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Abstract—Recently, deep learning in synthetic aperture
radar (SAR) automatic target recognition (ATR) has made
significant progress, but the sample limitation problem in the
SAR field is still obvious. Compared with the optical remote
sensing images, the SAR images are insufficient, especially
those containing the geospatial targets with certain target
attitude angles (TAAs). To solve these problems, a novel few-
shot learning framework named scattering characteristics
analysis network (SCAN) is proposed in this article. First, a
scattering extraction module (SEM) is designed to combine
the target imaging mechanism with the network, which
learns the number and distribution of the scattering points
for each target type via explicit supervision.Besides, consid-
ering the imaging variability of SAR targets, a TAA-guided
meta-learning network consisting of an angle self-adaption
classifier (ASC) and a frequency embedded module (FEM) is
designed. ASC guides the network to focus on the positive
sample pairs with different TAAs. FEM combines PCT with
the network training process effectively to enrich frequency
domain information. Additionally, a new dataset named
SAR aircraft category dataset (SAR-ACD) is constructed for
the experiments. Compared with other few-shot SAR target
classification approaches, our model efficiently integrates the
scattering characteristics with the learning process and the
test accuracy for 5-way 1-shot has been improved by 4.74%.
Finally, the experimental results are provided to demonstrate
the validity of the proposed method.

Index Terms—synthetic aperture radar (SAR), Automatic
target recognition (ATR), few-shot learning (FSL), aircraft,
scattering characteristics, classification, deep learning.

I. INTRODUCTION

YNTHETIC aperture radar (SAR) is an active imag-
ing system with all-time and all-weather observing
ability. Recently, with the rapid development of radar
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satellites, the demand for SAR image interpretation is
increasing in disaster monitoring, topographic mapping,
target detection and classification, etc [1]. Particularly,
SAR target classification has attracted more and more
attention among researchers.

Over the years, the research on SAR target classifica-
tion has made significant progress. There are roughly
three ways: template-based, model-based, and machine
learning-based. The template-based methods compare
the test samples with the sample template of each
class to classify the targets [2]. The model-based ap-
proaches describe the target characteristics with the help
of physical models or conceptual models [3], [4]. For
machine learning, several classifiers such as AdaBoost
and SVM are designed for more accurate classification
[5]-17]. However, these approaches need a high cost
in manual experience for both feature selection and
classifier construction. Therefore, it is necessary to apply
the convolutional neural network(CNN) to extract the
target features comprehensively and automatically.

Benefitted from the success of deep learning in com-
puter vision, deep learning has been introduced into the
SAR domain [8]-[10]recently. However, deep learning
models are data-driven, and the application of general
deep learning methods in the SAR target classification
task faces the challenge of insufficient samples for sever-
al reasons. First, limited by the way of data acquisition,
the dataset in the remote sensing field is generally s-
maller than that in the natural scene. Compared with the
optical remote sensing images, the SAR images are more
insufficient [11]-[15], especially the images containing
geospatial targets. Second, according to the SAR mech-
anism, the SAR target characteristics vary significantly
with different TAAs, as shown in Fig. Generally,
the geospatial targets in the SAR images are presented
with certain TAA, which cannot meet the requiremen-
t of dataset diversity for deep learning. Furthermore,
the rotation operation for data augmentation commonly
used in optical images is not reasonable for SAR images.
Third, the SAR target interpretation is a laborious task,
which requires both the expert experience and the prior
knowledge. Hence, the problem of lacking SAR samples
with certain TAAs becomes more seriously. In addition,
deep learning algorithms are prone to overfitting in low
data regimes, which decline the classification perfor-



mance. Consequently, it is essential to apply the few-shot
learning to the SAR target classification tasks.
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Fig. 1: Optical remote sensing images and the SAR
images of the same category. The Top is Boeing737, and
the bottom is ARJ21. The TAA in this article is denoted as
follows: The direction of the incident angle is denoted as
0°. It goes from 0° to —180° counterclockwise and from
0° to 180° clockwise.

In the SAR domain, few-shot learning methods rough-
ly start from two directions: data expansion and model
optimization [16]. Data expansion is a direct method to
solve the sample limitation problem, including tradition-
al data expansion methods like brightness and contrast
conversion, and synthesis of new samples through simu-
lation software or generative models [17]-[19]. However,
data-expansion methods for SAR images are complicated
and tend to affect the classification efficiency. For model
optimization, transfer learning and meta-learning are
two representative methods. Transfer learning aims to
establish a connection between source domain and target
domain, and maximizes the use of source domain knowl-
edge to solve the problem of insufficient samples in the
target domain [19]-[28]. Meta-learning is upgraded from
sample-level learning to task-level learning, with the aim
of achieving rapid learning of new tasks with only a few
samples [29]-[36].

