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ABSTRACT

Traffic forecasting is an important issue of spatiotemporal series prediction.
Among different methods, graph neural networks have achieved so far the most
promising results, learning relations between graph nodes then becomes a cru-
cial task. However, improvement space is very limited when these relations are
learned in a node-to-node manner. The challenge stems from (1) obscure tempo-
ral dependencies between different stations, (2) difficulties in defining variables
beyond the node level, and (3) no ready-made method to validate the learned re-
lations. To confront these challenges, we define legitimate traffic variables to dis-
cover the causal structure of the traffic network. The causal relation is carefully
checked with statistic tools and case analysis. We then present a novel model
named Graph Spatial-Temporal Network Based on Causal Insight (GT-CausIn),
where graph diffusion layers and temporal convolutional network (TCN) layers
are integrated with causal knowledge to capture dependencies in spatiotemporal
space. Experiments are carried out on two real-world traffic datasets: PEMS-BAY
and METR-LA, which show that GT-CausIn significantly outperforms the state-
of-the-art models.

1 INTRODUCTION

As an important aspect of smart cities (Nagy & Simon, 2018), traffic forecasting is gaining more and
more popularity in this data era. Traffic forecasting aims at predicting future traffic volumes with
historical records. Different models have been proposed and evolved. Knowledge-driven models
focus on defining functional characteristics of traffic elements and simulating various traffic ser-
vice demands (Cascetta, 2013), where analysis is generally theory-based and requires constrained
mathematical assumptions. Data-driven models contain three major categories: time-series analysis
methods (e.g., ARIMA (Hamed et al., 1995), SARIMA (Williams & Hoel, 2003)), traditional ma-
chine learning methods (e.g., SVM (Smola & Schölkopf, 2004), SVR (Evgeniou et al., 2000)) and
deep learning based methods (e.g., CNN (Ma et al., 2017; Guo et al., 2019)).

Deep learning methods outperform the others by a large margin and have become the mainstream so-
lution in the industry. Guo et al. (2019) partition a city into a grid-based map and use 3D convolution
to capture the spatiotemporal correlation of traffic data. Geng et al. (2019) build road graphs from
multiple views based on pixel images and design a Contextual Gated Recurrent Neural Network
(CGRNN) for information integration. Li et al. (2018) model traffic flow as a diffusion process for
directed graph, encoder-decoder structure and scheduled sampling are further proposed to reduce
error accumulation and improve model performance. Zheng et al. (2020) skip convolution layers
and benefit from multi-head attention layers to embed spatial and temporal information.

The traffic road network provides a natural premium connection map for traffic flow analysis, and
we argue that its inherent regime is not limited to node-to-node impacts. For example, the inflow
of a highway service station is equal to its outflow within a certain period of time. Therefore, it
is interesting to analyze the relations between different traffic variables. In recent years, causal
discovery (Pearl, 2009) opens up the door to the analysis of causal relations behind statistical cor-
relations and is widely explored in the computational biology domain (Pranay & Nagaraj, 2021;
Cundy et al., 2021). However, to the best of our knowledge, few works consider causal observation
for spatiotemporal forecasting.
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In this work, we focus on improving traffic speed prediction with insight revealed by a causal dis-
covery program. Speed change is thoroughly used for causal discovery, as it is a good indication of
traffic conditions and can lead to changes in neighboring roads. In summary, our main contributions
are:

• We define legitimate traffic variables for causal structure discovery and conduct dense ex-
periments on the PEMS-BAY dataset to learn their causal relations. We also find out that
this knowledge can be generalized to the METR-LA dataset.

• We present an effective and efficient framework to capture spatial-temporal dependencies,
which is named Graph Spatial-Temporal Network Based on Causal Insight (GT-CausIn).
The core idea is to assemble causal insight, spatial dependency modeling, and temporal
dependency modeling in a way that information can flexibly flow between different per-
spectives at different scales.

• We validate our model on two real-world public datasets and achieve state-of-the-art per-
formance.

2 RELATED WORK

Causal structural discovery The objective of causal structural discovery is to combine statistical
and logical reasoning to obtain causal relations between variables, which are represented by a graph.
Fast Causal Inference (FCI) was proposed by Spirtes et al. (2000), which estimates the Markov
equivalence class of causal Maximal Ancestral Graph (MAG). Recently, many papers came up with
ideas to improve the high computational cost of causal inference. Zečević et al. (2021) step towards
this problem by learning interventional distributions with an over-parameterized sum-product net-
work. Akbari et al. (2021) propose a recursive constraint-based method that removes a specific type
of variables at each iteration. Rohekar et al. (2021) further introduce Iterative Causal Discovery
(ICD) based on FCI. Each iteration of ICD refines a graph recovered from previous iterations with a
smaller set of conditions and higher statistical reliability. As a result, ICD requires fewer conditional
independence tests and is more computational resources friendly. In this work, we benefit from ICD
to discover the causal structure of defined variables.

