough data, data from other sources could be viewed
as noise for in-domain generalization. As the model size increases, the performance gain in
low-resource settings also increases for math and general abilities. In the case of the 13B and 33B
models, it is obvious that the scaling curve for the mix source setting follows a similar trend observed
in previous analyses, with the presence of performance intersection points as the data volume scales.
However, a crucial distinction arises, whereby larger models exhibit more pronounced performance
gains under low resources as the size of model parameters increases. The outlier is the LLaMA-7B
(code only, 1/256). A possible reason is the introduction of a small amount of unseen code data
easily disrupts the original code ability of the pretrained model, as supported by its low HumanEval
score (less than 6). In conclusion, our finding implies that larger language models excel in acquiring
general and specialized abilities from diverse data sources under low-resource conditions.

3.4 RQ3. PERFORMANCE DIFFERENCE VS. DATA COMPOSITION RATIO

We observe ability conflicts under high-resource settings, and we want to investigate the reason
causes conflicts. Two possible factors are the data amount of other abilities is too high or the data
ratio of other abilities is too high. Here we conduct experiments to investigate the data ratio factor.

Experimental Design: We consider coding and mathematics as a combined specialized data source,
and the ShareGPT as the general data source. We designed three setups as follows which control the
amount of one source of data and vary the ratio between general and specialized data.:

1. Fixed general data, scaling specialized data: We use a full training set of ShareGPT and sampled
different proportions {1, 1/4, 1/16, 1/64, 1/256} of GSM8K RFT and Code Alpaca as a mixture.
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Figure 4: Different data ratio (k) between specific abilities and general abilities on three benchmarks.

2. Fixed specialized data, scaling general data: We use a full training set of GSM8K RFT and
Code Alpaca and sample different proportions of ShareGPT as a mixture.

3. Fixed 1/64 general data, scaling specialized data: Motivated by LIMA’s setup (Zhou et al.,
2023), we used a 1/64 ShareGPT set (about 1500 examples) and sampled different proportions of
GSM8K RFT and Code Alpaca as a mixture.

Results and Analysis. Does the performance of the model vary with different ratios of general
and specialized data? As illustrated in the top three graphs of Figure 3, we conduct ablation studies
of the data ratio (k) between specialized and general abilities. To be noticed ratio is normalized by
data amount, for example, k = 1 means specialized use data amount

general use data amount = specialized all data amount
general all data amount . We

utilize a fixed specialized data setting (directly mixing 100% code & math data for training) and
a fixed general data setting (100% general data for training) as the baseline and observe: (1) With
the increase in the ratio of general data from 1/256 to 1/1, Fixed specialized data, scaling general
data setup exhibits similar performance to the setup that Fixed specialized abilities in terms of math
reasoning. This suggests that variations in the data ratio k have minimal impact on math ability. We
consider the reason that math and general abilities are non-conflict since they are too different in
the semantic space. However, when considering HumanEval, the Fixed specialized data, scaling
general data setup displays noticeable fluctuations compared to the baseline. We attribute this to the
inclusion of a certain proportion of code data in ShareGPT. Due to the differences in data format
and distribution, the presence of similar data features exacerbates the performance conflicts between
abilities when the data ratio k increases. Further analysis of the distribution of different abilities is
discussed in Section 4.1. (2) With the increase in the ratio of specialized data from 1/256 to 1/1, the
setup that Fixed general data, scaling specialized data displayed no significant performance changes
compared to the baseline. This echoes our hypothesis that when there are significant differences in
task formats and data distributions between different SFT abilities, the impact of data ratio is
minimal. However, when there is some degree of similarities, the data ratio can lead to noticeable
performance fluctuations.

Under extremely limited general data resources, does the ratio of specialized data have an
impact on the model’s performance? We further explore the impact of different ratios of specialized
data when the model has just acquired a certain level of general human-aligning ability (k = 1/64).
The bottom 3 graphs of Figure 4 present comparative experiments between two settings. We observe
that regardless of whether the data amount for general capabilities is abundant (k = 1) or scarce
(k = 1/64), the performance on MT-Bench shows no significant fluctuations with varying proportions
of specialized data. Furthermore, in mathematical reasoning, 1/64 general data setup exhibited a
scaling trend that is almost identical to the full general data setup. However, for coding ability, with
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the same amount of code data and different ratios, code abilities are different in the two settings. We
still consider the reason is code data are partly related to ShareGPT data and cause the performance
difference and provide an analysis in Discussion 4.2.

3.5 RQ4. PERFORMANCE DIFFERENCE VS. TRAINING STRATEGY

We could feed these SFT datasets into models with different training strategies. In this section, We
experiment with these settings and investigate how they influence each ability’s performance.

Experimental Design: Firstly, we introduce three kinds of naive training strategies as follows:

1. Multi-task learning: We directly mix different SFT data sources D = ∪1≤i≤kDi and applying
SFT. If we view each data source as a different task, this can be viewed as multi-task learning.

