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ABSTRACT

When training transformers on graph-structured data, incorporating information
about the underlying topology is crucial for good performance. Topological mask-
ing, a type of relative position encoding, achieves this by upweighting or down-
weighting attention depending on the relationship between the query and keys in
a graph. In this paper, we propose to parameterise topological masks as a learn-
able function of a weighted adjacency matrix – a novel, flexible approach which
incorporates a strong structural inductive bias. By approximating this mask with
graph random features (for which we prove the first known concentration bounds),
we show how this can be made fully compatible with linear attention, preserving
O(N) time and space complexity with respect to the number of input tokens. The
fastest previous alternative wasO(N logN) and only suitable for specific graphs.
Our efficient masking algorithms provide strong performance gains for tasks on
image and point cloud data, including with > 30k nodes.

1 INTRODUCTION

Across data modalities, transformers have emerged as a leading machine learning architecture
(Vaswani, 2017; Dosovitskiy et al., 2020; Arnab et al., 2021). They derive their success from mod-
elling complex dependencies between the tokens using an attention mechanism. However, in its
vanilla instantiation the transformer is a set function, meaning it is invariant to permutation of its
inputs. This is often undesireable; e.g. words tend to be arranged in a particular sequence, and graph
nodes are connected to a particular set of neighbours. Therefore, it has become standard to modify
the attention matrix depending on any underlying structure, building in inductive bias. For instance,
causal attention applies a triangular binary mask to ensure that tokens only attend to preceding el-
ements of the sequence (Yang et al., 2019). Meanwhile, relative position encoding (RPE) captures
the spatial relationship between the tokens (Shaw et al., 2018). In some cases, the queries and keys
can be arranged in a graph G and a function M(G) can be used to modulate the transformer atten-
tion. This is referred to as topological masking (Choromanski et al., 2022). It provides a powerful
avenue for incorporating structural inductive bias from G into transformers, in some cases closing
the performance gap with the best-customised graph neural networks (Ying et al., 2021).

Topological masking of low-rank attention. Topological masking is simple when the attention is
full-rank. In this case, the entire attention matrix A ∈ RN×N (with N the number of input tokens)
is materialised in memory, so its individual entries Aij can be pointwise multiplied by a (fixed or
learnable) mask M(G)ij . But full-rank attention famously incurs a quadratic O(N2) space and
time complexity cost, which may become prohibitive on large inputs. This has motivated a number
of low-rank decompositions of A. These improve scalability by avoiding computing A explicitly,
instead doing so implicitly in feature space. The question of how to perform topological masking in
the low-rank setting is challenging and not fully solved. Previously proposed algorithms are limited
to inexpressive functions M and restricted classes of graphs G (e.g. trees and grids), and are often
O(N logN) time complexity rather than O(N) (App. B; Choromanski et al., 2022; Liutkus et al.,
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Figure 1: Schematic overview. Regular attention is O(N2), with N the number of input tokens.
Topological masking modulates A by a graph function M(G), improving predictive performance.
Linear attention reduces the time complexity toO(N) by leveraging a low-rank decomposition. Our
contribution (blue) is the first algorithm to achieve both –O(N) topological masking of low-rank at-
tention – by approximating M(G) with graph random features (GRFs). GRFs are sparse vectors (de-
noted ‘sp.’) computed by sampling random walks, constructed so that E(Φ̂Q,GΦ̂⊤

K,G) = A⊙M(G)
with strong concentration properties (Thm. 3.2).

2021). Addressing these shortcomings is the chief focus of this manuscript. Our central question
is: how can we implement efficient yet flexible topological (graph-based) masking of transformer
attention, in the low-rank setting where A is never explicitly instantiated?

Graph random features. To answer the question posed above, we propose to use graph random
features (GRFs) (Choromanski, 2023; Reid et al., 2024b). GRFs are sparse, randomised vectors
whose dot product gives an unbiased estimate of arbitrary functions of a weighted adjacency matrix,
a class that captures the structure of G and is popular in classical graph-based machine learning
(Smola and Kondor, 2003; Kondor and Lafferty, 2002). GRFs have been used for approximate ker-
nelised node clustering and in scalable graph-based Gaussian processes (Reid et al., 2023a; 2024c),
but never before in transformers. Advancing understanding of the convergence properties of GRFs
is another key goal of this work.

Our contributions. We present the first known O(N) algorithm for topological masking of linear
attention transformers with general G, using graph random features (Fig. 1).
1. We propose to modulate the transformer attention mechanism with a learnable function of a

weighted adjacency matrix – a simple, general topological masking trick which brings a strong
inductive bias and substantial improvements to predictive performance.

2. To scale, we replace the exact, deterministic mask with a sparse, stochastic estimate constructed
using graph random features (GRFs). We use a novel exponential concentration bound, requir-
ing only a mild technical assumption on G as N grows, to prove that our method is linear time
and space complexity with respect to input size: the first known algorithm with this property.

3. We demonstrate strong accuracy gains on image data, as well as for modelling the dynamics of
massive point clouds (> 30k particles) in robotics applications where efficiency is essential.

2 PRELIMINARIES

Masked attention. Denote by N the number of input tokens and d the dimensionality of their latent
representations. Consider matrices Q,K,V ∈ RN×d whose rows are given by the query ({qi}N

i=1),
key ({ki}N

i=1) and value vectors ({vi}N
i=1) respectively. The attention mechanism, a basic processing

unit of the transformer, can be written:
Att(Q,K,V) := D−1AV, A := K(Q,K), D := A1N . (1)

Here, the function K assigns a similarity score to each query-key pair and 1N := [1]Ni=1 ∈ RN . For
regular softmax attention, one simply takes K(Q,K)ij = exp(q⊤

i kj), optionally also normalising
by d. To incorporate masking, we make the modification

AM := M⊙K(Q,K), (2)
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where M ∈ RN×N is a (hard or soft) masking matrix and ⊙ denotes the Hadamard (element-
wise) product. For softmax, this is equivalent to adding a bias term bij := log Mij to q⊤

i kj before
exponentiating. As remarked in Sec. 1, this can be used to enforce causality or as a relative position
encoding (RPE) (Shaw et al., 2018). Taking M(G) so that attention is modulated by a function
of the underlying graph structure is called topological masking. Topological masking is not just
a mechanism to sparsify attention for efficiency gains; its goal is to incorporate topological signal
from the underlying graph, improving predictive performance via a useful inductive bias.

Improving efficiency with low-rank attention. The time-complexity of Eq. 1 is O(N2), which
famously limits the ability of regular transformers to scale to long inputs. A leading approach to
mitigate this and recover O(N) complexity is linear or low-rank attention (Katharopoulos et al.,
2020; Choromanski et al., 2020). This takes a feature mapping ϕ : Rd → Rm with m ≪ N and
constructs the matrices ΦQ := [ϕ(qi)]Ni=1 and ΦK := [ϕ(ki)]Ni=1, where ΦQ,K ∈ RN×m. One then
defines KLR(Q,K) := ΦQΦ⊤

K and computes

AttLR(Q,K,V) := D−1 (ΦQ
(
Φ⊤

KV
))
, D := ΦQ

(
Φ⊤

K1N

)
, (3)

where the parentheses show the order of computation. Exploiting associativity, the time complexity
is reduced to O(Nmd), albeit usually with some sacrifice in performance compared to full-rank
softmax attention. Since we care about scaling with graph size, we will henceforth write this as
O(N). Different choices of feature maps ϕ exist; for example, one can take a random feature map
that provides a Monte Carlo estimate of the softmax kernel (Performer; Choromanski et al., 2020),
or a deterministic nonlinearity like elu(x) + x (linear transformer; Katharopoulos et al., 2020).

Efficient masking of low-rank attention. As Eq. 3 suggests, low-rank attention derives its speed
from avoiding computing A = KLR(Q,K) explicitly, preferring to evaluate faster products like
Φ⊤

KV and Φ⊤
K1N first and use them to weight the query features ΦQ. This makes the direct

Hadamard product implementation of masking in Eq. 2 impossible: if the matrix A is never explic-
itly materialised in memory, one cannot pointwise multiply each of its elements. Algorithms have
been proposed to mask implicitly (without instantiating A or M) in very simple cases, e.g. causal
masking (Choromanski et al., 2020) or one-dimensional RPE (Liutkus et al., 2021; Luo et al., 2021).
Subquadratic implicit masking is also possible when M is very structured: e.g. functions of shortest
path distance on grid graphs and trees (Choromanski et al., 2022), or of the degrees of the pair of
input nodes (Chen et al., 2024). See App. B for a detailed review. However, an O(N) algorithm
capable of masking with flexible functions on general graphs has, until now, remained out of reach.

Remainder of manuscript. In Sec. 3.1 we parameterise topological masks M(G) as learnable
functions of weighted adjacency matrices, which incorporates strong structural inductive bias into
attention and boosts performance. Sec. 3.2 shows how this can be implemented implicitly, without
instantiating A or M in memory. Sec. 3.3 offers a faster stochastic alternative using GRFs, which
we prove is O(N) time and space complexity. Sec. 4 gives experimental evaluations across data
modalities, including images and point clouds. The Appendices present proofs and extra details too
long for the main text, and extended discussion about related work.

