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ABSTRACT

Vision Graph Neural Networks (ViG) treats an image as a set of visual patches for
graph representation learning and yields promising results across various com-
puter vision tasks. However, most existing works primarily focus on static graph
construction, ignoring the performance gains and noise reduction benefits of dy-
namic structure refinement. Meanwhile, generative models such as Energy-based
Models (EBMs) are generally unsuitable for discriminative tasks and struggle with
large-scale images. Our goal is to introduce a unified generative-discriminative
paradigm for dynamically modeling relationships between visual patches, aim-
ing to produce higher-quality representations for improving downstream tasks.
Specifically, we propose Decoupled Energy Learning (DEL) that defines a joint
distribution of sample pairs to approximate the target distribution. It decouples
EBMs into energy matching and contrastive learning as a global loss function,
which pulls similar pairs closer and pushes dissimilar pairs further apart in the
representation space. For implementation, we develop an end-to-end framework,
termed Decoupled ENergy learning guided Structure rEfinement for improving
ViG (DenseViG). Structure refinement is deployed within ViG architectures in a
plug-and-play manner, dynamically adding or pruning edges based on similarity
metrics with a relaxation strategy. Theoretical analyses demonstrate the effective-
ness of DenseViG in processing large datasets through graph operations. Empiri-
cal evaluations confirm that it outperforms state-of-the-art methods on three major
benchmarks, achieving 84.3% Top-1 accuracy on ImageNet-1K, 46.4% mAP on
MS COCO, and 50.9% mIoU on ADE20K.

INTRODUCTION

Graph Neural Networks (GNNs) are initially developed to handle graph-structured data due to their
strength in modeling relational dependencies and capturing complex topology. More recently, GNNs
have been successfully applied to computer vision Tian et al. (2024); Wang et al. (2023); Rahman
& Marculescu (2024); Xu et al. (2024); Bhowmik et al. (2023). Among these efforts, Han et al.
Han et al. (2022) pioneered Vision GNNs (ViG), which divides images into patches, constructs a
graph over visual features, and propagates information via a message-passing scheme. Rather than
relying on traditional 2D convolutions or self-attention mechanisms, ViG adopts graph convolution
as a novel paradigm for visual representation learning. It achieves competitive performance across
various benchmarks, including image classification Wang et al. (2025); Parikh et al. (2025); Li et al.
(2023), object detection Yang et al. (2025); Wu et al. (2023), and image segmentation Li et al. (2024);
Jiang et al. (2023). However, the main drawback of ViG lies in its largely static graph construction
using the conventional k-Nearest-Neighbor (k-NN) algorithm and its variants Han et al. (2022);
Wang et al. (2025); Yang et al. (2025); Spadaro et al. (2025); Yao et al. (2024). These methods
always suffer from fixed topologies, noise interference and limited high-order semantics. To avoid
this, Munir et al. (2024) designed a dynamic axial graph construction that connects patches whose
Euclidean distance falls below a threshold set by the distance distribution’s mean and standard devi-
ation. Han et al. (2023) devised a dynamic hypergraph construction that softly clusters semantically
akin patches with Fuzzy C-Means, treating each cluster as a set of hyperedges. Both methods rely
on heuristic rules and shallow features without learnable parameters, preventing end-to-end training
via gradient updates and restricting the flexibility of ViG.
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Figure 1: Params, FLOPs, and Top-1 accuracy on
ImageNet-1K for representative ViT, ViG, Pool,
and HGNN backbones. DenseViG-Ti, S, and M
lie on the accuracy and efficiency frontier, reach-
ing 82.2%, 83.7%, and 84.3% Top-1 accuracy.
This suggests that decoupled energy-guided graph
structure refinement scales to image datasets and
points to stronger Vision GNNs.

Motivation We aim to comprehensively en-
hance the performance of ViG on downstream
tasks. Prior works typically begin by select-
ing expressive generative models, particularly
Energy-based Models (EBMs) LeCun et al.
(2006), known for their strong representational
capacity. To better align EBMs with discrim-
inative tasks such as classification and detec-
tion Bhowmik et al. (2023); Grathwohl et al.
(2019), recent studies by Kim & Ye (2022) and
Wang et al. (2022) have explored several com-
bined approaches using contrastive objectives.
They have demonstrated effective representa-
tions and favorable outcomes on toy datasets
(e.g., MNIST and CIFAR). However, its scal-
ability to large-scale datasets is hindered by
the time-consuming iterations and high mem-
ory consumption associated with EBMs. In-
spired by the success of Zeng et al. (2025) in
applying this investigation to graph-based do-
mains, we utilize the ViG architecture of con-
verting pixel-level images into sparse graphs.
Since reducing the data dimensionality by several folds, it shortens the iteration time and lowers
memory, both of which are beneficial for processing high-resolution imagery. In summary, our
perspective positions graph learning as a critical bridge between EBMs and large-scale visual data.

Contribution In this paper, we present a Decoupled Energy Learning (DEL) method that addresses
the limitations of single-paradigm modeling. DEL incorporates EBMs with Contrastive Learning
(CL) to define a joint distribution over paired samples for approximating the target data distribution.
Specifically, we decouple its objective as a joint loss including two complementary terms, leverag-
ing the benefits of generative models while retaining strong discriminability for downstream tasks.
During energy matching process, DEL objective maximizes the joint log-likelihood of the similarity
between positive pairs using EBMs, while simultaneously minimizing that of negative pairs using
CL. We theoretically justify that the standard contrastive loss emerges as a special case of the DEL
loss when the generative term is omitted.

Building on our motivation, we introduce a novel framework that Decoupled ENergy learning
guided Structure rEfinement for improving ViG, named DenseViG. This framework performs graph
structure refinement in a modular, plug-and-play fashion, enabling seamless integration into exist-
ing ViG architectures without modifying any components. Within each ViG stage, an intrinsic GNN
encoder embeds the constructed graph to generate node representations. Dynamic refinement en-
hances the raw structure by adding or pruning edges according to learned pairwise representation
similarities with a Gumbel-Sigmoid relaxation strategy. DEL loss provides a global optimization
to facilitate both high-quality representations and optimal structures. DenseViG is evaluated on
three benchmarks for image classification, object detection and semantic segmentation. The major
contributions are threefold as follows:

1. Incorporating EBMs with contrastive learning into DEL approximates the target distribution by
pulling similar representations closer and pushing dissimilar ones apart. DEL objective is decoupled
into two complementary terms, allowing the unified paradigm to fit more naturally within discrimi-
native tasks while preserving generative capacity.

2. By integrating dynamic refinement into each ViG stage in a plug-and-play manner, we pro-
pose a novel end-to-end trainable framework, called DenseViG. Our framework encourages ViG
architectures to generate powerful representations and refined structures, consistently improving the
performance of downstream vision tasks.

