
Decision-Aware Actor-Critic with Function
Approximation and Theoretical Guarantees

Sharan Vaswani
Simon Fraser University

vaswani.sharan@gmail.com

Amirreza Kazemi
Simon Fraser University
aka208@sfu.ca

Reza Babanezhad
Samsung - SAIT AI Lab, Montreal
babanezhad@gmail.com

Nicolas Le Roux
Microsoft Research, Mila

nicolas@le-roux.name

Abstract

Actor-critic (AC) methods are widely used in reinforcement learning (RL), and
benefit from the flexibility of using any policy gradient method as the actor and
value-based method as the critic. The critic is usually trained by minimizing the TD
error, an objective that is potentially decorrelated with the true goal of achieving a
high reward with the actor. We address this mismatch by designing a joint objective
for training the actor and critic in a decision-aware fashion. We use the proposed
objective to design a generic, AC algorithm that can easily handle any function
approximation. We explicitly characterize the conditions under which the resulting
algorithm guarantees monotonic policy improvement, regardless of the choice of
the policy and critic parameterization. Instantiating the generic algorithm results
in an actor that involves maximizing a sequence of surrogate functions (similar to
TRPO, PPO), and a critic that involves minimizing a closely connected objective.
Using simple bandit examples, we provably establish the benefit of the proposed
critic objective over the standard squared error. Finally, we empirically demonstrate
the benefit of our decision-aware actor-critic framework on simple RL problems.

1 Introduction
Reinforcement learning (RL) is a framework for solving problems involving sequential decision-
making under uncertainty, and has found applications in games [38, 50], robot manipulation tasks [55,
64] and clinical trials [45]. RL algorithms aim to learn a policy that maximizes the long-term return by
interacting with the environment. Policy gradient (PG) methods [59, 54, 29, 25, 47] are an important
class of algorithms that can easily handle function approximation and structured state-action spaces,
making them widely used in practice. PG methods assume a differentiable parameterization of the
policy and directly optimize the return with respect to the policy parameters. Typically, a policy’s
return is estimated by using Monte-Carlo samples obtained via environment interactions [59]. Since
the environment is stochastic, this approach results in high variance in the estimated return, leading
to higher sample-complexity (number of environment interactions required to learn a good policy).
Actor-critic (AC) methods [29, 43, 5] alleviate this issue by using value-based approaches [52, 58] in
conjunction with PG methods, and have been empirically successful [20, 23]. In AC algorithms, a
value-based method (“critic”) is used to approximate a policy’s estimated value, and a PG method
(“actor”) uses this estimate to improve the policy towards obtaining higher returns.

Though AC methods have the flexibility of using any method to independently train the actor and
critic, it is unclear how to train the two components jointly in order to learn good policies. For
example, the critic is typically trained via temporal difference (TD) learning and its objective is
to minimize the value estimation error across all states and actions. For large real-world Markov
decision processes (MDPs), it is intractable to estimate the values across all states and actions, and

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

algorithms resort to function approximation schemes. In this setting, the critic should focus its limited
model capacity to correctly estimate the state-action values that have the largest impact on improving
the actor’s policy. This idea of explicitly training each component of the RL system to help the
agent take actions that result in higher returns is referred to as decision-aware RL. Decision-aware
RL [17, 16, 1, 10, 13, 14, 32] has mainly focused on model-based approaches that aim to learn a
model of the environment, for example, the rewards and transition dynamics in an MDP. In this
setting, decision-aware RL aims to model relevant parts of the world that are important for inferring a
good policy. This is achieved by (i) designing objectives that are aware of the current policy [1, 14]
or its value [17, 16], (ii) differentiating through the transition dynamics to learn models that result
in good action-value functions [13] or (iii) simultaneously learning value functions and models that
are consistent [51, 40, 35]. In the model-free setting, decision-aware RL aims to train the actor
and critic cooperatively in order to optimize the same objective that results in near-optimal policies.
In particular, Dai et al. [10] use the linear programming formulation of MDPs and define a joint
saddle-point objective (minimization w.r.t. the critic and maximization w.r.t. the actor). The use of
function approximation makes the resulting optimization problem non-convex non-concave leading to
training instabilities and necessitating the use of heuristics. Recently, Dong et al. [11] used stochastic
gradient descent-ascent to optimize this saddle-point objective and, under certain assumptions on the
problem, proved that the resulting policy converges to a stationary point of the value function. Similar
to Dong et al. [11], we study a decision-aware AC method with function approximation and equipped
with theoretical guarantees on its performance. In particular, we make the following contributions.

Joint objective for training the actor and critic: Following Vaswani et al. [57], we distinguish
between a policy’s functional representation (sufficient statistics that define a policy) and its parame-
terization (the specific model used to realize these sufficient statistics in practice). For example, a
policy can be represented by its state-action occupancy measure, and we can use a neural network
parameterization to model this measure in practice (refer to Sec. 2 for more examples). In Sec. 3.2,
we exploit a smoothness property of the return and design a lower-bound (Prop. 1) on the return of an
arbitrary policy. Importantly, the lower bound depends on both the actor and critic, and immediately
implies a joint objective for training the two components (minimization w.r.t the critic and maximiza-
tion w.r.t the actor). Unlike Dai et al. [10], Dong et al. [11], the proposed objective works for any
policy representation – the policy could be represented as conditional distributions over actions for
each state or a deterministic mapping from states to actions [21]. Another advantage of working in
the functional space is that our lower bound does not depend on the parameterization of either the
actor or the critic. Moreover, unlike Dai et al. [10], Dong et al. [11], our framework does not need to
model the distribution over states, and hence results in a more efficient algorithm. We note that our
framework can be used for other applications where gradient computation is expensive or has large
variance [39], and hence requires a model of the gradient (e.g., variational inference).

Generic actor-critic algorithm: In Sec. 3.2, we use our joint objective to design a generic decision-
aware AC algorithm. The resulting algorithm (Algorithm 1) can be instantiated with any functional
representation of the policy, and can handle any policy or critic parameterization. Similar to Vaswani
et al. [57], the actor update involves optimizing a surrogate function that depends on the current
policy, and consequently supports off-policy updates, i.e. similar to common PG methods such as
TRPO [46], PPO [48], the algorithm can update the policy without requiring additional interactions
with the environment. This property coupled with the use of a critic makes the resulting algorithm
sample-efficient in practice. In contrast with TRPO/PPO, both the off-policy actor updates and critic
updates in Algorithm 1 are designed to maximize the same lower bound on the policy return.

Theoretical guarantees: In Sec. 4.1, we analyze the necessary and sufficient conditions in order
to guarantee monotonic policy improvement, and hence convergence to a stationary point. We
emphasize that these improvement guarantees hold regardless of the policy parameterization and the
quality of the critic (up to a certain threshold that we explicitly characterize). This is in contrast to
existing theoretical results that focus on the tabular or linear function approximation settings or rely
on highly expressive critics to minimize the critic error and achieve good performance for the actor.
By exploiting the connection to inexact mirror descent (MD), we prove that Algorithm 1 is guaranteed
to converge to the neighbourhood of a stationary point where the neighbourhood term depends on the
decision-aware critic loss (Sec. 4.2). Along the way, we improve the theoretical guarantees for MD
on general smooth, non-convex functions [15, 12]. As an additional contribution, we demonstrate a
way to use the framework of Vaswani et al. [57] to “lift” the existing convergence rates [61, 37, 24]
for the tabular setting to use off-policy updates and function approximation (Appendix D.2 and D.3).
This gives rise to a simple, black-box proof technique that might be of independent interest.

2

Instantiating the general AC framework: We instantiate the framework for two policy representa-
tions – in Sec. 5.1, we represent the policy by the set of conditional distributions over actions (“direct”
representation), whereas in Sec. 5.2, we represent the policy by using the logits corresponding to a
softmax representation of these conditional distributions (“softmax” representation). In both cases,
we instantiate the generic lower-bound (Propositions 4, 6), completely specifying the actor and critic
objectives in Algorithm 1. Importantly, unlike the standard critic objective that depends on the squared
difference of the value functions, the proposed decision-aware critic loss (i) depends on the policy
representation – it involves the state-action value functions for the direct representation and depends
on the advantage functions for the softmax representation, and (ii) penalizes the under-estimation and
over-estimation of these quantities in an asymmetric manner. For both representations, we consider
simple bandit examples (Propositions 5, 7) which show that minimizing the decision-aware critic
loss results in convergence to the optimal policy, whereas minimizing variants of the squared loss do
not. In App. B, we consider a third policy representation involving stochastic value gradients [21] for
continuous control, and instantiate our decision-aware actor-critic framework in this case.

Experimental evaluation: Finally, in Sec. 6, we consider simple RL environments and bench-
mark Algorithm 1 for both the direct and softmax representations with a linear policy and critic
parameterization. We compare the actor performance when using the squared critic loss vs the pro-
posed critic loss, and demonstrate the empirical benefit of our decision-aware actor-critic framework.

2 Problem Formulation
We consider an infinite-horizon discounted Markov decision process (MDP) [44] defined by the
tuple ⟨S,A,P, r, ρ, γ⟩ where S is the set of states, A is the action set, P : S × A → ∆S is the
transition probability function, ρ ∈ ∆S is the initial distribution of states, r : S × A → [0, 1] is
the reward function and γ ∈ [0, 1) is the discount factor. For state s ∈ S, a policy π induces a
distribution pπ(·|s) over actions. It also induces a measure dπ over states such that dπ(s) = (1 −
γ)
∑∞

τ=0 γ
τP(sτ = s | s0 ∼ ρ, aτ ∼ pπ(·|sτ)). Similarly, we define µπ as the measure over state-

action pairs induced by policy π, implying that µπ(s, a) = dπ(s) pπ(a|s) and dπ(s) =
∑

a µ
π(s, a).