3 TOWARDS LINEAR TOPOLOGICAL MASKING

This section details our main results. Consider an undirected graph G(N , E) where
N := {v1, ..., vN} is the set of nodes and E is the set of edges, with (vi, vj) ∈ E if and only if
there exists an edge between vi and vj in G. The size of the graph N corresponds to the number of
tokens. Denote by M(G) ∈ RN×N the topological masking matrix.

3.1 GRAPH NODE KERNELS AS TOPOLOGICAL MASKS

As remarked above, a common choice for M(G)ij is a function of the shortest path distance be-
tween nodes vi and vj (Ying et al., 2021). Though effective at improving performance, this requires
computation for every pair of nodes so it cannot straightforwardly be applied to low-rank attention
in a scalable way – except for special structured G where the mask becomes simple (Choromanski
et al., 2022). Shortest path distances are also very sensitive to changes like the addition or removal
of edges, and need access to the whole graph upfront.

A new topological mask: graph node kernels. Given that we intend M(G)ij to quantify some
sense of topological similarity between vi and vj , a more principled choice may be graph node
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kernels: positive definite, symmetric functions k : N ×N → R mapping from pairs of graph nodes
to real numbers. These are widely used in bioinformatics (Borgwardt et al., 2005), community
detection (Kloster and Gleich, 2014) and recommender systems (Yajima, 2006), with more recent
applications in manifold learning for deep generative modelling (Zhou et al., 2020) and solving
single- and multiple-source shortest path problems (Crane et al., 2017). They are also used to model
the covariance function in geometric Gaussian processes (Zhi et al., 2023; Borovitskiy et al., 2021).

Graph node kernels are often parameterised as follows. Let W ∈ RN×N be a weighted adjacency
matrix, so that W := [wij ]i,j∈N with wij nonzero if and only if (vi, vj) ∈ E . A common choice is
wij = 1/

√
didj , with di the degree of vi. Then consider the power series

Mα(G) :=
∞∑

k=0
αkWk (4)

where (αk)∞
k=0 ⊂ R is a set of real-valued Taylor coefficients. This is positive definite if and

only if
∑∞

k=0 αkλ
k
i > 0 ∀ λi ∈ Λ(W), where Λ(W) denotes the set of eigenvalues of W. With

different choices for (αk)∞
k=0, Eq. 4 includes many of the most popular graph node kernels in the

literature, e.g. heat, diffusion, cosine and p-step random walk. Kernel learning can be implemented
by optimising αk (Reid et al., 2024b; Zhi et al., 2023).

Eq. 4 provides a very effective parameterisation for topological attention masks, striking the right
balance between flexibility and hard-coded structural inductive bias. In Sec. 4 we will show that
it boosts performance compared to unmasked attention. However, explicitly computing Mα(G) ∈
RN×N and storing it in memory is incompatible with O(N) low-rank attention. The next section
will show how this can be avoided by masking implicitly.

3.2 IMPLICIT MASKING WITH GRAPH FEATURES

Linear attention is fast because it replaces softmax attention exp(q⊤
i kj) with a ‘featurised’ alterna-

tive ϕ(qi)⊤ϕ(kj). Can we do the same for Mα(G)? The following is true.
Lemma 3.1 (Explicit N -dimensional features for graph node kernels (Reid et al., 2024b)). Let
(fk)∞

k=0 ⊂ R denote the deconvolution of (αk)∞
k=0, i.e.

∑k
p=0 fpfk−p = αk ∀ k. There exists a

feature matrix ΦG ∈ RN×N satisfying Mα(G) = ΦGΦ⊤
G , given by ΦG :=

∑∞
k=0 fkWk.

This is can be shown in a few lines of algebra; see App. A.1. In general, one requires some extra
technical assumptions to ensure that Mα(G) and ΦG converge, which we also describe in App. A.1.
We refer to the rows of the feature matrix ΦG as graph features, letting ΦG =: [ϕG(vi)]Ni=1 with
ϕG(vi) ∈ RN the graph feature of node vi. For every kernel there trivially exists a feature map
(Gretton, 2013), but unusually in this case it is finite-dimensional and admits a simple closed form.

Let ⊗ : Rm × RN → Rm×N denote the outer product which maps a pair of vectors to
a matrix, and vec : Rm×N → RmN denote the vectorising operation that flattens a ma-
trix into a vector. Then ϕ(qi)⊗ ϕG(vi) is an m × N matrix whose jkth element is
ϕ(qi)jϕG(vi)k, and vec (ϕ(qi)⊗ ϕG(vi)) is an mN -dimensional vector whose (N(j − 1) + k)th
entry is ϕ(qi)jϕG(vi)k. Observe the following:1

vec (ϕ(qi) ⊗ ϕG(vi))⊤ vec (ϕ(kj) ⊗ ϕG(vj)) =
mN∑
s=1

vec (ϕ(qi) ⊗ ϕG(vi))s vec (ϕ(kj) ⊗ ϕG(vj))s

=
m∑

k=1

N∑
l=1

ϕ(qi)kϕG(vi)lϕ(kj)kϕG(vj)l =
(
ϕ(qi)⊤ϕ(kj)

) (
ϕG(vi)⊤ϕG(vj)

)
= KLRijMαij .

(5)
Hence, taking {vec (ϕ({qi,ki})⊗ ϕG(vi))}vi∈N ⊂ RmN as features, we can compute masked
attention implicitly, without materialising A and Mα. Concretely, we have that:

ΦQ,GΦ⊤
K,G = KLR ⊙Mα if Φ{Q,K},G := [vec (ϕ({qi,ki})⊗ ϕG(vi))]Ni=1 ∈ RN×Nm. (6)

Masked low-rank attention can then be computed using Φ{Q,K},G as the feature matrices:

AttLR,M(Q,K,V,G) := D−1 (ΦQ,G
(
Φ⊤

K,GV
))
, D := ΦQ,G

(
Φ⊤

K,G1N

)
. (7)

1Recall the old adage: the dot product of outer products is the product of dot products.
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Time complexity. Eqs 6 and 7 give a recipe for computing masked attention implicitly in feature
space, without needing to materialise A or M in memory. However, this approach relies on com-
puting the feature matrix Φ{Q,K},G ∈ RN×Nm and evaluating products like Φ⊤

K,G1N , which still
incurs O(N2) space and time complexity. For a linear masking algorithm, we must reduce this to
O(N). This can be achieved by approximating the features.

3.3 FASTER IMPLICIT MASKING WITH GRAPH RANDOM FEATURES

Our goal is now to replace Φ{Q,K},G by Monte Carlo estimates Φ̂{Q,K},G that satisfy

E
(

Φ̂Q,GΦ̂⊤
K,G

)
= ΦQ,GΦ⊤

K,G = KLR ⊙Mα, Φ̂⊤
K,Gv ∼ O(N) ∀ v ∈ RN , (8)

meaning we apply the desired topological mask in expectation but in linear time. This can be
achieved using graph random features (GRFs) (Choromanski, 2023; Reid et al., 2024b).

At a high-level, GRFs can be understood as follows. From Lemma 3.1, the graph feature for node vi

is given by ϕG(vi) := [
∑∞

k=0 fkWk
ij ]Nj=1. Since W is an adjacency matrix, Wk

ij counts the number
of graph walks of length k between nodes i and j, weighted by the product of traversed edge weights.
So ϕG(vi)j can be interpreted as a weighted sum over all walks of any length between nodes vi and
vj , with longer contributions suppressed since edge weights are at most 1 (by normalisation of W).
GRFs apply importance sampling, approximating this infinite sum by a Monte Carlo estimate ϕ̂G(vi)
using random walks.

Using GRFs. Concretely, to build the GRF ϕ̂G(vi) one samples n random walks {ω(i)
k }n

k=1 ⊂ Ω
out of node vi, where Ω :=

{
(vi)l

i=1 | vi ∈ N , (vi, vi+1) ∈ E , l ∈ N
}

is the set of all walks. Denote
by p(ω) the probability of walk ω which is known from the sampling mechanism. p(ω) is typically
chosen so that walks randomly halt, prioritising sampling lower powers of W that contribute more
to the kernel. Let ω̃ : Ω→ R be a function computing the product of traversed edge weights,

ω̃(ω) :=


len(ω)∏
i=1

Wω[i]ω[i+1] if len(ω) > 1, 1 otherwise

 , (9)

where len(ω) is the number of hops and ω[i] is the node visited at the ith timestep. Then:

ϕ̂G(vi)q := 1
n

n∑
k=1

∑
ωiq∈Ωiq

ω̃(ωiq)flen(ωiq)

p(ωiq) I(ωiq prefix subwalk of ω(i)
k ), q = 1, ..., N, (10)

where Ωiq denotes the set of all walks between nodes vi and vq , of which ωiq is a member. ‘Prefix
subwalk’ means that the walk ω(i)

k beginning at node vi initially follows the sequence of nodes ωiq ,
then optionally continues. This complicated notation belies a very simple algorithm: one simulates
n random walks out of node vi. At every visited node, one adds a contribution to the corresponding
GRF coordinate that depends on 1) the product of traversed edge weights, 2) the probability of the
subwalk and 3) the function f . The result is normalised by dividing by the number of walks n.