3. Leveraging graph processing, our framework shortens iteration time and reduces memory, en-
abling training on large-scale images and achieving superior results across three vision benchmarks.
Specifically, DenseViG yields 84.3% Top-1 accuracy on ImageNet-1K, 46.4% mAP on MS COCO,
and 50.9% mIoU on ADE20K.
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RELATED WORKS

VISUAL REPRESENTATION LEARNING

Generative models such as EBMs have shown unique potential in computer vision. EBMs represent
the data distribution as a scalar-valued energy function Arbel et al. (2020). Recent advances involve
deep neural parameterizations of the energy function, widely applied for image reconstruction Pang
et al. (2020), object detection Gustafsson et al. (2021), and human motion modeling Zhang et al.
(2025). Optimization of EBMs is often considered challenging, and contrastive techniques have
proven effective Gutmann & Hyvärinen (2010). Kim & Ye (2022) introduce a hybrid framework that
enriches the SimCLR objective with a generative energy-based term, explicitly modeling the joint
distribution of positive pairs rather than relying solely on discriminative alignment. Similarly, Wang
et al. (2022) propose a unified probabilistic framework that reinterprets adversarial training as the
maximum-likelihood estimation of EBMs, clarifying the generative capability of robust classifiers
and bridging supervised adversarial training with contrastive learning. These studies motivate a self-
supervised framework that leverages both generative expressiveness and discriminative precision for
visual representation learning on small- and medium-scale datasets. However, they still suffer from
high computational and memory costs on large-scale data.

VISION GRAPH NEURAL NETWORKS

Vision graph neural networks have become a rapidly growing alternative to grid-based architec-
tures, allowing flexible interactions between local regions and efficient global context aggregation
in images. Among ViG components, graph construction is critical a link of improvement. Static
construction methods develop several k-NN variants to reduce time and space complexity. WiGNet
Spadaro et al. (2025) mitigates the quadratic overhead of vanilla k-NN through window partition-
ing, achieving nearly linear scalability with image size. ClusterViG Parikh et al. (2025) applies
the k-means algorithm to cluster image tokens, effectively compressing the search space of k-NN.
Dynamic graph approaches, including MobileViG Munir et al. (2023) and GreedyViG Munir et al.
(2024), replace expensive fully-connected graphs with sparse, structured patch interactions to ac-
celerate computation. These structures dynamically update during the forward passes, improving
adaptability across scenarios. More recently, hypergraph methods, such as DVHGNN Li et al.
(2025), HgVT Fixelle (2025), and HGFormer Wang et al. (2025), transform patch tokens into hy-
pergraph structures, encoding higher-order relationships through dynamic hypergraph convolutions
or attention mechanisms, thus capturing richer semantic information. Unlike the aforementioned
approaches, we emphasize structure refinement by utilizing a unified paradigm and integrate it into
the existing ViG backbones as an end-to-end framework, enhancing downstream tasks.

METHODS

In this section, we detail the DenseViG framework. First, we formalize the graph notation and
review the concepts of EBMs. We then present the core DEL objective, followed by the structure
refinement module and the end-to-end optimization pipeline. Finally, we analyze computational
complexity and introduce the three DenseViG variants.

PRELIMINARIES

Notations Given an image I ∈ RH×W×3, we partition it into N patches. Each patch is projected
into a D-dimensional feature xi ∈ RD via a learnable linear transformation. Consider a graph
G = (V, E ,X), where V = {v1, v2, . . . , vN} is the set of N = |V| nodes, E ⊆ V × V is the set
of edges, and X = {x1,x2, . . . ,xN} ∈ RN×D contains the set of node features corresponding to
each node vi. The adjacency matrix A ∈ {0, 1}N×N indicates edge connectivity, where Aij = 1 if
nodes vi and vj are connected, and Aij = 0 otherwise.

Graph structure learning seeks to jointly generate a refined adjacency matrix A∗ and corresponding
representation H∗ for downstream tasks. Notably, this process solely optimizes the raw structure,
while keeping all others unchanged.
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Figure 2: Illustration of the procedure of DenseViG. An image is transformed into node features.
Dual graph views feed a shared GNN encoder. DEL improves representations with decoupling
EBMs into generative and discriminative aims. Similarities metric and soft relaxation refine struc-
ture. Optimal graph boosting downstream task performance in a plug-and-play manner.

Energy-based Models define a probability distribution implicitly by assigning a scalar energy to
each data point x. A parameterized energy function Eθ(x) ∈ R specifies an unnormalized density
using the Boltzmann formulation:

pθ(x) =
exp(−Eθ(x))

Z(θ)
, (1)

where Z(θ) =
∫
exp(−Eθ(x)) dx is the partition function required for normalization.

Since Z(θ) is usually intractable, training proceeds by calculating the negative log-likelihood of
the observed data: L(θ) = Ex∼pdata [− log pθ(x)]. A popular optimization method is to min-
imize Kullback–Leibler (KL) divergence Hinton (2002) via gradient descent: DKL(pdata∥pθ) =
Ex∼pdata [Eθ(x) + logZ(θ)], and its objective becomes:

∇θDKL(pdata∥pθ) = Ex∼pdata [∇θEθ(x)]− Ex̃∼pθ
[∇θEθ(x̃)]. (2)

where true samples x map to lower energies, while generated ones x̃ map to higher energies.

These artificial samples are typically generated by Markov Chain Monte Carlo (MCMC) methods,
most often using Langevin dynamics Welling & Teh (2011):

x̃k+1 = x̃k − λ∇x̃Eθ(x̃
k) + ξk , (3)

where λ is the step size, and ξk is i.i.d. standard Gaussian noise N (0, 2λ). With an appropriate step
size λ and iterations k, the chain converges to the target distribution pθ.

DECOUPLED ENERGY LEARNING

Let pd denote the empirical joint data distribution over paired graphs (G1,G2). To generate two
correlated graph views U,V = t1(X1,A1), t2(X2,A2), we independently sample augmentation
operators t1, t2

u.a.r.∼ T , where u.a.r. stands for uniformly at random. The augmentation set T consists
of random node feature masking and edge perturbation with a fixed ratio Thakoor et al. (2021).

At each ViG stage, a shared-weight GNN encoder φθ takes U and V as input and returns node
representations H1,H2 = φθ(U), φθ(V) ∈ RN×F .

Definition. To approximate pd, a joint distribution pθ over the two views (U,V) can be defined as
an EBM:

pθ(U,V) =
exp(−Eθ(U,V))∫ ∫

exp(−Eθ(U,V)) dUdV
, (4)
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where Eθ(U,V) = ∥H1 − H2∥22/τ is represented as a metric function that quantifies cross-view
similarity, and τ is a scaling factor.

Concretely, ∥H1 −H2∥22 indicates the squared ℓ2 distance between the unit-normalized vectors H1

and H2. Our core intuition is to minimize this distance for semantically similar pairs from the same
sample, while maximizing it for dissimilar pairs from distinct samples. Equivalently, pθ assigns
higher probability mass to matched pairs under pd and lower mass to mismatched ones.

The joint negative log-likelihood of Eq. 4 is given by: Epd
[− log pθ(U,V)]. According to Eq. 2, its

corresponding gradient can be written as:

∇θEpd
[− log pθ(U,V)] = Epd

[∇θEθ(U,V)]− Epθ
[∇θEθ(U,V)] . (5)

Eq. 5 requires sampling from pθ(U,V), which is doubly intractable owing to high-dimensional
integrals. Naively applying MCMC is prohibitively expensive for the joint target. To avert this
issue, we employ the product rule to decouple:

∇θEpd
[− log pθ(U,V)] = ∇θEpd

[− log pθ(V|U)] +∇θEpd
[− log pθ(U)] , (6)

where pθ(U) denotes the marginal of pθ(U,V).