The action-value function corresponding to policy π is denoted by Qπ : S × A → R such that
Qπ(s, a) := E[

∑∞
τ=0 γ

τr(sτ , aτ)] where s0 = s, a0 = a and for τ ≥ 0, sτ+1 ∼ P(·|sτ , aτ) and
aτ+1 ∼ pπ(·|sτ+1). The value function of a stationary policy π for the start state equal to s is defined
as Js(π) := Ea∼pπ(·|s)[Q

π(s, a)] and we define J(π) := Es∼ρ[Js(π)]. For a state-action pair (s, a),
the advantage function corresponding to policy π is given by Aπ(s, a) := Qπ(s, a)− Js(π). Given
a set of feasible policies Π, the objective is to compute the policy that maximizes J(π).

Functional representation vs Policy Parameterization: Similar to the policy optimization frame-
work of Vaswani et al. [57], we differentiate between a policy’s functional representation and its param-
eterization. The functional representation of a policy π defines its sufficient statistics, for example, we
may represent a policy via the set of distributions pπ(·|s) ∈ ∆A for state s ∈ S . We will refer to this
as the direct representation. The same policy can have multiple functional representations, for exam-
ple, since pπ(·|s) is a probability distribution, one can write pπ(a|s) = exp(zπ(s,a))/

∑
a′ exp(z

π(s,a′)),
and represent π by the set of logits zπ(s, a) for each (s, a) pair. We will refer to this as the softmax
representation. On the other hand, the policy parameterization is determined by a model (with param-
eters θ) that realizes these statistics. For example, we could use a neural-network to parameterize the
logits corresponding to the policy’s softmax representation, rewriting zπ(s, a) = zπ(s, a|θ) where
the model is implicit in the zπ(s, a|θ) notation. As another example, the tabular parameterization
corresponds to having a parameter for each state-action pair [61, 37]. The policy parameterization
thus defines the set Π of realizable policies that can be expressed with the parametric model at hand.
Note that the policy parameterization can be chosen independently of its functional representation.
Next, we recap the framework in Vaswani et al. [57] and generalize it to the actor-critic setting.

3 Methodology
We describe functional mirror ascent in Sec. 3.1, and use it to design a general decision-aware
actor-critic framework and corresponding algorithm in Sec. 3.2.

3.1 Functional Mirror Ascent for Policy Gradient (FMAPG) framework

For a given functional representation, Vaswani et al. [57] update the policy by functional mirror
ascent and project the updated policy onto the set Π determined by the policy parameterization.

3

Functional mirror ascent is an iterative algorithm whose update at iteration t ∈ {0, 1, . . . , T − 1} is
given as: πt+1 = argmaxπ∈Π

[
⟨π, ∇πJ(πt)⟩ − 1

η DΦ(π, πt)
]

where πt is the policy (expressed as
its functional representation) at iteration t, η is the step-size in the functional space and DΦ is the
Bregman divergence (induced by the mirror map Φ) between the representation of policies π and
πt. The FMAPG framework casts the projection step onto Π as an unconstrained optimization w.r.t
the parameters θ ∈ Rn of a surrogate function: θt+1 = argmax ℓt(θ) := ⟨π(θ), ∇πJ(π(θt))⟩ −
1
ηDΦ(π(θ), π(θt)). Here, π(θ) refers to the parametric form of the policy where the choice of the
parametric model is implicit in the π(θ) notation. The policy at iteration t is thus expressed as π(θt),
whereas the updated policy is given by πt+1 = π(θt+1). The surrogate function is non-concave in
general and can be approximately maximized using a gradient-based method, resulting in a nested
loop algorithm. Importantly, the inner-loop (optimization of ℓt(θ)) updates the policy parameters (and
hence the policy), but does not involve recomputing ∇πJ(π). Consequently, these policy updates
do not require interacting with the environment and are thus off-policy. This is a desirable trait for
designing sample-efficient PG algorithms and is shared by methods such as TRPO [46] and PPO [48].

With the appropriate choice of Φ and η, the FMAPG framework guarantees monotonic policy
improvement for any number of inner-loops and policy parameterization. A shortcoming of this
framework is that it requires access to the exact gradient ∇πJ(π). When using the direct or softmax
representations, computing ∇πJ(π) involves computing either the action-value Qπ or the advantage
Aπ function respectively. In complex real-world environments where the rewards and/or the transition
dynamics are unknown, these quantities can only be estimated. For example, Qπ can be estimated
using Monte-Carlo sampling by rolling out trajectories using policy π resulting in large variance,
and consequently higher sample complexity. Moreover, for large MDPs, function approximation is
typically used to estimate the Q function, and the resulting aliasing makes it impossible to compute it
exactly in practice. This makes the FMAPG framework impractical in real-world scenarios. Next, we
generalize FMAPG to handle inexact gradients and subsequently design an actor-critic framework.
3.2 Generalizing FMAPG to Actor-Critic

To generalize the FMAPG framework, we first prove the following proposition in App. C.

Proposition 1. For any policy representations π and π′, any strictly convex mirror map Φ, and any
gradient estimator ĝ, for c > 0 and η such that J + 1

ηΦ is convex in π,

J(π) ≥ J(π′) + ⟨ĝ(π′), π − π′⟩ −
(
1

η
+

1

c

)
DΦ(π, π

′)− 1

c
DΦ∗

(
∇Φ(π′)− c[∇J(π′)− ĝ(π′)],∇Φ(π′)

)
where Φ∗ is the Fenchel conjugate of Φ and DΦ∗ is the Bregman divergence induced by Φ∗.

The above proposition is a statement about the relative smoothness [34] of J (w.r.t DΦ) in the
functional space. Here, the brown term is the linearization of J around π′, but involves ĝ(π′)
which can be any estimate of the gradient at π′. The red term quantifies the distance between the
representations of policies π and π′ in terms of DΦ(π, π

′), whereas the blue term characterizes the
penalty for an inaccurate estimate of ∇πJ(π

′) and depends on Φ. We emphasize that Prop. 1 can
be used for any continuous optimization problem that requires a model of the gradient, e.g., in
variational inference which uses an approximate posterior in lieu of the true one.

For policy optimization with FMAPG, ∇πJ(π) involves the action-value or advantage function
for the direct or softmax functional representations respectively (see Sec. 5 for details), and the
gradient estimation error is equal to the error in these functions. Since these quantities are estimated
by the critic, we refer to the blue term as the critic error. In order to use Prop. 1, at iteration t
of FMAPG, we set π′ = πt and include the policy parameterization, resulting in inequality (I):
J(π)−J(πt) ≥ ⟨ĝt, π(θ)−πt⟩−

(
1
η
+ 1

c

)
DΦ(π(θ), πt)− 1

c
DΦ∗

(
∇Φ(πt)− c[∇J(πt)− ĝt],∇Φ(πt)

)
,

where ĝt := ĝ(πt). We see that in order to obtain a policy π that maximizes the policy improvement
J(π)− J(πt) and hence the LHS, we should maximize the RHS i.e. (i) learn ĝt to minimize the blue
term (equal to the critic objective) and (ii) compute π ∈ Π that maximizes the green term (equal to the
functional mirror ascent update at iteration t). Using a second-order Taylor series expansion of DΦ∗

(Prop. 14), we see that as c decreases, the critic error decreases, whereas the
(

1
η + 1

c

)
DΦ(π, πt)

term increases. Consequently, we interpret the scalar c as a trade-off parameter that relates the critic
error to the permissible movement in the functional mirror ascent update.

4

Hence, both the actor and critic objectives are coupled through Prop. 1 and both components of
the RL system should be jointly trained in order to maximize policy improvement. We refer to the
resulting framework as decision-aware actor-critic and present its pseudo-code in Algorithm 1.

Algorithm 1: Generic actor-critic algorithm
1 Input: π (choice of functional representation), θ0 (initial policy parameters), ω(−1) (initial critic

parameters), T (AC iterations), ma (actor inner-loops), mc (critic inner-loops), η (functional step-size for
actor), c (trade-off parameter), αa (parametric step-size for actor), αc (parametric step-size for critic)

2 Initialization: π0 = π(θ0)
3 for t← 0 to T − 1 do

4 Estimate ∇̂πJ(πt) and form Lt(ω) :=
1
c
DΦ∗

(
∇Φ(πt)− c [∇̂πJ(πt)− ĝt(ω)],∇Φ(πt)

)
5 Initialize inner-loop: υ0 = ωt−1

6 for k ← 0 to mc − 1 do
7 υk+1 = υk − αc∇υ Lt(υk) /* Critic Updates */
8 ωt = υmc ; ĝt = ĝt(ωt)

9 Form ℓt(θ) := ⟨ĝt, π(θ)− πt⟩ −
(

1
η
+ 1

c

)
DΦ(π(θ), πt)

10 Initialize inner-loop: ν0 = θt
11 for k ← 0 to ma − 1 do
12 νk+1 = νk + αa∇ν ℓt(νk) /* Off-policy actor updates */
13 θt+1 = νma ; πt+1 = π(θt+1)
14 Return πT = π(θT)

Unlike Wu et al. [60], Konda and Tsitsiklis [29], Algorithm 1 does not update the actor and critic
in a two time-scale setting (one environment interaction and update to the critic followed by an
actor update), but rather performs multiple steps to update the critic, then uses the critic to perform
multiple steps to update the actor [2, 61]. At iteration t of Algorithm 1, ĝt (the gradient estimate at
πt) is parameterized by ω and the parametric model for the critic is implicit in the ĝt(ω) notation.
The algorithm interacts with the environment, uses these interactions to form the estimate ∇̂πJ(πt)

and construct the critic loss function Lt(ω). For the direct or softmax representations, ∇̂πJ(πt)
corresponds to the empirical estimates of the action-value or advantage functions respectively. In
practice, these quantities can be estimated using Monte-Carlo rollouts or bootstrapping. Given these
estimates, the critic is trained (using mc inner-loops) to minimize Lt(ω) and obtain ĝt (Lines 5-8).
Line 9 uses ĝt to construct the surrogate function ℓt(θ) for the actor and depends on the policy
parameterization. The inner-loop (Lines 10 - 13) involves maximizing ℓt(θ) and corresponds to ma

off-policy updates. Next, we establish theoretical guarantees on the performance of Algorithm 1.

