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Abstract

Prior work on continual learning often operate
in a “task-aware” manner, by assuming that the
task boundaries and identifies of the data exam-
ples are known at all times. While in practice,
it is rarely the case that such information are
exposed to the methods (i.e., thus called “task-
free”)–a setting that is relatively underexplored.
Recent attempts on task-free continual learning
build on previous memory replay methods and
focus on developing memory construction and re-
play strategies such that model performance over
previously seen examples can be best retained. In
this paper, looking from a complementary angle,
we propose a novel approach to “edit” memory
examples so that the edited memory can better
retain past performance when they are replayed.
We use gradient updates to edit memory exam-
ples so that they are more likely to be “forgotten”
in the future. Experiments on five benchmark
datasets show the proposed method can be seam-
lessly combined with baselines to significantly im-
prove the performance. Code has been released at
https://github.com/INK-USC/GMED.

1. Introduction
Accumulating past knowledge and adapting to evolving
environments are one of the key traits in human intelli-
gence (McClelland et al., 1995). While contemporary deep
neural networks have achieved impressive results in a range
of machine learning tasks (sometimes at the level of human
performance), they haven’t yet to manifest the ability of con-
tinually learning over evolving data streams (Ratcliff, 1990).
These models are observed to suffer from catastrophic for-
getting (McCloskey & Cohen, 1989; Robins, 1995) when
trained in an online fashion–i.e., performance drop over
previously seen examples during the sequential learning
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process. To this end, continual learning (CL) methods are
developed to alleviate catastrophic forgetting issue when
models are trained on non-stationary data streams (Goodfel-
low et al., 2013; Kirkpatrick et al., 2017).

Most existing work on continual learning pose an assump-
tion that, when models are trained on a stream of tasks
sequentially, the task specifications such as task boundaries
or identities are exposed to the models (i.e., incremental task
assumption). These task-aware CL methods make explicit
use of task information to avoid catastrophic forgetting issue,
including consolidating important parameters on previous
tasks (Kirkpatrick et al., 2017; Zenke et al., 2017; Nguyen
et al., 2018), distilling knowledge from previous tasks (Li
& Hoiem, 2017; Rannen et al., 2017), or separating task-
specific model parameters (Rusu et al., 2016; Serrà et al.,
2018). However, in practice, it is likely the case that the data
comes in a sequential, non-stationary fashion without task
identity or boundary—a setting that is commonly termed as
task-free (online) continual learning (Aljundi et al., 2018).

To tackle this challenging setting, recent attempts on task-
free CL methods have been made (Aljundi et al., 2018;
Zeno et al., 2018; Lee et al., 2020). Regularization and
architecture based approaches rely on inferring task bound-
aries or identities (Aljundi et al., 2018; Lee et al., 2020),
or estimating importance of parameters online (Zeno et al.,
2018) to consolidate or separate model parameters. On the
other as memory-based CL methods have achieved strong
results, which store a small set of previously seen instances
in a fix-sized memory, and utilize them for replay (Robins,
1995; Rolnick et al., 2019) or regularization (Lopez-Paz &
Ranzato, 2017; Chaudhry et al., 2019a).

The core problem in memory-based CL methods is about
how to manage the memory instances and replay them given
the limited computation budget (e.g., number of instances
to update each time) so that the model performance can
be maximally preserved or enhanced. This problem has
been studied mainly from two dimensions in previous work:
1) what instances to include in the memory from the data
stream (Aljundi et al., 2019b; Rebuffi et al., 2017; Chaudhry
et al., 2019b); and 2) which instances in the memory need
to be replay at a certain point (Aljundi et al., 2019a).

In this paper, we provide a new angle to solving the memory
management problem in task-free continual learning and
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study how to make gradient updates on the memory exam-
ples. We develop a novel memory editing algorithm which
are complementary to existing memory replay methods and
data sampling strategies for memory update, and can cope
with them to form different integrated approaches. It is chal-
lenging, as it asks for a principled and sound optimization
objective of editing. Our proposed method, named Gradient-
based Memory EDiting (GMED), edits stored examples
with gradient-based updates so that they are more likely to
be forgotten. Specifically, we estimate the forgetting of a
stored example by its loss increase in the upcoming one
online model update, which is differentiable regarding the
store examples. We then perform gradient ascent on stored
examples so that they are more likely to be forgotten.