2. Sequential Training: We sequentially apply SFT on each dataset. Specifically, we sequentially
trained on coding, math reasoning, and the general ability dataset. Since the general ability is the
most important one for human alignment, we put ShareGPT as our last dataset.

3. Mixed Sequential Training: We apply multi-task learning on specialized datasets(code, math)
first and apply SFT on the general ability dataset. These three approaches are presented in Figure 1.

Results and Analysis: Table 15 presents performances under different training strategies in terms
of mathematical reasoning, code generation, and general human-aligning ability. Multi-task learning
preserves specialized abilities among these strategies while hurting the general ability most among
them. Sequential training and mixed sequential training preserve general ability while losing too
many specialized abilities. The observed outcome is in accordance with our expectations, as during
the final fine-tuning phase, the mixed sequential training strategy remains unaffected by specialized
data sources, thereby effectively preserving its generalization capability. However, an inherent
drawback of multi-stage training is the occurrence of catastrophic forgetting of prior knowledge,
which motivates us to further explore methods that can alleviate catastrophic forgetting of specialized
abilities while maximizing the preservation of general capability.

4. Dual-stage Mixed Fine-tuning (DMT): Based on our observation from RQ1 to RQ4, we propose
a new training strategy that can reduce the ability conflict during multi-task learning and relieve
the issue of catastrophic forgetting during sequential training. From RQ1, the model needs large
data amounts to activate specialized abilities. From RQ2, multi-task learning with all amounts of
specialized data and general data will hurt each ability. From RQ3, a small amount of specialized
data will not affect the general ability performance. From RQ4, (mixed) sequential training forgets
specialized abilities. So the model needs to learn large amounts of specialized data and should not
forget them during learning general ability. A natural choice is to learn full amounts of specialized
data first and add a small amount of specialized data to general data during the last stage of sequential
training to prevent forgetting. As shown in Figure 1, we first apply SFT on the specialized dataset
which is same as the first stage of the mixed sequential training strategy. For the second stage, we
perform SFT with a mixed data source comprising a combination of the general data and varying
proportions k (1, 1/2, 1/4, 1/8, 1/16, 1/32) of code and math data. Adding code and math data in
the second stage helps models to recall the specialized ability. The results of DMT (k = 1/256) are
presented in Table 2 and the detailed scaling analysis of proportion k can be found in the discussion.

Model Accuracy vs. DMT Strategies. In Table 15, LLaMA-7B with DMT (k = 1/256) strategy
perform significant improvement in mathematical reasoning (32.6 to 41.92) and code generation
(15.24 to 17.68) compared to the mixed sequential training strategy, which indicates a significant
alleviating effect of mixing specialized capability data in the last fine-tuning stage on catastrophic
forgetting. Surprisingly, DMT (k = 1/256) even exhibits a slight improvement on MT-Bench,
further highlighting its ability to alleviate catastrophic forgetting while effectively preserving general
capability.

Regarding the 13B and 33B models, DMT (k = 1/256) demonstrates noticeable alleviation of
catastrophic forgetting in mathematical reasoning (13B: 40.48 to 46.47 / 33B: 44.24 to 56.36) and
code generation (13B: 18.3 to 19.5 / 33B: 24.4 to 25.5) compared to the mixed sequential training
strategy. Additionally, it significantly retains its general capability (13B: 5.93 to 6.03 / 33B 6.43 to
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Methods
LLaMA -7B LLaMA -13B LLaMA -33B

GSM8K HumanEval MT-Bench GSM8K HumanEval MT-Bench GSM8K HumanEval MT-Bench

Individual domain
General only 11.10 10.42 5.88 14.02 16.40 6.13 26.06 24.30 6.63
Math only 49.10 6.71 2.53 51.40 12.8 2.54 57.91 15.5 3.18
Code only 4.51 18.40 4.30 5.15 17.1 3.53 6.06 26.82 4.18

Different Training Strategies
Multi-task learning 47.53 14.63 5.76 50.94 19.50 5.73 56.69 18.9 6.07
Sequential Training 31.39 15.85 5.72 39.12 20.12 5.93 47.27 24.80 6.73
Mixed Sequential Training 32.60 15.24 6.02 40.48 18.30 5.93 44.24 24.4 6.43
DMT(k=1/256) 41.92 17.68 6.08 46.47 19.50 6.03 56.36 25.00 6.69

Table 1: The results of LLaMA-7B, 13B, 33B under different training strategies on three benchmarks.
The top two results across different strategies are marked with bold and underlined.

6.69). Therefore, these results serve as additional validation of the efficacy of DMT in mitigating
catastrophic forgetting while maintaining general capability.