Theorem. The marginal distribution pθ(U) is also considered as an EBM:

pθ(U) =
exp(−Eθ(U))∫
exp(−Eθ(U)) dU

, (7)

where Eθ(U) = − log
∫
exp(−Eθ(U,V)) dV.

The negative log-likelihood gradient of Eq. 7 is:

∇θEpd
[− log pθ(U)] = Epd

[∇θEθ(U)]− Epθ
[∇θEθ(U)] . (8)

Following Eq. 6 and Eq. 8, we obtain the gradient of Decoupled Energy Learning (DEL) objective
LE(θ), incorporating both the discriminative and generative terms:

∇θLE(θ) = ∇θEpd
[− log pθ(V|U)] + α[Epd

[∇θEθ(U)]− Epθ
[∇θEθ(U)]] , (9)

where α is a hyper-parameter to balance the two terms.

Eq. 9 allows DEL to indirectly solve the intractable joint distribution. The discriminative term is
straightforward without computing the global gradients w.r.t. Z(θ), and the generative term only
requires marginal sampling over single view. Negative samples are synthesized via Langevin dy-
namics from Gaussian noise initialization, as shown in Eq. 3. Besides, discriminative alignment
alone may eliminate the energy gap between positive and negative samples, resulting in represen-
tation collapse. Generative regularization encourages higher energy for mismatched pairs using
contrastive divergence. This push-pull mechanism accurately aligns the energy landscape with the
underlying data manifold. More proof details are provided in the Appendix A.

STRUCTURE REFINEMENT

Given node representations H = {h1,h2, . . . ,hN}, we calculate the cosine-similarity matrix Cij =
hih

⊤
j

∥hi∥2 ∥hj∥2
. To obtain a differentiable adjacency matrix, we adopt a Relaxed Bernoulli variable for

each edge via the Gumbel–Sigmoid reparameterization Jang et al. (2016):

S = Sigmoid(
1

π
(log

C

1−C
+ log

δ

1− δ
)) , (10)

where δ ∼ Uniform(0, 1), and π ∈ R+ controls the relaxation sharpness. As π → 0, S converges to
a hard binary decision. For structural validity and numerical stability, we symmetrize and normalize

S: A∗ = D− 1
2
(
S+S⊤

2

)
D− 1

2 , where D is the diagonal degree matrix. The refined graph G∗ =
(X,A∗) is passed to a GNN encoder ψθ, architecturally identical to φθ, to yield the representation
H∗ for the subsequent processing.
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END-TO-END OPTIMIZATION

For the implementation of DEL, we design a tractable MCMC estimator in which the generative
term is rewritten as contrastive form, and the discriminative term is expressed as an InfoNCE loss.

Given a mini-batch of N paired augmentations {Ui,Vi}Ni=1 ∼ pd, each (Ui,Vi) forms a positive
pair, while (Ui,Vj) serve as negative ones for the discriminative term. To balance the two phases
of the generative term in KL divergence, we synthesize N views {Ũi}Ni=1 ∼ pθ using k Langevin
dynamics steps in the negative phase.

Since the marginal energy Eθ(U) = − log
∫
exp(−Eθ(U,V)) dV is intractable, we approximate

it with a log-sum-exp over M complementary views {Vi,m}Mm=1 from the same batch: Êθ(Ui) ≈
− log 1

M

∑M
m=1 exp(−Eθ(Ui,Vi,m)). Substituting this into Eq. 9 gives the generative loss:

LGen(θ) ≈
1

N

N∑
i=1

(Êθ(Ui)− Êθ(Ũi)) . (11)

Treating each positive pair (Ui,V
+
i ) against M ′ intra-batch negatives {V−

i,j}M
′

j=1 yields the dis-
criminative loss:

LDisc(θ) ≈ − 1

N

N∑
i=1

log
exp(−Eθ(Ui,V

+
i ))

exp(−Eθ(Ui,V
+
i )) +

∑M ′

j=1 exp(−Eθ(Ui,V
−
i,j))

. (12)

In summary, the complete DEL objective is: LE(θ) = LDisc(θ) + αLGen(θ) + βLr(θ), where
Lr is the ℓ2 regularization that prevents gradient overflow from large energy values. For end-to-
end training, we minimize the global loss function: LG = LT + µLE + γLR, where LT is the
task-specific loss, LR =

∑
i,j Eδ[Sij ] is a sparsity-promoting penalty term, µ and γ are hyper-

parameters. The pseudocode of DenseViG is illustrated in Algorithm 1 in the Appendix C.1.

ARCHITECTURE OVERVIEW

As illustrated in Fig. 2, DenseViG is a four-stage architecture that enriches a PyramidViG backbone
Han et al. (2022) with DEL-guided structure refinement. We introduce the model’s scaling variants
and provide a brief complexity analysis. The complete configuration is in the Appendix C.2.

Table 1: Scaling variants of DenseViG. dD and dF is
the feature and representation dimensions, respectively.
‘Ti’, ‘S’, and ‘M’ stand for Tiny, Small, and Medium.

Model Depth Blocks Dim. dD Dim. dF
DenseViG-Ti 12 [2, 2, 6, 2] 192 [48, 96, 240, 384]
DenseViG-S 12 [2, 2, 6, 2] 320 [80, 160, 400, 640]
DenseViG-M 22 [2, 2, 16, 2] 640 [96, 192, 384, 768]

Scaling Variants Mirroring the design
philosophy of ViG, we instantiate three
different configurations: DenseViG-Ti,
DenseViG-S, and DenseViG-M. Across
all variants, the initial node number is
fixed to N = 3136, while later stages re-
duce it via spatial downsampling. We set 9
nearest neighbors in the k-NN graph con-
struction, and employ 4 attention heads.
Table 1 summarizes the depth, blocks per stage, and dimensionality of each model.

Complexity Analysis DenseViG introduces additional computation in only two modules: structure
refinement computesB cosine-similarity matrices of sizeN×N , with a cost of O(B ·N2 ·F ), where
F is the representation dimension. Since ViG already condenses anH×W image intoN nodes, this
quadratic term is empirically affordable. DEL performs k Langevin steps on the B graph views in a
mini-batch, adding a linear overhead of O(k ·B ·N ·F ). With a small k and F , this cost is negligible
relative to structure refinement. Therefore, the total overhead is O(B ·N2 · F + k ·B ·N · F ), and
the overall pipeline retains near-linear scalability w.r.t. image size.

EXPERIMENTS

IMAGE CLASSIFICATION

Implementation Details All DenseViG variants are trained on ImageNet-1K Deng et al. (2009),
which comprises 1.2M training images, 50K validation images, and 100K test images across 1K
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Table 2: Image classification performance on ImageNet-1K. ♠ CNN, ♦ ViT, ♥ Pool, ♣ GNN, ✠
CNN-GNN, ▼ HGNN, and ⋆ DenseViG (ours). Reporting Params (M), FLOPs (G), and Top-1 &
Top-5 Accuracy (%) where available.