4 Theoretical Guarantees

We first establish the necessary and sufficient conditions to guarantee monotonic policy improvement
in the presence of critic error (Sec. 4.1). In Sec. 4.2, we prove that Algorithm 1 is guaranteed to
converge to the neighbourhood (that depends on the critic error) of a stationary point.

4.1 Conditions for monotonic policy improvement

According to inequality (I), to guarantee monotonic policy improvement at iteration t, one must find
a (θ, c) pair to guarantee that the RHS of (I) is positive. In Prop. 2 (proved in App. D), we derive the
conditions on the critic error to ensure that it possible to find such an (θ, c) pair.

Proposition 2. For any policy representation and any policy or critic parameterization, there exists
a (θ, c) pair that makes the RHS of inequality (I) strictly positive, and hence guarantees monotonic
policy improvement (J(πt+1) > J(πt)), if and only if

⟨bt, H̃†
t bt⟩ > ⟨[∇J(πt)− ĝt], [∇2

πΦ(πt)]
−1 [∇J(πt)− ĝt]⟩ ,

where bt ∈ Rn :=
∑

s∈S
∑

a∈A [ĝt]s,a ∇θ[π(θt)]s,a, H̃t ∈ Rn×n := ∇θπ(θt)
T ∇2

πΦ(πt)∇θπ(θt)

and H̃†
t denotes the pseudo-inverse of H̃t. For the special case of the tabular policy parameterization,

the above condition becomes equal to,

⟨ĝt, [∇2
πΦ(πt)]

−1ĝt⟩ > ⟨[∇J(πt)− ĝt], [∇2
πΦ(πt)]

−1 [∇J(πt)− ĝt]⟩ .

5

For the Euclidean mirror map with the tabular policy parameterization, this condition becomes equal
to ∥ĝt∥22 > ∥∇J(πt)− ĝt∥22 meaning that the relative error in estimating ∇J(πt) needs to be less
than 1. For a general mirror map, the relative error is measured in a different norm induced by the
mirror map. The above proposition also quantifies the scenario when the critic error is too large to
guarantee policy improvement. In this case, the algorithm should either improve the critic by better
optimization or by using a more expressive model, or resort to using sufficiently many (high-variance)
Monte-Carlo samples as in REINFORCE [59]. Finally, we see that the impact of a smaller function
class for the actor is a potentially lower value for ⟨bt, H̃†

t bt⟩, making it more difficult to satisfy the
condition. The improvement guarantee in Prop. 2 holds regardless of the policy representation and
parameterization of the policy or critic. This is in contrast to existing theoretical results [41, 28, 18]
that focus on either the tabular or linear function approximation setting for the policy and/or critic,
or rely on using expressive models to minimize the critic error and achieve good performance for
the actor. Moreover, this result only depends on the magnitude of the critic loss (after updates),
irrespective of the optimizer, step-size or other factors influencing the critic optimization. The actor
and critic are coupled via the threshold (on the critic loss) required to guarantee policy improvement.

4.2 Convergence of Algorithm 1
Prop. 2 holds when the critic error is small. We now analyze the convergence of Algo-
rithm 1 for an arbitrary critic error. Define θ̄t+1 := argmaxθ ℓt(θ), π̄t+1 = π(θ̄t+1) =

argmaxπ∈Π

{
⟨ĝt, π − πt⟩ −

(
1
η + 1

c

)
DΦ(π, πt)

}
. Note that π̄t+1 is the iterate obtained by us-

ing the inexact mirror ascent (MA) update (because it does not use the true gradient ∇πJ(πt))
starting from πt, and that the inner-loop (Lines 10-13) of Algorithm 1 approximates this update. This
connection allows us to prove the following guarantee (see App. D.1 for details) for Algorithm 1.

Proposition 3. For any policy representation and mirror map Φ such that (i) J + 1
ηΦ is convex in π,

any policy parameterization such that (ii) ℓt(θ) is smooth w.r.t θ and satisfies the Polyak-Lojasiewicz
(PL) condition, for c > 0, after T iterations of Algorithm 1 we have that,

E
[
DΦ(π̄R+1, πR)

ζ2

]
≤ 1

ζT

J(π∗)− J(π0)︸ ︷︷ ︸
Term (i)

+

T−1∑
t=0

1

c
EDΦ∗

(
∇Φ(πt)− c δt,∇Φ(πt)

)
︸ ︷︷ ︸

Term (ii)

+ E[et]︸ ︷︷ ︸
Term (iii)




where δt := ∇J(πt) − ĝt, 1
ζ := 1

η + 1
c , R is a random variable chosen uniformly from

{0, 1, 2, . . . T − 1} and et ∈ O(exp (−ma)) is the projection error (onto Π) at iteration t.

Prop. 3 shows that Algorithm 1 converges to the neighbourhood of a stationary point of J for an
arbitrary critic error. The LHS of the above expression is a measure of sub-optimality similar to the
one used in the analysis of stochastic mirror descent [65]. For the Euclidean mirror map, the LHS
becomes equal to ∥∇πJ(πR)∥22, the standard characterization of a stationary point. Term (i) on the
RHS is the initial sub-optimality, whereas Term (ii) is equal to the critic error and can be further
decomposed into variance and bias terms. The variance decreases as the number of samples used to
train the critic (Line 4 in Algorithm 1) increases. The bias can be decomposed into an optimization
error (that decreases as mc increases) and a function approximation error (that decreases as we use
more expressive models for the critic). Finally, Term (iii) is the projection (onto Π) error, is equal to
zero for the tabular policy parameterization, and decreases as ma increases. Hence, the performance
of Algorithm 1 improves as we increase both ma and mc.

In Sec. 5, we specify the step-size η such that Assumption (i) is satisfied for both the direct and
softmax representations. Assumption (ii) is satisfied when using a linear and, in some cases, a neural
network policy parameterization [33]. For the above proposition to hold, we require that step-sizes αc

and αa in Algorithm 1 be set according to the smoothness of critic (Lt(ω)) and actor (ℓt(θ)) objectives
respectively. These choice of step-sizes guarantee ascent for the actor objective, and descent for the
critic objective (refer to the proof of Prop. 3 in App. D for details). In practice, we set both step-sizes
using an Armijo line-search, and refer the reader to App. F for details. Since Algorithm 1 does
not update the actor and critic in a two time-scale setting, unlike [29, 60], the relative scales of the
step-sizes and the number of inner iterations (ma, mc) do not affect the algorithm’s performance.

In contrast to Prop. 3, Dong et al. [11] prove that their proposed algorithm results in an O (1/T)
convergence to the stationary point (not the neighbourhood). However, they make a strong unjustified

6

assumption that the minimization problem w.r.t the parameters modeling the policy and distribu-
tion over states is jointly PL. Compared to [2, 61, 36] that focus on proving convergence to the
neighbourhood of the optimal value function, but bound the critic error in the ℓ2 or ℓ∞ norm, we
focus on proving convergence to the (neighbourhood) of a stationary point, but define the critic
loss in a decision-aware manner that depends on DΦ∗ . Since Algorithm 1 is not a two time-scale
algorithm, unlike Konda and Tsitsiklis [29], Wu et al. [60], the proof of Prop. 3 does not require
analyzing coupled recursions between the actor and critic. Furthermore, the guarantees in Prop. 3 are
independent of how the critic loss is minimized. We could use any policy evaluation method in order
to estimate the value function. Hence, unlike the standard two time-scale analyses, we do not make
assumptions about the mixing time of the underlying Markov chain.

Compared to the existing theoretical work on general (not decision-aware) AC methods [62, 60,
8, 28, 22, 30, 18, 41, 9] that prove convergence for the tabular or linear function approximation
settings, (a) our theoretical results require fewer assumptions on the function approximation. For
instance, Prop. 2 holds for any actor or critic parameterization (including complex neural networks),
while the guarantees in Prop. 3 hold for any critic parameterization, but require that ℓt, the surrogate
function for the actor satisfy smoothness and gradient domination properties. (b) On the other
hand, since our analysis does not explicitly model how the critic error is minimized, we can only
converge to the neighbourhood of a stationary point. This is in contrast to the existing two time-scale
analyses that jointly analyze the actor and critic, and show convergence to a stationary point [60].
(c) Finally, we note that the proposed algorithm supports off-policy updates i.e. the actor can re-use
the value estimates from the critic to update the policy multiple times (corresponding to Lines 10-13
in Algorithm 1). This is in contrast to existing theoretically principled actor-critic methods that require
interacting with the environment and gathering new data after each policy update. Hence, compared
to the existing literature on AC methods, Algorithm 1 is more practical, has weaker theoretical
guarantees but requires fewer assumptions on the function approximation.