Experiments show that our algorithm consistently improves
over baselines on four out of five benchmark datasets un-
der various memory sizes. Our ablation studies show the
proposed editing mechanism outperforms alternative ap-
proaches such as random editing. Notably, our algorithm
can be seamlessly combined with best performing baselines
to further improve performance. The algorithm is general
and can be coped with other models and datasets.

2. Related Works
Task-aware Continual Learning. Most of continual learn-
ing algorithms are studied under “task-aware” settings,
where the model visits a sequence of clearly separated
“tasks”. A great portion of algorithms make explicit use
of task boundaries (Kirkpatrick et al., 2017; Rusu et al.,
2016; Lopez-Paz & Ranzato, 2017), by learning separate
parameters for each task, or discourage changes of param-
eters that are important to old tasks. Existing continual
learning algorithms can be summarized into three cate-
gories: regularization-based, architecture-based and data-
based approaches. Regularization based approaches (Kirk-
patrick et al., 2017; Zenke et al., 2017; Nguyen et al., 2018;
Adel et al., 2020) discourage the change of parameters
that are important to previous data. Architecture-based
approaches (Rusu et al., 2016; Serrà et al., 2018; Li et al.,
2019) allows expansion of model architecture to separate
parameters for previous and current data. Data-based ap-
proaches (Robins, 1995; Shin et al., 2017; Lopez-Paz &
Ranzato, 2017) replay or constrain model updates with real
or synthetic examples.

Task-free Continual Learning. Recently, task-free contin-
ual learning (Aljundi et al., 2018) have drawn increasing
interest, where we do not assume knowledge about task
boundaries. To the best of our knowledge, only a handful
number of regularization based (Zeno et al., 2018; Aljundi
et al., 2018), architecture based (Lee et al., 2020), genera-
tive replay based (Rao et al., 2019) approaches are applica-
ble in the task-free CL setting. Meanwhile, most memory
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Figure 1. Categorization of memory-based methods on Task-free
Continual Learning. Reservoir sampling and Sampling from Mem-
ory are the ways that Experience Replay (ER) uses to construct and
replay memory respectively. In the recent line of works, Gradient
based Sample Selection (GSS) and Hindsight Anchor Learning
(HAL) explored ways to construct memory, while Maximally In-
terfering Retrieval (MIR) focused on replay strategy. Our method,
Gradient-based Memory Editing (GMED) falls under the former
category but provides a new angle to memory construction.

based continual learning algorithms are applicable to the
task-free setting (Aljundi et al., 2019a;b). Memory-based
CL algorithms store a subset of examples in a fix-sized re-
play memory and utilize them later at training to alleviate
forgetting. Experience Replay (ER) (Robins, 1995) is a
simple yet surprisingly powerful (Chaudhry et al., 2019b)
approach in this category. The algorithm stores a subset of
examples in the memory and regularly draw a small batch
from the memory to retrain on them later at training. Re-
cent research has studied online strategies to improve the
performance gain when examples get replayed from two
dimensions: in terms of which examples to store, and which
examples to replay. Figure 1 shows an categorization of
memory-based task-free continual learning.

In terms of deciding which examples to store, one solu-
tion is to randomly select examples to store with reservoir
sampling (Vitter, 1985), which ensures each example in
the stream has an equal probability of being stored in the
memory. In addition to reservoir sampling, recent works
also study storing prototypes (Rebuffi et al., 2017) or exam-
ples that contribute to the diversity of the stored examples,
such as Gradient based Sample Selection (GSS) (Aljundi
et al., 2019b). In terms of deciding which examples to re-
play, existing algorithms usually rely on random sampling
from the replay memory. Maximally Interfering Retrieval
(MIR) (Aljundi et al., 2019a) select examples with the
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largest estimated forgetting. In particular, a task-aware ap-
proach, Hindsight Anchor Learning (HAL) (Chaudhry et al.,
2020), shares the same assumption that forgettable examples
should be prioritized more. However, HAL only applies to
task-aware settings and requires extra memory storage to
keep track of the learned anchors.

3. Background
In this section we first present the problem formulation of
task-free continual learning and then introduce preliminaries
on memory-based continual learning methods.