However, most previous model optimization studies
directly apply the general models in natural scenes
and do not consider the different imaging properties
between SAR and optical images. Meanwhile, compared
with the SAR ships, the discrete structure of the aircraft
makes it more meaningful to take advantage of scatter-
ing characteristics. Generally, different from the optical
imaging mechanism, the imaging result of SAR aircraft
is composed of many discrete strong scattering points.
The strong scattering points represent the maximum
pixel value of the local scattering region in SAR images
and have superior saliency and stability properties [37],
[38]. Therefore, combining with the strong scattering
points is a feasible way to optimize the performance of
SAR aircraft classification. Through the above analysis, a
novel few-shot SAR target classification network named
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Fig. 2: Illustration of the few-shot learning SAR target
classification methods. (a) Previous methods are the
general few-shot learning methods in the natural scene.
(b) SCAN (Ours) that combines scattering characteristics.

scattering characteristics analysis network (SCAN) is
proposed. Different from previous methods, SCAN in-
tegrates the scattering characteristic and TAAs with the
network learning process as exhibited in Fig. [2 A scat-
tering extraction module (SEM) serves as an auxiliary
task to introduce additional supervision information to
the network. Meanwhile, the target imaging result is
sensitive to the TAAs, which makes the angular distri-
bution of the aircraft is sparse. Hence, a TAA-guided
meta-learning network is designed with the guidance
of the TAAs. Compared with the few-shot SAR target
classification approach [39] involving new categories,
our method adopts the metric learning structure where
fine-tuning is not required during the testing procedure.

The main contributions of our work can be summa-
rized as follows:

1) We present a novel integrated framework named S-
CAN for few-shot SAR aircraft classification, which
consists of a classification path and a scattering ex-
traction branch. Our method shows the best perfor-
mance on the novel category few-shot recognition
tasks without fine-tuning.

2) To enhance SAR target feature representation, SEM
is designed to assist the optimization of the main
classification task. It can guide the network to learn
the number of strong scattering points and their
spatial location distribution of different categories.

3) To alleviate the imaging variability of SAR targets
caused by TAAs, a TAA-guided meta-learning net-
work consisting of a frequency embedded module
(FEM) and an angle self-adaption classifier (ASC)
is proposed. FEM combines PCT with the training
process effectively to enrich frequency domain in-
formation. ASC guides the network to focus on the
positive sample pairs with different TAAs during
training and learn more representative and distin-
guishing features.
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Fig. 3: The overall structure of SCAN. For the 5-way 5-shot case, angle-guided factors are not used, and other
modules are reserved. Both the SEM and the angle-guided factors are not required in the testing phase.

A new SAR aircraft classification dataset (SAR-ACD)
is built for research. Experimental results on SAR-ACD
show the superiority of SCAN. Compared with the base-
line, the accuracy on the 5-way 1-shot and 5-way 5-shot
tasks are improved by 4.74% and 3.18%, respectively.

II. RELATED WORK

A. Data Expansion-Based Methods

For data expansion methods [40]-[44], they attempt
to enlarge the data set by generating new samples
through adversarial learning or electromagnetic simu-
lation. In [3], a new SAR target recognition method
combining Computer-aided design (CAD) model with
CNN is proposed. CAD models can flexibly generate
images and features in different frequency bands and
angles. The RaySAR method uses ray tracing technol-
ogy to build simulation samples based on the three-
dimensional model of the target [45]. Specially, to solve
the problem of lack of samples with specific angles, Song
etal. propose an adversarial autoencoder to generate
SAR images with aspect angular diversity. Cui et al.
use WGAN based on gradient penalty to generate new
samples. They also propose a sample selection principle
to select good samples with specific TAAs from the
generated samples. Ding et al. propose a sample
synthesis method, which generates new samples with
a specific azimuth angle by performing a weighted
summation of the two samples with the closest angle.

When we can guarantee the quality of the generated
samples, data expansion-based methods are significantly
effective and can solve the sample limitation problem
fundamentally. However, most expansion methods are a
little complex, and the flow is relatively slow.

B. Methods Based on Transfer Learning

Transfer learning methods [48]-[54] utilize the prior
knowledge to alleviate the sample limitation problem in
the target domain. The prior knowledge is learned from
the source domain where the training data is sufficient.
uses the optical CIFAR-10 data set to construct a
pre-trained network, and the middle feature layer is
used for the classification of TerraSAR-X images. In ,
(53], the source data is replaced by simulated data. The
transferred knowledge is learned from simulated data
by constructing pre-trained models. Specially, to solve
the problem of scarce samples with specific TAAs, [55]
learns the mapping relation from sufficient data in the
source domain, and the mapping can be applied to the
target domain to generate targets with different aspect
angles.

Generally, transfer learning has high requirements for
source domain data. The effect of transfer learning is
closely related to the similarity between the source do-
main and the target domain dataset.

C. SAR Target Classification Based on Meta-learning

When there is only labelled data, meta-learning meth-
ods are more appropriate. Especially, meta-learning can



achieve more stable and better recognition results when
new categories are involved. And when the number of
samples is limited to a few-shot like 1 or 5, only meta-
learning can recognize effectively.

Meta-learning aims to achieve rapid and effective
learning when faced with a small sample of the new
classes by learning on a large number of old tasks. Meta-
learning methods can be divided into three categories:
metric-based, model-based, and optimization-based [16].
Pan et al. [56] apply metric-based meta-learning to solve
SAR target classification problems through the Siamese
network. The combination of the metric-based meta-
learning [57], [58] and the deep networks [59]-[61] is
explored to achieve more effective deep embedding
learning. Meta-training is implemented on the simulated
data set of MSTAR to construct the general feature
extractor. After that, the feature extractor parameters are
fixed, and then the rest network parameters are fine-
tuned on the basis of real MSTAR data set in [62].