5 Instantiating the generic actor-critic framework

We now instantiate Algorithm 1 for the direct (Sec. 5.1) and softmax (Sec. 5.2) representation.

5.1 Direct representation

Recall that for the direct functional representation, policy π is represented by the set of distributions
pπ(·|s) over actions for each state s ∈ S. Using the policy gradient theorem [53], [∇πJ(π)]s,a =
dπ(s)Qπ(s, a). Similar to [57, 61], we use a weighted (across states) negative entropy mir-
ror map implying that DΦ(p

π, pπ
′
) =

∑
s∈S dπt(s)Dϕ(p

π(·|s), pπ′
(·|s)) where ϕ(pπ(·|s)) =

−
∑

a p
π(a|s) log(pπ(a|s)) and hence, Dϕ(p

π(·|s), pπ′
(·|s)) = KL(pπ(·|s)||pπ′

(·|s)). We now
instantiate inequality (I) in Sec. 3.2 in the proposition below (see App. E for the derivation).

Proposition 4. For the direct representation and negative entropy mirror map, c > 0, η ≤ (1−γ)3

2γ |A| ,

J(π)− J(πt) ≥ C + Es∼dπt

[
Ea∼pπt (·|s)

[
pπ(a|s)
pπt(a|s)

(
Q̂πt(s, a)−

(
1

η
+

1

c

)
log

(
pπ(a|s)
pπt(a|s)

))]]
− Es∼dπt

[
Ea∼pπt (·|s) [Q

πt(s, a)− Q̂πt(s, a)] +
1

c
log

(
Ea∼pπt (·|s)

[
exp

(
−c [Qπt(s, a)− Q̂πt(s, a)]

)])]
where C is a constant and Q̂πt is the estimate of the action-value function for policy πt.

For incorporating policy (with parameters θ) and critic (with parameters ω) parameterization, we
note that pπ(·|s) = pπ(·|s, θ) and Q̂π(s, a) = Qπ(s, a|ω) where the model is implicit in the notation.
Using the reasoning in Sec. 3.2 with Prop. 4 immediately gives us the actor and critic objectives
(ℓt(θ) and Lt(ω) respectively) at iteration t and completely instantiates Algorithm 1. Observe that
the critic error is asymmetric and penalizes the under/over-estimation of the Qπ function differently.
This is different from the standard squared critic loss: Es∼dπtEa∼pπt (·|s) [Q

πt(s, a)−Qπt(s, a|ω)]2
that does not take into account the sign of the misestimation.

To demonstrate the effectiveness of the proposed critic loss, we consider a two-armed bandit example
in Prop. 5 (see App. E for details) with deterministic rewards (there is no variance due to sampling),
use the direct representation and tabular parameterization for the policy, linear function approximation

7

for the critic and compare minimizing the standard squared loss vs the decision-aware loss in Prop. 4.

Proposition 5. Consider a two-armed bandit example with deterministic rewards where arm 1 is
optimal and has a reward r1 = Q1 = 2 whereas arm 2 has reward r2 = Q2 = 1. Consider using
linear function approximation to estimate the Q function i.e. Q̂ = xω where ω is the parameter to
be learned and x is the feature of the corresponding arm. Let x1 = −2 and x2 = 1 implying that
Q̂1(ω) = −2ω and Q̂2(ω) = ω. Let pt be the probability of pulling the optimal arm at iteration t
and consider minimizing two alternative objectives to estimate ω:
(1) Squared loss: ω(1)

t := argmin
{

pt
2
[Q̂1(ω)−Q1]

2 + 1−pt
2

[Q̂2(ω)−Q2]
2
}

.

(2) Decision-aware critic loss: ω
(2)
t = argminLt(ω) := pt [Q1 − Q̂1(ω)] + (1 − pt) [Q2 − Q̂2(ω)] +

1
c
log

(
pt exp

(
−c [Q1 − Q̂1(ω)] + (1− pt) exp

(
−c [Q2 − Q̂2(ω)]

))]
.

For p0 < 2
5 , minimizing the squared loss results in convergence to the sub-optimal action, while

minimizing the decision-aware loss (for c, p0 > 0) results in convergence to the optimal action.

Hence, minimizing the decision-aware critic loss results in a better, more well-informed estimate of ω
which when coupled with the actor update results in convergence to the optimal arm. For this simple
example, at every iteration t, Lt(ω

(2)
t) = 0, while the standard squared loss is non-zero at ω(1)

t ,
though we use the same linear function approximation model in both cases. In Prop. 16, we prove
that for a 2-arm bandit with deterministic rewards and linear critic parameterization, minimizing the
decision-aware critic loss will always result in convergence to the optimal arm.
5.2 Softmax representation
Recall that for the softmax functional representation, policy π is represented by the logits zπ(s, a)
for each s ∈ S and a ∈ A such that pπ(a|s) = exp(zπ(s,a))∑

a′ exp(zπ(s,a′)) . Using the policy gradient
theorem, [∇πJ(π)]s,a = dπ(s)Aπ(s, a) pπ(a|s) where Aπ is the advantage function. Similar
to Vaswani et al. [57], we use a weighted (across states) log-sum-exp mirror map implying that
DΦ(z, z

′) =
∑

s∈S dπt(s)Dϕ(z(s, ·), z′(s, ·)) where ϕ(z(s, ·)) = log(
∑

a exp(z(s, a))) and hence,
Dϕ(z(s, ·), z′(s, ·)) = KL(pπ

′
(·|s), pπ(·|s)) (see Lemma 11 for a derivation). We now instantiate

inequality (I) in Sec. 3.2 in the proposition below (see App. E for the derivation).

Proposition 6. For the softmax representation and log-sum-exp mirror map, c > 0, η ≤ 1− γ,

J(π)− J(πt) ≥ Es∼dπt Ea∼pπt (·|s)

[(
Âπt(s, a) +

1

η
+

1

c

)
log

(
pπ(a|s)
pπt(a|s)

)]
− 1

c
Es∼dπtEa∼pπt (·|s)

[(
1− c [Aπt(s, a)− Âπt(s, a)]

)
log

(
1− c [Aπt(s, a)− Âπt(s, a)]

)]
where Âπt is the estimate of the advantage function for policy πt.

For incorporating policy (with parameters θ) and critic (with parameters ω) parameterization, we
note that pπ(a|s) = exp(zπ(s,a|θ))∑

a′ exp(zπ(s,a′|θ)) and Âπ(s, a) = Aπ(s, a|ω) where the model is implicit in
the notation. Using the reasoning in Sec. 3.2 with Prop. 6 immediately gives us the actor and critic
objectives (ℓt(θ) and Lt(ω) respectively) at iteration t and completely instantiates Algorithm 1.
Similar to the direct representation, observe that Lt is asymmetric and penalizes the under/over-
estimation of the advantage function differently.

To demonstrate the effectiveness of the proposed critic loss, we construct a two-armed bandit
example in Prop. 7 below (see App. E for details), use the softmax representation and tabu-
lar parameterization for the policy and consider a discrete hypothesis class (with two hypothe-
ses) as the model for the critic. We compare minimizing the squared loss on the advantage:
Es∼dπtEa∼pπt (·|s) [A

πt(s, a)−Aπt(s, a|ω)]2 with minimizing the decision-aware loss. We see
that minimizing the decision-aware critic loss can distinguish between the two hypotheses and choose
the correct hypothesis resulting in convergence to the optimal action.

Proposition 7. Consider a two-armed bandit example and define p ∈ [0, 1] as the probability of
pulling arm 1. Given p, let the advantage of arm 1 be equal to A1 := 1

2 > 0, while that of arm 2

is A2 := − p
2 (1−p) < 0 implying that arm 1 is optimal. For ε ∈

(
1
2 , 1
)
, consider approximating

the advantage of the two arms using a function approximation model with two hypotheses that

8

depend on p: H0 : Â1 = 1
2 + ε , Â2 = − p

1−p

(
1
2 + ε

)
and H1 : Â1 = 1

2 − ε sgn
(
1
2 − p

)
, Â2 =

− p
1−p

(
1
2 − ε sgn

(
1
2 − p

))
where sgn is the signum function. If pt is the probability of pulling arm

1 at iteration t, consider minimizing two alternative loss functions to choose the hypothesis Ht:
(1) Squared loss: Ht = argmin{H0,H1}

{
pt
2
[A1 − Â1]

2 + 1−pt
2

[A2 − Â2]
2
}

.

(2) Decision-aware critic loss with c = 1: Ht = argmin{H0,H1}{
pt (1− [A1 − Â1]) log(1− [A1 − Â1]) + (1− pt) (1− [A2 − Â2]) log(1− [A2 − Â2])

}
.

For p0 ≤ 1
2 , the squared loss cannot distinguish between H0 and H1, and depending on how ties

are broken, minimizing it can result in convergence to the sub-optimal action. On the other hand,
minimizing the divergence loss (for any p0 > 0) results in convergence to the optimal arm.

In Prop. 13 in App. E, we study the softmax representation with the Euclidean mirror map and
instantiate inequality (I) for this case. Finally, in App. B, we instantiate our actor-critic framework
to handle stochastic value gradients used for learning continuous control policies [21]. In the next
section, we consider simple RL environments to empirically benchmark Algorithm 1.