3.1. Problem formulation

In task-free continual learning, we consider a (potentially
infinite) stream of data examples D, which have non-
stationary data distribution.At each time step t, the model
receives one or a mini batch of examples (xt, yt) from the
data streamD. For simplicity of discussion, here we assume
that example (xt, yt) from D is generated by: first sampling
a latent “task” z ∼ P (z; t), and then followed by sampling a
data example from a joint data distribution P (x, y|z; t) that
is conditioned on task z, i.e., (xt, yt) ∼ P (x, y|z; t). Here
P (z; t) is non-i.i.d and depends on time; and P (x, y|z; t)
also changes over time.

The goal of task-free online continual learning is to seek a
classification model f(x; θ), parameterized by θ, over new
example(s) (x, y) from the data stream D that minimizes a
predefined loss `(x, y; θ) while not increasing the loss on
previously seen examples. Such capability is evaluated by
testing the model over a held-out set which consists of new
examples that follows the task distribution of the stream D.

3.2. Memory-based CL Methods

In a nutshell, memory-based CL algorithms maintain a fix-
sized replay memoryM which is used for storing (subset of)
previously seen examples (xt, yt) from the streamD. When
the memory is full, the algorithm needs to either identify
a memory examples (x, y) to be replaced by new example,
or to discard the new example it just received. Following
the same setup in previous memory-based CL methods, our
experiments use reservoir sampling (Vitter, 1985) to deter-
mine how the memory will be updated with new examples
received from stream D: every time the model receives a
new example, it draws an integer j between 0 and N ran-
domly, where N is the number of examples visited so far.
If j < |M | (i.e., the memory size or budget), it replace the
example at the j-th position in the memory with the new
example; otherwise, this newly received example will be dis-
carded. Reservoir sampling ensures at each time step each
visited example is kept with an equal probability |M |/N .

At each time step t, the algorithm also needs to determine

which of the memory examples will be used for replay.
Same as previous methods, we randomly sample one or a
mini-batch of examples (x, y) from the memory M . As an
alternative replay strategy, MIR (Aljundi et al., 2019a) iden-
tifies a subset of memory examples based on a predefined
optimization objective (i.e, perform one step of training on
(x, y).), and then replays the selected examples.

4. Gradient Based Memory Editing
We propose Gradient based Memory Editing (GMED), a
novel algorithm for updating the stored memory examples
in an online fashion. We state our hypothesis about which
examples may help to retain performance in Sec. 4.1. We
then formulate an online optimization objective for exam-
ple editing in Sec. 4.2. In Sec. 4.3 and 4.4, we introduce
algorithmic details of GMED and its integration with MIR.

4.1. Hypothesis for Memory Editing

Given that there is no prior knowledge about the forthcom-
ing examples in the data stream D, previous task-free CL
methods usually impose (implicit) assumptions regarding
what kinds of examples may improve model’s test per-
formance after replaying these examples. For example,
GSS (Aljundi et al., 2019b) assumes that the diversity of
memory examples contributes to the model performance;
MIR (Aljundi et al., 2019a) and HAL (Chaudhry et al., 2020)
assume that replaying examples that are likely to be “forgot-
ten” can benefit the performance. Empirical study by Toneva
et al. (2019) also show that there are constantly forgotten
examples, which benefit overall performance when they get
replayed compared to other examples.

Our work is based on a similar hypothesis that: replaying
examples that are likely to be forgotten by the current model
helps retain its test performance. However, rather than
determining which memory examples will be replayed next,
our work studies a complementary aspect on how to edit the
memory examples, based on current model’s behaviors, to
make the examples more ”forgettable”.

Formally, we use the loss `(x, y; θt) to measure the model’s
performance over an arbitrary example (x, y) at the time
step t, where θt denotes the model parameters at t. Suppose
we train the model on D until the time step T , the “forget-
ting” measurement of an example (x, y) for the model at t,
denoted by dt:T (x, y), is defined as the “loss increase” at
time T compared to that at time t, shown as follows.

dt:T (x, y) = `(x, y; θT )− `(x, y; θt), (1)

where θt is the model parameters at the current time step t.
A larger dt:T (x, y) indicates that the example is more likely
to be forgotten by the model at the end of training.

Our hypothesis assumes replaying memory examples that
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Figure 2. Overview of the (a) forgetting estimation and (b) example editing in the proposed GMED method. See detailed formulations for
forgetting estimation and example editing at Section 4.3.

have larger forgetting measurement helps model to general-
ize. The hypothesis is formally stated as follows.