4 DISCUSSION

4.1 VISUALIZATION OF SEMANTIC REPRESENTATION OF DIFFERENT ABILITIES

In the aforementioned analysis of data composition, we observed a significant performance degrada-
tion when different data sources are directly mixed. In this section, our aim is to explore the potential
mutual influence of semantic representation distributions among different data sources. Specifically,
we randomly sampled 100 queries from CodeAlpaca, GSM8k RFT, and ShareGPT datasets and
extracted the hidden layer representations located in the 15th layer of the model. Subsequently, we
employed the t-SNE toolkit Van der Maaten & Hinton (2008) to visualize the representations of the
three types of capabilities. The results in Figure 5 illustrate a notable collapse phenomenon in the
semantic representations of both the original LLaMA-13b and LLaMA-13b with DMT (k=1/256).
While both models exhibit a certain level of separation in the mathematical data representations, there
remains a certain degree of overlap between the representations of code and general samples.

4.2 ABLATION OF THE SPECIALIZED DOMAINS IN SHAREGPT

In RQ2, we observe using mixed data sources resulted in improved abilities under low-resource
conditions but diminished abilities under high-resource conditions when compared to single data
sources. However, the presence of coding and mathematical samples within the ShareGPT introduces
uncertainty regarding whether the performance gain under low resources is solely attributed to
these specific coding & mathematical data or other orthogonal samples in the general dataset (e.g.,
translation or extraction). Hence, the objective of this section is to investigate whether the conclusions
drawn in Section 3.3 remain valid after removing the code and math samples within ShareGPT.
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Figure 5: The left two figures show the t-SNE of LLaMA-13B and LLaMA-13B with DMT(k=1/256)
stategy. The right figure shows performances of LLaMA-13B with DMT under different k.
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Figure 6: The scaling curve after ablating code and math-related samples from ShareGPT.

Experimental Design: We employed an open-set tagger InsTag (Lu et al., 2023) to annotate samples
in ShareGPT. To filter out data related to coding and mathematical abilities, we conduct regular
expression matching to eliminate instances where the tags contain keywords “code” or “math”.
Finally, we obtain a ShareGPT dataset devoid of any code or math-related information (reducing
from 86K to 63K). In alignment with the settings in Section 3.3, we sampled different proportions of
training data (1, 1/4, 1/16, 1/64, 1/256) from GSM8K, Code Alpaca, and the modified ShareGPT
dataset (without code math). These samples were directly mixed according to the corresponding
proportions. Subsequently, the LLaMA models were fine-tuned by using this mixed dataset.

Analysis. Figure 6 shows the results of our experiment. Removing the code and math from ShareGPT
not only mitigates the performance conflicts among different abilities to some extent under high-
resource conditions but also maintains stable gains in low-resource settings. We propose that the
potential reason behind these findings lies in the differences in the distribution of code and math data
between ShareGPT, CodeAlpaca, and GSM8K RFT datasets. This distribution gap introduces an
extra noise during the SFT phrase, while its removal enables the model to better generalize coding and
mathematical abilities. Furthermore, in low-resource scenarios, this phenomenon indicates that the
code and math samples in ShareGPT are not the key factor contributing to performance improvements,
but rather the diversity and variability of the data (Longpre et al., 2023). In summary, the presence of
code math data within ShareGPT does not emerge as a key factor impacting the performance gains
identified in Section 3.3, highlighting the generalization of our conclusions.

4.3 SPECIALIZED DATA AMOUNT IN DUAL-STAGE MIXING FINE-TUNING

We investigate how different values of k influence model performance and results shown in figure 5.
When we adjust k from 0 to 1/256 (k = 0 is equal to mixed sequential training), the SFT models
show significant improvements in both specialized ability and general human-aligning ability. On the
contrary, as k increased from 1/4 to 1, the model exhibited a decline in general ability. We believe
this is in line with the findings in RQ2, which concluded that high-resource settings lead to conflicts
while low-resource settings lead to gains in mixed sources. Furthermore, as k increased from 1/256
to 1/4, we observe a linear inverse trend between general ability and specialized ability, especially an
increase in general ability coincided with a decrease in specialized ability. This suggests k needs to
be tuned based on specific requirements in order to achieve a balance between multiple abilities.

5 CONCLUSION

We explore the data composition in the SFT phase, focusing on mathematical reasoning, code
generation, and general human-aligning abilities. We formulate four research questions to guide our
investigation and analyze the scaling trends between different abilities and factors (e.g. data amount,
data ratio, model parameters, and training strategies). Our findings reveal distinct scaling patterns
among different abilities, with larger models demonstrating superior performance when trained with
the same amount of data. Moreover, we observe that mixing data sources in the SFT phase improves
performance in low-resource scenarios but diminishes in high-resource scenarios. Interestingly, the
phenomenon of low-resource gain becomes more prominent as the model parameter size increases.
Furthermore, our observations indicate that data amount directly influences performance conflicts,
whereas the impact of data ratio is insignificant within our experimental setup. Finally, regarding
the SFT strategies, we demonstrate our proposed DMT strategy effectively alleviates performance
conflicts, offering a promising solution to activate multiple abilities.
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A SFT DATASETS

We investigate the data composition issues of mathematical reasoning, coding, and general capabilities
in the SFT stage from the following SFT datasets.