Spatial dependency Because of its intrinsic advantages of exploring topological spaces, graph-
based neural networks stand out from diverse deep learning models and achieve so far the best
results. Cao et al. (2020) develop the StemGNN layer to extract in-series and intra-series corre-
lations with the help of Graph Fourier Transformer (GFT) and Inverse Graph Fourier Transformer
(IGFT). Derrow-Pinion et al. (2021) rethink the relations between road segments and collects infor-
mation from node level, segment level, and super-segment level. Dynamic transition matrices are
adopted in many works (Du et al., 2020; Han et al., 2021b; Shin & Yoon, 2022), where nodes with
similar embeddings are assumed to have higher connection weights. However, there may be some
problems with this intuitive hypothesis. Matrices are fixed after training, and embedding similarity
may yaw because of sensor dysfunction and different external situations (e.g., hot/cold weather), as
a result, the adaptive matrix can get biased. In this work, we employ graph diffusion layers designed
by Li et al. (2018) with predefined roads as a transition matrix, which provides reliable physical
connections in the real world.

Temporal dependency The most popular way to discover temporal dependency is through RNN-
based networks. Long Short-Term Memory neural network (LSTM) is adopted in the work of Lin
et al. (2018); Yao et al. (2018), while Li et al. (2018) and Jin et al. (2022) arrange RNN block in
their core model structure. Geng et al. (2019) and Lv et al. (2020) apply Gated Recurrent Unit
(GRU). Due to the time-consuming problem and complex gate mechanism of RNN-based networks,
we assign TCN to model temporal dependency, which captures long sequences in a non-recursive
manner (Han et al., 2021b; Shin & Yoon, 2022).

3 METHODOLOGY

In this section, we start by formulating the studied problem, then present an overview of our model
structure, and end up with a detailed introduction of its crucial component layers.
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3.1 PROBLEM FORMULATION

In a traffic forecasting scenario, sensors are scattered on the road to record traffic speed at a given
time, and thus can be represented as a directed graph. In this work, a graph is denoted by G(V, E ,W )
where V is the node set (|V| = N ), E is the edge set and W is the adjacency matrix (|W | = N×N ).
Main notations used in the paper are summarised in Appendix A. In the real world, the adjacency
matrix is a representation of proximity and connectivity between node sensors.

Suppose each node’s feature is of dimension P (e.g., velocity, volume, occupancy), at timestamps
t, a graph signal can be defined as X(t)(Xt ∈ RN×P ). The predicted signal at time t is noted as
X̂(t)(X̂(t) ∈ RN×Q), where Q is the number of the desired features. We consider the prediction
task as using T ′ prior timestamps to predict T following, in other words, given graph G and com-
plementary information I (e.g., day of the week), we aim to find the best mapping function f from
space RN×P×T ′

to RN×Q×T :

(G; I;X(t−T ′+1),X(t−T ′), · · · ,X(t))
f−→ (X̂(t+1), · · · , X̂(t+T−1), · · · , X̂(t+T ))

In this work, we focus on using historical one-hour speed data for 15min, 30min, and 60min ahead
speed forecasting (P = Q = 1). More specifically, when the speed readings are aggregated into 5
minutes windows, it turns out to be:

(G; I;X(t−11),X(t−10), · · · ,X(t))
f−→ (X̂(t+3), X̂(t+6), X̂(t+12))

3.2 MODEL STRUCTURE OVERVIEW
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Figure 1: System architecture for the Graph Spatial-Temporal Network Based on Causal Insight.
Time series are fed into the causal insight layer and a series of GT blocks. Skip connections are
used at the end of each GT block to guard useful information. Periodic features are finally merged
to make predictions.

Figure 1 is a brief illustration of GT-CausIn structure. The main components of GT-CausIn model
consist of the causal insight layer, graph diffusion layer, TCN layer, merge layer, and inherent feature
layer. A detailed explanation of each layer can be found in Section 3.3.

Graph diffusion layers facilitate information propagation through spatial nodes, but not inter-time
series communication. TCN layer, which focuses on convolution along the temporal dimension,
becomes complementary to graph diffusion layers. For the sake of expression simplicity, we name
GT block as the combination of one graph diffusion layer and one TCN layer. Serializing multiple
GT blocks can thus disclose inter-spatiotemporal correlations.

3



Under review as a conference paper at ICLR 2023

The input speed, together with its differentiated variant, is fed into a causal insight layer, where the
neighbor-level information is carefully investigated. Two fully connected layers are stacked to better
fit vector space after the first GT block.

The number of GT block L is not limited to a certain value, bigger L means a bigger receptive field,
but model complexity is increased at the same time and important long-sequence information may
be dispersed, the effects of L will be further studied in Section 4.4. Skip connections are added to
stack hidden states learned at different scales, which eases feature propagation for short-term and
long-term prediction.