Hypothesis 1. Given a budget of C examples to replay at
time t, in order to minimize the loss over new examples from
task k (e.g., in test set), an ideal strategy is to replay the
most forgettable examples, denoted as Sk, selected from the
training examples of task k, denoted as Dk.

Following Hypothesis 1, the set of examples Sk can be
obtained by solving the following optimization problem.

Sk = arg max
Sk⊆Dk,|Sk|=C

∑
(x,y)∈Sk

dt:T (x, y), (2)

where Dk is the training examples of the latent task k. Un-
fortunately, the sample selection problem in Eq. 2 cannot
be solved in an online setting, even when we know task
identities, as one can only evaluate the objective function in
Eq. 2 at a future time step T . Therefore, approximations and
modifications are necessary to enable online optimization.

4.2. Online Optimization for Memory Editing

We propose an optimization problem that is tractable in an
online fashion, which shares the same goal of making mem-
ory examples used for replay more likely to be forgotten.
We modify Eq. 2 where we (1) edit individual examples
stored in memory instead of selecting the most forgettable
examples from Dk as shown in Eq. 2, and (2) estimate the
forgetting measure in an online fashion, and (3) relax the
constraint Sk ⊆ Dk for selecting examples.

Formally, suppose that the model is at the t-th time step and
that (x, y) is an example from the a certain task k. In order
to retain the performance on test examples from the same
task k, we propose the following objective:

(x∗, y) = arg max
(x,y)

dt:t+1(x, y)− β`(x, y; θt), (3)

where d(·) is the forgetting defined in Eq. 4 and `(x, y; θt)
is the loss of the example (x, y) at the current time step t. β
is a trade-off hyper-parameter deciding the regularization

strength. The optimal (x∗, y) has the same label y as the
original example (x, y).

Specifically, we discuss three main differences in Eq. 3
compared to Eq. 2 in the Hypothesis 1 as follows.

Editing instead of Selection. Eq. 2 describes a combina-
torial optimization problem of selecting k most forgettable
examples. In contrast, Eq. 3 describes an optimization prob-
lem over an continuous input space with the objective of
maximizing forgetting of each individual example.

Estimating Forgetting Online. We maximize the forget-
ting of the example (x, y) in the upcoming one update at
time step t + 1, noted as dt:t+1(x, y), instead of the for-
getting when the model get evaluated, i.e., dt:T (x, y). The
former can be evaluated online efficiently without any over-
head on replay memory.

Relaxed Constraints. Eq. 3 do not constrain (x, y) ∈ Dk.
It allows (x∗, y) to be an arbitrary example in the input space
without being a real example from Dk. In practice, (x, y) is
initialized as different input examples, and we perform only
one or a few gradient updates each time it is drawn from
the memory for replay. We also add a regularization term
β`(x, y; θt) to discourage the loss increase on the example.
The editing is made conservative, so that the edited (x′, y)
is still likely to be an example from its original latent task.

The objective in Eq. 3 is differientiable with respect to x,
allowing us to update x with gradient ascent. In the rest of
this section, we introduce algorithmic details of GMED.

4.3. The GMED Algorithm

Given the hypothesis and the optimization formulations,
we introduce the algorithmic details in GMED. We start
by combining GMED with ER. It introduces an additional
“editing” step before replaying examples drawn the memory.

For simplicity of discussion, we assume the batch size is
1, but the method also applies with a larger batch size. We
assume at time step t the model receives a stream exam-
ple (x(D), y(D)) from the training stream D, and randomly
draws a memory example (x, y) from the memory M . We
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first compute the forgetting (i.e., loss increase) on the mem-
ory example (x, y) when the model performs one gradient
update on parameters with the stream example (x(D), y(D)).

θ′t = θt −∇θ`(x(D), y(D); θt); (4)

dt:t+1(x, y) = `(x, y; θ′t)− `(x, y; θt), (5)

where θt and θ′t are model parameters before and after the
gradient update respectively. Figure 2(a) visualize the steps
to compute forgetting.

Following the optimization objective proposed in Eq. 2, we
perform a gradient update on x to increase its forgetting,
while using a regularization term to discourage the loss
increase on the example at the current time step.

x′ = x+ α∇x[dt:t+1(x, y)− β`(x, y; θt)], (6)

where α is a hyperparameter for the stride of the update.
Figure 2(b) visualize the editing step.