• Code Alpaca (Chaudhary, 2023) aims to build and share an instruction-following LLaMA
model for code generation. which is fully based on Stanford Alpaca and contains 20K data
used for fine-tuning the model.

• GSM8K RFT (Yuan et al., 2023b) is a mathematical dataset enhanced by integrating
multiple reasoning paths based on the original GSM8K dataset (Cobbe et al., 2021) through
the rejection sampling. It contains 7.5K questions and 110K responses in the training set.

• ShareGPT refers to the multi-turn chatting histories used by Vicuna Chiang et al. (2023).
ShareGPT includes 86K human queries and responses from ChatGPT and other chatbots.

The following table presents the statistics of three datasets at different subset proportion (k).

Data Statistics GSM8K RFT Code Alpaca ShareGPT

K=1/1 110142 20022 86060

K=1/4 27535 5005 21515

K=1/16 6883 1251 5378

K=1/64 1720 312 1344

K=1/256 430 78 336

Table 2: Data statistics of three datasets at different subset proportion (k).

B EVALUATION METRICS

We use the following metrics to measure the aligned large language models.

• HumanEval (Chen et al., 2021) consists of 164 original programming problems, with an
average of 9.6 test cases allocated to each problem. To ensure a thorough assessment of the
functional correctness of LLM-synthesized code, HumanEval+ extends the number of test
cases significantly, averaging at 774.8 test cases per problem. We use the same method as
Chen et al. (2021)to obtain unbiased estimates of the pass@k under greedy decoding.

• GSM8K (Cobbe et al., 2021) is a math word problem dataset used to measure large language
model math reasoning ability. We use the default test set to measure the model. We calculate
the score based on greedy decoding accuracy (maj@1).

• MT-Bench (Zheng et al., 2023) is a significant benchmark that contribute to the evaluation
and advancement of chatbot models and LLMs in different contexts. MT-Bench evaluates
LLMs on multi-turn dialogues using comprehensive questions tailored to handling conversa-
tions. It provides a comprehensive set of questions specifically designed for assessing the
capabilities of models in handling multi-turn dialogues.

We also supplement more benchmark evaluation results in the appendix to verify the generalization
of our conclusions:

• MATH (Hendrycks et al., 2021) is a dataset with challenging high-school math problems.
Problems are classified into the following topics: Prealgebra, Algebra, Number Theory,
Counting and Probability, Geometry, Intermediate Algebra, and Precalculus. Problems
in MATH are harder and more diverse than in GSM8K. We use 500 test problems from
Lightman et al. (2023) as out-of-domain math benchmark.
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• MBPP (Austin et al., 2021) consists of around 1,000 crowd-sourced Python programming
problems, designed to be solvable by entry-level programmers, covering programming
fundamentals, standard library functionality, and so on. Each problem consists of a task
description, code solution and 3 automated test cases.

C IMPLEMENTATION DETAILS

We fine-tune all the SFT datasets with 3 epochs and a batch size of 16 on NVIDIA A100 GPUs. We
use 8 GPUs for 7B and 13B models, 16 GPUs for 33B models during fine-tuning. We use a peak
learning rate of 2e-5 with a 3% learning rate warmup. We evaluate the results on the final epoch. We
use greedy decode to calculate Pass@1 and maj@1. Since the scores of MT-bench will fluctuate, we
conducted three experiments and took the average.

All experiments are conducted using the default template of the FastChat framework (Zheng et al.,
2023), as shown in the figure below:

Prompt Template

A chat between a curious user and an artificial intelligence assistant. The assistant gives
helpful, detailed, and polite answers to the user’s questions. USER: {Query} ASSISTANT:

D ESTIMATING FLOPS OF SFT

Training FLOPs We mainly follow the notations of (Kaplan et al., 2020) here.

For each input sample of length nctx in SFT dataset (GSM8K, CodeAlpaca, ShareGPT), we can split
it into two parts:

nctx = nQ + nR (1)

Ctrain ≈ 6NnctxNs (2)

where nQ, nR denotes the length of question and generated answers respectively. N ,Ns denotes the
non-embedding parameters and the numbers of samples.

Therefore, We estimate the SFT FLOPs following (Kaplan et al., 2020) and GPU times in Table 3.

E VALIDATION EXPERIMENTS IN MORE SFT ABILITIES

To validate the generalization of our conclusions, we selected representative datasets to evaluate
the capabilities of large models across different dimensions. These dimensions include World
Knowledge : WebQuestionsSP (Yih et al., 2016), Language Understanding: CoNLL 2003 (Tjong
Kim Sang & De Meulder, 2003), and Translation: IWSLT14 (Cettolo et al., 2014)

Experimental Design: Align the settings of RQ1 and RQ2, we introduce two settings as follows:

1. Individual Domain: We conduct SFT on LLaMA of various sizes using {1, 1/2, 1/4, 1/8}
proportions 1 of the training set obtained from WebQSP, CoNLL 2003, and IWSLT14 seperately.
This allowed us to evaluate each ability with various data sizes and model sizes.