6 Experiments

Figure 1: Comparison of decision-aware, Adv-MSE and MSE loss functions using a linear actor
and linear (with three different dimensions) critic in the Cliff World environment for direct and
softmax policy representations. For d = 80 (corresponding to an expressive critic), all algorithms
have the same performance. For d = 40 and d = 60, MSE does not have monotonic improvement and
converges to a sub-optimal policy. Adv-MSE almost always reaches the optimal policy. Compared
to the Adv-MSE and MSE, minimizing the decision-aware loss always results in convergence to the
optimal policy at a faster rate, especially when using a less expressive critic (d = 40).
We demonstrate the benefit of the decision-aware framework over the standard AC algorithm where
the critic is trained by minimizing the squared error. We instantiate Algorithm 1 for the direct and
softmax representations, and evaluate the performance on two grid-world environments, namely Cliff
World [53] and Frozen Lake [6] (see App. F for details). We compare the performance of three AC
algorithms that have the same actor, but differ in the objective function used to train the critic.

Critic Optimization: For the direct and softmax representations, the critic’s objective is to estimate
the action-value (Q) and advantage (A) functions respectively. We use a linear parameterization for
the Q function implying that for each policy π, Qπ(s, a|ω) = ⟨ω,X(s, a)⟩, where X(s, a) ∈ Rd

are features obtained via tile-coding [53, Ch. 9]. We vary the dimension d ∈ {80, 60, 40} of
the tile-coding features to vary the expressivity of the critic. Given the knowledge of pπ and the
estimate Qπ(s, a|ω), the estimated advantage can be obtained as: Aπ(s, a|ω) = Qπ(s, a|ω) −∑

a p
π(a|s)Qπ(s, a|ω). We consider two ways to estimate the Q function for training the critic:

(a) using the known MDP to exactly compute the Q values and (b) estimating the Q function using
Monte-Carlo (MC) rollouts. There are three sources of error for an insufficient critic – the bias due to
limited model capacity, the optimization error due to an insufficient number of inner iterations (mc)
and the variance due to Monte-Carlo sampling. We use a large value of mc and sufficiently large

9

Monte-Carlo rollouts to control the optimization error and variance respectively (see App. F). This
ensures that the bias dominates, and enables us to isolate the effect of the form of the critic loss.

We evaluate the performance of the decision-aware loss defined for the direct (Prop. 4) and softmax
representations (Prop. 6). For both representations, we minimize the corresponding objective at each
iteration t (Lines 6-8 in Algorithm 1) using gradient descent with the step-size αc determined by
the Armijo line-search [4]. We use a grid-search to tune the trade-off parameter c, and propose an
alternative albeit conservative method to estimate c in App. F. We compare against two baselines
(see App. F for implementation details) – (i) the standard squared loss on the Q functions (referred to
as MSE in the plots) defined in Prop. 5 and (ii) squared loss on A function (referred to as Adv-MSE
in the plots) defined in Prop. 7. We note that the Adv-MSE loss corresponds to a second-order Taylor
series expansion of the decision-aware loss (see Prop. 14 for details), and is similar to the loss in Pan
et al. [42]. Recall that the critic error consists of the variance when using MC samples (equal to
zero when we exactly compute the Q function) and the bias because of the critic optimization error
(controlled since the critic objective is convex) and error due to the limited expressivity of the linear
function approximation (decreases as d increases). Since our objective is to study the effect of the
critic loss and its interaction with function approximation, we do not use bootstrapping to estimate
the Qπ since it would result in a confounding bias term.

Actor Optimization: For all algorithms, we use the same actor objective defined for the direct
(Prop. 4) and softmax representations (Prop. 6). We consider both the tabular and linear policy
paramterization for the actor. For the linear function approximation, we use the same tile-coded
features and set n = 60 for both environments. We update the policy parameters at each iteration t in
the off-policy inner-loop (Lines 11-13 in Algorithm 1) using Armijo line-search to set αa. For details
about the derivatives and closed-form solutions for the actor objective, refer to [57] and App. F. We
use a grid-search to tune η, and compare different values. Our experimental setup 1 enables us to
isolate the effect of the critic loss, without non-convexity or optimization issues acting as confounders.

Results: For each environment, we conduct four experiments that depend on (a) whether we use
MC samples or the true dynamics to estimate the Q function, and (b) on the policy parameterization.
We only show the plot corresponding to using the true dynamics for estimating the Q function and
linear policy parameterization, and defer the remaining plots to App. G. For all experiments, we
report the mean and 95% confidence interval of J(π) averaged across 5 runs. In the main paper, we
only include 2 values of η ∈ {0.01, 0.1} and vary d ∈ {40, 60, 80}, and defer the complete figure
with a broader range of η and d to App. G. For this experiment, c is tuned to 0.01 and we include a
sensitivity (of J(π) to c) plot in App. G. From Fig. 1, we see that (i) with a sufficiently expressive
critic (d = 80), all algorithms reach the optimal policy at nearly the same rate. (ii) as we decrease the
critic capacity, minimizing the MSE loss does not result in monotonic improvement and converges to
a sub-optimal policy, (iii) minimizing the Adv-MSE usually results in convergence to the optimal
policy, whereas (iv) minimizing the decision-aware loss results in convergence to better policies at a
faster rate, and is more beneficial when using a less-expressive critic (corresponding to d = 40). We
obtain similar results for the tabular policy parameterization or when using sampling to estimate the
Q function (see App. G for additional results).

7 Discussion
We designed a generic decision-aware actor-critic framework where the actor and critic are trained
cooperatively to optimize a joint objective. Our framework can be used with any policy representation
and easily handle general policy and critic parameterization, while preserving theoretical guarantees.
Instantiating the framework resulted in an actor that supports off-policy updates, and a corresponding
critic loss that can be minimized using first-order optimization. We demonstrated the benefit of
our framework both theoretically and empirically. We note that Algorithm 1 can be directly used
with any complex actor/critic parameterization in order to generalize across states/actions. The
theoretical guarantees of Prop. 2 would still hold. From a practical perspective, w.r.t tuning hyper-
parameters, η does not depend on the actor/critic parameterization. On the other hand, αa and
αc are set adaptively using an Armijo line-search that only requires the smoothness of actor/critic
objectives, and does not depend on their convexity. However, Algorithm 1 does require tuning
hyper-parameter c, and we will aim to investigate automatic adaptive ways to set it. In the future, we
aim to benchmark Algorithm 1 for complex deep RL environments. Finally, we aim to broaden the
scope our framework to applications such as variational inference.

1Code to reproduce the experiments is available at https://github.com/amirrezakazemi/ACPG

10

https://github.com/amirrezakazemi/ACPG

Acknowledgements

We would like to thank Michael Lu for feedback on the paper. This research was partially supported
by the Canada CIFAR AI Chair program, the Natural Sciences and Engineering Research Council of
Canada (NSERC) Discovery Grant RGPIN-2022-04816.

References
[1] Romina Abachi. Policy-aware model learning for policy gradient methods. PhD thesis,

University of Toronto (Canada), 2020.

[2] Alekh Agarwal, Sham M. Kakade, Jason D. Lee, and Gaurav Mahajan. Optimality and
approximation with policy gradient methods in Markov decision processes. In Conference on
Learning Theory (COLT), pages 64–66, 2020.

[3] Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural Computation, 10(2):
251–276, February 1998.

[4] Larry Armijo. Minimization of functions having lipschitz continuous first partial derivatives.
Pacific Journal of mathematics, 16(1):1–3, 1966.

[5] Shalabh Bhatnagar, Richard S Sutton, Mohammad Ghavamzadeh, and Mark Lee. Natural
actor–critic algorithms. Automatica, 45(11):2471–2482, 2009.

[6] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym, 2016.

[7] Sébastien Bubeck. Convex optimization: Algorithms and complexity. Foundations and Trends®
in Machine Learning, 8(3-4):231–357, 2015.

[8] Semih Cayci, Niao He, and R Srikant. Finite-time analysis of entropy-regularized neural natural
actor-critic algorithm. arXiv preprint arXiv:2206.00833, 2022.

[9] Tianyi Chen, Yuejiao Sun, and Wotao Yin. Tighter analysis of alternating stochastic gradient
method for stochastic nested problems. arXiv preprint arXiv:2106.13781, 2021.

[10] Bo Dai, Albert Shaw, Niao He, Lihong Li, and Le Song. Boosting the actor with dual critic.
arXiv preprint arXiv:1712.10282, 2017.

[11] Jing Dong, Li Shen, Yinggan Xu, and Baoxiang Wang. Provably efficient convergence of primal-
dual actor-critic with nonlinear function approximation. arXiv preprint arXiv:2202.13863, 2022.

[12] Ryan D’Orazio, Nicolas Loizou, Issam Laradji, and Ioannis Mitliagkas. Stochastic mirror
descent: Convergence analysis and adaptive variants via the mirror stochastic polyak stepsize.
arXiv preprint arXiv:2110.15412, 2021.

[13] Pierluca D’Oro and Wojciech Jaśkowski. How to learn a useful critic? model-based action-
gradient-estimator policy optimization. Advances in Neural Information Processing Systems,
33:313–324, 2020.

[14] Pierluca D’Oro, Alberto Maria Metelli, Andrea Tirinzoni, Matteo Papini, and Marcello Restelli.
Gradient-aware model-based policy search. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 3801–3808, 2020.

[15] Radu Alexandru Dragomir, Mathieu Even, and Hadrien Hendrikx. Fast stochastic bregman
gradient methods: Sharp analysis and variance reduction. In International Conference on
Machine Learning, pages 2815–2825. PMLR, 2021.

[16] Amir-massoud Farahmand. Iterative value-aware model learning. Advances in Neural Informa-
tion Processing Systems, 31, 2018.

[17] Amir-massoud Farahmand, Andre Barreto, and Daniel Nikovski. Value-aware loss function for
model-based reinforcement learning. In Artificial Intelligence and Statistics, pages 1486–1494.
PMLR, 2017.