GRFs give unbiased approximation of graph node kernels: E[ϕ̂G(vi)⊤ϕ̂G(vj)] = Mαij . This fol-
lows because E[I(ωiq prefix subwalk of ω(i)

k )] = p(ωiq). Unbiasedness is one of our required prop-
erties; we also need Φ̂{Q,K},G to support O(N) matrix-vector multiplication. We will show this by
providing the first known proof that GRFs are sparse: ϕ̂(vi) has O(1) nonzero entries ∀ vi ∈ N .

3.4 NOVEL THEORETICAL RESULTS FOR GRFS: SHARP ESTIMATORS WITH SPARSE
FEATURES

It is intuitive that GRFs are sparse. The walk sampler p(ω) is chosen so that walks are short,
e.g. taking simple random walks with geometrically distributed lengths. From Eq. 10, this means
that ϕ̂G(vi) is only nonzero at nodes ‘close’ to vi. Most of its entries are 0. However, to prove
that Φ̂{Q,K}G supports O(N) matrix-vector multiplication we need to rigorously relate this to the
quality of approximation of Mα(G). This requires concentration inequalities for GRFs, but no such
bounds were previously known. The following result is novel.
Theorem 3.2 (GRF exponential concentration bounds). Consider a graph G with adjacency matrix
W and node degrees {di}vi∈N . Suppose we construct GRFs {ϕ̂G(vi)}vi∈G by sampling n random
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walks {ω(i)
k }vi∈N , k∈[[1,n]] with geometrically distributed lengths, terminating with probability phalt

at each timestep. Let c :=
∑∞

k=0 |fk|(maxvi,vj∈N
|Wij |di

1−phalt
)k. Suppose c is finite, which is guaran-

teed e.g. for bounded f and suitably normalised W, or if there exists some imax ∈ N such that fi

vanishes for all i > imax (see App. A.2). Then:

Pr
(
|ϕ̂G(vi)⊤ϕ̂G(vj)−Mαij | > t

)
≤ 2 exp

(
− t2n3

2(2n− 1)2c4

)
. (11)

Proof sketch. Full details are in App. A.2; here, we provide an overview. Treat each pair of ran-
dom walks Xk := (ω(i)

k , ω
(j)
k ) ∈ Ω× Ω, simulated out of nodes vi and vj respectively, as a random

variable. Let k ∈ [[1, n]] so we sample n such pairs of walks in total. Consider modifying one of
the pairs of walks. If c is finite, the maximum load it is capable of depositing is finite so we can
bound the L1-norm of the contribution made to ϕ̂G(vi) and ϕ̂G(vj). This allows us to bound the
change in the estimator ϕ̂G(vi)⊤ϕ̂G(vj) if Xk is modified. Applying McDiarmid’s inequality, the
result follows.

Thm 3.2 provides an exponential bound on the probability of a topological mask estimate deviating
from its true value. Moreover, assuming that c remains constant (i.e. we fix a maximum edge weight
and node degree as the graph grows), this probability is independent of the number of nodes N .
Therefore, if we fix t and the probability Pr, we can solve for the minimum number of walkers n to
guarantee a good mask estimate with high probability, independent of graph size. Now observe the
following.

Lemma 3.3 (GRF sparsity). Consider a graph random feature ϕ̂G(vi) constructed using m random
walkers each terminating with probability phalt at every timestep. With probability at least 1 − δ,
ϕ̂G(vi) will have n log(1− (1− δ)1/n) log(1− phalt)−1 or fewer nonzero entries.

Proof. Since the walk lengths are geometrically distributed, the probability that a single walk is of
length b or shorter is 1 − (1 − phalt)b. n independent walkers are all b or shorter with probability(
1− (1− phalt)b

)n
. Let this be equal to 1− δ and solve for b. At most bn entries of ϕ̂G(vi) can then

be nonzero, so the sparsity guarantee follows.

Lemma 3.3 means that, if we fix the number of walkers n (e.g. using the bound in Eq. 11), we can
also bound GRF sparsity with high probability. Crucially: the number of nonzero GRF entries is
independent of the graph size N . We conclude the following.
Corollary 3.4 (GRFs implement O(N) topological masking). Suppose we construct a set of graph
random features {ϕ̂G(vi)}vi∈N , choosing the number of walkers n as described above with c, phalt,
δ, t and the deviation probability Pr

(
|ϕGRF(vi)⊤ϕGRF(vj)−Mαij | > t

)
fixed as hyperparameters.

Then the number of nonzero entries in Φ̂{Q,K},G ∈ RN×Nm is linear in N , which means that topo-
logical masking is implemented with O(N) time complexity.

Proof. Lemma 3.3 shows that the number of nonzero entries in ϕ̂G(vi) is independent of the number
of nodes N . This must also be true of vec(ϕ(ki)⊗ ϕ̂G(vi)), so the number of nonzero entries in
Φ̂K,G := [vec(ϕ(ki)⊗ ϕ̂G(vi))]Ni=1 is proportional to N . The same holds for the equivalent matrix
for the queries, Φ̂Q,G . The time complexity of the sparse matrix-matrix multiplication Φ̂⊤

K,GV is
O(Nmd) and Φ̂⊤

K,G1N is O(Nm). Both these time complexities are linear in N . This is also the
case for the subsequent computations involving Φ̂Q,G .

Further comments on theoretical results. We have provided the first concentration bounds for
GRFs and quantification of the tradeoff between sparsity and kernel approximation quality. These
results may be of interest independent from topological masking, e.g. for applications in scalable
geometric Gaussian processes (Reid et al., 2024c; Borovitskiy et al., 2021). Thm. 3.2 is remarkably
general, requiring only the modest assumption about G and f that c is finite. To guarantee O(N)
scaling we assume that c is fixed as G changes, which is guaranteed by e.g. fixed maximum node
degree and edge weight.

3.5 ALGORITHM AND INTUITIVE PICTURE

Alg. 1 presents our method. The results of Secs 3.1-3.4 can be intuitively understood as follows
(see Fig. 2 for an overview). Graph node kernels, which compute an infinite weighted sum of walks
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WG Mα(G) =
∑∞

i=0 αiWi

ϕ̂G(vi) =
ϕ̂G(vj) =

Aij = E
(
ϕ(qi)⊤ϕ(kj)

)
Mαij = E

(
ϕ̂G(vi)⊤ϕ̂G(vj))

)
AijMαij = E

(
vec
[
ϕ(qi)⊗ ϕ̂G(vi)

]⊤

vec
[
ϕ(kj)⊗ ϕ̂G(vj)

])vi

vj

Figure 2: Visual overview. A graph G (left) has a weighted adjacency matrix W (centre left).
A learnable power series Mα(G) :=

∑∞
i=0 αiWi is an effective topological mask or graph RPE

(centre right). Mα(G) can be efficiently approximated using graph random features (centre top),
which perform importance sampling of halting random walks. The feature ϕ̂G(vi) is only nonzero at
entries visited by the ensemble of walks beginning at vi. In Thm. 3.2, we prove that the number of
such entries is O(1) whilst still accurately estimating Mα(W)ij with high probability, so GRFs are
sparse. This unlocks O(N) topological masking. Note that ϕ̂G(vi)⊤ϕ̂G(vj) is only nonzero if the
features are nonzero at some of the same coordinates, which happens if their respective ensembles of
walks ‘hit’. This incorporates a strong structural inductive bias. The equations on the right formalise
our method mathematically.

between pairs of input nodes, provide an effective RPE mechanism for transformers. They capture
the topological relationship between queries and keys. Using graph features, we can implement this
implicitly, without needing to actually materialise the mask matrix. Replacing these dense features
by graph random features, a sparse approximation, we can reduce the cost of implicit masking to
O(N) with low performance loss. Eq. 11 gives a remarkably tight bound on the quality of mask
estimation. Physically, masking with GRFs means that nodes vi and vj only attend to one another
if members of their respective ensembles of random walks hit, such that they visit some of the same
nodes. This incorporates a strong structural inductive bias from G. It upweights crucial interactions
between nearby nodes, whilst also sampling longer-range attention with lower probability.

Algorithm 1 O(N) topologically-masked attention for general graphs

Input: query matrix Q ∈ RN×d, key matrix K ∈ RN×d, value matrix V ∈ RN×d, graph G with
weighted adjacency matrix W ∈ RN×N , learnable mask parameters (fi)imax

i=0, number of random
walks to sample n ∈ N, query/key feature map ϕ(·) : Rd → Rm.
Output: masked attention AttLR,M̂(Q,K,V,G) in O(N) time.