The algorithm then discards the updated parameter θ′t, and
updates model parameters θt with the updated memory ex-
ample (x′, y) and the stream example (x(D), y(D)), in a
similar way to ER.

θt+1 = θt −∇θ`((x′, y) ∪ (x(D), y(D)); θt). (7)

We replace the original examples in the memory with the
edited example. In this way, we continuously edit exam-
ples stored in the memory alongside training. Algorithm 1
summarize the proposed ER+GMED algorithm.

4.4. Hybrid Methods

GMED is studied from a complementary direction com-
pared to most prior approaches. Therefore, we can combine
GMED with existing memory-based CL algorithms without
much effort. We illustrate the point by proposing a hybrid
approach of GMED and MIR.

At each time step, MIR retrieves the most forgettable exam-
ples from the memory with the forgetting defined as Eq. 4.
We do not edit the selected examples directly; instead, we
additionally draw another random mini-batch from the mem-
ory to apply editing. The motivation is that examples drawn
by MIR are already most forgettable ones; if we directly
perform editing on them, we would fall into a loop that
letting forgettable examples more forgettable, which is not
desired.

5. Experiments
We compare the performance of GMED against state-of-the-
art CL algorithms on five benchmark datasets. We introduce
our experimental setup and discuss our results on compar-
isons with baselines and performance analysis.

Algorithm 1 Memory Editing with ER (ER+GMED)

Input: learning rate τ , edit stride α, regularization strength β,
model parameters θ
Receives: stream example (x(D), y(D))
Initialize: replay memory M
for t = 1 to T do

(x, y) ∼M
`before ← loss(x, y, θt)
`stream ← loss(x(D), y(D), θt)

//update model parameters with stream
examples, discarded later

θ′t ← SGD(`stream, θt, τ)

//evaluate forgetting of memory examples
`after ← loss(x, y, θ′t)
d← `after − `before

//edit memory examples

x′ ← x+ α∇x(d− β`before)

` = loss((x′, y) ∪ (x(D), y(D)), θt)

θt+1 ← SGD(`, θt, τ)

replace (x, y) with (x′, y) in M

reservoir update(x(D), y(D),M)

end for

5.1. Datasets
We consider five public CL datasets in our experiments.

Split MNIST (Goodfellow et al., 2013) splits the
MNIST (LeCun et al., 1998) dataset of handwritten digit
classification into 5 disjoint subsets by their labels as differ-
ent tasks. The dataset consists of 5 tasks, where each task
consists of 1,000 training examples. The goal is to classify
over all 10 digits when the training ends.

Permuted MNIST (Goodfellow et al., 2013) applies a fixed
random pixel permutation to the MNIST dataset as different
tasks. The dataset consists of 10 tasks with 1,000 training
examples each. The goal is to classify over 10 digits without
knowing the permutation applied.

Rotated MNIST (Lopez-Paz & Ranzato, 2017) applies a
fixed image rotation between 0 to 180 degree to the MNIST
dataset. At k-th task, the degree is randomly selected from
the interval [ 180(k−1)K , 180kK ], where k ∈ {1, 2, ...,K} and
K is the number of tasks. The dataset consists of 20 tasks
with 1,000 examples each. The models classify over 10
digits without knowing the rotation when the training ends.

Split CIFAR-10 (Zenke et al., 2017) splits the CIFAR-
10 (Krizhevsky, 2009) image classification dataset into 5
disjoint subsets by their labels. The dataset consists of 5
tasks, where each task consists of 10,000 training examples.
The models classify over all 10 classes.

Split mini-ImageNet (Aljundi et al., 2019a) splits the mini-
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Dataset / Hyper-param Editing
stride α

Regularization
strength β

Split MNIST 5.0 0.01
Permuted MNIST 0.05 0.001
Rotated MNIST 1.0 0.01

Split CIFAR 0.05 0.001
Split mini-ImageNet 1.0 0.1

Table 1. Hyperparamters of the editing stride and the regularization
strength selected for GMED.

ImageNet (Deng et al., 2009; Vinyals et al., 2016) classi-
fication dataset to 20 disjoint subsets by their labels. The
dataset consists of 20 tasks, where each task consists of
1,250 examples in total from 5 classes. The models classify
over all 100 classes.