Model Params (M) FLOPs (G) Top-1 Top-5

♠ ResNet18 11.7 1.8 70.6 89.7
♠ ResNet50 25.6 4.1 79.8 95.0
♠ ResNet152 60.2 11.5 81.8 95.9
♠ ConvNeXt-T 29.0 4.5 82.1 95.9
♠ ConvNeXt-S 50.0 8.7 83.1 96.4
♠ ConvNeXt-B 89.0 15.4 83.8 96.7

♦ PVT-Ti 13.2 1.9 75.1 -
♦ PVT-S 24.5 3.8 79.8 -
♦ PVT-M 44.2 6.7 81.2 -
♦ DeiT-Ti 5.7 1.3 72.2 80.1
♦ DeiT-S 22.1 4.6 79.8 85.7
♦ DeiT-B 86.4 17.6 81.8 86.7
♦ Swin-T 29.0 4.5 81.3 95.5
♦ Swin-S 50.0 8.7 83.0 96.2
♦ Swin-B 88.0 15.4 83.5 96.5

♣ PyramidViG-Ti 10.7 1.7 78.2 94.2
♣ PyramidViG-S 27.3 4.6 82.1 96.0
♣ PyramidViG-M 51.7 8.9 83.1 96.4
♣ WiGNet-Ti 10.8 2.1 78.8 94.6
♣ WiGNet-S 27.4 5.7 82.0 95.9
♣ WiGNet-M 49.7 11.2 83.0 96.3

Model Params (M) FLOPs (G) Top-1 Top-5

♥ PoolFormer-S12 12.0 2.0 77.2 93.5
♥ PoolFormer-S36 31.0 5.2 81.4 95.5
♥ PoolFormer-M48 73.0 11.9 82.5 96.0

✠ MobileViG-Ti 5.2 0.7 75.7 -
✠ MobileViG-S 7.2 1.0 78.2 -
✠ MobileViG-M 14.0 1.5 80.6 -
✠ GreedyViG-S 12.0 1.6 81.1 -
✠ GreedyViG-M 21.9 3.2 82.9 -
✠ GreedyViG-B 30.9 5.2 83.9 -

▼ PViHGNN-Ti 12.3 2.3 78.9 94.6
▼ PViHGNN-S 28.5 6.3 82.5 96.3
▼ PViHGNN-M 52.4 10.7 83.4 96.5
▼ DVHGNN-T 11.1 1.9 79.8 -
▼ DVHGNN-S 30.2 5.2 83.1 -
▼ DVHGNN-M 52.5 10.4 83.8 -
▼ HgVT-Ti 7.7 1.8 76.2 93.2
▼ HgVT-S 22.9 5.5 81.2 95.5

⋆ DenseViG-Ti 11.1 1.9 82.2 96.1
⋆ DenseViG-S 28.5 5.3 83.7 96.7
⋆ DenseViG-M 53.3 9.6 84.3 96.9

classes. Training is conducted for 310 epochs on 224× 224 crops with the AdamW optimizer (mo-
mentum β1=0.9, β2=0.99, weight decay=0.05). The learning rate is initialized at 0.001 and annealed
by a cosine scheduler. We apply RandAugment, CutMix, RandomResizedCrop, and label smooth-
ing for data augmentation, and track an Exponential Moving Average (EMA) of model parameters.
All experiments are implemented in PyTorch and run on 8 RTX3090 GPUs with a batch size of 64.
The hyperparameters are specified in the Appendix C.3. to ensure the reproducibility.

Experimental Results Table 2 compares DenseViG with leading image classification methods, in-
cluding ResNet He et al. (2016), ConvNeXt Liu et al. (2022d), PVT Wang et al. (2021b), DeiT
Touvron et al. (2021), Swin Liu et al. (2022c), PoolFormer Yu et al. (2022), PyramidViG Han et al.
(2022), WiGNet Spadaro et al. (2025), MobileViG Munir et al. (2023), GreedyViG Munir et al.
(2024), PViHGNN Han et al. (2023), DVHGNN Li et al. (2025), and HgVT Fixelle (2025). No-
tably, DenseViG-S boosts Top-1 accuracy by 1.7% over the strongest GNN baseline WiGNet-S and
by 0.6% over the best HGNN baseline DVHGNN-S. These margins confirm that DenseViG cap-
tures higher-order visual information interactions more effectively than prior approaches, without
appreciably increasing model size or computational cost.

OBJECT DETECTION

Implementation Details Object detection is conducted on MS COCO Lin et al. (2014), containing
118K training, 5K validation, and 20K test images. RetinaNet Lin et al. (2017) and Mask R-CNN
He et al. (2017) are employed as detection heads and implemented in the MMDetection Chen et al.
(2019). All models are pre-trained on ImageNet-1K and fine-tuned for 12 epochs at the resolution
of 1280 × 800 with an AdamW optimizer, an initial learning rate of 2 × 10−4, and an effective
batch size of 16. We additionally apply data augmentations including random horizontal Flipping
and Multi-scale jittering. Other settings are the same as the image classification setup. Bounding
box regression uses a weighted sum of ℓ1 and GIoU losses.

Experimental Results As depicted in Table 3, DenseViG outperforms the state-of-the-art ap-
proaches. Specifically, under the RetinaNet head, DenseViG-S achieves 44.6% mAP that sur-
passes PyramidViG by 2.8%, ViHGNN-S by 2.4%, and PViHGNN-S by 1.3%, respectively. Under
the Mask R-CNN head, DenseViG-S achieves 46.4% mAP that surpasses PyramidViG by 3.8%,
ViHGNN-S by 3.3%, and PViHGNN-S by 1.6%, respectively. More results are in the Appendix D.
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Table 3: Object detection performance on MS
COCO. 1× denotes the standard training sched-
ule of 12 epochs. Indicating Params (M),
FLOPs (G), and mAP (%) where available.

Backbone RetinaNet 1×

Params FLOPs APbox APbox
50 APbox

75

ResNet-50 38M 239G 36.3 55.3 38.6
PVT-S 34M 227G 40.4 61.3 44.2
Swin-T 39M 245G 41.5 62.1 44.2
PyramidViG-S 36M 240G 41.8 63.1 44.7
PViHGNN-S 38M 244G 42.2 63.8 45.1
DVHGNN-S 38M 242G 43.3 64.3 46.3

DenseViG-S 40M 247G 44.6 66.1 47.8

Backbone Mask R-CNN 1×

ResNet-50 44M 260G 38.0 58.6 41.4
PVT-S 44M 245G 40.4 62.9 43.8
Swin-T 48M 264G 42.2 64.6 46.2
PyramidViG-S 46M 259G 42.6 65.2 46.0
PViHGNN-S 48M 262G 43.1 66.0 46.5
DVHGNN-S 49M 261G 44.8 66.8 49.0

DenseViG-S 51M 266G 46.4 68.7 50.6

Table 4: Semantic segmentation performance on
ADE20k. Head method includes input configura-
tion: -1 last backbone layer only, -4 last four lay-
ers concatenated. Showing Params (M), mIoU (%),
and Pixel Accuracy (%) where available.

Backbone Params Head Params mIoU Acc.