1: Simulate n terminating random walks {ω(i)
k }n

k=1 out of every node vi ∈ N
2: Compute sparse graph random features {ϕ̂G(vi)}vi∈N ⊂ RN using the walks {ω(i)

k }n
k=1 and

learnable mask parameters (fi)imax
i=0

3: Compute the query and key features {ϕ(qi)}N
i=1, {ϕ(ki)}N

i=1, with ϕ the chosen linear-attention
nonlinearity (e.g. elu(x) + x (Katharopoulos et al., 2020) or a Monte Carlo estimate of softmax
(Choromanski et al., 2020))

4: Combine the query/key features and graph features into a sparse topology-enhanced feature
matrix, Φ̂{Q,K},G := [vec(ϕ({qi,ki})⊗ ϕ̂G(vi))]Ni=1 ∈ RN×Nm

5: Compute low-rank attention with topological masking in O(N) time by

AttLR,M̂(Q,K,V,G) := D−1
(

Φ̂Q,G

(
Φ̂⊤

K,GV
))

, D := Φ̂Q,G

(
Φ̂⊤

K,G1N

)
. (12)

Distributed computation, expressivity and GATs. Alg. 1 is simple to distribute for massive graphs
that cannot be stored on a single machine; to simulate random walks one only needs a node’s im-
mediate neighbours rather than all of G upfront. This desirable property is not shared by masking
algorithms that rely on the fast Fourier transform (Luo et al., 2021; Choromanski et al., 2022). More-
over, our method can distinguish graphs identical under the 1-dimensional Weisfeiler Lehman graph
isomorphism heuristic (with colours replaced by node features) because their adjacency matrices
and hence masks differ. In this sense, GRF transformers are more expressive than standard graph
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neural networks and unmasked transformers, which notoriously fail this test (Morris et al., 2019;
Xu et al., 2019). Finally, we remark that our algorithm can be interpreted as a stochastic extension
of graph attention networks (GATs; Veličković et al., 2018), with a greater focus on linear attention
and scalability. Tokens still attend to a subset of other tokens informed by the topology of G, but
importance sampling random walks permits interactions beyond nearest-neighbour. Incorporating
learnable parameters (fi)imax

i=0 lets us estimate a principled function of W.

4 EXPERIMENTS

In this section, we test our algorithms for topological masking with GRFs. We consider data modal-
ities with different graph topologies: images and point clouds.

4.1 TIME COMPLEXITY

20 23 26 29 212

Number of graph nodes, N
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101

103
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Figure 3: Number of FLOPs vs. number of
graph nodes for softmax attention, linear at-
tention, and linear attention with GRF topo-
logical masking (ours).

For a hardware-agnostic comparison, we first com-
pute the total number of FLOPs for evaluating (i) un-
masked softmax, (ii) unmasked linear and (iii) GRF-
masked linear attention for graphs of different sizes
N . Fig. 3 shows the results. For concreteness we
use 1-dimensional grid graphs, though the theoreti-
cal results in Sec. 3.4 are independent of G (provided
c is upper bounded). We take n = 4 random walkers
per node with termination probability phalt = 0.5.
The latent dimension is d = 8 and the feature size
is m = 8. In the masked case we show the mean
number of FLOPs over 10 seeds since GRF sparsity
is itself a random variable. As anticipated, the time
complexity of our mechanism is O(N); there is a
constant multiplicative cost for topological masking.
We clearly improve upon the time complexity of O(N2) softmax attention.

4.2 VITS: GRID GRAPHS AND IMAGE DATA

Next, we use our topological masking algorithm to improve the vision transformer (ViT; Doso-
vitskiy et al., 2020). The underlying graph G is a square grid of size num_x_patches ×
num_y_patches, with nodes connected by an edge if they are neighbours in x or y. Since the
graph is fixed, random walks can be pre-computed and frozen for each attention head and layer be-
fore training and inference. Full architectural and training details are in App. C. All our ViT models
also endow tokens with learned additive absolute position embeddings.
Table 1 shows the final test accuracies for ImageNet (Deng et al., 2009), iNaturalist2021 (Horn
et al., 2018) and Places365 (Zhou et al., 2018). For the slow (superlinear) variants, we include (i)
unmasked softmax and (ii) Toeplitz-masked linear (Choromanski et al., 2022) attention. Toeplitz
can only be used for this specific, structured graph topology. We also include (iii) Mα(G)-masked
linear, which takes an explicit power series in W (Eq. 4) to directly modulate the N ×N attention
matrix. This is equal to our Monte Carlo GRFs algorithm in the n → ∞ limit, so it indicates the
asymptotic performance of GRFs with very many random walkers. For the fast (linear) variants,

Variant Time comp. ImageNet iNaturalist2021 Places365 (Small)
1M 2.7M 1.8M

SL
O

W

Unmasked softmax O(N2) 0.741 0.699 0.567
Toeplitz-masked linear O(N log N) 0.733 0.674 0.550
Mα(G)-masked linear O(N2) 0.741 0.692 0.551

FA
ST Unmasked linear O(N) 0.693 0.667 0.543

GRF-masked linear O(N) 0.730 0.689 0.548

Table 1: Final transformer test accuracies across attention masking variants and datasets. Our algo-
rithms are shown in bold. Topological masking with GRFs is the bestO(N) mechanism, matching
or beating more expensive alternatives.
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we include (iv) unmasked linear and (v) GRF-masked linear attention. Our algorithm gives strong
improvements above the unmasked baseline, by +3.7%, +2.2% and +0.5% respectively. Remark-
ably, it is competitive with much more expensive variants: GRFs often match or beat Toeplitz. For
ImageNet and iNaturalist2021, it even substantially narrows the gap with O(N2) softmax.

4.3 ABLATION STUDIES

In App. C.2, we perform ablation studies for the ViT experiments. We find that predictive perfor-
mance improves with the number of walkers n because the accuracy of the Monte Carlo estimate
M̂α(G) increases. Moreover, importance sampling walks is crucial; if we fail to upweight improb-
able walks, the gains vanish. Lastly, the inductive bias from parameterising Mα(G) as a function
of W is key. Fully learnable graph features of the same dimensionality N , an impractical and
expensive alternative to our method, give much smaller gains.

4.4 PCTS: PREDICTING PARTICLE DYNAMICS FOR ROBOTICS

As a final task, we use our algorithm to model high-density visual particle dynamics (HD-VPD;
Whitney et al., 2023; 2024), predicting the physical evolution of scenes involving a bi-manual robot
using a point cloud transformer (PCT). Images from a pair of cameras are unprojected to a set of
3D particles. Their interactions, conditioned on specific robot actions, are modelled by a dynamics
network. We predict updates to the latent point cloud, render the result to an image with a condi-
tional NeRF (Mildenhall et al., 2021), and train end-to-end with video prediction loss. Such learned
dynamics models are attracting growing interest in robotics as a more flexible alternative to physical
simulators, but to scale to the massive point clouds needed for detailed predictions efficiency and
effective structural inductive biases are key.

0 1 2 3 4 5 6 7
Rollout timestep
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Accuracy vs. rollout timestep
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Figure 4: Accuracy comparison.
Structural similarity index measure
(SSIM) between ground truth camera
frames and predictive NeRF render-
ings after 100k training steps, plot-
ted against rollout timestep. Higher
is better. GRFs improve the accuracy
of dynamics predictions.

For the dynamics network, we use an Interlacer: a PCT
which alternates unmasked linear attention and message
passing-style updates between neighbouring particles (Whit-
ney et al., 2024). This architecture is twice as fast as GNNs
with the same prediction quality, and can handle 4× bigger
point clouds. To test the ability of GRFs to efficiently cap-
ture local topological structure, we replace message passing
by GRF-masked linear attention, taking query/key features
ϕ(·) = ReLU(·). Implementation details for HD-VPD, in-
cluding the robotic arm and camera configurations, are the
same as reported by Whitney et al. (2024); see App. C.3 for
discussion. To disambiguate, we will refer to our model as
the GRF Interlacer and Whitney et al.’s as the message pass-
ing (MP) Interlacer.

In contrast to our previous experiments, for HD-VPD the
underlying graph G is no longer fixed so walks cannot be
pre-computed. Instead, we construct them on the fly, using
an approximate k-nearest neighbours solver to get adjacency
lists of length k = 3 for each node. We use repelling random walks for variance reduction (Reid
et al., 2024a), sampling 3 hops. For easy integration with existing Interlacer code, we use asymmetric
GRFs (App. D; Reid et al., 2024b). We consider point clouds with N = 32768 particles, which is
too many to explicitly instantiate A or M in memory.

Fig. 5 shows example NeRF renderings of test set predictive dynamics for four rollouts. Since the
model is deterministic, predictions blur with long time horizons. Incorporating a diffusion head
(Song et al., 2020) is left to future work. Fig. 4 shows predicted video frame accuracy (image
SSIM) vs. rollout timestep for each model. GRFs outperform the vanilla transformer and MP Inter-
lacer baselines, modelling the particle dynamics more faithfully. We include examples of predictive
videos in the supplementary material.

In addition to modelling cloud dynamics more accurately, our method is faster. While the MP
Interlacer trains at 0.925 steps/second, the GRFs Interlacer trains at 0.982 steps/second. This makes
it faster by 6% – a gain our method enjoys because it avoids expensive GNN-style message passing.
The unmasked baseline, which struggles to capture local structure so gives poor accuracy, trains at
1.49 steps/second.
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Groundtruth
video frame

GRF Interlacer
prediction

Groundtruth
video frame

GRF Interlacer
prediction

Timestep t t + ∆t t + 2∆t t t + ∆t t + 2∆t

Figure 5: Rendered rollouts. NeRF renderings of the predictive dynamics of a bimanual Kuka robot,
conditioned on the initial scene and sequence of robot actions. We show four tasks: using a dustpan
and brush, lifting a can, moving a green block, and dropping a can. GRF Interlacers model point
cloud dynamics more accurately, so the predicted frame rendings are closer to the ground truth.