Specially, to solve the problem of insufficient samples
with specific TAAs, Zhao et al. [63] take multi-aspect
SAR target as input based on metric-based framework.
While in most of the existing approaches, the images
for each category in MSTAR are partitioned into the test
set and training set proportionally and do not involve
new categories [34], [64]. Their purpose is to achieve
higher accuracy by using fewer samples with the help
of meta-training. Zhang et al. [39] propose a meta-
learning framework which includes a meta-learner and a
base-learner dedicated to learning a good initialization.
Meanwhile, five categories in MSTAR are selected as
the meta-training data set and the model’s performance
are tested on the remaining five new categories. More
recently, Wang et al. [30] also apply meta-learning to
SAR target recognition and propose a hybrid inference
strategy for classification on MSTAR. The meta-training
data set and meta-testing data set contain seven and
three categories, respectively.

III. METHOLOGY

The total structure of the proposed framework is
shown in Fig. 3| The proposed network is mainly com-
posed of three parts: ASC, SEM, and FEM. In this section,
these three components will be described in detail. For
simplicity, angle-guided classification loss is denoted as
Lossasc, and the scattering extraction branch loss is
denoted as Losssg.

A. Problem Setup

Some meta-learning concepts will be introduced first.
One episode in episode training is similar to a batch in
the traditional training method. The meta-learning data
set is partitioned into the meta-testing data set and meta-
training data set. The categories of the two data set have
no intersection. Assume that the meta-training data set
Dirain = {(x1,91),- -+, (N, YN, )} contains a total ofCy,
categories and Ny samples. Meta-testing data set Diest =

{(x1,91), - » (TN, YN, )} contains Cy. categories and the
number of test samples is N.

The meta-learning process is shown in Fig. @ In each
training iteration, N categories are randomly selected
from all training categories. Suppose there are a total of
T training categories, the number of different category
combinations during training can be calculated as :

T!

Oy AN = (N'(T—N)') (NN -1)---(1) (@)
Then the support set and the query set are formed by
randomly selecting K examples and Q examples from
each selected category, respectively. That is, the model
need to learn how to classify these C types accurately
from only N*K data, which is denoted as an N-way K-
shot task. Similarly, in each testing iteration, the data
formation is the same as the training process.

Different meta-tasks will be randomly sampled dur-
ing the training process in each training episode. This
learning mechanism allows the model to learn the com-
monality of different meta-tasks and reduce focus on
the specific task-related parts. As a result, the models
generalization ability is improved when faced with new
meta-tasks.

B. Scattering Extraction Module(SEM)

In this section, a scattering extraction loss is proposed.
A new convolution branch is added to extract the scatter-
ing keypoints of aircraft. In short, the network predicts
the location and quantity information of keypoints si-
multaneously. The keypoints are extracted in the same
way as described in [Strong scattering point extraction|

4
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Fig. 5: The network structure of the SEM. Strong scatter-
ing points are pre-extracted by Harris-Laplace detector
and serve as supervision information.
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The output of the second convolution block in the
feature extraction module is served as the input of
the scattering extraction branch. Generally, the keypoint
prediction can be considered a pixel-level classification
requiring us to decode the input feature map and resume
it to a larger size. As a result, the deconvolution structure
is introduced in this paper to predict key points. The
deconvolution process has learnable parameters which
can increase the network’s fitting ability compared with
up pooling and upsampling operations. The structure of
the scattering extraction branch is shown in Fig.
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Fig. 4: The 5way 1-shot setup. There is no intersection between the training categories and test categories. In each
episode, one image is chosen from each of the five selected categories to form the support set, and 15 images are
chosen from each of the five selected categories to form the query set.

The coordinate conversion formula is used to calculate
the position of the keypoint on the output. It is calculated
as

= 2. @)
1 w1
where (w1, h1) and (ws, he) illustrate the original image
size and scaled size, respectively. (z1,y:1)and (z2,y2)
represent the original coordinates and the scaled coor-
dinates, respectively.

Assume the corresponding label key point map is H €
R5Y*5Y and one of the corresponding scaled coordinates
of the strong scattering point is (z2, y2), then H(z2,y2) =
1 and other areas are set to 0. The prediction key point
feature map is H € R°*% The keypoint prediction loss
is written as:

Losssgy = sigmoid Z H(i,j) — H(i, ) (3)
(i:4)
To encourage features representation learning via ex-
plicit supervision, the model parameters are restricted
to update towards the set trajectory to generate more
representative features.

C. The Angle Self-adaption Classifier(ASC)

1) Algorithm Description: In the few-shot SAR air-
craft classification tasks, N labeled examples S =
(x1,91), (x2,¥2), -+, (zn,yn) of the support set are giv-
en, where each feature vector z; € RP and the cor-
responding labels is y; € 1,---, K. The initial feature
vectors are then mapped to M-dimension through an
embedding functionf, : R? — RMwith learnable pa-

rameters ¢ [65]. Center representation vectors c; are
computed as follows:

= S fulw) @)

S
[ (24,y:) €Sk

where S) denotes the sample set containing samples
labeled with class k.

Given a distance function Dis: RM x RM — [0, +00),
the distances from query samples to the center represen-
tation vectors in the mapping space can be calculated
[65]. The original distribution without the angle infor-
mation is shown in Equation

2 — exp(—DiS(f¢($)7ck))
py(y = klz) = S exp(—Dis(fy(x), cx))

There are many distance metric functions, such as Eu-
clidean Distance, Manhattan Distance, Chebyshev Dis-
tance, Minkowski Distance. Experiments show that us-
ing squared Euclidean distance is better.