3.3 COMPONENT LAYERS

Causal insight layer We conduct causal structure discovery experiments on the PEMS-BAY dataset
to identify correlations between stations. We hold the view that, in a speed prediction scenario,
changes in the external environment and events such as accidents can be reflected in speed changes.
A detailed experiment description is offered in Appendix B.

We start by introducing important notations. Given node vi, we note I1(i),O1(i) the set of its
first-order in-neighbors/out-neighbors and I2(i),O2(i) its second-order in-neighbors/out-neighbors,
which can be mathematically formulated as equations below. At the graph level, we remind that the
input is denoted as X . The integrated features with adjacency matrix are considered as neighbor-
level embedding: for the first-order in-neighbors/out-neighbors, it is denoted as I1,O1; for the
second-order, it is denoted as I2,O2.

I1(i) = {j|(j, i) ∈ E , i ̸= j} (1)
O1(i) = {j|(i, j) ∈ E , i ̸= j} (2)

I2(i) = {j|∃k, k ̸∈ {i, j}, (j, k) ∈ E , (k, i) ∈ E , i ̸= j} (3)
O2(i) = {j|∃k, k ̸∈ {i, j}, (i, k) ∈ E , (k, j) ∈ E , i ̸= j} (4)

Defining variables is a crucial step for causal discovery. Given time t and node vi, for each timestamp
t0, we define variables to be the speed variation feature of X(t0)

i , I
(t0)
1i , O

(t0)
1i , I

(t0)
2i , O

(t0)
2i . A strong

link between vi, I1(i) and O1(i) is revealed from the causal discovery program, which is double-
checked with statistical correlation and case analysis in Appendix C. Consequently, we design a
causal insight layer to capture the correlation between vi, I1(i) and O1(i).
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Figure 2: Example of deriving speed variation of each node with 5 timestamps as input. The speed
variation is concatenated with speed to form the input of the causal insight layer.

Figure 2 represents road sensors as directed graph nodes. The speed detected by each sensor is a
time series, and speed changes are obtained by differentiating adjacent time slices. With the speed
variation of each node and road connection matrix, we can deduce the embedding of neighbor levels.
To be cautious with the possible mutual influence between I1(i), O1(i), and different nodes vi, we
adopt a self-attention mechanism to learn inherent relations between them. Neighbor-level and
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Figure 3: A brief illustration of the causal insight layer. Node features are first concatenated with
neighbor embedding features, then pass to an attention layer to reveal interaction influence. Three
matrices are followed to learn individual influence on each node.

node-level embedding spaces are then converted to individual node spaces. The whole process is
formulated as below and is depicted in Figure 3.

I1 = D−1
I1 (W

T − I)X,O1 = D−1
O1(W − I)X (5)

S = X
⊕

I1
⊕

O1 (6)

S
′
= X

′ ⊕
I

′

1

⊕
O

′

1 = attention(SWq,SWk,SWv)W
O (7)

output = WxX
′
+WiI

′

1 +WoO
′

1 (8)

where DI1 = diag((W T − I)1),DO1 = diag((W − I)1), 1 is the all one vector.

Graph diffusion layer Spatial dependency is modeled in this part. Consider a directed graph G, the
diffusion process is modeled by a Markov process with the transition matrix D−1

O W and a starting
probability α ∈ [0, 1] (DO = diag(W1)). Teng et al. (2016) show that the ultimate distribution is
converged to a stationary contribution:

P =

∞∑
k=0

α(1− α)k(D−1
O W )k (9)

where k is the diffusion step. Based on this theory, Li et al. (2018) present a formal expression of
the graph signal diffusion process, which truncates the diffusion process to be K steps and assigns
trainable weights for each step.

For each input feature p ∈ {1, · · · , P} and output feature q ∈ {1, · · · , Q},

H:,q = X:,p⋆Gfθq,p,:,: =

K−1∑
k=0

(θq,p,k,1(D
−1
O W )k + θq,p,k,2(D

−1
I W T )k)X:,p (10)

where X is the layer input, H the layer output, θ ∈ RQ×P×K×2 the filter parameter, DI =
diag(1W ) and W T the transpose of graph adjacency matrix W .

Different from the popular spectral GCN method proposed by Kipf & Welling (2017), which is
only applicable for undirected graphs, graph diffusion layers simulate well the diffusion process of
directed graphs, and become a natural choice for traffic scenarios.