2. Mixed Domain: We sampled {1, 1/2, 1/4, 1/8} amounts of training data from WebQSP, CoNLL
2003, and IWSLT14, and directly mixed them according to the corresponding proportions. In this
way, we constructed datasets with fixed proportions of different ability domains, while varying the
total data amount. These datasets are then used for fine-tuning the LLaMA models.

1Because these three datasets have relatively small amounts of data (a few thousand), the scaling range is
from 100% of the data volume to 1/8 of the data volume.
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Model size 7B 13B 33B

GSM8k RFT

SFT FLOPs 2.4× 1018 4.3× 1018 1.1× 1019

SFT GPI hrs 6.1 12.1 37.4

Code Alpaca

SFT FLOPs 4.7× 1017 7.8× 1017 2.0× 1018

SFT GPI hrs 1.2 2.5 8.2

ShareGPT

SFT FLOPs 2.2× 1018 3.9× 1018 9.7× 1019

SFT GPI hrs 5.4 10.9 34.0

Table 3: The statistics of FLOPs and GPU hours required for SFT. For 33B, we use DeepSpeed
ZeRO3 (Rasley et al., 2020) for distributed training. All the GPU hours are based on NVIDIA A100
80GB GPU. Note we use non-embedding parameters to compute FLOPs in our experiments.

Datasets CONIL03 WebQSP IWSLT14
P R F1 F1 Hits@1 de-en en-de

Single Domain(1/1) 91.89 89.33 90.59 33.5 64.12 50 52
Single Domain(1/2) 90.59 87.15 88.83 27.10 61.87 46 43
Single Domain(1/4) 85.24 79.46 82.25 22.56 61.38 42 40
Single Domain(1/8) 63.22 60.42 61.79 13.63 49.05 41 40

Mixed Domains(1/1) 91.74 87.79 89.72 32.10 63.70 46 49
Mixed Domains(1/2) 90.69 86.93 88.77 29.98 62.29 45 45
Mixed Domains(1/4) 88.81 85.62 87.18 25.42 58.02 43 43
Mixed Domains(1/8) 86.47 81.18 83.74 21.36 56.86 45 45

Table 4: Results in other domains for single and mixed source settings based on Llama-7B.

As shown in Table 4, we have following observations.

For the individual domain, the performance (P, R, F1) of the model in the language understanding
(NER) task shows a positive correlation with the scaling curve of data volume. These two abilities
exhibit similar scaling curve trends as the mathematical ability performance in RQ1. In the case
of world knowledge (WebQSP), a similar positive correlation trend is observed in terms of F1 and
Hits@1. However, when the data ratio is reduced from 1/4 to 1/8, there is a significant performance
fluctuation, particularly in the performance of translation ability, which shows a relatively irregular
trend. These conclusions further support the core conclusion of RQ1 that different data exhibit
different scaling curves.

For the mixed domains, the findings align with the conclusions in RQ2, where abilities are improved
with low-resource and decreased with high-resource compared to individual source abilities. This
consistent conclusion holds for world knowledge, language understanding, and translation abilities.

F RESULTS ON MORE BENCHMARKS IN MATH AND CODE

To validate the generalization of our findings on other benchmarks, we utilized GSM8K and Code
Alpaca as the training sets. We further evaluated the results on the individual domain, mixed domain,
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Methods Math Benchmarks Code Benchmarks

GSM8K MATH HumanEval MBPP

Individual domain (Scaling)

Single Domain(k=1/1) 49.10 4.4 18.4 21.6
Single Domain(k=1/4) 43.37 3.9 11.58 18.8
Single Domain(k=1/16) 35.90 3.2 12.19 16.6
Single Domain(k=1/64) 22.71 3.2 9.14 15.8
Single Domain(k=1/256) 12.7 2.0 5.48 15.8

Mixed domain (Scaling)

Mixed Domain(k=1/1) 47.53 3.6 14.63 19.4
Mixed Domain(k=1/4) 41.98 3.2 9.14 20.6
Mixed Domain(k=1/16) 32.97 2.4 9.16 18.4
Mixed Domain(k=1/64) 25.77 2.4 14.63 17.2
Mixed Domain(k=1/256) 14.78 3.0 11.37 16.6

Individual domain

General only 11.1 2.9 10.4 1.0
Math only 49.10 4.4 6.71 9.0
Code only 4.51 1.0 18.40 21.6

Different Training Strategies

Multi-task learning 47.53 3.6 14.63 19.4
Sequential Training 31.39 2.0 15.85 15.8
Mixed Sequential Training 32.6 2.5 15.24 16.6
DMT (k=1/256) 41.92 3.4 17.68 18.8

Table 5: The detailed results of LLaMA-7B, 13B with different training strategies on three bench-
marks.

and different training strategies on other specialized ability benchmark, including MATH and MBPP,
which is illustrated in Table 5.