ResNet-18 11.5M PPM-1 12.9M 33.8 76.1
ResNet-50 25.6M SFPN 1.6M 36.7 -
ResNet-50 25.6M PPM-1 23.2M 41.3 79.7
ResNet-101 44.5M PPM-1 23.2M 42.2 80.6
ConvNeXt-T 29.0M UperNet 29.8M 46.1 -

PVT-S 24.5M SFPN 1.6M 39.8 -
PoolFormer-S12 12.0M SFPN 1.6M 37.2 -
Swin-T 28.3M SFPN 1.6M 41.5 -
Swin-T 28.3M UperNet 29.8M 46.1 -

GreedyViG-S 12.0M SFPN 1.6M 43.2 -
GreedyViG-B 30.9M SFPN 1.6M 47.4 -
HgVT-S 22.9M MLP-4 235K 28.5 71.8
HgVT-S 22.9M PPM-4 15.5M 36.0 75.7

DenseViG-Ti 11.1M MLP-4 235K 33.0 76.8
DenseViG-Ti 11.1M SFPN 1.6M 42.7 79.4
DenseViG-S 28.5M PPM-4 15.5M 48.8 81.7
DenseViG-S 28.5M UperNet 29.8M 50.9 82.5

SEMANTIC SEGMENTATION

Implementation Details We validate semantic segmentation on ADE20K Zhou et al. (2017), which
provides 20K training, 2K validation, and 3K test images covering 150 categories. The backbone
is initialized with ImageNet-1K weights and fine-tuned for 16 epochs with 4 segmentation heads:
MLP, PPM Zhao et al. (2017), Semantic FPN Kirillov et al. (2019), and UPerNet Xiao et al. (2018).
All models are implemented in the MMSegmentation Contributors (2020). Training uses 512× 512
crops with a batch size of 16, and the same data augmentation pipeline, GPU configuration, opti-
mizer settings, and learning rate schedule as in our object detection setup. Supervision is provided
by the standard pixel-wise cross-entropy loss.

Experimental Results Table 4 presents the superiority of DenseViG with other famous backbones.
Specifically, using lightweight linear heads such as MLP and PPM, DenseViG-Ti achieves competi-
tive results with faster inference speed. With SFPN and UperNet head, DenseViG-S achieves 48.8%
and 50.9% mIoU, outperforming the suboptimal GreedyViG-B by 1.4% and 3.5%, respectively.

Table 5: Performance ablations of generative and discrimi-
native terms in DEL on ImageNet-1K using the DenseViG-
Ti/S backbone. Denoting used (✓) or not used (✗).

Method Gen. term Disc. term Top-1EBMs InfoNCE SimCLR

PyramidViG-Ti ✗ ✗ ✗ 78.2
DenseViG-Ti ✓ ✗ ✗ 81.3
DenseViG-Ti ✗ ✓ ✗ 81.7
DenseViG-Ti ✓ ✗ ✓ 82.4
DenseViG-Ti ✓ ✓ ✗ 82.2

PyramidViG-S ✗ ✗ ✗ 82.1
DenseViG-S ✓ ✗ ✗ 82.6
DenseViG-S ✗ ✓ ✗ 83.0
DenseViG-S ✓ ✗ ✓ 83.6
DenseViG-S ✓ ✓ ✗ 83.7

ABLATION STUDIES

Effectiveness of DEL Objective Ta-
ble 5 investigates the influence of
generative and discriminative terms
in DEL on classification perfor-
mance. Using only the generative
term improves Top-1 accuracy by
0.5-3.1% over the baseline, suggest-
ing EBMs enhance representation
quality. Replacing EBMs with In-
foNCE independently achieves accu-
racies of 81.7% and 83.0% on ViG-Ti
and ViG-S, demonstrating the effec-
tiveness of the discriminative term.
Involving EBMs with SimCLR yields
a 0.6% gain, while pairing EBMs
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with InfoNCE obtains the optimal balance of 82.2% and 83.7%. These findings reinforce our view
that standard contrastive loss represents a special case of DEL.

Table 6: Impact of various structure refinement methods on
ImageNet-1K. “Half” means placing at every second stage.
The temperature π controls relaxation sharpness.

Model Refinement Relaxation Stage Top-1

PyramidViG-S Static k-NN Hard All 82.1
GreedyViG-S Axial graph Hard All 81.1

DenseViG-S Add-only π=0.1 All 83.3
DenseViG-S Prune-only π=0.1 All 82.9

DenseViG-S Add-prune π=0.1 Half 83.1
DenseViG-S Add-prune π=1.0 All 83.5
DenseViG-S Add-prune π=0.1 All 83.7

Effectiveness of Structure Refine-
ment Table 6 presents the impact of
varying refinement strategy. Static k-
NN and the axial graph score 82.1%
and 81.1%. With π=0.1, adding
edges only lifts accuracy to 83.3%,
while pruning edges only reaches
82.9%, proving that each step alone
reduces noise or restores missing
links. Applying both adding and
pruning at every stage pushes accu-
racy to 83.7%, surpassing the half-
stage schedule and the milder relax-
ation. Full-stage refinement with a softer relaxation therefore yields the best result.

Analysis of Iterative Steps Fig. 3 shows that raising k from 1 to 5 lifts Top 1 accuracy by 1.0%,
adding 79 ms and 8.22 GB. Increasing to 10 or 20 yields little extra accuracy but much higher cost.
We choose k=5, which provides near peak accuracy with acceptable time and memory, confirming
the scalability of our EBM sampler on current environments.

Figure 3: Impact of k Langevin steps in nega-
tive sampling for DenseViG-S on ImageNet-1K.
Evaluated on 8 RTX 3090 GPUs (batch size 64).

Figure 4: Hyper-parameter α and µ analysis of
DenseViG-Ti and DenseViG-S on ImageNet-1K.
‘Mean’ reports the average of the four columns.

Table 7: Impact of adding Dense to two ViG backbones on
ImageNet-1K, with absolute gains shown in parentheses.

Backbone Params FLOPs Top-1

WiGNet-S (baseline) 27.4M 5.7G 82.0
WiGNet-S + Dense 28.6M 6.4G 83.5 (+1.5)↑
GreedyViG-S (baseline) 12.0M 1.6G 81.1
GreedyViG-S + Dense 12.6M 1.8G 82.8 (+1.7)↑

Setting of Hyper-parameters Fig. 4
indicates that raising α from 0.01 to
10.0 significantly improves Top 1 ac-
curacy of DenseViG-Ti and S. Perfor-
mance peaks at α=10.0, yet generated
samples reduce diversity, which means
an excessive discriminative weight
weakens the EBM’s generative power.
We therefore set α=1.0 for a trade-off
outcome. Increasing µ from 0.001 to 0.1 brings rapid gains and confirms the benefit of the Dense
framework. Above 0.1 the improvement levels off and training slows, so we fix µ=0.1 for all models.

Plug-and-play Verification Table 7 demonstrates a 1.5% Top-1 gain on WiGNet-S and 1.7% on
GreedyViG-S. Added parameters and FLOPs are minimal, confirming that Dense framework can be
seamlessly plugged into existing backbones and boosts performance with minimal extra cost.