TCN layer We adopt the dilated causal convolution described in Yu & Koltun (2016) as our TCN
layer. In contrast to RNN-based networks, dilated causal convolution can capture information over
long-range sequences while getting rid of the gradient explosion problem. Concerning dilated causal
convolution, stacking dilated layers ensures the exponential receptive field, and zero padding guar-
antees the temporal causal order since only historical information is involved to predict the current
time step. Considering input feature dimension as P , output dimension as Q, given a time-series
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input X ∈ RN×P×T and a filter with trainable parameter θ ∈ RQ×P×K , the dilated causal convo-
lution at time t can be formulated as:

H:,q,t = X:,p,: ⋆ fθq,p,k(t) =

K−1∑
k=0

θq,p,kx:,p,t−d∗k (11)

where K is the kernel size, d is the dilation factor, which decides the skipping distance.

Merge layer Although GT block extracts dependencies in the temporal and spatial dimension, infor-
mation may still be lost for such a long series forecasting task. As a result, we keep the embedding
after each GT block and concatenate them to enhance information flow over great lengths.

Inherent feature layer We notice that speed changes periodically for stations as shown in Figure
4. Hence, we extract the day of the week, the month of the year, and historic speed as inherent
features. Day of the week and month of the year features are represented as one-hot vectors while
historic speed is the average speed of past days at the same moment. Since people’s travel routines
are very different on weekdays and weekends, we only use the past five weekday records or the past
two weekend records to calculate historic speed.

(a) Station 400714 (b) Station 400147 (c) Station 401403

Figure 4: Periodic speed changes of stations of PEMS-BAY within one week.

The inherent features are integrated as follows: each feature goes through a dense layer to get
embedding ED (day of the week), EM (month of the year), and EH (historic speed). Together
with embedding Em obtained from merge layer, all features are fused into a long feature matrix by
concatenation, e.g., F = Em

⊕
ED

⊕
EM

⊕
EH , then we stack two fully connected layers upon

F to ensure that the output is of the desired shape.

4 EXPERIMENTS

4.1 DATASET DESCRIPTION

We conduct dense experiments on two public datasets: PEMS-BAY (Li et al., 2018) and METR-LA
(Jagadish et al., 2014). PEMS-BAY is collected by California Transportation Agencies (CalTrans)
Performance Measurement System (PeMS). It contains 325 highway sensors of the Bay Area from
Jan 1st 2017 to Jun 30th 2017. For METR-LA, 207 loop detectors on the highway of Los Angeles
County are selected from Mar 1st 2012 to Jun 30th 2012. For both datasets, traffic speed readings
are aggregated into 5 minutes windows. Based on the road connection map, we adopt the same way
as Li et al. (2018) to get the graph adjacency matrix. With pairwise road network distances between
sensors, the adjacency matrix representing connection from any sensor i to any sensor j is expressed
as:

Wi,j = exp (
−dist(vi, vj)2

σ
) if dist(vi, vj) ≤ κ, otherwise 0 (12)

where σ is the standard deviation, κ the threshold, and dist(i, j) the distance between station vi and
station vj . For both datasets, 80% of the data serves as the training set, 10% as the test set, and the
remaining 10% as the validation set.
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Table 1: Performance comparison with baseline models for traffic speed forecasting. The improve-
ment between GT-CausIn and the state-of-the-art model is significant on most metrics, and the mar-
gin becomes more evident with the increase of the forecasting horizon. GT-CausIn also shows a
global advantage over GT-NoCausIn, where the causal insight layer is taken off from GT-CausIn.

Data Method 15min 30min 60min
MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

M
ET

R
-L

A

DCRNN 2.77 5.38 7.30% 3.15 6.45 8.8% 3.60 7.59 10.5%
Graph Wavenet 2.69 5.15 6.90% 3.07 6.22 8.37% 3.53 7.37 10.01%
GMAN 4.04 8.53 10.2% 4.59 9.85 11.69% 5.33 11.21 13.60%
ST-GRAT 2.60 5.07 6.61% 3.01 6.21 8.15% 3.49 7.42 10.01%
SLCNN 2.53 5.18 6.70% 2.88 6.15 8.00% 3.30 7.20 9.70%
DGCRN 2.62 5.01 6.63% 2.99 6.05 8.02% 3.44 7.19 9.73%
DMSTGCN 2.85 5.54 7.54% 3.26 6.56 9.19% 3.72 7.55 10.96%
PGCN 2.70 5.16 6.98% 3.08 6.22 8.38% 3.54 7.36 9.94%
GT-NoCausIn 2.82 5.52 7.18% 3.27 6.71 8.90% 3.95 8.24 11.67%
GT-CausIn 2.61 5.07 6.60% 2.73 5.34 7.09% 3.06 6.11 8.30%
Improvement -3.2% -1.2% 0.2% 5.2% 11.7% 11.4% 7.3% 15.0% 14.4%