We have the following findings:

1. In the individual domain, Llama shows a positive correlation between performance in MATH and
MBPP and the data volume (consistent with RQ1).

2. Comparing the individual and mixed domains, Llama-7B exhibits a trade-off between high-resource
performance conflict and low-resource performance gain in both MATH and MBPP (consistent with
RQ2).

3. Considering the general ability results shown in Table 1, we can observe that DMT maintains
competitive results in MATH and MBPP while prioritizing general abilities. This further validates
the effectiveness of DMT (consistent with RQ4).

G VISUALIZATION OF DIFFERENT LAYERS

In this section, we compared the visualization results of the baseline model of Llama-13B and DMT
(k=1/256) in the starting layer (Layer1), middle layer (Layer15), and ending layer (Layer31) in Figure
7 and 8.

The visualization result of the starting layer are relatively chaotic, while the visualization results of
the middle layer and the ending layer are clearer. And the results of the middle layer and the last
layer are consistent in pointing out that both base model and model with DMT strategy exhibit a
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Figure 7: From left to right are the visualization results of starting layer (Layer1), middle layer
(Layer15), and ending layer (Layer31) on Llama-7B.

75 50 25 0 25 50 75 100 125

100

50

0

50

100

Code
Math
General

20 10 0 10 20

20

10

0

10

20

30 Code
Math
General

20 10 0 10 20 30

20

15

10

5

0

5

10

15
Code
Math
General

Figure 8: From left to right are the visualization results of starting layer (Layer1), middle layer
(Layer15), and ending layer (Layer31) on Llama-7B with DMT(k=1/256) strategy.

certain level of separation in the mathematical data representations, there remains a certain degree of
overlap between the representations of code and general samples.

H EQUAL DATA AMOUNT VS. EQUAL DATA PROPORTION

In a realistic SFT phrase for training general LLM, the data amount for different abilities is likely to
differ. Therefore, instead of controlling the same amount of data, we select to mix datasets with the
same proportion of subsets to better simulate real-world scenarios in all experiments. In addition,
We further supplement the experimental results using different abilities mixed with the equal data
amount and compare them with the results using the equal subset proportion in Table 6.

Equal Data amount Setting: we utilize the data amount of GSM8k RFT as the baseline. We sampled
data with proportions of 1/16, 1/64, 1/256, and mixed samples of the same data amount from Code
alpaca and ShareGPT.

Equal Proportion Setting: we sampled data with proportions of 1/16, 1/64, 1/256 according to the
subset proportions of each dataset and mixed them, which is aligned with the setup in RQ2.

It can be observed that there is not a significant difference in the results of the three benchmark tests
between the two settings. Therefore, these findings do not significantly impact the main experimental
conclusions presented in the paper.

I COMPARISON EXPERIMENT OF DIFFERENT TRAINING SEQUENCES

Thank you for your suggestion. In this paper, we trained the models in the order of code → math →
general abilities. However, to investigate the impact of training order on different SFT abilities, we
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Methods GSM8K HumanEval MT-Bench

Mixed Domain(k=1/16, Equal Amount) 34.49 9.14 5.49
Mixed Domain(k=1/64, Equal Amount) 25.02 13.54 5.21
Mixed Domain(k=1/256, Equal Amount) 16.7 11.54 4.63

Mixed Domain(k=1/16, Equal Proportion) 32.97 9.16 5.52
Mixed Domain(k=1/64, Equal Proportion) 25.77 14.63 5.24
Mixed Domain(k=1/256, Equal Proportion) 14.78 11.37 4.41

Table 6: Comparative experiment between equal data amounts and equal subset proportions of
different SFT abilities on Llama-7B

Methods GSM8K HumanEval MT-Bench

Code → Math → General 31.39 15.85 5.72
Math → Code → General 29.71 15.85 5.65
Code → General → Math 48.21 9.75 4.7
General → Code → Math 48.21 7.9 4.59
General → Math → Code 37.60 15.85 3.79
Math → General → Code 26.45 16.46 3.68

Table 7: Results of different sequential training for Llama-7B

have conducted additional experiments with six different training orders. The results and analysis of
these experiments are provided in Table 7:

Based on our findings, we conclude the following:

1. The SFT ability trained in the final stage tend to retain relatively good performance.

2. If general and code abilities are trained in the first two stages, there is a noticeable performance
decrease in code capability, while math capability does not show significant impact. One possible
reason is that the task format of code generation and general ability exhibits similar data distributions
(as discussed in RQ3 and Discussion1). This can result in a more severe catastrophic forgetting
phenomenon during continuous fine-tuning.

J DETAILED RESULTS OF EXPERIMENTS

J.1 RESULTS OF DIFFERENT RANDOM SEEDS

For each dataset, we employed random selection by utilizing a random function with three distinct
seeds for sampling. Subsequently, we conducted a comparative analysis of the results obtained from
different subsets on the three benchmark tests. The specific details are presented in Table 8. It can be
observed that DMT maintains its superiority under three different random seed settings. The influence
of different subsets on experimental results is not a key factor and does not affect the overall trend.