©)

SAR target imaging result is angle-sensitive. For the
same type of aircraft, when the incident angle of the
SAR image is the same or very close, the imaging results
show significant differences with the increase of the TAA
difference. Therefore, the angle self-adaption classifier is
designed to make the network be more concerned with
the positive sample pairs hard to distinguish. Naturally,
the network will learn more representative and distin-
guishing feature representations.

2) Strong scattering point extraction: The aircraft is basi-
cally composed of subcomponents such as the wings, the
tail, the fuselage, the nose, and the engines. It is found
during the experiment that the Harris-Laplace detector
shows better robustness and scattering point detection
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Fig. 6: The classification process for query images. The
center representation vector of each class is got by cal-
culating the mean vectors of the support set. The query
vectors are classified according to the distance between
them and the center representation vectors.

accuracy. Hence, the Harris-Laplace detector is selected
to extract strong scattering points in this paper. Strong
scattering point detection results for different types of
aircraft are given in Fig. [} For different sizes and types
of aircraft, such as Boeing and Airbus, it verifies the
rationality of the distribution of the extracted scattering
points.

Boeing737  ARJ21

Boeing787 A330

A220

Fig. 7: Strong scattering point extraction results of dif-
ferent types of aircraft. Initial images are shown in the
upper line, and detected images are shown in the bottom
line.

3) Acquisition of the TAAs by the least square method:
It is laborious to obtain the corresponding TAAs by
manual annotation for an aircraft instance. A novel
method for calculating the TAAs is devised with the
extracted strong scattering points. There are three types
of typical SAR aircraft echo characteristics: one is the ”V”
type, with swept-back wings; the second is the "T” type,
which is a flat-wing aircraft; the third is the double dot
or "peanut” type, which is the helicopter. Considering
the SAR aircraft can be regarded as a series of strong
scattering points and the symmetry of the above three
structures, it is reasonable to use the least square method
for linear regression on these strong scattering points.

The slope of the line obtained by regression corresponds
to the TAA. As shown in Fig. [/} assume n points are
extracted by Harris-Laplace detector, define these points
as [(z1,vy1), (z2,92), -, (Tn,yn)]- We then calculate the
respective average values of the abscissa and ordinate
f them.
of them _mAmteta,
n
g:y1+y2+"'+yn ©)
n

Then the intercept and slope of linear equation can be
calculated according to the average value above,

p = Mimy Tl = D B Di Yi
- n n
n Zi:1 xf - (Zi:1 7)?

k=g bz ®)

@)

where b and k are the intercept and slope of the linear
equation, respectively. The final angle is:

0 = arctan(k) )

4) The angle-gquided classification loss function: For the
5-way 1-shot tasks, the support set S contains 5*1=5
images. Suppose that there are Ng examples in the query
set Q for each episode. the original classification loss is
denoted as

Loss = —logsoftmax Z sqrt(sum((q — sy,)?))
qcQ

(10)
where ¢ € @ and s € S are the embedding vectors
obtained from the feature extraction module. y, is the
corresponding category label of g, and s,, is the support
vector of the corresponding category label of q. The
angle-guided classification loss combined can be written
as

Lossasc = — logsoftmax

S 0~ 0, )sart(sum((a ~ ,,)?))
= (11)

where 0, and 0, are the TAA of q and s,,, respectively.
The f(-) is denoted as

f(z) = softmaz(abs(x))
T = [eq - esyq]aq € Q

In this situation, the network will focus more on the
positive sample pairs with the same category but have
large differences in the distribution of strong scattering
points.

The total loss is:

(12)

1
J = Lossasc + —Losssen (13)
Nq

By minimizing the loss of the query samples at each
episode via Adam to achieve meta-learning.



D. Frequency Embedded Module(FEM)

Fig. 8: The structure of the frequency embedded module.
The resized images are sent to the embedding network
to obtain the flattened feature vectors.

Frequency domain learning has always been a pow-
erful measure for image processing. Frequency domain
analysis should be more meaningful for SAR target in-
terpretation considering the special imaging mechanism
of SAR images.

1) Basic Frequency Channel Attention Network: Assume
the input image is I € R¥*4*P, X ¢ RO *A*D" js the
output feature map, D’ and A’ are the width and height
of the feature map, respectively. C’ is the number of
channels. Different channels represent the image compo-
nents on different convolution kernels. Similar to time-
frequency transformation, the convolution operation is
similar to the Fourier transform. Thus, the information
of one channel can be decomposed into signal compo-
nents on C convolution kernels [66]. Typically, the two-
dimensional (2D) DCT is formulated as:

A—1D—1 1 d 1

ad—ZZm -cos( 2—1—2))003(5(]'4—5)),
=0 j=0
st.ae0,1,---,A—

(14)
1,de€0,1,---,D—1,

where (24 € RA*P is the 2D DCT frequency spectrum,

4 € RA*D is the input, A is the height of 22¢ , and D
is the width of z2%.

In [66], it has been proved that the other frequency
components and information are discarded in the global
average pooling except for the lowest frequency com-
ponent. The larger coefficient of dimensional discrete
cosine transform indicates that the visual features of
the corresponding frequency and direction appear more
frequently in space.