11

[18] Zuyue Fu, Zhuoran Yang, and Zhaoran Wang. Single-timescale actor-critic provably finds
globally optimal policy. arXiv preprint arXiv:2008.00483, 2020.

[19] Gianluca Gorni. Conjugation and second-order properties of convex functions. Journal of
Mathematical Analysis and Applications, 158(2):293–315, 1991.

[20] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. arXiv preprint
arXiv:1801.01290, 2018.

[21] Nicolas Heess, Gregory Wayne, David Silver, Timothy Lillicrap, Tom Erez, and Yuval Tassa.
Learning continuous control policies by stochastic value gradients. In Advances in Neural
Information Processing Systems, pages 2944–2952, 2015.

[22] Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A two-timescale stochastic
algorithm framework for bilevel optimization: Complexity analysis and application to actor-
critic. SIAM Journal on Optimization, 33(1):147–180, 2023.

[23] Shariq Iqbal and Fei Sha. Actor-attention-critic for multi-agent reinforcement learning. In
International conference on machine learning, pages 2961–2970. PMLR, 2019.

[24] Emmeran Johnson, Ciara Pike-Burke, and Patrick Rebeschini. Optimal convergence rate
for exact policy mirror descent in discounted markov decision processes. arXiv preprint
arXiv:2302.11381, 2023.

[25] Sham Kakade. A natural policy gradient. In NIPS, volume 14, pages 1531–1538, 2001.

[26] Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning.
In International Conference on Machine Learning (ICML), pages 267–274, 2002.

[27] Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-
gradient methods under the polyak-łojasiewicz condition. In Machine Learning and Knowledge
Discovery in Databases: European Conference, ECML PKDD 2016, Riva del Garda, Italy,
September 19-23, 2016, Proceedings, Part I 16, pages 795–811. Springer, 2016.

[28] Sajad Khodadadian, Thinh T Doan, Justin Romberg, and Siva Theja Maguluri. Finite sample
analysis of two-time-scale natural actor-critic algorithm. IEEE Transactions on Automatic
Control, 2022.

[29] Vijay Konda and John Tsitsiklis. Actor-critic algorithms. Advances in neural information
processing systems, 12, 1999.

[30] Harshat Kumar, Alec Koppel, and Alejandro Ribeiro. On the sample complexity of actor-critic
method for reinforcement learning with function approximation. Machine Learning, pages
1–35, 2023.

[31] Jonathan Wilder Lavington, Sharan Vaswani, Reza Babanezhad, Mark Schmidt, and Nicolas Le
Roux. Target-based surrogates for stochastic optimization. arXiv preprint arXiv:2302.02607,
2023.

[32] Chongchong Li, Yue Wang, Wei Chen, Yuting Liu, Zhi-Ming Ma, and Tie-Yan Liu. Gradient
information matters in policy optimization by back-propagating through model. In International
Conference on Learning Representations, 2021.

[33] Chaoyue Liu, Libin Zhu, and Mikhail Belkin. Loss landscapes and optimization in over-
parameterized non-linear systems and neural networks. Applied and Computational Harmonic
Analysis, 59:85–116, 2022.

[34] Haihao Lu, Robert M Freund, and Yurii Nesterov. Relatively smooth convex optimization by
first-order methods, and applications. SIAM Journal on Optimization, 28(1):333–354, 2018.

[35] Yuping Luo, Huazhe Xu, Yuanzhi Li, Yuandong Tian, Trevor Darrell, and Tengyu Ma. Algo-
rithmic framework for model-based deep reinforcement learning with theoretical guarantees.
arXiv preprint arXiv:1807.03858, 2018.

12

[36] Jincheng Mei, Chenjun Xiao, Ruitong Huang, Dale Schuurmans, and Martin Müller. On
principled entropy exploration in policy optimization. In IJCAI, pages 3130–3136, 2019.

[37] Jincheng Mei, Chenjun Xiao, Csaba Szepesvari, and Dale Schuurmans. On the global conver-
gence rates of softmax policy gradient methods. arXiv preprint arXiv:2005.06392, 2020.

[38] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

[39] Shakir Mohamed, Mihaela Rosca, Michael Figurnov, and Andriy Mnih. Monte carlo gradient
estimation in machine learning. The Journal of Machine Learning Research, 21(1):5183–5244,
2020.

[40] Junhyuk Oh, Satinder Singh, and Honglak Lee. Value prediction network. Advances in neural
information processing systems, 30, 2017.

[41] Alex Olshevsky and Bahman Gharesifard. A small gain analysis of single timescale actor critic.
arXiv preprint arXiv:2203.02591, 2022.

[42] Hsiao-Ru Pan, Nico Gürtler, Alexander Neitz, and Bernhard Schölkopf. Direct advantage
estimation. Advances in Neural Information Processing Systems, 35:11869–11880, 2022.

[43] Jan Peters, Sethu Vijayakumar, and Stefan Schaal. Natural actor-critic. In Machine Learning:
ECML 2005: 16th European Conference on Machine Learning, Porto, Portugal, October 3-7,
2005. Proceedings 16, pages 280–291. Springer, 2005.

[44] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.
John Wiley & Sons, Inc., USA, 1994.

[45] Andrew J Schaefer, Matthew D Bailey, Steven M Shechter, and Mark S Roberts. Modeling
medical treatment using Markov decision processes. In Operations research and health care,
pages 593–612. Springer, 2005.

[46] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust
region policy optimization. In International Conference on Machine Learning (ICML), pages
1889–1897, 2015.

[47] John Schulman, Xi Chen, and Pieter Abbeel. Equivalence between policy gradients and soft
q-learning. arXiv preprint arXiv:1704.06440, 2017.

[48] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. CoRR, abs/1707.06347, 2017.

[49] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic policy gradient algorithms. Journal of Machine Learning Research, 2014.

[50] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al.
Mastering the game of go with deep neural networks and tree search. Nature, 529(7587):484,
2016.

[51] David Silver, Hado Hasselt, Matteo Hessel, Tom Schaul, Arthur Guez, Tim Harley, Gabriel
Dulac-Arnold, David Reichert, Neil Rabinowitz, Andre Barreto, et al. The predictron: End-to-
end learning and planning. In International Conference on Machine Learning, pages 3191–3199.
PMLR, 2017.

[52] Richard S Sutton. Learning to predict by the methods of temporal differences. Machine learning,
3(1):9–44, 1988.

[53] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT Press,
2 edition, 2018.

13

[54] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approximation. In Advances in Neural
Information Processing Systems (NeurIPS), pages 1057–1063, 2000.

[55] Jie Tan, Tingnan Zhang, Erwin Coumans, Atil Iscen, Yunfei Bai, Danijar Hafner, Steven Bohez,
and Vincent Vanhoucke. Sim-to-real: Learning agile locomotion for quadruped robots. arXiv
preprint arXiv:1804.10332, 2018.

[56] Manan Tomar, Lior Shani, Yonathan Efroni, and Mohammad Ghavamzadeh. Mirror descent
policy optimization. arXiv preprint arXiv:2005.09814, 2020.

[57] Sharan Vaswani, Olivier Bachem, Simone Totaro, Robert Müller, Shivam Garg, Matthieu Geist,
Marlos C Machado, Pablo Samuel Castro, and Nicolas Le Roux. A general class of surrogate
functions for stable and efficient reinforcement learning. arXiv preprint arXiv:2108.05828,
2021.

[58] Christopher John Cornish Hellaby Watkins. Learning from delayed rewards. 1989.

[59] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine learning, 8(3-4):229–256, 1992.

[60] Yue Frank Wu, Weitong Zhang, Pan Xu, and Quanquan Gu. A finite-time analysis of two
time-scale actor-critic methods. Advances in Neural Information Processing Systems, 33:
17617–17628, 2020.

[61] Lin Xiao. On the convergence rates of policy gradient methods. Journal of Machine Learning
Research, 23(282):1–36, 2022.

[62] Tengyu Xu, Zhe Wang, and Yingbin Liang. Non-asymptotic convergence analysis of two
time-scale (natural) actor-critic algorithms. arXiv preprint arXiv:2005.03557, 2020.

[63] Rui Yuan, Robert M Gower, and Alessandro Lazaric. A general sample complexity analysis
of vanilla policy gradient. In International Conference on Artificial Intelligence and Statistics,
pages 3332–3380. PMLR, 2022.

[64] Andy Zeng, Shuran Song, Johnny Lee, Alberto Rodriguez, and Thomas Funkhouser. Tossingbot:
Learning to throw arbitrary objects with residual physics. IEEE Transactions on Robotics, 36
(4):1307–1319, 2020.

[65] Siqi Zhang and Niao He. On the convergence rate of stochastic mirror descent for nonsmooth
nonconvex optimization. arXiv preprint arXiv:1806.04781, 2018.

14

Supplementary material

Organization of the Appendix

A Definitions

B Extension to stochastic value gradients

C Proofs for Sec. 3

D Proofs for Sec. 4

E Proofs for Sec. 5

F Implementation Details

G Additional Experiments

A Definitions

• [Solution set]. We define the solution set X ∗ for a function f as X ∗ := {x∗|x∗ ∈ argminx∈dom(f) f(x)}.