CONCLUSION

This paper proposes DenseViG, a novel end-to-end framework that decouples EBMs into generative
and discriminative aims to enable differentiable graph structure refinement for enhancing ViG. At
each stage, DenseViG dynamically adds or prunes edges between visual patches, yielding cleaner
and higher-quality representations while suppressing noise. The resulting sparse graphs significantly
decrease the computational and memory costs of EBMs on high-resolution images. Extensive exper-
iments on three vision benchmarks show that DenseViG sets new state-of-the-art results, validating
the effectiveness of decoupled energy-guided graph structure refinement.
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APPENDIX

A MISSING PROOFS AND DERIVATIONS

A.1 REFORMULATION OF THE MARGINAL EBM OBJECTIVE AS A GENERATIVE LOSS

Starting from Eq. 1 and the marginal probability pθ(U), we have

∇θ log pθ(U) = ∇θ log
exp(−Eθ(U))

Zθ

= −∇θEθ(U)−∇θ logZθ

= −∇θEθ(U)−∇θ log
∑
U

exp(−Eθ(U))

= −∇θEθ(U)−
∑

U ∇θ exp(−Eθ(U))∑
U′ exp(−Eθ(U′))

= −∇θEθ(U) +
∑
U

exp(−Eθ(U))∑
U′ exp(−Eθ(U′))

∇θEθ(U)

= −∇θEθ(U) +
∑
U

pθ(U)∇θEθ(U)

= −∇θEθ(U) + EŨ∼pθ
[∇θEθ(Ũ)],

where we use ∇θ logZθ = −EŨ∼pθ
[∇θEθ(Ũ)]. Therefore, the gradient of the negative log-

likelihood Lθ under the data distribution pd is

∇θLθ = −∇θ EU∼pd
[log pθ(U)] = EU∼pd

[∇θEθ(U)]− EŨ∼pθ
[∇θEθ(Ũ)].

Integrating both sides shows that Lθ is equivalent (up to a θ-independent constant) to an energy
matching objective, corresponding to the generative loss LGen(θ):

LGen(θ) = EU∼pd
[Eθ(U)]− EŨ∼pθ

[Eθ(Ũ)] + const ≈ 1

N

N∑
i=1

Eθ(Ui)−
1

M

M∑
j=1

Eθ(Ũj).

Finally, minimizing LGen(θ) is equivalent to minimizing the KL divergence DKL(pd∥pθ), since

∇θDKL(pd∥pθ) = ∇θ

∑
U

pd(U) log
pd(U)

pθ(U)

= ∇θ

∑
U

pd(U) log pd(U)−∇θ

∑
U

pd(U) log pθ(U)

= ∇θEU∼pd(U) [log pd(U)]−∇θEU∼pd(U) [log pθ(U)]

= 0 +∇θLGen(θ)

= ∇θLGen(θ),

where EU∼pd
[log pd(U)] is θ-independent.

A.2 REGULARIZATION FOR THE EBM OBJECTIVE

Following Du & Mordatch (2019), we add an ℓ2 penalty on the magnitudes of the energy values for
both real and model samples when optimizing LE(θ). While the relative energy differences between
true and negative samples shape the energy landscape, the absolute scale of energies can drift during
training, causing large values and numerical instability. The penalty anchors the scale and improves
gradient behavior in both positive and negative phases. Concretely, real samples Ui ∼ pd(U) and
negatives Ũj ∼ pθ(Ũ) in the energy function, we use

Lr(θ) =
1

N

N∑
i=1

Eθ(Ui)
2 +

1

M

M∑
j=1

Eθ(Ũj)
2,
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where N and M are the mini-batch sizes for real and negative samples, respectively. In the overall
objective, this term is weighted by β to prevent gradient overflow and stabilize Langevin dynamics.

A.3 DERIVATION OF THE CONDITIONAL EBM OBJECTIVE AS A DISCRIMINATIVE LOSS

The discriminative term of LE can be defined as the expected negative log-likelihood of the target
V given context U:

LDisc(θ) = E(U,V)∼pd
[− log pθ(V|U)].

Since the conditional probability pθ(V|U) = pθ(U,V)/pθ(U), we can rewrite this as

LDisc(θ) = Epd
[− log

pθ(U,V)

pθ(U)
].

Consider the conditional EBM over paired views (U,V):

pθ(V|U) =
exp(−Eθ(U,V))

Zθ(U)
, Zθ(U) =

∫
exp(−Eθ(U,V

′)) dV′,

we have

pθ(V|U) =
exp(−Eθ(U,V))∫

exp(−Eθ(U,V′)) dV′ .

Hence, the discriminative loss can be written as

LDisc(θ) = Epd
[− log pθ(V|U)] = Epd

[− log
exp(−Eθ(U,V))∫

exp(−Eθ(U,V′)) dV′ ].

In practice, the expectation over pd is estimated by the empirical average over N data pairs
{Ui,Vi}Ni=1. Instead of approximating the intractable normalizer, we optimize the InfoNCE sur-
rogate by normalizing over one positive and several negatives. Concretely, for each positive pair
(Ui,V

+
i ), we select M ′ negative samples {V−

i,j}M
′

j=1:

LDisc(θ) ≈ − 1

N

N∑
i=1

log
exp(−Eθ(Ui,V

+
i ))

exp(−Eθ(Ui,V
+
i )) +

∑M ′

j=1 exp(−Eθ(Ui,V
−
i,j))

,

where V+
i denotes the positive response for Ui, and V−

i,j are the negative samples.

B ADDITIONAL RELATED WORKS

B.1 GRAPH STRUCTURE LEARNING

Graph structure learning attempts to infer and optimize explicit or implicit relationships between
nodes directly from data. It has delivered excellent results on graph-related tasks such as node classi-
fication, link prediction, and graph generation. Direct optimization methods including NodeFormer
Wu et al. (2022), STABLE Li et al. (2022), and ProGNN Jin et al. (2020) treat the adjacency matrix
as a learnable and adjust edge weights through task-driven objectives and regularization, thereby
transforming graph construction from a fixed pre-processing step into a trainable module. Metric
learning approaches including SUBLIME Liu et al. (2022b), GRCN Yu et al. (2020), and CoGSL
Liu et al. (2022a) employ a GNN encoder to embed node features into a latent space, compute
pairwise similarities, and normalize them to define connectivity. The resulting structures capture
task-relevant relations while mitigating noise and structural bias. Probability estimation techniques
including GEN Wang et al. (2021a), GAuG-O Zhao et al. (2021), and SGSR Zhao et al. (2023)
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model links as probabilistic variables, estimate their existence likelihood via neural networks or sta-
tistical methods, and then refine the graph by selecting high-probability edges. To date, the dynamic
graph structure learning methods have not been explored in ViG architectures. We therefore present
the evaluation of their transferability to the vision domain.

B.2 GRAPH CONTRASTIVE LEARNING

Graph contrastive learning uses self supervised objectives to align views of the same node, subgraph,
or graph and to separate unrelated samples, producing robust and discriminative embeddings. Zhu
et al. (2020) introduced node level contrastive learning with GRACE. It builds two corrupted graph
views by removing edges and masking features, then maximizes agreement of node embeddings.
The objective follows InfoNCE and can be viewed as maximizing mutual information. Its mix of
structural and attribute changes gives diverse contexts and has links to InfoMax and triplet losses. Yu
et al. (2023b) showed that contrastive training treats nodes unevenly. Hard nodes keep high InfoNCE
loss under many augmentations. They define node compactness and use it as a regularizer in a novel
provable training model. SOLA-GCL Peng et al. (2025) learns how to augment at the subgraph level.
It detects dense subgraphs and applies learned changes such as node dropping, feature masking, and
edge edits. This preserves key subgraph meaning. XSimGCL Yu et al. (2023a) found that most
gains come from the contrastive loss, not from graph changes. It replaces topology edits with simple
noise on embeddings and still excels. BGRL Thakoor et al. (2021) removes negatives and learns
by prediction with an online and a target network. It scales well with simple changes. Collectively,
these studies reveal that principled objectives and adaptive structure learning are key to advancing
graph contrastive methods. Our DenseViG also contributes to the field of graph contrastive learning
by decoupling EBMs into contrastive learning and generative modeling.