J.2 RESULTS OF SINGLE SOURCE AND MIXED SOURCE

In Table 9 and Table 10, we report the detailed comparative results between mix domains and
individual domains for LLaMA-7B, 3B and 33B, as the supplemental results in RQ2.

J.3 RESULTS OF DATA RATIO (K)

In Table 11, we report The detailed results of the data ratio (k) between specific abilities and general
abilities on three benchmarks, as the supplemental results in RQ3.
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Methods
LLaMA -7B LLaMA -13B LLaMA -33B

GSM8K HumanEval MT-Bench GSM8K HumanEval MT-Bench GSM8K HumanEval MT-Bench

Different Training Strategies
Multi-task learning 47.53 14.63 5.76 50.94 19.50 5.73 56.69 18.9 6.07
Sequential Training 31.39 15.85 5.72 39.12 20.12 5.93 47.27 24.80 6.73
Mixed Sequential Training 32.60 15.24 6.02 40.48 18.30 5.93 44.24 24.4 6.43

DMT(k=1/256,random seed=1) 41.92 17.68 6.08 46.47 19.50 6.03 56.36 25.00 6.69
DMT(k=1/256,random seed=2) 41.31 17.68 6.02 45.85 18.90 6.08 55.64 24.80 6.71
DMT(k=1/256,random seed=3) 42.03 18.21 6.13 46.22 20.52 6.10 56.12 25.30 6.73

Table 8: The results of LLaMA-7B, 13B, 33B under different training strategies on three benchmarks.
The top two results across different strategies are marked with bold and underlined. We tested the
results of DMT on randomly sampling k proportion of specified data under three random seeds.

J.4 RESULTS OF SPECIALIZED DATA AMOUNT OF DMT

In Table 12, we report The detailed results of LLaMA-7B, 13B, 33B with different training strategies
on three benchmarks, as the supplemental results in RQ4.

J.5 RESULTS OF MT-BENCH

In Figure 9, we report detailed results of LLaMA-7B, 13B, 33B with different training strategies on
MT-Bench, which include coding, extraction, humanities, math, reasoning, roleplay, stem and writing
abilities.

J.6 SUPPLEMENTAL RESULTS FOR DICUSSION

In Figure 10, we report the t-SNE visualizations of LLaMA-7B and LLaMA-7B with DMT(k=1/256)
strategy. What’s more, the bottom figure represents the scaling relationship of LLaMA-7B with
DMT(k=1/256) under different values of K.

Moreover, in Table 13, we report The detailed results of LLaMA-7B, 13B, 33B with different training
strategies on three benchmarks, as the supplemental results in RQ4.

Methods LLaMA-7B LLaMA-13B

GSM8K HumanEval MT-Bench GSM8K HumanEval MT-Bench

Single(k=1) 49.10 18.4 5.88 51.4 18.4 6.13
Single(k=1/4) 43.37 11.58 5.85 48.59 13.41 6.03
Single(k=1/16) 35.90 12.19 5.61 43.00 12.80 5.66
Single(k=1/64) 22.71 9.14 5.11 27.40 12.20 5.24
Single(k=1/256) 12.70 5.48 4.00 18.40 10.36 2.95
Mix(k=1) 47.53 14.63 5.76 50.49 17.10 5.73
Mix(k=1/4) 41.98 9.14 5.48 48.52 14.00 5.61
Mix(k=1/16) 32.97 9.16 5.22 40.63 14.60 5.52
Mix(k=1/64) 25.77 14.63 5.27 33.2 17.68 5.24
Mix(k=1/256) 14.78 11.37 4.11 24.94 12.19 4.4

Table 9: Comparative experiments between mix domains and individual domains for LLaMA-7B,
13B.
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Methods GSM8K HumanEval MT-Bench

Single(k=1) 57.91 26.82 6.63
Single(k=1/4) 56.10 25.61 6.66
Single(k=1/16) 54.60 21.95 6.17
Single(k=1/64) 44.60 18.59 5.99
Single(k=1/256) 29.21 14.02 2.3
Mix(k=1) 56.69 18.9 6.07
Mix(k=1/4) 54.54 22.56 5.92
Mix(k=1/16) 53.33 26.82 6.26
Mix(k=1/64) 46.66 18.6 5.73
Mix(k=1/256) 36.54 17.68 4.58

Table 10: Comparative experiments between mix domains and individual domains for LLaMA-33B.