5 CONCLUSION

We have presented the first linear algorithm for transformer topological masking on general graphs,
based on sampling random walks. It uses graph random features, for which we have proved the
first known concentration inequalities and sparsity guarantees. Our algorithm brings strong perfor-
mance gains across data modalities, including on massive point clouds with > 30k particles for
which computational efficiency is essential. Future work might include improving hardware and
libraries for high-dimensional sparse linear algebra to fully benefit from the guaranteed complex-
ity improvements, and investigating whether dimensionality reduction techniques like the Johnson-
Lindenstrauss transform (Dasgupta et al., 2010) can be applied to GRFs for further speedups.
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6 ETHICS AND REPRODUCIBILITY

Ethics statement: Our work is foundational with no immediate ethical concerns apparent to us.
However, increases in scalability provided by improvements to efficient transformers could exacer-
bate existing and incipient risks of machine learning, from bad actors or as unintended consequences.

Reproducibility statement: We have made every effort to ensure the work’s reproducibility. The
core algorithm is presented clearly in Alg. 1. Theoretical results are proved with accompanying
assumptions in Sec. 3.4 and App. A.2. Proof sketches are also included for clarity. Apart from
the robotics dataset, all datasets are standard and freely available online. Exhaustive experimental
details about the training and architectures are reported in App. C; see especially Table 2.
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Antoine Liutkus, Ondřej Cıfka, Shih-Lun Wu, Umut Simsekli, Yi-Hsuan Yang, and Gael Richard.
Relative positional encoding for transformers with linear complexity. In International Confer-
ence on Machine Learning, pages 7067–7079. PMLR, 2021. URL https://doi.org/10.
48550/arXiv.2105.08399.

I Loshchilov. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017. URL
https://doi.org/10.48550/arXiv.1711.05101.

Shengjie Luo, Shanda Li, Tianle Cai, Di He, Dinglan Peng, Shuxin Zheng, Guolin Ke, Liwei Wang,
and Tie-Yan Liu. Stable, fast and accurate: Kernelized attention with relative positional encoding.
Advances in Neural Information Processing Systems, 34:22795–22807, 2021. URL https:
//doi.org/10.48550/arXiv.2106.12566.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications
of the ACM, 65(1):99–106, 2021. URL https://doi.org/10.48550/arXiv.2003.
08934.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
In Proceedings of the AAAI conference on artificial intelligence, volume 33, pages 4602–4609,
2019. URL https://doi.org/10.48550/arXiv.1810.02244.

Isaac Reid, Krzysztof Choromanski, and Adrian Weller. Quasi-monte carlo graph random features.
arXiv preprint arXiv:2305.12470, 2023a. URL https://doi.org/10.48550/arXiv.
2305.12470.

13

https://www.gatsby.ucl.ac.uk/~gretton/coursefiles/lecture4_introToRKHS.pdf
https://www.gatsby.ucl.ac.uk/~gretton/coursefiles/lecture4_introToRKHS.pdf
http://openaccess.thecvf.com/content_cvpr_2018/html/Van_Horn_The_INaturalist_Species_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Van_Horn_The_INaturalist_Species_CVPR_2018_paper.html
https://doi.org/10.48550/arXiv.2006.16236
https://doi.org/10.48550/arXiv.2006.16236
https://doi.org/10.48550/arXiv.1705.06950
https://doi.org/10.48550/arXiv.1705.06950
https://doi.org/10.48550/arXiv.1403.3148
https://www.ml.cmu.edu/research/dap-papers/kondor-diffusion-kernels.pdf
https://www.ml.cmu.edu/research/dap-papers/kondor-diffusion-kernels.pdf
https://dl.acm.org/doi/10.5555/3666122.3666168
https://dl.acm.org/doi/10.5555/3666122.3666168
https://doi.org/10.48550/arXiv.2105.08399
https://doi.org/10.48550/arXiv.2105.08399
https://doi.org/10.48550/arXiv.1711.05101
https://doi.org/10.48550/arXiv.2106.12566
https://doi.org/10.48550/arXiv.2106.12566
https://doi.org/10.48550/arXiv.2003.08934
https://doi.org/10.48550/arXiv.2003.08934
https://doi.org/10.48550/arXiv.1810.02244
https://doi.org/10.48550/arXiv.2305.12470
https://doi.org/10.48550/arXiv.2305.12470


Published as a conference paper at ICLR 2025

Isaac Reid, Krzysztof Marcin Choromanski, Valerii Likhosherstov, and Adrian Weller. Simplex
random features. In International Conference on Machine Learning, pages 28864–28888. PMLR,
2023b. URL https://doi.org/10.48550/arXiv.2301.13856.

Isaac Reid, Eli Berger, Krzysztof Choromanski, and Adrian Weller. Repelling random walks. In
International Conference on Learning Representations, 2024a. URL https://doi.org/10.
48550/arXiv.2310.04854.

Isaac Reid, Krzysztof Choromanski, Eli Berger, and Adrian Weller. General graph random features.
In International Conference on Learning Representations, 2024b. URL https://doi.org/
10.48550/arXiv.2310.04859.

Isaac Reid, Stratis Markou, Krzysztof Choromanski, Richard E Turner, and Adrian Weller. Variance-
reducing couplings for random features: Perspectives from optimal transport. arXiv preprint
arXiv:2405.16541, 2024c. URL https://doi.org/10.48550/arXiv.2405.16541.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
ical image segmentation. In Medical image computing and computer-assisted intervention–
MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceed-
ings, part III 18, pages 234–241. Springer, 2015. URL https://doi.org/10.48550/
arXiv.1505.04597.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position repre-
sentations. arXiv preprint arXiv:1803.02155, 2018. URL https://doi.org/10.48550/
arXiv.1803.02155.

Alexander J Smola and Risi Kondor. Kernels and regularization on graphs. In Learning The-
ory and Kernel Machines: 16th Annual Conference on Learning Theory and 7th Kernel Work-
shop, COLT/Kernel 2003, Washington, DC, USA, August 24-27, 2003. Proceedings, pages 144–
158. Springer, 2003. URL https://people.cs.uchicago.edu/~risi/papers/
SmolaKondor.pdf.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020. URL https://doi.org/10.48550/arXiv.2011.13456.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.
URL https://doi.org/10.48550/arXiv.1706.03762.
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A PROOFS

A.1 PROOF OF LEMMA 3.1

This result was presented by Reid et al. (2024b); a short demonstration is included below for the
reader’s convenience. Observe that

Mα(G)ij :=
∞∑

k=0
αkWk

ij

(1)=
N∑

v=1

∞∑
k=0

αkWk−p
iv Wp

vj

(2)=
N∑

v=1

∞∑
k=0

k∑
p=0

fk−pfpWk−p
iv Wp

vj

(3)=
N∑

v=1

( ∞∑
k1=0

fk1Wk1
iv

)( ∞∑
k2=0

fk2Wk2
jv

)⊤
(4)= ΦGΦ⊤

G

(13)

where ΦG :=
∑∞

k=0 fkWk. Here, step (1) splits the Wk into a product of Wk−p and Wp with
p ∈ N; step (2) replaces αk by the convolution αk =:

∑k
p=0 fpfk−p; step (3) changes the summation

indices; step (4) arrives at the desired form.

Convergence. The brief analysis above has made some implicit assumptions. First, in the
definition Mα(G) :=

∑∞
k=0 αkWk, we have taken that the Taylor series converges. This

occurs if all the eigenvalues of W lie within the series’ radius of convergence, meaning
ρ(W) < (lim supn→∞

n
√
|αn|)−1. Here, ρ(W) := max{|λ1|, ..., |λN |} denotes the spectral ra-

dius. This is a common problem in the graph node kernel literature. It is typically ensured by
regularising W to control its spectral radius (Chung, 1997). We have also taken that Mα(G) is pos-
itive definite, meaning all its eigenvalues are greater than than 0. This can be ensured e.g. by taking
α0 > 0, again regularising W to control its spectral radius, and appealing to Weyl’s perturbation
inequality (Bai et al., 2000).

We have also assumed that (f)∞
i=0 exists which satisfies the discrete convolution relation, and that

the Taylor series ΦG =
∑∞

i=0 fiWi also converges. Recall that

(1− z) 1
2 =

∞∑
n=0

(−1)n

( 1
2
n

)
zn, (14)

which is well-known to converge if ∥z∥ ≤ 1. Letting z = 1−Mα(G),

Mα(G) 1
2 =

∞∑
n=0

(−1)n

( 1
2
n

)
(1−Mα(G))n =

∞∑
n=0

(−1)n

( 1
2
n

)
(1−

∞∑
i=0

αiWi)n. (15)

To converge, we require that ρ(1 −Mα(G)) ≤ 1. Since Mα(G) is positive definite, it is sufficient
that ρ(Mα(G)) ≤ 2. Again, this is achieved by regularising W to control its spectral radius and
choosing suitable (αi)∞

i=0. Inspecting Eq. 15, it is clear that Mα(G) 1
2 can be expanded in powers of

W, so we let

Mα(G) 1
2 =

∞∑
k=0

fkWk. (16)

Substituting this back in, we recover the convolution relationship αi =:
∑i

k=0 fkfi−k. One can find
the deconvolution (fk)∞

k=0 given a sequence (αi)∞
i=0 using an iterative formula, given in Eq. 6 by

Reid et al. (2024b). We take ΦG =
∑∞

k=0 fkWk, then Mα(G) = ΦGΦ⊤
G since W is symmetric.