• [Convexity]. A differentiable function f is convex iff for all v and w in dom(f)

f(v) ≥ f(w) + ⟨∇f(w), v − w⟩. (Convexity)

• [Lipschitz continuity]. A differentiable function f is G-Lipschitz continuous, meaning that for all v and w and
constant G >,

|f(v)− f(w)| ≤ G ∥v − w∥ =⇒ ∥∇f(v)∥ ≤ G . (Lipschitz Continuity)

• [Smoothness]. A differentiable function f is L-smooth, meaning that for all v and w and some constant L > 0

f(v) ≤ f(w) + ⟨∇f(w), v − w⟩+ L

2
∥v − w∥22 . (Smoothness)

• [Polyak-Lojasiewicz inequality]. A differentiable function f satisfies the Polyak-Lojasiewicz (PL) inequality if there
exists a constant µp > 0 s.t. for all v,

µp(f(v)− f∗) ≤ 1

2
∥∇f(v)∥22 , (PL)

where f∗ is the optimal function value i.e. f∗ := f(x∗) for x∗ ∈ X ∗.

• [Restricted Secant Inequality]. A differentiable function f satisfies the Restricted Secant Inequality (RSI) inequality
if there exists a constant µr > 0 that for all v

⟨∇f(v), v − vp⟩ ≥ µr ∥v − vp∥22 , (RSI)

where vp is the projection of v onto X ∗.

• [Bregman divergence]. For a strictly-convex, differentiable function Φ, we define the Bregman divergence induced
by Φ (known as the mirror map) as:

DΦ(w, v) := Φ(w)− Φ(v)− ⟨∇Φ(v), w − v⟩. (Bregman divergence)

• [Relative smoothness]. A function f is ρ-relatively smooth w.r.t. DΦ iff f + ρΦ is convex. Furthermore, if f is
ρ-relatively smooth w.r.t. Φ, then, |f(w)− f(v)− ⟨∇f(v), w − v⟩| ≤ ρDΦ(w, v).

• [Mirror Ascent]. Optimizing maxx∈X f(x) using mirror ascent (MA), if xt is the current iterate, then the update at
iteration t ∈ {0, 1, . . . , T − 1} with a step-size ηt and mirror map Φ is given as:

xt+1 := argmax
x∈X

{
⟨∇f(xt), x⟩ −

1

ηt
DΦ(x, xt)

}
, (MD update)

15

The above update can be formulated into two steps Bubeck [7, Chapter 4] as follows:

yt+1 := (∇Φ)−1 (∇Φ(xt) + ηt∇f(xt)) (Move in dual space)
xt+1 := argmin

x∈X
{DΦ(x, yt+1)} (Projection step)

B Extension to stochastic value gradients

In Sec. 5, we have seen alternative ways to represent a policy’s conditional distributions over actions pπ(·|s) for each state
s ∈ S. On the other hand, stochastic value gradients [21] represent a policy by a set of actions. Formally, if ε are random
variables drawn from a fixed distribution χ, then policy π is a deterministic map from S × χ → A. This corresponds to
the functional representation of the policy, and is particularly helpful for continuous control, i.e. when the action-space is
continuous. The action a chosen by π in state s, when fixing the random variable ε = ϵ, is represented as π(s, ϵ), and the value
function for policy π is given as:

J(π) =
∑
s

dπ(s)

∫
ε∼χ

r(s, π(s, ε)) dε (1)

and Silver et al. [49] showed that
∂J(π)

∂π(s, ϵ)
= dπ(s)∇aQ

π(s, a)
∣∣
a=π(s,ϵ)

. In order to characterize the dependence on the policy

parameterization, we note that π(s, ϵ) = π(s, ϵ, θ) where θ are the model parameters. For a fixed ϵ, we will use a Euclidean
mirror map implying that DΦ(π, π

′) =
∑

s∈S dπt(s)Dϕ(π(s, ϵ), π
′(s, ϵ) and choose ϕ(π(s, ϵ)) = 1

2 ∥π′(s, ϵ)∥22 implying
that Dϕ(π(s, ϵ), π

′(s, ϵ) = 1
2 [π(s, ϵ)− π′(s, ϵ)]

2. In order to instantiate the generic lower bound in Prop. 1 at iteration t, we
prove the following proposition in App. E.

Proposition 8. For the stochastic value gradient representation and Euclidean mirror map, c > 0, η such that J + 1
ηΦ is

convex in π.

J(π)− J(πt) ≥ C + Es∼dπtEε∼χ

[
∇̂aQπt(s, a)

∣∣
a=πt(s,ε)

π(s, ε)− 1

2

(
1

η
+

1

c

)
[πt(s, ϵ)− π(s, ϵ)]

2

]
− c

2
Es∼dπtEε∼χ

[
∇aQ

πt(s, a)
∣∣
a=πt(s,ε)

− ∇̂aQπt(s, a)
∣∣
a=πt(s,ε)

]2
where C is a constant and ∇̂aQπt(s, a)

∣∣
a=πt(s,ε)

is the estimate of the action-value gradients for policy π at state s and
a = πt(s, ϵ).

For incorporating policy (with parameters θ) and critic (with parameters ω) parameterization, we note that π(s, ε) = π(s, ε|θ)
and ∇̂aQπt(s, a)a=πt(s,ε) = ∇aQ

πt(s, a|ω)a=πt(s,ε,θt) where the model is implicit in the notation. Using the reasoning
in Sec. 3.2 with Prop. 8 immediately gives us the actor and critic objectives (ℓt(θ) and Lt(ω) respectively) at iteration t and
completely instantiates Algorithm 1. The actor objective is similar to Eq (15) of Silver et al. [49], with the easier to compute
Qπt instead of Qπ , whereas the critic objective is similar to the one used in existing work on policy-aware model-based RL for
continuous control [13].

16

C Proofs for Sec. 3

Proposition 1. For any policy representations π and π′, any strictly convex mirror map Φ, and any gradient estimator ĝ, for
c > 0 and η such that J + 1

ηΦ is convex in π,

J(π) ≥ J(π′) + ⟨ĝ(π′), π − π′⟩ −
(
1

η
+

1

c

)
DΦ(π, π

′)− 1

c
DΦ∗

(
∇Φ(π′)− c[∇J(π′)− ĝ(π′)],∇Φ(π′)

)
where Φ∗ is the Fenchel conjugate of Φ and DΦ∗ is the Bregman divergence induced by Φ∗.

Proof. For any η such that J + 1
ηΦ is convex, we use Lemma 2 to form the following lower-bound,

J(π) ≥ J(π′) + ⟨∇J(π′), (π − π′)⟩ − 1

η
Dϕ(π, π

′)

= J(π′) + ⟨ĝ(π′), (π − π′)⟩+ ⟨∇J(π′)− ĝ(π′), (π − π′)⟩ − 1

η
Dϕ(π, π

′)

Defining δ := ∇J(π′)− ĝ(π′), and assuming that c δ is small enough to satisfy the requirement for Lemma 1, we use Lemma 1
with x = δ, y = π and y′ = π′.

= J(π′) + ⟨ĝ(π′), (π − π′)⟩ − 1

η
Dϕ(π, π

′)− 1

c
[Dϕ(π, π

′) +Dϕ∗ (∇ϕ(π′)− cδ,∇ϕ(π′))]

=⇒ J(π) ≥ J(π′) + ĝ(π′)⊤(π − π′)−
(
1

η
+

1

c

)
DΦ(π, π

′)− 1

c
Dϕ∗

(
∇ϕ(π′)− c[∇J(π′)− ĝ(π′)],∇ϕ(π′)

)

Lemma 1 (Bregman Fenchel-Young). Let x ∈ Y∗, y ∈ Y , y′ ∈ Y . Then, for sufficiently small c > 0 and x s.t.
(∇ϕ)−1[∇ϕ(y′)− c x] ∈ Y , we have

⟨y − y′, x⟩ ≥ −1

c

[
Dϕ(y, y

′) +Dϕ∗(∇ϕ(y′)− c x,∇ϕ(y′))

]
. (2)

For a fixed y′, this inequality is tight for y = argminυ
{
⟨x, υ − y′⟩+ 1

cDΦ(υ, y)
}

.

Proof. Define f(y) := ⟨x, y − y′⟩+ 1
cDΦ(y, y

′). If y∗ = argmin f(y), then,

∇f(y∗) = 0 =⇒ ∇ϕ(y∗) = ∇ϕ(y′)− cx

y∗ = (∇ϕ)−1[∇ϕ(y′)− cx] =⇒ y∗ = ∇ϕ∗[∇ϕ(y′)− cx]

Note that according to our assumption, y∗ ∈ Y . For any y,

f(y) ≥ f(y∗) = ⟨x, y∗ − y′⟩+ 1

c
DΦ(y

∗, y′) (3)

In order to simplify DΦ(y
∗, y′), we will use the definition of ϕ∗(z). In particular, for any y,

ϕ(y) = max
z

[⟨z, y⟩ − ϕ∗(z)] ; z∗ = argmax
z

[⟨z, y⟩ − ϕ∗(z)] =⇒ y = ∇ϕ∗(z∗) =⇒ z∗ = ∇ϕ(y)

=⇒ ϕ(y) = ⟨∇ϕ(y), y⟩ − ϕ∗(∇ϕ(y)) (4)

DΦ(y
∗, y′) = ϕ(y∗)− ϕ(y′)− ⟨∇ϕ(y′), y∗ − y′⟩

= [⟨∇ϕ(y∗), y∗⟩ − ϕ∗(∇ϕ(y∗))]− ϕ(y′)− ⟨∇ϕ(y′), y∗ − y′⟩
(using Eq. (4) to simplify the first term)

Let us focus on the first term and simplify it,

⟨∇ϕ(y∗), y∗⟩ − ϕ∗(∇ϕ(y∗)) = ⟨∇ϕ (∇ϕ∗[∇ϕ(y′)− cx]) ,∇ϕ∗[∇ϕ(y′)− cx]⟩ − ϕ∗(∇ϕ (∇ϕ∗[∇ϕ(y′)− cx]))