We do not provide information about task identities or task
boundaries to the model at both training and test time. Fol-
lowing definitions in prior literature (van de Ven & Tolias,
2019), our Split MNIST, Split CIFAR-10, and Split mini-
ImageNet experiments are under the class-incremental setup,
while Permuted MNIST and Rotated MNIST experiments
are under the domain-incremental setup.

5.2. Compared Methods

For our methods, we report the performance of ER + GMED
and MIR + GMED, where we build GMED upon ER or
MIR as introduced in section 4.3. We compare with sev-
eral memory based continual learning methods, but do not
compare with regularization based approaches, as most of
them are known to perform poorly in the class-incremental
setup (van de Ven & Tolias, 2019). We include task-aware
approaches for comparison, but it should be noted that these
approaches make use of extra information compared to task-
free approaches.

• Experience Replay (ER) (Robins, 1995; Rolnick et al.,
2019) stores examples in a fix-sized memory for future re-
play. We use reservoir sampling to decide which examples
to store and replace. Following prior works (Aljundi et al.,
2018; 2019a; Chaudhry et al., 2020), at each time step we
draw the same number of examples as the batch size from
the memory to replay, which are both set to 10. The algo-
rithm applies to the task-free scenario.

• Gradient Episodic Memory (GEM) (Lopez-Paz & Ran-
zato, 2017) also stores examples in a memory. Before each
model parameter update, GEM project gradients of model
parameters so that the update does not incur loss increase
on any previous task. The approach is not task-free.

• Averaged Gradient Episodic Memory (AGEM)
(Chaudhry et al., 2019a) prevents the average loss increase
on a randomly drawn subsets of examples from the memory.
We draw 256 examples to compute the regularization at each
iteration. The approach is task-free.

• Bayesian Gradient Descent (BGD) (Zeno et al., 2018)
is a regularization-based continual learning algorithm. It
adjust learning rate for parameters by estimating their cer-
tainty, which notes for their importance to previous data.
The approach is task-free.

• Gradient based Sample Selection (GSS) (Aljundi et al.,
2019b) builds upon ER by encouraging the diversity of
stored examples. We use GSS-Greedy, which is the best
performing variant in the paper. The approach is task-free.

• Hindsight Anchor Learning (HAL) (Chaudhry et al.,
2020) learns an pseudo “anchor” example per task per class
in addition to the replay memory by maximizing its es-
timated forgetting, and tries to fix model outputs on the
anchors at training. However, unlike GMED, they estimate
forgetting with loss increase on examples when the model
train for a pass on the replay memory (and thus forgetting is
estimated with “hindsight”). The approach is not task-free.

• Maximally Interfering Retrieval (MIR) (Aljundi et al.,
2019a) improves ER by selecting top forgettable examples
from the memory for replay. Following the official imple-
mentation, we evaluate forgetting on a candidate set of 25
examples for mini-ImageNet dataset, and 50 examples for
others. While the approach is task-free, the official imple-
mentation filter out memory examples that belong to the
same task as the current data stream, which assumes knowl-
edge about tasks boundaries. We remove this operation
to adapt the method to the task-free setup. Therefore, our
results are not directly comparable to the official results.

Besides, we also report the following results for reference.

• Fine tuning performs online updates on model parame-
ters without applying continual learning algorithms.

• iid Online. We randomly shuffle the data stream, so that
the model visits an i.i.d. stream of examples.

• iid Offline is similar to iid-Online, but we allow multiple
pass over the data.

We also consider two variants of memory editing strategies
for ablation study:

• Random Edit is an ablation study for GMED. It edit
examples to a random direction with a fixed stride. The
stride is tuned by validation, similar to GMED.

• Hindsight Edit estimates example forgetting in a similar
way to HAL. The model obtain temporal updated parameters
θ′t by training on a random mini-batch from the memory
instead of stream examples.