2) PCT: Pulse Cosine Transform (PCT) model sup-
presses the visual features that appear more frequently
in the visual space by whitening (normalized) the am-
plitude values of the discrete cosine transform (DCT)
coefficients. It has been proven effective for SAR image
interpretation [67], [68].

After obtaining the frequency domain characteristics
through the two-dimensional DCT, the transformed out-
put will be quantized into 1, 0, and -1 in the frequency
domain. This operation imitates the biological visual

mechanism. 1 and -1 transformations respectively indi-
cate the activation and deactivation of the signal at the
corresponding position, and 0 transformation means that
the information is inhibited. The quantization process of
the transformed feature map in the frequency domain
can be expressed as:

—1,ifIO(Ui7 Ui) <0
O,ifIO(ui,vi) = 0
LifIo(ui,vi) >0

where (u;,v;) represents the coordinates of pixel i and
I,(u;,v;) and I, (u;, v;)represent the original value and
the transformed value of pixel i, respectively. Besides,
sign(-) represents the symbolic function, the positive
DCT coefficient in the feature map is quantized to +1,
the negative DCT coefficient is quantized to -1, and
the original data is retained when the DCT coefficient
is 0. Fig. [§] displays the architecture of the frequency
embedded network. The feature map is partitioned into
n parts in channel dimension, and each part corresponds
to different parameters.

I, (ug, v;) = sign(I,(ug, v;)) (15)

E. Combination with the Pre-training Phase

Due to the limitation of SAR data, it is meaningful
to take full advantage of the existing data. Therefore,
a pre-training phase is introduced to get more prior
knowledge and better model initialization parameters.
As described in Fig. [ for meta-learning, the meta-
learning dataset consists of the training and test set. The
pre-training phase is implemented on the training set
before the meta-training stage, and details are displayed

in Fig. 0|

Meta-Training| ||
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Meta-training stage

Fully .

Connected
Layer

Fig. 9: The meta-learning process combined with pre-
training.

IV. EXPERIMENT

In this section, we will perform different groups of ex-
periments to verify the effectiveness of the meta-learning
principle and the SCAN. According to the data set
partition form, we conduct two groups of experiments.

In the first group of an experiment, the meta-test data
set and meta-training data set are made up of 6 and
14 categories, respectively. For the second group of an
experiment, all 20 categories are used in both the training
and test sets. The images of each class are partitioned
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Fig. 10: Civil aircraft in SAR-ACD and the corresponding optical images.

into the test set and training set based on the ratio of
2:8. The model adopts the 20-way 1-shot meta-training
module. To simplify, the two groups of experiments are
named Experiment I and Experiment II, respectively.

A. Data Set Description

1) Data Sources: Similar to GF3-ADD in [37] and
FUSAR-Ship in [69] where Gaofen-3 C-band images are
utilized for SAR ship recognition, an experimental data
set named SAR-ACD is constructed to illustrate the
effectiveness of the proposed network. A total of 11
Gaofen-3 C-band images with 1m resolution working in
the Spotlight mode are used in this experiment. These
Gaofen-3 satellite images cover the Shanghai Honggiao
Airport area, Beijing Capital International Airport area,
and another airport in different time phases with HH
polarization. The data set contains 6 civil aircraft cate-
gories and 14 other aircraft categories. A total of 4322
aircraft clips are contained in SAR-ACD. It should be
emphasized that SAR-ACD contains complex scenes at
different airports. Meanwhile, the targets in SAR-ACD
are rich in categories and have large size differences.
These factors leads to a very challenging classification
task.

2) Category Labelling: This SAR data is manually
labeled according to the corresponding optical images.
Generally, the aircraft stand is fixed. The ground truth
of aircraft can be considered reliable and accurate by
combining expert interpretation and large manual anno-
tation.

After collecting the initial SAR images, normalization
and radiation calibration are implemented to correct the
images.

Civil SAR aircraft and the corresponding optical im-
ages are shown in Fig. The specific categories of
civil aircraft and the target number of each category are
shown in Fig. Several data expansion methods such
as contrast transformation, brightness transformation,
and sharpness transformation are adopted to address the
issue of the imbalanced number of instances. Due to the
imaging result of SAR target varies greatly as the TAA

400
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. 1 1 &
: o

A220 A330 A320 ARJ21  Boeing737 Boeing787

Fig. 11: The original number of each type of civil aircraft
cropped from the original large-scale images without
data expansion. The number of each category of aircraft
after expansion is around 400.

TABLE I: The ablation study of FEM and SEM
(Experiment I).

SEM FEM | 5-way 1-shot(%) 5-way 5-shot(%)

X X 53.18 £ 0.62 68.66 = 0.51
X v 53.54 £ 0.63 69.9 £ 0.50
v X 53.57 £0.62 70.04 £0.52
v v 55.9+ 0.64 71.04+ 0.52

TABLE II: The classification accuracy combined with pre-
training on the 5-way 1-shot condition (Experiment I).

SEM FEM ‘ No pre-training(%) Pre-training(%)

X X 53.18 £ 0.62 55.21 £0.63
X v 53.54 £0.63 55.28 £ 0.64
v X 53.57 £0.62 55.55 £ 0.64
v v 55.9+ 0.64 56.05+ 0.65




TABLE III: The classification accuracy combined with
pre-training on the 5-way 5-shot condition (Experiment

D).
SEM FEM | No pre-training(%)

Pre-training(%)

X X 68.66 £ 0.51 69.04 £ 0.52
X v 69.9 = 0.50 71.41 £ 0.50
v X 70.04 £ 0.52 70.50 £ 0.50
v v 71.04+ 0.52 71.84+ 0.50

changes, the operations like rotation and reversal are not
used.