Model size GSM8K HumanEval MT-Bench

Mix[(code,math),1 general] 47.53 14.63 5.76

Mix[(code,math),1/4 general] 48.44 15.85 5.73

Mix[(code,math),1/16 general] 47.99 15.24 5.27

Mix[(code,math),1/64 general] 47.23 14.63 5.16

Mix[(code,math),1/256 general] 48.52 16.46 4.69

Mix[1(code,math),general] 47.53 14.63 5.76

Mix[1/4(code,math),general] 41.31 10.97 5.81

Mix[1/16(code,math),general] 33.20 11.58 5.76

Mix[1/64(code,math),general] 25.17 12.19 5.84

Mix[1/256(code,math),general] 16.52 9.14 5.82

Mix[1(code,math),1/64general] 47.68 14.63 5.09

Mix[1/4(code,math),1/64general] 43.29 12.19 5.07

Mix[1/16(code,math),1/64general] 33.81 12.19 5.17

Mix[1/64(code,math),1/64general] 26.23 12.19 5.12

Mix[1/256(code,math),1/64general] 18.27 10.36 5.12

Table 11: The detailed results of the data ratio (k) between specific abilities and general abilities on
three benchmarks.

Methods LLaMA-7B LLaMA-13B

GSM8K HumanEval MT-Bench GSM8K HumanEval MT-Bench

Individual domain
General only 11.1 10.4 5.88 14.02 16.4 6.13
Math only 49.1 - - 51.4 - -
Code only - 18.4 - - 17.1 -

Different Training Strategies
Multi-task learning 47.53 14.63 5.76 50.94 19.5 5.73
Sequential Training 31.39 15.85 5.72 39.12 20.12 5.93
Mixed Sequential Training 32.6 15.24 6.02 40.48 18.30 5.93

DMT (k=1) 45.79 14.02 5.63 50.49 16.46 5.76
DMT (k=1/4) 48.37 13.41 5.69 50.18 18.9 5.83
DMT (k=1/16) 43.3 15.24 5.78 48.59 18.9 5.96
DMT (k=1/64) 42.53 15.85 6.01 47.61 15.24 6.03
DMT (k=1/256) 41.92 17.68 6.08 46.47 19.5 6.03

Table 12: The detailed results of LLaMA-7B, 13B with different training strategies on three bench-
marks.
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Model size GSM8K HumanEval MT-Bench

1/1 Mix(code,math,general(w/o code math)) 49.05 17.68 5.80

1/4 Mix(code,math,general(w/o code math)) 43.13 15.85 5.71

1/16 Mix(code,math,general(w/o code math)) 36.23 10.36 5.38

1/64 Mix(code,math,general(w/o code math)) 25.62 10.97 5.21

1/256 Mix(code,math,general(w/o code math)) 15.31 11.37 4.38

Table 13: The scaling curve after ablating code and math-related samples from ShareGPT
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Figure 9: The detailed results of LLaMA-7B, 13B, 33B with different training strategies on MT-
Bench.

Methods
LLaMA -7B LLaMA -13B LLaMA -33B

GSM8K HumanEval MT-Bench GSM8K HumanEval MT-Bench GSM8K HumanEval MT-Bench

Individual domain
General only 11.10 10.42 5.88 14.02 16.40 6.13 26.06 24.30 6.63
Math only 49.10 6.71 2.53 51.40 12.8 2.54 57.91 15.5 3.18
Code only 4.51 18.40 4.30 5.15 17.1 3.53 6.06 26.82 4.18

Different Training Strategies
Multi-task learning 47.53 14.63 5.76 50.94 19.50 5.73 56.69 18.9 6.07
Sequential Training 31.39 15.85 5.72 39.12 20.12 5.93 47.27 24.80 6.73
Mixed Sequential Training 32.60 15.24 6.02 40.48 18.30 5.93 44.24 24.4 6.43
DMT(k=1/256) 41.92 17.68 6.08 46.47 19.50 6.03 56.36 25.00 6.69

Table 14: The results of LLaMA-7B, 13B, 33B under different training strategies on three benchmarks.
The top two results across different strategies are marked with bold and underlined.
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Figure 10: The upper two figures show the t-SNE visualizations of LLaMA-7B and LLaMA-7B with
DMT(k=1/256) stategy. The bottom figure represents the scaling relationship of LLaMA-7B with
DMT under different values of K.

Methods
LLaMA -7B LLaMA -13B LLaMA -33B

GSM8K HumanEval MT-Bench GSM8K HumanEval MT-Bench GSM8K HumanEval MT-Bench

Individual domain
General only 11.10 10.42 5.88 14.02 16.40 6.13 26.06 24.30 6.63
Math only 49.10 6.71 2.53 51.40 12.8 2.54 57.91 15.5 3.18
Code only 4.51 18.40 4.30 5.15 17.1 3.53 6.06 26.82 4.18

Different Training Strategies
Multi-task learning 47.53 14.63 5.76 50.94 19.50 5.73 56.69 18.9 6.07
Sequential Training 31.39 15.85 5.72 39.12 20.12 5.93 47.27 24.80 6.73
Mixed Sequential Training 32.60 15.24 6.02 40.48 18.30 5.93 44.24 24.4 6.43
DMT(k=1/256) 41.92 17.68 6.08 46.47 19.50 6.03 56.36 25.00 6.69

Table 15: The results of LLaMA-7B, 13B, 33B under different training strategies on three benchmarks.
The top two results across different strategies are marked with bold and underlined.
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