PE
M

S-
B

AY

DCRNN 1.38 2.95 2.90% 1.74 3.97 3.90% 2.07 4.74 4.90%
Graph Wavenet 1.30 2.74 2.73% 1.63 3.70 3.67% 1.95 4.52 4.63%
GMAN 1.34 2.82 2.81% 1.62 3.72 3.63% 1.86 4.32 4.31%
ST-GRAT 1.29 2.71 2.67% 1.61 3.69 3.63% 1.95 4.54 4.64%
SLCNN 1.44 2.90 3.00% 1.72 3.81 3.90% 2.03 4.53 4.80%
DGCRN 1.28 2.69 2.66% 1.59 3.63 3.55% 1.89 4.42 4.43%
DMSTGCN 1.33 2.83 2.80% 1.67 3.79 3.81% 1.99 4.54 4.78%
PGCN 1.30 2.73 2.72% 1.62 3.67 3.63% 1.92 4.45 4.55%
GT-NoCausIn 1.43 2.85 3.00% 1.79 3.84 4.01% 2.25 4.90 5.44%
GT-CausIn 1.30 2.54 2.68% 1.47 2.92 3.10% 1.70 3.37 3.68%
Improvement -1.6% 5.6% -0.8% 7.5% 19.6% 12.7% 8.6% 22.0% 14.6%

4.2 EXPERIMENT SETTING

All models are implemented with PyTorch (Paszke et al., 2019) and trained with an Adam optimizer
with an annealing learning rate. Experiments on dataset METR-LA are carried out on two Nvidia
Tesla V100 servers and PEMS-BAY on two Nvidia Tesla A100 servers. The detailed parameter
setting for all experiments executed is available in Appendix F.

All methods are evaluated based on three commonly used metrics in traffic forecasting, which are
Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and Root Mean Squared
Error (RMSE). The formula of all metrics can be found in Appendix E. MAE is used as the loss
function. Missing values are linearly filled for training, and are excluded for results evaluation.

4.3 COMPARISON WITH BASELINES

We compare GT-CausIn with various popular traffic forecasting models in recent years, includ-
ing (1) DCRNN: Diffusion Convolutional Recurrent Neural Network (Li et al., 2018); (2) Graph
Wavenet (Wu et al., 2019), which develops an adaptive dependency matrix based on node embed-
ding; (3)GMAN: Graph Multi-Attention Network for Traffic Prediction (Zheng et al., 2020), of
which the main structure is an encoder and a decoder both with several attention blocks; (4) ST-
GRAT: Spatio-temporal Graph Attention Networks for Accurately Forecasting Dynamically Chang-
ing Road Speed (Park et al., 2020), which includes spatial attention, temporal attention, and spatial
sentinel vectors; (5) SLCNN: Structure Learning Convolution Neural Network (Zhang et al., 2020),
which learns the graph structure information with convolutional methods; (6) DGCRN: Dynamic
Graph Convolutional Recurrent Network (DGCRN) (Li et al., 2021), which filters node embed-
ding to generate dynamic graph at each time step; (7) DMSTGCN: Dynamic and Multi-faceted
Spatio-temporal Deep Learning for Traffic Speed Forecasting (Han et al., 2021a), which provides a
multi-faceted fusion module to incorporate the hidden states learned at different stages; (8) PGCN:
Progressive Graph Convolutional Networks for Spatial-temporal Traffic Forecasting (Shin & Yoon,
2022), which constructs progressive adjacency matrices by learning in training and test phases.

Our approach is different from all the approaches above, we first use a causal discovery program
to discover a general rule between node neighbors of different orders, then build a model named
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Table 2: Ablation study on causal effects, GT-BadCausIn integrates no neighbor embedding in
causal insight layer. GT-CausIn achieves consistent better results than GT-BadCausIn.

Data Method 15min 30min 60min
MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

METR-LA
GT-BadCausIn 2.65 5.17 6.72% 2.86 5.71 7.58% 3.18 6.50 8.85%
GT-CausIn 2.61 5.07 6.60% 2.73 5.34 7.09% 3.06 6.11 8.30%
Improvement 1.5% 1.9% 1.8% 4.5% 6.5% 6.5% 3.8% 6.0% 6.2%

PEMS-BAY
GT-BadCausIn 1.35 2.63 2.80% 1.56 3.13 3.34% 1.81 3.64 4.01%
GT-CausIn 1.30 2.54 2.68% 1.47 2.92 3.10% 1.70 3.37 3.68%
Improvement 3.7% 3.4% 4.3% 5.8% 6.7% 7.2% 5.0% 7.4% 8.2%

GT-CausIn to enhance prediction performance. Although the causality relation is discovered with
dataset PEMS-BAY, it generalizes as well on the other dataset METR-LA. Besides, the proposed
causal insight layer is integrated with directed graph diffusion layers to model the spatial depen-
dency. TCN layers and skip connections are further used to discover the temporal dependency.