B. Implementation Detail

1) Data Setting details: In Experiment I, the ablation
studies on the SEM and FEM before and after pre-
training are performed, respectively. The experimental
results also prove the significance of the pre-training
phase. The pre-trained model is obtained by the 14-class
classification experiment on the meta-training dataset,
which can fully utilize the prior information of the
existing samples.

In addition, the meta-training stage is trained with the
supervised learning. We The Adam optimizer is used for
training where the learning rate is set to 0.001. The model
is trained for 10000 epochs, and if the verification results
do not improve after 200 epochs, the training process
will be terminated. Besides, 100 train episodes and 100
test episodes are carried out per epoch. In the meta-test
stage, the best model obtained in the meta-training stage
is tested on 1000 randomly selected N-way K-shot tasks.
There are two types of tasks:5-way 5-shot and 5-way
1-shot tasks. As Table [V] shows, the number of query
examples per class remains 15 for both of them.

In Experiment II, we change the proportion of training
images from 10% to 100% to fully verify the effectiveness
of the meta-learning way. Similarly, the training mode
and the optimizer setting are the same as Experimen-
t II. The N-way K-shot tasks are sampled from the
training set of all 20 categories. In Experiment II, the
meta-training and meta-test ways need special attention.
Unlike Experiment I where the sampled tasks are 5-
shot tasks or 1-shot tasks with 5 classes, the basic task
unit in Experiment II is 20-way 5-shot and 20-way 1-
shot. To ensure a fair comparison with classical fully
connected networks(FCN), the number of query images
per class for meta-training and meta-testing is 15 and 2,
respectively.

2) Network Structure Details: The construction of the
FEM is exhibited in Fig. |8, FEM consists of 3 convolu-
tional blocks. For each convolutional block, it consists of
a convolutional layer with 64 filters and 3 x 3 convolu-
tion, batch normalization (BN), ReLU nonlinearity and
2 x 2 max-pooling. The single-channel input images of
different sizes are first resized to 1 x 100 x 100 uniformly,
and the output size of the three convolution blocks of the

feature extraction module are 64 x 25 x 25, 64 x 12 x 12
and 64 x 6 x 6, respectively. The output of the feature
extraction module is then flattened and sent into the AG-
classifier [} For the SEM branch, the input size is 64x 25
x25, and the stride of the transposed convolution layer
is set to 2. It is noticeable that the size of the SEM output
is 1x 50 x50, while the keypoints are extracted on the
initial input images with varying sizes. For the value in
the keypoint feature map, 1 denotes the corresponding
position is a keypoint, and 0 denotes the corresponding
position is non-critical components or background.

The details of the meta-training and meta-test process
are shown in Algorithm [T|and Algorithm [2] respectively.

Algorithm 1: SCAN for Meta-Training

1 Input:Meta-training data set
Dirain = {(z1,v1), -+, (N,» YN, )}, Where each
y; € {1,---,Cx}. Dy contains all samples belonging
to class k in Dipain.

2 for each episode do

3 RANDOMSAMPLE({1,- - , Cy},N)

4 for kin {1,--- ,N} do

5 RANDOMSAMPLE(D,,K) — Si

6 RANDOMSAMPLE(D;,Q) — Qx

7 Compute center representation vector cy,
following Equation [4}

8 end

9 for kin {1,--- ,N} do

10 for (x4,yq), (zs,ys) in Qk, Sk do

11 Compute the TAAs of z, and «,

according to Equations.

12 end

13 Compute Lossgngie according to Equation

14 Compute Loss,y. according to Equation

15 Compute total loss ] following Equation

16 end

17 end

C. Experiment I on SEM and FEM

This section performs the ablation study with and
without pre-training on the two modules to verify their
effectiveness. The data setup for the meta-training and
meta-test stage is shown in Table

1) Ablation Study: As is shown in Table [} the model
shows better performance with the help of the two
modules. When only with FEM, the test accuracy in-
creased by 0.4% (1-shot) and 1.3% (5-shot), respectively.
When only with SEM, the test accuracy is increased
by 0.4% (1-shot) and 1.4% (5-shot), respectively. For 1-
shot, the classification accuracy even increased by 2.8%
with both modules. The ablation results fully verify the
effectiveness of the two modules.

Besides, all channels of the last convolution layer are
visualized to understand what the network has learned
with SEM intuitively. As shown in Fig. there are 64



Algorithm 2: SCAN for Meta-Testing

1 Lkt Meta test Eaka ko

2 for each episode do

3 | RANDOMSAMPLE({1,--,C;.},N)

4 for kin {1,--- ,N} do

5 RANDOMSAMPLE(D;, K) — Sk

6 RANDOMSAMPLE(D;,Q) — Q

7 Compute center representation vector cy,
following Equation [4]

8 end

9 for (z4,y,) in Qf do

10 for kin {1,--- ,N} do

11 | Compute Distance(z, cx)

12 end

13 Result:z, €
CLASS argming(Distance(zg,cr))

14 end

15 end
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Fig. 12: Visualization of all channels in the last convo-
lution layer (Experiment I). (a) Baseline network. (b)
Network with SEM.

channels in the last convolutional layer. The network
focuses more on the critical parts of the aircraft and less
on the edge and background noise.