The case for implicit kernel learning. We have seen that, to guarantee convergence and positive
definiteness of

∑∞
k=0 αkWk, one must in general control the spectrum of W. This can be achieved

by normalising it by suitably downscaling the weights (Chung, 1997; Reid et al., 2024b), or choosing
(αk)∞

k=0 to stay within the radius of convergence. To avoid a tricky constrained optimisation, we
therefore prefer to instead directly optimise the set of coefficients (fi)imax

i=0, up to some maximum
order imax above which f vanishes. In doing so, we automatically guarantee both convergence
and positive definiteness: the learned ΦG must be finite and they implicitly defines a kernel in
feature space (Gretton, 2013). This is why we choose optimise mask parameters in Alg. 1, elegantly
sidestepping any convergence and positive definiteness issues.
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A.2 PROOF OF THM. 3.2 (NOVEL)

The following concentration bounds are new. Referring back to Eq. 10, recall that graph random
features are computed by

ϕ̂G(vi)q := 1
n

n∑
k=1

ψ(ω(i)
k )q, q = 1, ..., N, (17)

where we define the projection vector ψ(·) : Ω→ RN such that

ψ(ω(i)
k )q :=

∑
ωiq∈Ωiq

ω̃(ωiq)flen(ωiq)

p(ωiq) I(ωiq prefix subwalk of ω(i)
k ). (18)

Ωiq is the set of walks between nodes vi and vq; p(ωiq) is the probability of a particular walk
ωiq , known from the sampling mechanism; ω̃(ωiq) is a function that returns the product of weights
of edges traversed by ωiq (Eq. 9); len(ωiq) is the length of ωiq; and f : N → R is a sequence
of a real numbers that determines the graph node kernel to be estimated. Following convention,
we will assume that we sample random walks with geometrically distributed lengths, halting with
probability phalt at each timestep, though in principle different importance sampling schemes are
possible.

Suppose we are to estimate a single entry of the graph node kernel, Mα(G)ij . We do so by taking

M̂αij := ϕ̂G(vi)⊤ϕ̂G(vj) = 1
n2

n∑
k1=1

n∑
k2=1

ψ(ω(i)
k1

)⊤ψ(ω(j)
k2

) (19)

where E(M̂αij) = Mαij since the estimate is unbiased. We sample n independent random walks
starting from every node of the graph.

Let us now consider a single pair of random walks from vi and vj respectively. Denote this by the
random variable

Xk := (ω(i)
k , ω

(j)
k ) ∈ Ω× Ω, (20)

where n such random variables {Xk}n
k=1 are used in total. Suppose we modify Xk. Under mild

assumptions, we can prove that the change in the estimator |∆M̂αij | is bounded, which will enable
us to use derive concentration inequalities.

This can be understood as follows. To begin, we will bound the L1-norm of ψ(ω(i)
k ). Observe that

∥ψ(ω(i)
k )∥1 ≤ max

ω
(i)
k

∈Ω

∑
ω p.s. ω

(i)
k

∣∣∣∣ ω̃(ω)flen(ω)

p(ω)

∣∣∣∣ ≤ ∞∑
k=0
|fk|

(
max

vi,vj∈N

|Wij |di

1− phalt

)k

=: c, (21)

which corresponds to the case of an infinite length walk that happens almost never. Here, ω p.s. ω(i)
k

means that ω is a ‘prefix subwalk’ of ω(i)
k , so the first len(ω) nodes of ω(i)

k are exactly the nodes of
ω.

Suppose that c is finite. This can be guaranteed for bounded f by normalisation of W, multiplying
by a scalar so that |maxvi,vj∈N

Wijdi

1−p | < 1. More pragmatically, it can be achieved by stipulating
that there exists some integer imax ∈ N such that fi = 0 ∀ i > imax, so we only consider walks up to
a certain length. This is a natural choice in experiments since we want to keep the set of learnable
parameters finite. It also coincides with the intuition that very long walks should not reflect the
relationship between the nodes of a graph of finite size.

We have seen that 0 < ∥ψ(ω(i))
k ∥1 ≤ c. It follows that−c2 ≤ ψ(ω(i)

k1
)⊤ψ(ω(j)

k2
) ≤ c2 ∀ (k1, k2, i, j),

whereupon the change in M̂αij if we modify Xk obeys

|∆M̂αij | ≤ 22n− 1
n2 c2. (22)

With straightforward application of McDiarmid’s inequality (Doob, 1940), it follows that

Pr
(
|ϕ̂G(vi)⊤ϕ̂G(vj)−Mαij | > t

)
≤ 2 exp

(
− t2n3

2(2n− 1)2c4

)
, (23)
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completing the proof.

As noted in the main text, this is a remarkably general and powerful result. It is the first known
concentration inequality for GRFs.

B EXTENDED DISCUSSION ON RELATED WORK

In this appendix, we give a detailed explanation of the relationship to previous work.

1. Stochastic position encoding (SPE) (Liutkus et al., 2021). To our knowledge, this is the earliest
RPE strategy compatible with O(N) transformers, incorporating information about the ‘lag’
between tokens in the linear attention setting by drawing samples from random processes with a
prescribed covariance structure. The time complexity isO(N) but the method is only applicable
to sequence data, i.e. the very special case that G is a 1-dimensional grid.

2. Toeplitz masks and the fast Fourier transform (FFT) (Luo et al., 2021). Again consid-
ering sequence data, suppose that RPE between a query qi and a key kj is impemented by
adding a bias term bj−i to the dot product before exponentiating. Then the corresponding mask
Mij = ebj−i is Toeplitz (constant on all diagonals). From numerical linear algebra, multiplying
a Toeplitz matrix and a vector can be achieved with O(N logN) time complexity rather than
O(N2), using the FFT. This is subquadratic, though not linear, and again only specific G are
considered.

3. Graphormer (Ying et al., 2021). In this paper, positional encodings based on the shortest
path distances between the nodes of the graph (spatial encoding) and their respective degrees
(centrality encoding) are seen to substantially improve transformer performance, closing the
gap with graph neural networks. There is no attempt to incorporate these techniques with linear
attention, but the paper provides strong evidence of the effectiveness of graph-based attention
modulation (topological masking).

4. Block Toeplitz matrices and differential equations on graphs (Choromanski et al., 2022).
This paper proves that subquadratic matrix-vector multiplication is sufficient for masking to be
applied efficiently, and suggests a number of algorithms to achieve this in special cases.

• Block Toeplitz matrices. This method extends the work of Luo et al. (2021) to show that
the analogous mask on a more general d-dimensional grid is d-level block Toeplitz. Hence,
this mask parameterisation also supportsO(N logN) masking, but now for a slightly more
general class of graphs.

• Affine mappings on forests. If G is a forest and Mij = exp(τ(dist(vi, vj))), where
dist(vi, vj) is the shortest path distance between nodes vi and vj and τ is an affine map-
ping, then topological masking can be implemented inO(N). The algorithm uses dynamic
programming techniques for rooted trees. Notwithstanding its speed, the flexibility of this
parameterisation is limited and only particular topologies can be treated.

• Heat kernels on hypercubes. Kondor and Lafferty (2002) derived a closed form for the
heat kernel on a hypercube, which also turns out give a Toeplitz mask that can be applied
in O(N logN). This is a special instantiation of our power series masks Mα(W) for a
specific choice of G. The authors did not empirically test heat kernels; we found them to
perform very poorly compared to our more general, faster method.

• Random walk graph node kernels. Here, the authors define an ad-hoc graph kernel by tak-
ing the dot product between two ‘frequency vectors’, recording the nodes visited by the
random walks beginning at the two nodes of interest. This method is the closest to our
approach, but with some crucial differences: (i) we use importance sampling of random
walks, which we find to be crucial for good performance (see App. C); (ii) we use learn-
able weights that depend of the length of random walk, permitting flexible upweighting
or downweighting of longer- and shorter-range interactions; (iii) our method provides a
Monte Carlo estimate of a learnable function of a weighted adjacency matrix, which en-
joys certain regularisation properties (Reid et al., 2024b). More importantly, we are able to
derive strong concentration bounds that prove that our method is O(N), whereas Choro-
manski et al. (2022) do not explicitly guarantee any time complexities.

5. Centrality degree encoding (Chen et al., 2024). This paper takes the mask Mij =
sin( π

4 [z(di)+z(dj)]), where d{i,j} is the degree of node v{i,j} and z : N→ (0, 1) is a learnable
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ImageNet iNaturalist2021 Places365 (Small)
1M 2.7M 1.8M

Num. layers 12 12 12
Num. heads 12 12 12

Num. patches 16 × 16 16 × 16 16 × 16
Hidden size 768 768 768
MLP dim. 3072 3072 3072
Optimiser Adam Adam Adam

Epochs 90 5 5
Base learning rate 3 × 10−3 3 × 10−3 3 × 10−3

Final learning rate 1 × 10−5 1 × 10−5 1 × 10−5

Learning rate schedule Linear warmup (104 steps), constant, cosine decay
Batch size 4096 64 64

ϕ(·) ReLU(·) ReLU(·) ReLU(·)
Pretrained? ✗ ✓ ✓
Num. walks 100 20 20

phalt 0.1 0.1 0.1
Max. walk length (imax) 100 10 10

Table 2: Architecture, hyperparameters and training details for ViT experiments.

function thereof. This can be implemented with linear transformers on general graphs in O(N)
time complexity, but since it is completely insensitive to the relative positions of the nodes in
the graph it cannot be considered a general topological masking mechanism.