C IMPLEMENTATION DETAILS

C.1 TRAINING ALGORITHM

Algorithm 1: DenseViG training algorithm
Input: Training image I, graph G, GNN encoders ϕθ(·) and ψθ(·), augmentations t1, t2,

temperature τ , relaxation π, weights α, β, µ, γ, batch size N , number of batches B,
Langevin step size λ and iterations K, and training epochs P

Output: Trained DenseViG model (updated parameters θ)
Convert image I into graph G, extract patch features X, and construct the raw adjacency A via
k-NN algorithm;

Randomly initialize ϕθ(·) and ψθ(·) with hyper-parameters τ , λ, π, α, β, µ, and γ;
for p = 1, 2, . . . , P do

for b = 1, 2, . . . , B do
Sample a mini-batch of N graphs from the training examples;
Generate two correlated graph views U = t1(G1) and V = t2(G2);
Compute corresponding node representations H1 = φθ(U) and H2 = φθ(V);
Calculate the discriminative InfoNCE loss LDisc(θ) with Eq. 12;
Initialize Ũ0 ∼ N (0, 2λ);
for k = 1, 2, . . . ,K do

Sample Ũk from relay buffer;
Update Ũk+1 from Ũk with Eq. 3;

end
Calculate the generative EBM loss LGen(θ) with Eq. 11;
Calculate the complete DEL objective LE(θ) = LDisc(θ) + αLGen(θ);
Build cosine similarity matrix C and draw relaxed adjacency S with Eq. 10;
Symmetrize and normalize S to form A∗ and compute H∗ = ψθ(X,A

∗);
Compute the task-specific loss LT and form the global objective LG;
Update model parameters θ by gradient descent to minimize ∇θLG;

end
end
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Algorithm 1 outlines training for DenseViG. Each iteration samples a mini-batch of images, converts
them to graphs with patch features and a k-NN adjacency, and produces two augmented views. A
shared GNN encoder ϕθ(·) yields node representations. We calculate the contrastive energy learn-
ing objective with a discriminative InfoNCE term in Eq. 12 and a generative term in Eq. 11. The
generative negatives are synthesized from Gaussian noise via K steps of Langevin dynamics from
Eq. 3. We then refine the graph structure. From the cosine similarity matrix we draw a relaxed ad-
jacency with the Gumbel Sigmoid rule in Eq. 10, symmetrize and normalize it to obtain the refined
adjacency, and compute the corresponding representation with the GNN encoder ψθ(·) for the task
head. The global loss contains the task objective, the weighted DEL terms, and a sparsity regularizer
on the relaxed edges. Model parameters are updated by gradient descent.

C.2 MODEL CONFIGURATION

We scale the DenseViG to five sizes Ti, S, M, B, and L under a four stage pyramid ViG, as shown
in Table 8. A DenseViG block applies a Graph encoder followed by an FFN. The encoder builds
a k-NN graph in feature space with size 9 and performs multi head updates with 4 heads. Linear
projections are applied before and after the graph convolution. The encoder expands channels and
then projects back. We use GELU activations, LayerNorm, residual connections, and DropPath. The
FFN has two linear layers with an expansion ratio dE = 4.

Table 8: Configurations of DenseViG series. All variants use k-NN size 9, 4 heads, and input
resolution 224×224. Stage 1 applies a convolutional stem to produce 56×56 tokens (H/4×W/4).
Stages 2–4 downsample with stride-2 projections to 28×28, 14×14, and 7×7 tokens (H/8, H/16,
H/32), widening channels at each stage. dD denotes the feature dimension, dF the representation
dimension, and dE the FFN expansion dimension ratio. ‘Ti’ denotes tiny, ‘S’ small, ‘M’ medium,
‘B’ base, and ‘L’ large.

Stage Tokens Layer specification DenseViG variants
Ti S M B L

1 H
4 × W

4

Input Dimension dD 192 320 640 768 1024
Patch Size Stem, 56× 56, stride 4

DenseViG
Block

Dimension dF 48 80 96 128 192
Dimension dE 4

Blocks 2 2 2 2 2

2 H
8 × W

8

Input Patch Size Downsample, 28× 28, stride 2

DenseViG
Block

Dimension dF 96 160 192 256 384
Dimension dE 4

Blocks 2 2 2 2 2

3 H
16 × W

16

Input Patch Size Downsample, 14× 14, stride 2

DenseViG
Block

Dimension dF 240 400 384 512 768
Dimension dE 4

Blocks 6 6 16 18 24

4 H
32 × W

32

Input Patch Size Downsample, 7× 7, stride 2

DenseViG
Block

Dimension dF 384 640 768 1024 1536
Dimension dE 4

Blocks 2 2 2 2 2
Params (M) 11.1 28.5 53.3 98.5 120.3

FLOPs (G) @ 224× 224 1.9 5.3 9.6 18.4 24.9

All variants have four stages with output resolutions H/4×W/4, H/8×W/8, H/16×W/16, and
H/32 ×W/32. For input 224 × 224, a three layer 3 × 3 convolutional stem reduces the input to
quarter resolution and produces 56 × 56 tokens, thus N=3136. Later stages reduce the token grid
by spatial downsampling. After each stage, a stride 2 3× 3 projection reduces the number of tokens
by a factor of 4 and increases the representation dimension dF . The block schedule is 2 in Stage 1,
2 in Stage 2, model dependent counts in Stage 3, and 2 in Stage 4, with exact values in Table 8. We
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use a linear DropPath schedule with end rates 0.1, 0.2, 0.3, 0.5, and 0.6 for Ti through L. Absolute
positional encoding is used, with additional relative positional encoding within the pyramid.

C.3 EXPERIMENT SETTING

We adopt a unified training pipeline for DenseViG on classification, detection, and segmentation.
Hyper-parameters follow the main ablations. Optimizer is AdamW with β1=0.9, β2=0.99, weight
decay 0.05. We fix τ=0.1, α=1.0, β=10−5, µ=0.1, γ=10−4, k=5 Langevin iterations and λ=0.05
step size for negative sampling, relaxation π=0.1 for structure refinement. We maintain an EMA of
weights with decay 0.999. We apply stochastic depth with drop path rate 0.1. Table 9 summarizes
the training hyper-parameters for each task. In the following, we detail any task-specific setup
differences, while other settings remain consistent across tasks.

Table 9: Unified training hyper-parameter settings for DenseViG across ImageNet-1K classification,
MS COCO detection, and ADE20K segmentation. Others not listed are shared across the three tasks.