2) Interpretability analysis for application on SAR data:
As shown in Fig. the two shared convolution layers
of the network with SEM and FEM are visualized. The
top row is A220 and the bottom row is Boeing787.
After adding SEM and FEM, the network pays more
attention to the key parts such as the nose, wings and
tail. Meanwhile, the feature maps of different aircraft
based on different models are also visualized. As shown
in Fig. (b) and (c) represent the visualization of the
first convolutional layer of the baseline model and the
model with SEM and FEM, respectively. (d) and (e)
represent the visualization of the second convolutional
layer of the baseline model and the model with SEM
and FEM, respectively. Red represents places with high
network attention. From the visualization of the two
shared convolutional layers, it can be seen that the
networks attention to the background decreases, and the
attention to the aircraft tail increases.
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3) Combination with the Pre-training Phase: Beyond
that, a comparison experiment with or without the pre-
training stage is also conducted to prove the availability
of the pre-training stage. The comparison of the test
results is shown in Table [[l and Table [IIl For both the
5-shot and 1-shot case, the test accuracy is improved to a
certain extent. The experimental result also reflects that
pre-training fully excavates the prior information of the
existing data.

TABLE IV: Comparative experiment on AG-classifier
with the combination of pre-training (Experiment I).

FEM SEM | No ASC(%) With ASC(%)

X X 55.21£0.64  57.01 £0.64
v X 55.28 £0.63 57.82£0.63
X v 95.50 £0.64  57.85+0.62
v v 56.06 £0.65 57.92+0.60

D. Experiment I on ASC

The effectiveness of ASC is further illustrated by con-
strasting the results with or without this module. What
needs illustration is that the weight of classification loss
per positive sample pair is determined by the angle
difference. While in the 5-way 5-shot condition, the
center representation vector is obtained by averaging
five support samples, and the average angle value is
meaningless. As a consequence, only the comparative
experiment on the 5-way 1-shot condition is conducted.
The model with AG-classifier yields good classification
performance as shown in Table

TABLE V: Details of data setup during training and
testing (Experiment I).

5-way 5-shot 5-way 1-shot
Setup
support  query | support query
set set set set
meta-training 5 15 1 15
meta-testing 5 15 1 15

TABLE VI: Detailed settings for meta-training and
meta-testing in the 20-class classification evaluation
(Experiment II).

Setting Support Set  Query Set
meta-training ~ 20*1=20 20%15=300
meta-testing ~ 20%1=20 20%2=40

E. Comprehensive performance comparison analysis of Exper-
iment 1

The confusion matrixes for six new test categories are
visualized in Fig. [I5] It indicates that the classification
accuracy of “Typel” and “Type2” is relatively high. For
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Fig. 13: Visualization of all the channels in the two shared convolution layers of the model with SEM and FEM
(Experiment I). The first row is Boeing787 and the second row is A220.

(b)

Fig. 14: Feature map visualization comparison of the baseline model and the model with SEM and FEM (Experiment
I). (a) illustrates the original input images. (b) illustrates the visualization of the first convolutional layer of the
baseline model. (c) illustrates the visualization of the first convolutional layer of the model with SEM and FEM. (d)
illustrates the visualization of the second convolutional layer of the baseline model. (e) illustrates the visualization
of the second convolutional layer of the model with SEM and FEM.
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Fig. 15: Visualization of the classification results by confusion matrixes. The matrixes show the test results of the
meta-testing data set with different modules for 5-shot (Experiment I). (a). The confusion matrix of baseline network.
(b). The confusion matrix with FEM. (c). The confusion matrix with SEM. (d). The confusion matrix with both FEM

and SEM.

the rest of civil aircraft, it’s relatively difficult to classify
accurately due to the imaging interference existing in
civil airports. Finally, the classification accuracy of civil
aircraft increased by at least 20%, which demonstrates
the advancement of all modules. The classification accu-
racy curves with different modules are displayed in Fig.
The classification results of several test patches in this
experiment are shown in Table SCAN can classify
the aircraft patches with different TAAs more accurately.
We also test our model on large-scale SAR images. Parts
of the Honggiao Airport and Capital Airport are selected
to do the slice classification experiment, and several
typical sliding windows are highlighted in Fig. The
classification result verifies the stability and effectiveness
of the proposed model.

F. 20-class Classification Evaluation of Experiment II

In this section, meta-learning is used for classifica-
tion among all 20 categories. The percentage of meta-
test images is fixed at 20% for each category. Differen-

t proportions will be selected for the remaining 80%
images to form the meta-training set. To validate the
effectiveness of the meta-learning rule, we contrast the
20-class classification results using meta-learning with
those classical fully connected classification networks. In
the meta-test phase, the 20-way 1-shot task with 2 query
examples is taken as the basic task unit where the total
number of query examples is 20 x 2 = 40. To ensure that
the experiment is as fair as possible, the batch size of
the fully connected layer network equals the number of
meta-testing query examples 40. The detailed settings are
shown in Table VIl

1) Ablation study on ASC: The effect of ASC on exper-
iment performance is specifically studied. The classifica-
tion accuracy in the 1-shot condition is shown in Table
The accuracy of the meta-learning classification
with ASC is far more than that of a classic classification
network with fully connected layers. It can achieve
90% accuracy with only 50% data. Besides, the ablation
study of FEM and SEM with different proportions in
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Fig. 16: The classification accuracy with different modules during training and testing (Experiment I). (a). Training
accuracy in the 5-way 1-shot condition. (b). Testing accuracy in the 5-way 1-shot condition. (c). Training accuracy
in the case of 5-way 5-shot. (d). Testing accuracy in the case of 5-way 5-shot.