A comparison of GT-CausIn and other baseline models is shown in Table 1. The causal insight layer
is taken out from GT-CausIn and the rest model is named as GT-NoCausIn. All the baseline results
are taken from its original paper if it is available and from Shin & Yoon (2022) if not1. We notice
that models with dynamic training graph generally outperforms other models, however, as Table 1
indicates, GT-CausIn achieves the best overall result, especially for mid-term (30min) and long-term
(60min) prediction. We need to remark that DCRNN (Li et al., 2018) shares similar graph diffusion
layers and GMAN (Zheng et al., 2020) widely adopt the attention mechanism, yet our model exceeds
them on all metrics, which justifies our model structure. The large margin between GT-NoCausIn
and GT-CausIn shows that causal insights can significantly improve prediction accuracy.

4.4 ABLATION STUDY

Causal effects In GT-CausIn, we put special attention to relations between node vi, I1(i) and O1(i),
nonetheless, this conclusion drawn from the causal discovery program may be questioned. There-
fore, we replace Equation (6, 7, 8) as below to check its effectiveness, naming this model GT-
BadCausIn.

S = X
⊕

X
⊕

X (13)

S
′
= X

′

0

⊕
X

′

1

⊕
X

′

2 = attention(SWq,SWk,SWv)W
O (14)

output = Wx0
X

′

0 +Wx1
X

′

1 +Wx2
X

′

2 (15)

Experiments results are summarised in Table 2. The impact brought by neighbor embedding in the
causal insight layer is positive for all metrics on both datasets, especially for mid-term (30min) and
long-term (60min) predictions. The reason behind may be the propagation time of causal effects.
Besides, we can observe that the improvement is smaller on METR-LA than on PEMS-BAY, which
may result from: (1) a larger percentage of missing values in METR-LA (8.11%) than in PEMS-
BAY (0.003%); (2) causal discovery program is only executed on the PEMS-BAY dataset.

Number of stacking GT blocks In Section 3.2, we introduced that the number of GT blocks L is
not limited to a certain value. Larger L roughly corresponds to a larger spatiotemporal receptive
field and enables the model to capture broader spatiotemporal dependency. We compare model
performance with different L ∈ {3, 4, 5, 6} on MAE of different time horizons in Figure 5. We can
observe a steady rise when L goes up. Since the gap between L = 3 and L = 4 is more important
than between L = 4 and L = 5, taking the increased model complexity into account, we adopt
L = 4 as our best parameter.

4.5 MODEL INTERPRETATION

To better understand our model, we compare it with GT-BadCausIn on 60min ahead prediction
task. We shift the input window to get continuous predictions in Figure 6, observing a notable per-

1Only GMAN and DMSTGCN authors implement experiments on different datasets.
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(a) MAE/15min (b) MAE/30min (c) MAE/60min

Figure 5: Parameter analysis of L (number of stacking GT layers) on METR-LA dataset

(a) Station 71447 (b) Station 773062 (c) Station 716337

Figure 6: Figures (a), (b), and (c) offer a comparison between GT-CausIn and GT-BadCausin for
prediction task on METR-LA, differing on the target station and target time. Each figure contains
the ground truth of the considered station and its neighbors, as well as its 60min ahead prediction.
It is notable that the predictions of GT-BadCausIn are heavily dependent on some neighbors, and
are therefore swayed off the ground truth. The same cannot be said for GT-causIn, instead of being
influenced by some stations, it has a broader outlook of its neighbors, resulting in a much more
faithful and smooth prediction.

formance margin between GT-CausIn and GT-BadCausIn. As described in Section 4.4, the only
structural difference between these two models is the dissimilar perspectives integrated. For GT-
BadCausIn, only node-level information X is investigated. For GT-CausIn, neighbor-level informa-
tion I and O are also included. This structural change results in different token attention scores of
the causal insight layer and is responsible for this disparity, this is further investigated in Appendix
D.

5 CONCLUSION

In this paper, we implemented knowledge learned from a causal discovery program with deep learn-
ing models and proposed Graph Spatial-Temporal Network Based on Causal Insight to capture
spatiotemporal dependencies. Specifically, we serialize graph diffusion layers and TCN layers to
capture dependencies between spatial flow and temporal flow, we also use skip connections to guar-
antee information propagation for long sequences. We creatively design a causal insight layer that
focuses on stations, their first-order in-neighbors, and their first-order out-neighbors. When evaluat-
ing our model on two real-world traffic datasets, we achieved significantly better overall prediction
than baselines. We also conducted ablation studies to show the effectiveness of causal knowledge
and the influence of the stacking layer number. In the future, we plan to (1) apply the proposed model
to other spatial-temporal forecasting tasks; (2) investigate scalable methods to apply to large-scale
datasets.
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A NOTATION

Table 3: Core concept definitions

Concept Description

G(V, E) Graph with node set V and edge set E , |V| = N
vi The i-th node
W Adjacency matrix of graph, W ∈ RN×N