5.3. Experiment Setup

We mostly follow the training setup in (Aljundi et al., 2019a).
For three MNIST datasets, we use a MLP classifier with 2
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Methods / Datasets Split
MNIST

Permuted
MNIST

Rotated
MNIST

Split
CIFAR-10

Split
mini-ImageNet

Fine tuning 18.80± 0.6 66.34± 2.6 41.24± 1.5 18.49± 0.2 2.84± 0.4
iid online 85.99± 0.3 73.58± 1.5 81.30± 1.3 62.23± 1.5 17.53± 1.6
AGEM (Chaudhry et al., 2019a) 29.02± 5.3 72.17± 1.5 50.77± 1.9 18.49± 0.6 2.92± 0.3
GEM (Lopez-Paz & Ranzato, 2017) 87.18± 1.3 78.23± 1.2 76.49± 0.8 20.05± 1.4 11.27± 3.4
GSS-Greedy (Aljundi et al., 2019b) 84.16± 2.6 77.43± 1.4 73.66± 1.1 28.02± 1.3 16.19± 0.7
BGD (Zeno et al., 2018) 13.54± 5.1 19.38± 3.0 77.94± 0.9 18.23± 0.5 24.71± 0.8
HAL (Chaudhry et al., 2020) 77.92± 4.2 77.55± 4.2 78.48± 1.5 32.06± 1.5 21.18± 2.1
ER (Robins, 1995) 80.96± 2.3 79.69± 1.0 76.95± 1.7 33.34± 1.5 26.00± 1.0
MIR (Aljundi et al., 2019a) 84.88± 1.7 79.96± 1.3 78.30± 1.0 34.47± 2.0 25.01± 1.3

ER + GMED 82.68∗∗ ± 2.1 79.70± 1.1 77.89∗ ± 0.9 35.01∗ ± 1.5 27.79∗∗ ± 0.7
MIR + GMED 87.86∗∗ ± 1.1 80.11∗ ± 1.2 79.16∗∗ ± 0.9 35.54± 1.9 26.29∗ ± 1.2

iid offline (upper bound) 93.87± 0.5 87.40± 1.1 91.38± 0.7 75.17± 0.7 36.54± 1.4

Table 2. Mean and standard deviation of final accuracy(%) in 10 runs. For Split mini-ImageNet dataset, we set the memory size to 10,000
examples; we use 500 for other datasets. ∗ and ∗∗ indicate significant improvement over the counterparts without GMED with p-values
less than 0.05 and 10−3 respectively in single-tailed paired t-tests.

Dataset / Method GMED Random Edit Hindsight Edit

Split MNIST 82.68± 2.1 80.13± 2.9 70.32± 3.9
Permuted MNIST 79.70± 1.1 78.85± 0.2 79.23± 0.6
Rotated MNIST 77.89± 0.9 76.40± 1.7 76.33± 1.1
Split CIFAR-10 35.01± 1.5 34.72± 1.6 33.08± 3.3

Split mini-ImgNet 27.79± 0.7 25.73± 2.0 27.27± 1.7

Table 3. We show the performance where we updates memory
examples to a random direction (Random Edit), or estimate forget-
ting by one step of training on the replay memory following HAL
(Hindsight Edit).

hidden layers with 400 hidden units each. For Split CIFAR-
10 and Split mini-ImageNet datasets, we use a ResNet-18
classifier. We use SGD optimizer with a learning rate of
0.05 for MNIST and 0.1 for Split CIFAR-10 and Split
mini-ImageNet datasets. We perform three steps of model
parameter updates for each example we visit in the Split
mini-ImageNet dataset, and one step for others, follow-
ing (Aljundi et al., 2019a). Similarly, we perform three
steps of memory editing in GMED in Split mini-ImageNet
dataset, and one for others. We use a batch size of 10
throughout the experiment. By default, we set the size of
replay memory as 10,000 for split mini-ImageNet, and 500
for all other datasets. We also report performance under
different memory sizes.

Hyperparameter Selection for GMED. GMED intro-
duces two hyperparameters: stride of the editing α, and
the regularization strength β. Following (Chaudhry et al.,
2019a), we tune the hyperparameters with only the train-
ing and validation set of first three tasks. The models are
trained until convergence before they proceed to the next
task. The tasks used for hyperparameter search are in-
cluded for reporting final accuracy, following (Ebrahimi
et al., 2020). We perform a grid search over all com-
binations of α and β and select the one with the best
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Figure 3. Ablation study of the regularization term. We show the
accuracy(%) when we apply GMED without regularization (reg.)
and with regularization.

validation performance on the first three tasks. We se-
lect α from [0.01, 0.05, 0.1, 0.5, 1.0, 5.0, 10.0], and select
β from [0, 10−3, 10−2, 10−1, 1]. We tune hyperparameters
for ER-GMED and apply the same hyperparameters on
MIR+GMED. Table 1 show the optimal hyperparameters
selected for each dataset.