6. Kernel decomposition linear graph transformer (KDLGT; Wu et al.) This paper also at-
tempts to efficiently incorporate topological information into graph transformers by defining a
graph node kernel with a low-rank decomposition. It is based off a ‘structure extractor’ for a
subgraph centred at each respective node or the ‘shortest anchor path distance’. However, bias
is incorporated as an additive term, rather multiplicatively which is our chief goal (Eq. 8).

7. Graph attention networks (Veličković et al., 2018). This seminal work incorporates masked
self-attention into graph neural networks, with each node attending only to its neighbours. The
focus is on developing a convolution-style neural network for graph-structured data rather than
on efficient masking of linear attention transformers. Our mask parameterisation is more general
than this hard nearest-neighbours example, but shares the finding that modulating attention by
local topological structure boosts performance.

C FURTHER EXPERIMENTS AND DETAILS

Here, we include extra experiments and details too long for the main text.

C.1 ARCHITECTURES, HYPERPARAMETERS AND TRAINING DETAILS

Table 2 gives details for the ViT experiments.

C.2 VIT ABLATIONS

Here, we run extra experiments to further evidence the findings reported in the main text. Unless
explicitly stated, architectures and training details are as reported in Table 2.

Number of walkers n. We construct GRFs using {1, 10, 100, 1000} walkers with a termination
probability phalt = 0.5, retraining from scratch using the respective topological masks. See Fig. 6.
Larger n reduces the mask variance and improves predictive performance, but also makes the fea-
tures {ϕ̂G(vi)}vi∈N less sparse so increases computational cost. Since the estimator is unbiased,
the n → ∞ limit gives dense features {ϕG(vi)}vi∈N whose dot product is exactly a Taylor mask
Mα(G).

Importance sampling. The crux of our approach is modulating attention by an unbiased Monte
Carlo approximation of a function of a weighted adjacency matrix W. Using GRFs, this involves
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sampling random walks which we reweight by (i) their probability under the sampling mechanism,
(ii) the product of traversed edge weights ω̃(ω), and (iii) a learnable function f (see Eq. 10). To
investigate the importance of this principled sampling mechanism, we ablate (i) and (ii) and compare
with an ad-hoc empirical random walk kernel defined by the features

ϕad-hoc(vi)q := 1
n

n∑
k=1

∑
ωiq∈Ωiq

flen(ωiq)I(ωiq prefix subwalk of ω(i)
k ), q = 1, ..., N. (24)

Eq. 24 still simulates random walks and records their destinations, giving an empirical measure of
the overlap between respective nodes’ neighborhoods. However, in absence of dependence on ω̃(ω)
and p(ω) this cannot be interpreted as a MC estimate of a function of W. This is similar to the
approach employed by Choromanski et al. (2022) but with extra learnability via f .

Comparing ViT performance with n = 100 random walks and phalt = 0.5, the results are striking;
see Table 3. In contrast to our method, the mask defined by Eq. 24 is worse than the unmasked base-
line. This shows the crucial importance of the theory in Sec. 3.4. Intuitively, without upweighting
long, improbable walks by p(ω)−1 it is difficult to capture long-range dependencies in the topologi-
cal mask.

Fully learnable features. As a final check, we endow each graph with a fully learnable, dense
N -dimensional feature ϕdense, learned(vi) ∈ RN , relaxing the parameterisation as a function of a
weighted adjacency matrix Mα(G). This uses many more parameters and is O(N2) rather than
O(N), but it technically includes GRFs as a special case. In making this choice we have removed
all structural inductive bias from G, allowing the model to implicitly learn a masking kernel without
any constraints (except feature dimension). The model performs badly, providing only a very slight
improvement over the unmasked linear baseline. See Table 3.

Figure 6: Final test accuracy vs. number of
walkers n. Monte Carlo mask variance drops
with the number of walks so predictions im-
prove.
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Table 3: Ablation studies. Importance sam-
pling of random walks and mask parameteri-
sation as a function of W are crucial for good
performance.

Variant Test acc.

GRF-masked 0.730
Unmasked 0.693

Ad-hoc masked (Eq. 24) 0.689
Fully learnable features 0.696
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Figure 7: Time complexity scaling wrt
number of walkers n.

Time complexity scaling with number of walkers.
Readers may also be interested in how the total number of
FLOPs scales with the number of walkers n, for a given
graph G and termination probability phalt. There are two
main contributions to consider. First, one must sample the
random walks, the cost of which is O(n). This is done
once at the start of training, so is not a big consideration
in practice. Second, the number of walks determines the
sparsity of the GRF, and therefore the time complexity
of implicit masking via Eq. 7. We have see that this is
at most O(n), but the details will vary depending on the
graph topology (see Lemma 3.3). Fig. 7 gives an exam-
ple for a 1D grid with n = 64, taking phalt = 0.5 and
d = m = 8. It reflects the behaviour described above.

Linear attention variant. As a brief note, our topological masking algorithm is compatible with
different choices for the nonlinearity ϕ(·). In the text we have generally taken ϕ(·) = ReLU(·) so
that m = d, but other choices are possible. For instance, one could use a randomised mapping that
approximates the softmax kernel (Choromanski et al., 2020; Likhosherstov et al., 2024), which is
commonly referred to as the Performer.

To demonstrate, we replace the ReLU features by FAVOR+ Monte Carlo attention approximation,
considering the same ViT architecture and training as reported in Sec. 4 (see Table 2). For ImageNet,
the unmasked Performer achieves a test accuracy of 0.693. Meanwhile, the GRF-masked performer
achieves a test accuracy of 0.734 – a 3.9% absolute improvement. This shows how Alg. 1 can be
expected to provide gains across a range of linear attention mechanisms.

C.3 HD-VPD EXPERIMENTAL DETAILS

Here, we describe the high density visual particle dynamics (HD-VPD) experiment from Sec. 4
in more detail. The setup closely follows that of (Whitney et al., 2024), to which we direct the
interested reader for an exhaustive information about hardware and modelling techniques. We will
provide a brief overview for convenience.

Dynamics modelling as video prediction. The HD-VPD stack involves three steps: (1) encode
the input images as 3D point clouds; (2) predict updates to the point clouds, conditioned on robot
actions; (3) render the predicted new state into an image. We train end-to-end using video prediction
loss. In more detail:

1. Encode the input images. The model receives two RGB-D (colour channels plus depth) images
at times t − 1, t − 2. Each RGB image is encoded into per-pixel features using a U-Net (Ron-
neberger et al., 2015), and unprojected using known camera intrinsics and extrinsics to a point
cloud (xi,fi)

Npixels
i=1 with x ∈ R3 and f ∈ R16. For every timestep, the particles across different

cameras are merged and subsampled uniformly at random to get N = 32768. The robot actions
at timesteps {t− 2, t− 1, t}, representing the robot joints and where they plan to move, are also
encoded as kinematic particles.

2. Predict the point cloud dynamics. With an Interlacer (see below), use the point clouds and
kinematic particles to predict (∆xi,∆fi)N

i=1, and hence the updated state (xt−1
i +∆xi,f

t−1
i +

∆fi)N
i=1.

3. Render the new state to an image. Use a ray-based renderer similar to Point-NeRF (Xu et al.,
2022) to render an image for the updated point cloud.

The dynamics model can be recursively applied to make predictions multiple rollout timesteps into
the future. To train, we sample a subset of rays to render at each timestep and compute the L2 loss
between the predicted and observed RGB values.

Interlacers as PCTs. The Interlacer is a type of point cloud transformer (PCT) designed to scale
to tens of thousands of particles. It alternates linear-attention transformer layers that capture global
dependencies between tokens with local neighbour-attender layers that model fine-grained geomet-
ric structure (see Fig. 3 by Whitney et al. (2024)). This is reported to outcompete both graph neural
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networks and vanilla linear-attention transformers. For the neighbour-attender, the authors use a
message passing-type algorithm that updates the features of a subset of anchor particles depending
on the k-nearest neighbours’ position and feature vectors, and then updates the remaining particles
depending on their closest anchor. In Sec. 4, we show that this can be replaced by GRF-masked
linear attention. This also captures local structure and obviates expensive message passing.

Training and architecture details. This exactly follows App. E by Whitney et al. (2024), apart
from:

1. We average over 5 seeds, discarding one where training does not converge.

2. For our algorithm, we use asymmetric GRFs. (Sec. D). We use n = 33 = 27 repelling random
walks (Reid et al., 2023b). Instead of terminating, we sample 3 hops deterministically since the
computational bottleneck is finding the k-nearest neighbours list rather than sampling lengths
once it has been computed. We take ϕ(·) = ReLU(·) and compute GRF-masked attention with
a single head, projecting the queries and keys with a dense layer.

3. To construct G, we find k = 3 neighbours for every node. This is done on the fly since the
neighbours can change at every timestep.

4. For Fig. 4, we train for 100k steps, using a learning rate of 3×10−4 until step 1000 then 1×10−4

until step 100k.

To enumerate some other important details: all models are trained with a batch size of 16; we use
the AdamW optimiser (Loshchilov, 2017) with weight decay 10−3, clipping the gradient norm to
0.01; models are trained with 6 step rollouts, with losses computed on 128 sampled rays; ∆xi are
constrained to [−0.25, 0.25] by a scaled tanh nonlinearity so particles do not move more than 25cm
per timestep. For the rendering, like Whitney et al. (2024) we use four concentric annular kernels
of radii [0, 0.01, 0.02, 0.05] with bandwidths [0.01, 0.01, 0.01, 0.05], approximated using 16 nearest
neighbours. The near plane is 0.1m and the far plane is 2m, with the background set to solid white.