DI ,DO In-degree/out-degree matrix
1 All one vector
X, X̂ Graph signal and the predicted graph signal
I Identity matrix
I1(i),O1(i) Set of first-order in-neighbors/out-neighbors of i-th node
I2(i),O2(i) Set of second-order in-neighbors/out-neighbors of i-th node
I1,O1 Integrated embedding of first-order in-neighbors/out-neighbors
I2,O2 Integrated embedding of second-order in-neighbors/out-neighbors

B CAUSAL DISCOVERY EXPERIMENT SETTING

The causal structure discovery analyzes the causal relation between different variables. In this work,
we adopt ICD (Rohekar et al., 2021) as our causal discovery program. The input of ICD is a set
of variable values, and the output is the graph adjacency matrix, in which each element represents
the importance of the causal relation between variables. The algorithm is only implemented on the
PEMS-BAY dataset since there are too many missing values in METR-LA (8.11%) than in PEMS-
BAY (0.003%).

Defining variables is a crucial step for causal discovery. Compared to the speed itself, the speed
variation overall represents better the changes in traffic volume as well as the occurrence of external
events, as it more clearly expresses the changes in traffic. What’s more, Figure 7 shows that speed
variation is a natural Gaussian distribution, which is necessarily required for ICD.

(a) Speed variation distribution (b) Speed distribution

Figure 7: PEMS-BAY data distribution.

Given node vi, we note I1(i),O1(i) the set of its first-order in-neighbors/out-neighbors and
I2(i),O2(i) its second-order in-neighbors/out-neighbors. At the graph level, the input is denoted
as X , the integrated features along the adjacency matrix of first-order in-neighbors/out-neighbors
are denoted as I1,O1 and second-order as I2,O2, which can be mathematically expressed as below.

WI1 = W T − I,WO1 = W − I (16)

I1 = (diag(WI11)
−1WI1)X,O1 = (diag(WO11)

−1WO1)X (17)
WI2 = WI1WI1, diag(WI2) = 0,WO2 = WO1WO1, diag(WO2) = 0 (18)

I2 = (diag(WI21)
−1WI2)X,O2 = (diag(WO21)

−1WO2)X (19)
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Given time t and node i, for each timestamp t0 between t and t + 30min, we define variables to
be the speed variation of X(t0)

i , I
(t0)
1i , O

(t0)
1i , I

(t0)
2i , O

(t0)
2i . Since the PEMS-BAY dataset aggregates

traffic speed readings into 5 minutes windows, causal variables will be stored in a set of 6-time
slices, resulting in 30 causal inferred variables below. The output of ICD is thus a 30 × 30 matrix
C, where Ci,j represents the causal relation between variable i and variable j.

V = {V0, V1, . . . , V30}

= {X(t)
i , I

(t)
1i , O

(t)
1i , I

(t)
2i , O

(t)
2i , · · · , X

(t+5)
i , I

(t+5)
1i , O

(t+5)
1i , I

(t+5)
2i , O

(t+5)
2i }

(20)

We randomly sample data in the dataset and then process it to obtain the above 30 causal variables.
To reduce accidental error, we sample 2000 samples each time as input of ICD, and repeat 100 times
to sum the output matrix C.

C CAUSAL RESULT VALIDATION

In this section, we carefully validate causal results obtained in Appendix B in two ways: (1) coher-
ence with the correlation between variables; (2) case analysis.

Correlation between variables We apply the sampling algorithm mentioned in Appendix B to the
random data and the accident data, and adopt Pearson correlation coefficient (Freedman & Pisani,
2007) to calculate the correlation between the different variables. The result can be plotted in Figure
8, in which the size of the circle indicates the strength of its relations.

Figure 8: ICD result vs data correlation, on the left: accident data, on the right: random data. Labels
represent the variables defined in Equation (20). Red circles indicate results deduced from ICD.
Gray circles indicate the Pearson correlation coefficients between variables mined from incident
data (left) and random data (right).

Four phenomena can be observed in Figure 8: (1) The relation obtained by causal discovery holds
for both random data and accident data, indicating that the speed changes at one station do have an
effect on neighboring stations and that this law is universal, without the need to include an additional
judgment about whether an accident has occurred; (2) The causality is mainly reflected in spatial
and temporal space, there is no clear spatiotemporal intertwined causality; (3) There is another inter-
esting effect that the station vi, its out-neighbor O1(i) and in-neighbor I1(i) are causally related to
each other; (4) For relations in the temporal dimension, variables are more connected to themselves
from t to t+ 1 and t+ 2.

Case analysis In the real world there may be many reasons behind speed changes, such as sudden
traffic jams, weather phenomena, and car accidents. In light of these unpredictable external factors,
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and to ensure that the results and conclusions on causality seen before are founded in reality, it is
essential to plot the speed of a node and its neighbors over time and analyze its behaviors.