5.4. Results and Performance Analysis

We report the final accuracy achieved by different methods
in Table 2. We summarize the following findings.

Overall Performance. From the results, we see MIR +
GMED achieves best performance among memory based
continual learning algorithms. The improvement of GMED
differs by datasets. ER+GMED clearly improves over ER
by an absolute margin of 1.72%, 1.67%, and 1.79% ac-
curacy respectively in Split MNIST, Split CIFAR-10, and
Split mini-ImageNet datasets. On Rotated MNIST the im-
provement is less significant, with an absolute accuracy
improvement of 0.94%, while we do not see a meaningful
improvement on Permuted MNIST dataset. MIR+GMED
improves performance on all the datasets. Similarly, the
improvement is clear on Split MNIST, Split CIFAR-10, and
Split mini-ImageNet with an absolute accuracy improve-
ment of 2.98%, 1.07%, and 1.28%, and less signicifant on
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Figure 4. Performance of ER and GMED-ER in different memory sizes. For mini-ImageNet dataset, we use memory sizes of 1,000, 5,000,
10,000, and 20,000 examples; for other datasets, we use 100, 200, 500, and 1,000.
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Figure 5. Visualization of the editing on examples from first two
tasks in the Split MNIST dataset. The first and the second row
shows original and the edited examples, while the third row shows
the difference between the edited examples and the original ones.

Rotated MNIST and Permuted MNIST.

Comparison with Random and Hindsight Editing. Ta-
ble 3 compares between GMED, random editing and hind-
sight editing. We see ER+Random Edit performs worse than
ER + GMED in all cases. However, we see ER+Random
Edit outperforms ER on split CIFAR-10. We cojecture the
reason is that the random editing alleviates the overfitting
to memory examples. We also observe GMED outperforms
ER + Hindsight Editing in all cases.

Effect of the Regularization Term Figure 3 compare the
performance between the tuned regularization strength β
and 0 in two the Rotated MNIST and split mini-ImageNet
datasets. We see the regularization term improves the per-
formance on two datasets.

Performance Under Various Memory Sizes. Figure 4
show the performance under various memory sizes. We
see in Split MNIST, Rotated MNIST, Split CIFAR-10 and
Split mini-ImageNet, the improvement of ER+GMED over
ER is consistent under various memory sizes.

5.5. Case Study and Discussion

Visualization of Edited Examples. Figure 5 visualize the
editing on memory examples. We show examples from first
two task (0/1, 2/3) in the Split MNIST dataset. The first and
second rows show the original and edited examples, noted
as xbefore and xafter. The third row shows the difference

Label 0
Label 1
Label 2
Label 3

Figure 6. A t-SNE visualization of the editing performed on data
examples. We use labels from the first two tasks in Split MNIST.

between two ∆x = xafter − xbefore. We see no significant
visual differences between original and edited examples.
However, by looking at the difference ∆x, we see there are
examples whose contours get exaggerated, e.g., examples 1
and 12, and some get blurred, e.g., examples 2, 3, 5, and 6.
Intuitively, to make an ambiguous example more forgettable,
the editing should exaggerate its features; while to make a
typical example more forgettable, the editing should blur its
features. Our visualizations align with the intuition above:
examples 1 and 12 are not typically written digits, while
examples like 2, 3, 5, and 6 are typical.

Visualization of Editing Directions. In Figure 6, we show
the t-SNE (Maaten & Hinton, 2008) visualization of the
editing vector ∆x = xafter − xbefore for examples from first
2 tasks in Split MNIST. We see the editing vectors cluster by
the labels of the examples. It implies the editing performed
is correlated with the labels and is clearly not random.

6. Conclusion
In this paper, we propose Gradient based Memory Editing
for task-free continual learning. The approach estimates
forgetting of stored examples online and edit them so that
they are more likely to be forgotten in upcoming updates.
Experiments on benchmark datasets show our method can
be combined with existing approaches to significant improve
over baselines on several benchmark datasets. Our analysis
further show the method is robust under various memory
sizes, and outperforms alternative editing methods.
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