C.4 VIVIT: TOPOLOGICAL MASKING FOR VIDEO DATA

Table 4: ViViT test accuracies on the
Kinetics benchmark. Topological mask-
ing with GRFs boosts performance.

VARIANT TEST ACC.

SOFTMAX 0.754
SOFTMAX + GRFS 0.758

Here, we present preliminary results for incorporating
topological masking with graph random features into
video vision transformers (ViViT; Arnab et al., 2021).
Prompted by the original paper, we use a factorised en-
coder, where the spatial encoder follows the ViT archi-
tecture from earlier in the paper (see Sec. 4 and App. C.1)
with patch size 16×16×2. The final index mixes pairs of
successive frames. The temporal encoder, which subse-
quently models interactions between the frame-level rep-
resentations, also follows this architecture but with 4 layers instead of 12. We train for 30 epochs
using the Adam optimiser, with base learning rate 10−1 and final learning rate 10−4. We take the
same schedule as in Table 2. We train and evaluate on the Kinetics 400 benchmark (Kay et al.,
2017). Table 4 shows the results for (i) unmasked softmax attention and (ii) softmax attention with
GRFs. Topological masking boosts predictive performance by +0.4%. To our knowledge, this is
the first application of topological masking to the video modality.

D ASYMMETRIC GRAPH RANDOM FEATURES

In this Appendix, we present a variant of our core topological masking algorithm that relaxes the
assumption that the function f for the query and key ensembles of walkers are identical, instead
using asymmetric graph random features. These are believed (but not proved) to generally give
higher variance mask estimates (Reid et al., 2024b), but making a judicious choice can also bring
computational and implementation benefits. Using asymmetric GRFs for topological masking is
also a novel contribution of this paper. In Sec. 4, it is found to be a convenient choice for the
Interlacer (Whitney et al., 2023) because it can be straightforwardly swapped into existing code.
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Asymmetric GRFs. It is straightforward to see that Eq. 13 of App. A.1 generalises to

Mα(G)ij =
N∑

v=1

( ∞∑
k1=0

f
(1)
k1

Wk1
iv

)( ∞∑
k2=0

f
(2)
k2

Wk2
jv

)
(25)

if the discrete convolution
k∑

p=0
f (1)

p f
(2)
k−p = αk (26)

holds. We do not necessarily require that f (1) = f (2); this is a special case. Another special case
is f (2)

p = {1 if p = 0, 0 otherwise}, whereupon we need f (1)
p = αp ∀ p. Sampling GRFs in this

manner will still give an unbiased estimate of Mα(G)ij , but with different concentration properties.

Computational benefits. Supposing that f (2)
p = {1 if p = 0, 0 otherwise}, ϕ(2)

G (vi)n = I(i = n),
a one-hot vector only nonzero at the coordinate corresponding to vi. In other words, we do not
need to simulate any random walks to obtain GRFs for the keys; Φ(2)

G = IN with IN ∈ RN×N the
identity matrix. It follows that

M̂α(G) = Φ(1)
G Φ(2)

G
⊤

= Φ(1)
G =: [ϕ(1)

G (vi)]Ni=1. (27)

But ϕ(1)(vi) is only nonzero at nodes visited by the ensemble of walkers beginning at vi. This
makes masked attention straightforward to efficiently compute, obviating the outer products and
vectorisation. Simply,

(A⊙ M̂α(G))V = (A⊙Φ(1)
G )V =

 N∑
j=1

Aijϕ
(1)
G (vi)jvj

N

i=1

(28)

where Aij = exp(q⊤
i kj) (softmax) or Aij = q⊤

i kj (linear) and {vj}N
j=1 are the value vectors.

Since ϕ(1)
G (vi) is sparse, the sum in Eq. 28 is computed in constant time so attention is computed

in O(N). Even more explicitly, for an ensemble of walks {ω(i)
k }vi∈N , k∈[[1,n]], we can rewrite the

above as  n∑
k=1

∑
ω p.s. ω

(i)
k

Aiω[−1]
ω̃(ω)flen(ω)

p(ω) vω[−1]


N

i=1

(29)

where ω[−1] stands for the final node of the walk ω and p.s. means ‘prefix subwalk’ (see App. A.2).
The number of FLOPs to compute attention for node vi depends on the length of all the geometrically
distributed walks beginning at node vi, but we have seen that this is independent of graph size
(Sec. 3.4). Computing the entire matrix is only O(N). We give pseudocode for this approach in
Alg. 2.

Benefits and limitations of asymmetric GRFs. The chief benefit of asymmetric GRFs is that Eq. 29
makes efficient masked attention very straightforward to compute, without relying on sparse matrix
operations that may not be well-optimised in machine learning libraries. We use it for the HD-
VPD experiments because it can be easily integrated with the existing code: instead of finding each
node’s (approximate) k-nearest neighbours and implementing the complicated message passing-type
algorithm by Whitney et al. (2024), we find the 3-hop neighbourhood and straightforwardly compute
weighted attention with a learnable function of walk length. The drawback is that the variance of the
mask estimate with asymmetric GRFs tends to be greater, though proving this is an open problem.

E ADDENDUM: ADDITIONAL GRF RESULTS

Thm. 3.2 provides a novel bound on the GRF estimator concentration, specifying the number of
walkers n and termination probability phalt needed to ensure sharp mask estimates with high proba-
bility. Under mild assumptions on graph (namely, that c does not change as N grows), this can be
used to upper bound GRF sparsity and thus the time complexity of the algorithm. The bound de-
rived in Lemma 3.3 implicitly assumes the worst case that walkers never backtrack and do not visit
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Algorithm 2 O(N) topological masking with asymmetric GRFs

Input: query matrix Q ∈ RN×d, key matrix K ∈ RN×d, value matrix V ∈ RN×d, graph G with
weighted adjacency matrix W ∈ RN×N , learnable mask parameters {fi}imax

i=0, number of random
walks to sample n ∈ N, query/key feature map ϕ(·) : Rd → Rm.
Output: masked attention AttLR,M̂(Q,K,V,G) in O(N) time, without using sparse linear algebra
libraries.

1: Simulate n terminating random walks {ω(i)
k }n

k=1 out of every node vi ∈ N
2: for vi ∈ N do
3: Initialise output feature, fi ← 0d

4: Initialise attention normalisation, Si ← 0
5: for ω(i) in {ω(i)

k }n
k=1 do

6: for (t, vj) in enumerate(ω(i)) do
7: fi += ϕ(qi)⊤ϕ(kj)× ft × ω̃(ω(i)[:t])

p(ω(i)[:t]) × vj

8: Si += ϕ(qi)⊤ϕ(kj)× ft × ω̃(ω(i)[:t])
p(ω(i)[:t])

9: end for
10: end for
11: Normalise output feature, fi/ = (Si × n)
12: end for
13: Return low-rank attention with topological masking in O(N) time by

AttLR,M̂(Q,K,V,G) = [fi]Ni=1 (30)

any of the same nodes, so in practice how tight this bound is may depend on the particular graph
being considered. In particular, it will tend to be tighter for denser, bigger graphs. Our algorithm is
even more efficient for smaller, sparser graphs. This behaviour, beyond asymptotic time complexity
results, may be of interest to practitioners.

To supplement with some empirical results, we consider using GRFs to estimate the heat kernel
exp(σ2W), where σ ∈ R is a lengthscale parameter and Wij = 1/

√
didj as usual. We consider

Erdős-Rényi graphs, where edges are independent Bernoulli random variables with probability p.

Scaling with graph sparsity. The left pane of Fig. 8 shows the Frobenius norm error on the mask
estimate, ∥M̂ −M∥2/∥M∥2 where M̂ is the estimate, vs. the edge generation probability p. The
number of nodes is N = 100, and we take n = 4 walks per node with σ = 0.5. We average
the results over 100 trials for standard errors. As expected, the approximation error becomes a little
worse for denser graphs, though it remains excellent throughout. The right hand pane of Fig. 8 shows
the RF sparsity (proportion of nonzero entries in Φ̂{Q,K},G) over the same parameters. Again, the
number of nonzero entries grows as graphs become denser because visiting the same node multiple
times is less likely, but GRFs are sparse in every case. We emphasise once more that the bounds still
hold in every case; this is simply a matter of how tight they are.

Scaling with graph size. Fig. 9 performs the same analysis for Erdős-Rényi graphs with fixed edge
probability p = 0.5, now varying the size of the graph N . The approximation error grows slightly
for bigger graphs but soon plateaus, and again remains excellent for all graphs considered. The
GRF sparsity drops because the number of visited nodes is O(1) in every instance, meaning the
proportion on nonzero GRF entries must scale as O(1/N).

We have included this section for the convenience of the interested reader. For more exhaustive
details, we invite them to read the previous works of Reid et al. (2024b) and Choromanski (2023),
which first introduced GRFs and explored their properties.
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Figure 8: GRF approximation quality and sparsity for Erdős-Rényi graphs of different sparsities.
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Figure 9: GRF approximation quality and sparsity for Erdős-Rényi graphs of different sizes.
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