To do so, a dataset of notable events is created. These events are characterized by a sudden and
lasting spike in speed variation, positive or negative. Due to the large scale of the PEMS-BAY
dataset, it is necessary to sample random mini-batches and calculate the weighted speed change in
the station and its neighbors. Sorting through these average velocity fluctuations, the most influential
ones are selected, i.e. highest and lowest peaks.

According to these notable events seen in Figure 9, we can confirm the mutual impacts of speed
changes between a station, its in-neighbors, and its out-neighbors. In most cases, these three entities
share a similar pattern for speed variation, as shown in Figures 9a and 9b. We also observe a
delayed impact in some cases, as shown in Figure 9c, where the speed variation is spread from its
out-neighbors.

(a) Event at station 400714 (b) Event at station 407185 (c) Event at station 400209

Figure 9: Notable events displaying the correlation between the station and its neighbors. Curves
I1(i) and O1(i) denote the weighted sum formulated in Equation (17) and shadow gives the speed
variation interval of the first-order in-neighbors/out-neighbors.

D ATTENTION SCORE ANALYSIS

In this section we focus on the 60min ahead prediction task on station 717477 of METR-LA at
11:15:00. As seen in Figure 10, there is a performance gain for GT-CausIn in comparison to GT-
BadCausIn model. This is due to a structural difference seen in 4.4 which includes neighbor-level
information in the causal insight layer.

To look into what is happening inside the causal insight layer, we take out the score matrices. We
revise that the attention scores are calculated by processing the score matrix on a softmax layer
(Vaswani et al., 2017), which guarantees that the sum of each row equals one. Given input X , the
attention layer is formulated as below.

Q = XWq,K = XWk,V = XWv (21)

attention = softmax
(QKT )√

dk
V (22)

where Wq,Wk and Wv are trainable weights, 1√
dk

is the scalar factor, Q is query matrix, K is

the key matrix and V is the value matrix. The attention score is S = (QKT )√
dk

, and its element Si,j

weights the attention Xi pays to Xj .

In our case, the attention input is S = X
⊕

I1
⊕

O1 for GT-CausIn and S = X
⊕

X
⊕

X for
GT-BadCausIn, as indicated in Equation (7) for GT-CausIn and Equation (14) for GT-BadCausIn.
We take rows corresponding to the station vi to focus on how it is impacted. Afterward, we subdivide
the columns into three parts, each part contains tokens of all graph nodes from different perspectives,
as noted by the labels in the bottom.
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Figure 10: Ground truth of station 71447/neighbors, 60min ahead prediction speed of station 71447.

With these tokens in hand, the attention scores are visualized with heat maps. Figure 11 shows
attention scores inside the GT-BadCausIn model, that includes solely X tokens. In contrast, in
Figure 12, the attention scores inside GT-CausIn are not constrained to X , but also including I1
and O1 tokens. Finally the performance difference seen in Figure 10 can be explained by different
attention scores in the Figures 11 and 12. In the first case, the attention is mainly distributed on some
nodes. In the second case, the attention has a global view on all the nodes thanks to neighbor-level
tokens, e.g., I1,O1.

Figure 11: Heat map of attention score in causal insight layer for GT-BadCausIn
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Figure 12: Heat map of attention score in causal insight layer for GT-CausIn

E METRICS

Note x = {x1, · · · , xn} the ground truth, x̂ = {x̂1, · · · , x̂n} predicted value, and Ω indices of
observed samples, the metrics are defined as follows.

MAE(x, x̂) =
1

|Ω|
∑
i∈Ω

|xi − x̂i| (23)

RMSE(x, x̂) =

√
1

|Ω|
∑
i∈Ω

|(xi − x̂i)2 (24)

MAPE(x, x̂) =
1

|Ω|
∑
i∈Ω

|xi − x̂i

xi
| (25)

F DETAILED EXPERIMENTAL SETTINGS

For all models, we stack L = 4 GT blocks (except ablation study on L) and the output dimension of
each block is 8. In each graph diffusion layer, the maximum number of steps of random walks is 3.
The kernel size is 3 for all TCN layers. We use a step learning rate with γ = 0.5 for all experiments
and adopt a grid search to find the best initial learning rate for each experiment, as shown in Table
4.
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Table 4: Learning rate setting

Data Model Initial lr\start step\step size

PEMS-BAY
GT-NoCausIn 0.002\50\20
GT-CausIn 0.006\50\20
GT-BadCausIn 0.007\50\20

METR-LA

GT-NoCausIn 0.008\180\50
GT-CausIn 0.004\180\50
GT-BadCausIn 0.004\180\50
GT-CausIn(L = 3) 0.005\180\50
GT-CausIn(L = 5) 0.006\180\50
GT-CausIn(L = 6) 0.004\180\50
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