Task Classification (ImageNet-1K) Detection (MS COCO) Segmentation (ADE20K)

Optimizer AdamW (β1=0.9, β2=0.99) AdamW (same as left) AdamW (same as left)
Weight decay 5× 10−2 5× 10−2 5× 10−2

Layer-wise LR decay — 0.75 per layer (fine-tune) 0.75 per layer (fine-tune)
Initial learning rate 1× 10−3 2× 10−4 2× 10−4

Training epochs 310 12 (1× schedule) 16 (fine-tune)
Batch size 64 16 16
Input resolution 224× 224 1280× 800 512× 512
LR schedule Cosine annealing Step decay (8, 11 ep) Step decay (proportional)

Data augmentation RandAug, CutMix, RandomFlip, RandomFlip,
RandomResizedCrop Multi-scale jittering RandomResizedCrop

Label smoothing 0.1 — —
EMA decay rate 0.999 0.999 0.999
Drop-path rate 0.1 0.1 0.1
LE temperature τ 0.1 0.1 0.1
LE balance α 1.0 1.0 1.0
LE balance β 1× 10−5 1× 10−5 1× 10−5

LG weight µ 0.1 0.1 0.1
LG sparsity γ 1× 10−4 1× 10−4 1× 10−4

Langevin iterations k 5 5 5
Langevin step size λ 0.05 0.05 0.05
Relaxation temp. π 0.1 0.1 0.1

ImageNet 1K classification We train from scratch for 310 epochs on 224 × 224 images. Initial
learning rate is 1 × 10−3 with a cosine schedule for total batch size 64 on 8 RTX 3090 GPUs.
Augmentations include RandAugment, CutMix, RandomResizedCrop, and label smoothing 0.1.
The backbone uses ViG initialization without pretraining.

MS COCO detection We fine tune ImageNet pretrained DenseViG with MMDetection, using Reti-
naNet and Mask R-CNN heads while keeping the backbone and Dense module fixed. Training runs
for 12 epochs at 1280 × 800. AdamW and regularization match classification. We use layer wise
learning rate decay of 0.75 per ViG layer from output to input. Initial learning rate is 2 × 10−4

with step drops at epochs 8 and 11, batch size 16. Augmentations are RandomFlip and Multi-scale
jittering. EMA is enabled. Losses are sigmoid focal for classification and a weighted sum of ℓ1 and
GIoU for boxes.

ADE20K segmentation We fine tune ImageNet pretrained DenseViG with MMSegmentation for 16
epochs on 512× 512 random crops. Optimizer, EMA, and layer wise decay match detection. Initial
learning rate is 2× 10−4 with a proportional multi step schedule, batch size 16. Augmentations are
RandomFlip and RandomResizedCrop. We attach linear MLP, PPM, Semantic FPN, and UPerNet
heads. The backbone is fine tuned with the pixel wise cross entropy loss.
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D MORE EXPERIMENT RESULTS

D.1 OBJECT DETECTION AND INSTANCE SEGMENTATION

We evaluate object detection and instance segmentation on MS COCO using RetinaNet and Mask
R-CNN, as stated in Table 10 and Table 11. All models use ImageNet 1K pretraining and follow the
MMDetection recipe. Both tables report parameters, FLOPs, and COCO metrics, with RetinaNet
giving APbox averaged over IoU 0.50 to 0.95, APbox at IoU 0.50 and 0.75, and APbox at small,
medium, and large sizes, and Mask R-CNN giving both APbox and APmask with the same breakdown.

Under the same protocol, DenseViG-S improves both tasks across heads and schedules. With Reti-
naNet 1× it reaches 44.6 APbox, exceeding DVHGNN-S by 1.3 APbox, with consistent gains at APbox

50

and APbox
75 and the largest gain on large objects with plus 2.3 APbox

L . The 3× with MS setting lifts
this to 47.0 APbox. With Mask R-CNN 1×, DenseViG-S attains 46.4 APbox and 42.7 APmask, im-
proving over DVHGNN-S by 1.6 APbox and 2.5 APmask. The 3× with MS schedule reaches 50.2
APbox and 45.2 APmask. These gains come with similar parameters and FLOPs, which shows that
DenseViG improves the detection and segmentation performance with high efficiency and scales
well with stronger heads and longer training.

Table 10: Object detection on MS COCO. All backbones are ImageNet-1K pretrained. “1×” =
12 epochs; “3×” = 36 epochs; “MS” = multi-scale training. AP: mean over IoU 0.50:0.95 with
step 0.05 and over categories. APbox: bounding boxes. APbox50/75: AP at IoU 0.50 and 0.75.
APboxS/M/L: COCO area; S if area < 322, M if 322 ≤ area < 962, L if area ≥ 962, in px2.

Backbone Params FLOPs RetinaNet 1x RetinaNet 3x + MS

APboxAPbox
50 APbox

75 APbox
S APbox

M APbox
L APboxAPbox

50 APbox
75 APbox

S APbox
M APbox

L

ResNet-50 38M 239G 36.3 55.3 38.6 19.3 40.0 48.8 39.0 58.4 41.8 22.4 42.2 51.6
PVT-S 34M 227G 40.4 61.3 43.0 25.0 42.9 55.7 42.2 62.7 45.0 26.2 45.2 57.2
Swin-T 39M 245G 41.5 62.1 44.2 25.1 44.9 55.5 43.9 64.8 47.1 28.4 47.2 57.8
PyramidViG-S 36M 240G 41.8 63.1 44.7 28.5 45.4 53.4 44.2 65.8 47.6 31.8 47.7 55.7
PViHGNN-S 38M 244G 42.2 63.8 45.1 29.3 45.9 55.7 44.6 66.5 48.0 32.6 48.2 58.0
DVHGNN-S 38M 242G 43.3 64.3 46.3 28.3 47.9 54.6 45.7 67.0 49.2 31.6 50.2 56.9

DenseViG-S 40M 247G 44.6 66.1 47.8 29.7 48.5 56.9 47.0 68.8 50.7 33.0 50.8 59.2

Table 11: Object detection and instance segmentation on MS COCO. All backbones are ImageNet-
1K pretrained. “1×” = 12 epochs; “3×” = 36 epochs; “MS” = multi-scale training. APmask: instance
masks. APmask

50/75: AP at IoU 0.50 and 0.75.

Backbone Params FLOPs Mask R-CNN 1x Mask R-CNN 3x + MS

APboxAPbox
50 APbox

75 APmaskAPmask
50 APmask

75 APboxAPbox
50 APbox

75 APmaskAPmask
50 APmask

75

ResNet-50 44M 260G 38.0 58.6 41.4 34.4 55.1 36.7 41.0 61.7 44.9 37.1 58.4 40.1
PVT-S 44M 245G 40.4 62.9 43.8 37.8 60.1 40.3 43.0 65.3 46.9 39.9 62.5 42.8
Swin-T 48M 264G 42.2 64.6 46.2 39.1 61.6 42.0 46.0 68.1 50.3 41.6 65.1 44.9
PyramidViG-S 46M 259G 42.6 65.2 46.0 39.4 62.4 41.6 46.4 68.8 50.0 41.9 65.9 44.4
PViHGNN-S 48M 262G 43.1 66.0 46.5 39.6 63.0 42.3 46.9 69.6 50.5 42.1 66.5 45.1
DVHGNN-S 49M 261G 44.8 66.8 49.0 40.2 63.5 43.1 48.6 70.4 53.0 42.7 67.0 45.9

DenseViG-S 51M 266G 46.4 68.7 50.6 42.7 65.8 45.4 50.2 72.3 54.6 45.2 69.3 48.2
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