TABLE VIII: Classification accuracy with different pro-
portions of the training set on the 20-way 1-shot condi-
tion (Experiment II).

the compared methods. Compared with the previous
state-of-the-art method [39], SCAN improves by 1.35%
and 6.69% on 5-way 1l-shot and 5-way 5-shot tasks,
respectively. In addition, in order to fully verify the

TABLE IX: Comparison with other few-shot learning
models.

Percent| FCN(%) | baseline(%) | With ASC(%)
10% 32.09 69.18 £0.26 75.31 £0.26
30% 42.98 81.24 +£0.27 89.32 £ 0.26
70% 58.36 95.30 £ 0.27 96.01 +0.27
100% 62.33 95.75 £ 0.26 97.22 £0.27

Experiment II is also carried out. As is explained in
Fig. [18, The test results verify the efficiency of both the
modules.

G. Comparison With Other Methods and

As shown in Table [IX] SCAN achieves the best accura-
cy on both 5-way 1-shot and 5-way 5-shot tasks among

5-wa 5-wa
Methods 1-shot(") 5-shot(")
kNN 22.50 36.30
RelationNet 56.05 & 0.80 66.71 £ 0.70
MAML 52.2 +£0.62 67.5 +0.52
Matching network 54.54 £0.63 58.9 £0.50
MSAR 56.57 + 0.62 65.15 4+ 0.50
SCAN 57.92+ 0.60 71.84+ 0.52

generalization ability of the proposed recognition model,
we randomly select different groups of test sets for
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TABLE VII: The test results on some aircraft patches of the meta-test set (Experiment I).

N-way . With only With only
K-shot TAAs Images Ground Truth baseline SEM ASC SCAN
—92° Boeing787 ARJ21 x Boeing787 v Boeing787 v Boeing787 v/
—41° Boeing787 A220 x Boeing737 x A220 x Boeing787 v
5-way
1-shot
—45° A220 Boeing787 x A220 v A220 v A220 v
Boeing787 x A220 v A220 v A220 v
A220 x Boeing737 x Boeing737 x A220 x
Boeing737 x  Boeing737 x ARJ21 v ARJ21 v
5-way
5-shot

42°

Boeing737

Boeing737

ARJ21 x

A220 x

Boeing737 v’

ARJ21 x

Boeing737 v

Boeing737 v

Boeing737 v

Boeing737 v

TABLE X: Ablation study on three randomly selected meta-test sets. The fluctuation ranges of the accuracy of the
three groups of experiments are similar. The fluctuation ranges of the 5-way 1-shot task and 5-way 5-shot task are
0.0060-0.0064 and 0.0062-0.0065, respectively.

Groupl Group2 Group3
SEM ASC FEM| Acc(%) SEM ASC FEM| Acc(%) SEM ASC FEM| Acc(%)
5 X X X 53.18 5. X X X 68.75 5-wa X X X 61.94
WY I/ 7 [ 5782 WY v v | 6984 Y I v v | 628
v X X 55.55 v X X 69.24 v X X 62.47
L-shot |———— gy 1shot ————— 57| Ishot ——— T @83
5 X - x| 6866 | . X - x| 8091 | X - X | 7451
way — - 7 | 69.90 way —x - v | 8284 way - v | 7633
v - X | 70.04 v - X | 8265 v - X | 7628
5-shot |——————— g | oot — gy | O s




%
Boking737
5 .;ﬂ"' -

8

Boeing737
> -

Boeing73T %"

Boeing787;é"v g
Boe'u')gJ87..

pre

A S
"j‘ Boeing787 "
iy Boelng;s7

e




1.00
0.95 1
0.90 1
>
E 0.85 1
=
o
£
0.80 4
0.75 —}— baseline
—— baseline+FEM
baseline+SEM
0704 — baseline-+SEM+FEM
T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Proportion of training data

Fig. 18: The ablation study of FEM and SEM with dif-
ferent data proportions on the 20-way 1-shot condition.
The error bar for each method fluctuates between 0.0026-
0.0027. We can see that the fluctuation of accuracy de-
creases with the increase of the number of test categories.
(Experiment II).

experimental verification. The experimental results are
shown in Table [X] The performance of the model has
been effectively improved on several randomly selected
meta-test sets containing new categories.

V. CONCLUSION

In this article, a novel framework named SCAN is
proposed to solve the few-shot classification problems
in the SAR domain. In contrast with the existing few-
shot classification models, SCAN efficiently integrates
the scattering characteristics. First, SEM is proposed to
combine the target imaging mechanism with the net-
work. Second, ASC is designed to solve the problem
caused by the sensitivity of the SAR imaging result-
s to TAAs. Third, we leverage the proposed FEM to
exploit frequency domain information. Experiments on
SAR-ACD demonstrates the validation of the proposed
method. The model performance has increased by 4.8%
for 5-way 1-shot after adding these modules. Compared
with other methods with similar structure, our method
achieves state-of-the-art performance for 5-way 5-shot.
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