= ⟨[∇ϕ(y′)− cx],∇ϕ∗[∇ϕ(y′)− cx]⟩ − ϕ∗([∇ϕ(y′)− cx]) (For any z, ∇ϕ(∇ϕ∗(z)) = z)

17

Using the above relations,

DΦ(y
∗, y′) = ⟨[∇ϕ(y′)− cx],∇ϕ∗[∇ϕ(y′)− cx]⟩ − ϕ∗([∇ϕ(y′)− cx])− ϕ(y′)

− ⟨∇ϕ(y′),∇ϕ∗[∇ϕ(y′)− cx]− y′⟩
= ⟨∇ϕ(y′),∇ϕ∗[∇ϕ(y′)− cx]⟩ − c⟨x,∇ϕ∗[∇ϕ(y′)− cx]⟩
− ϕ∗([∇ϕ(y′)− cx])− ϕ(y′)− ⟨∇ϕ(y′),∇ϕ∗[∇ϕ(y′)− cx]− y′⟩

=⇒ DΦ(y
∗, y′) = −c⟨x,∇ϕ∗[∇ϕ(y′)− cx]⟩ − ϕ∗([∇ϕ(y′)− cx])− ϕ(y′) + ⟨∇ϕ(y′), y′⟩

Using the above simplification with Eq. (3),

f(y) ≥ ⟨x, y∗ − y′⟩+ 1

c
[−c⟨x,∇ϕ∗[∇ϕ(y′)− cx]⟩ − ϕ∗([∇ϕ(y′)− cx])− ϕ(y′) + ⟨∇ϕ(y′), y′⟩]

= ⟨x, y∗ − y′⟩ − ⟨x,∇ϕ∗[∇ϕ(y′)− cx]⟩ − 1

c
[ϕ∗([∇ϕ(y′)− cx]) + ϕ(y′)− ⟨ϕ(y′), y⟩]

= −⟨x, y′⟩+ ⟨x,∇ϕ∗[∇ϕ(y′)− cx]⟩ − ⟨x,∇ϕ∗[∇ϕ(y′)− cx]⟩ − 1

c
[ϕ∗([∇ϕ(y′)− cx]) + ϕ(y′)− ⟨∇ϕ(y′), y′⟩]

= −⟨x, y′⟩ − 1

c
[ϕ∗([∇ϕ(y′)− cx]) + ϕ(y′)− ⟨∇ϕ(y′), y′⟩]

Using Eq. (4), ϕ(y′) = ⟨∇ϕ(y′), y′⟩ − ϕ∗(∇ϕ(y′)) =⇒ ϕ(y′)− ⟨∇ϕ(y′), y′⟩ = −ϕ∗(∇ϕ(y′)),

=⇒ f(y) ≥ −⟨x, y′⟩ − 1

c
[ϕ∗([∇ϕ(y′)− cx])− ϕ∗(∇ϕ(y′))] = −1

c
[c⟨x, y⟩+ ϕ∗([∇ϕ(y′)− cx])− ϕ∗(∇ϕ(y′))]

= −1

c

[
c⟨x, y′⟩+ [ϕ∗([∇ϕ(y′)− cx])− ϕ∗(∇ϕ(y′))− ⟨∇ϕ∗(∇ϕ(y′)),∇ϕ(y′)− cx−∇ϕ(y′)⟩]

+ ⟨∇ϕ∗(∇ϕ(y′)),∇ϕ(y′)− cx−∇ϕ(y′)⟩
]

=⇒ f(y) ≥ −1

c
[c⟨x, y′⟩+D∗

Φ(∇ϕ(y′)− cx,∇ϕ(y′)) + ⟨y′,−cx⟩] = −1

c
D∗

Φ(∇ϕ(y′)− cx,∇ϕ(y′))

Using the definition of f(y),

⟨x, y − y′⟩+ 1

c
DΦ(y, y

′) ≥ −1

c
D∗

Φ(∇ϕ(y′)− cx,∇ϕ(y′))

=⇒ ⟨x, y − y′⟩ ≥ −1

c
[DΦ(y, y

′) +D∗
Φ(∇ϕ(y′)− cx,∇ϕ(y′))]

Lemma 2. If J + 1
ηΦ is convex, then, J(π) is 1

η -relatively smooth w.r.t to DΦ, and satisfies the following inequality,

J(π) ≥ J(π′) + ⟨∇πJ(π
′), π − π′⟩ − 1

η
DΦ(π, π

′)

Proof. If J + 1
ηΦ is convex,(

J +
1

η
ϕ

)
(π) ≥

(
J +

1

η
ϕ

)
(π′) +

〈
π − π′,∇π

(
J +

1

η
ϕ

)
(π′)

〉
=⇒ J(π) ≥ J(π′) + ⟨π − π′,∇πJ(π

′)⟩ − 1

η
[ϕ(π)− ϕ(π′)− ⟨∇πϕ(π

′), π − π′⟩]

=⇒ J(π) ≥ J(π′) + ⟨π − π′,∇πJ(π
′)⟩ − 1

η
DΦ(π, π

′)

18

D Proofs for Sec. 4

Proposition 2. For any policy representation and any policy or critic parameterization, there exists a (θ, c) pair that makes
the RHS of inequality (I) strictly positive, and hence guarantees monotonic policy improvement (J(πt+1) > J(πt)), if and
only if

⟨bt, H̃†
t bt⟩ > ⟨[∇J(πt)− ĝt], [∇2

πΦ(πt)]
−1 [∇J(πt)− ĝt]⟩ ,

where bt ∈ Rn :=
∑

s∈S
∑

a∈A [ĝt]s,a ∇θ[π(θt)]s,a, H̃t ∈ Rn×n := ∇θπ(θt)
T ∇2

πΦ(πt)∇θπ(θt) and H̃†
t denotes the

pseudo-inverse of H̃t. For the special case of the tabular policy parameterization, the above condition becomes equal to,

⟨ĝt, [∇2
πΦ(πt)]

−1ĝt⟩ > ⟨[∇J(πt)− ĝt], [∇2
πΦ(πt)]

−1 [∇J(πt)− ĝt]⟩ .

Proof. As a warmup, let us first consider the tabular parameterization where π(θ) = θ ∈ RSA. In this case, the lower-bound
in Prop. 1 is equal to,

J(π)− J(πt) ≥ ⟨ĝt, θ − θt⟩ −
(
1

η
+

1

c

)
DΦ(θ, θt)−

1

c
DΦ∗

(
∇Φ(θt)− c[∇J(θt)− ĝt],∇Φ(θt)

)
We shall do a second-order Taylor expansion of the critic objective (blue term) in c around 0 and a second-order Taylor
expansion of the actor objective (green term) around θ = θt. Defining δ := ∇J(θt)− ĝt,

RHS = ⟨ĝt, θ − θt⟩ −
1

2

(
1

η
+

1

c

)
(θ − θt)

T [∇2Φ(θt)] (θ − θt)−
c

2
⟨δ,∇2ϕ∗(∇ϕ(πt)) δ⟩+ o(c) + o(∥θ − θt∥22) ,

(Using Prop. 14)

where o(c) and o(∥θ − θt∥22) consist of the higher order terms in the Taylor series expansion. A necessary and sufficient
condition for monotonic improvement is equivalent to finding a (θ, c) such that RHS is positive. As c tends to 0, the θ
maximizing the RHS is

θ∗ = θt +
cη

c+ η

[
∇2Φ(θt)

]†
ĝt

With this choice,

RHS =
1

2

1
1
η + 1

c

⟨ĝt,
[
∇2Φ(θt)

]−1
ĝt⟩ −

c

2
⟨δ,∇2ϕ∗(∇ϕ(πt)) δ⟩+ o(c) (o(∥θ − θt∥22) is subsumed by o(c))

=
c

2
⟨ĝt,

[
∇2Φ(θt)

]−1
ĝt⟩ −

c

2
⟨δ,∇2ϕ∗(∇ϕ(πt)) δ⟩+

1

2

(
1

1
η + 1

c

− c

)
⟨ĝt,

[
∇2Φ(θt)

]−1
ĝt⟩︸ ︷︷ ︸

o(c) term

+o(c)

=
c

2
⟨ĝt,

[
∇2Φ(θt)

]−1
ĝt⟩ −

c

2
⟨δ,∇2ϕ∗(∇ϕ(πt)) δ⟩+ o(c) (Subsuming the additional o(c) term)

If ⟨ĝt,
[
∇2Φ(θt)

]−1
ĝt⟩ > ⟨δ,∇2ϕ∗(∇ϕ(πt)) δ⟩, i.e. there exists an ϵ > 0 s.t. ⟨ĝt,

[
∇2Φ(θt)

]−1
ĝt⟩ = ⟨δ,∇2ϕ∗(∇ϕ(πt)) δ⟩+

ϵ, then, RHS = cϵ
2 + o(c). For any fixed κ > 0, since o(c)/c → 0 as c → 0, there exists a neighbourhood (0, cκ) around zero

such that for all c in this neighbourhood, o(c)/c > −κ and hence o(c) > −κc. Setting κ = ε
4 , there is a c such that

RHS >
cε

4
> 0

Hence, there exists a c ∈ (0,min{η, cκ}) such that the RHS is positive, and is hence sufficient to guarantee monotonic policy
improvement.

On the other hand, if ⟨ĝt,
[
∇2Φ(θt)

]−1
ĝt⟩ < ⟨δ,∇2ϕ∗(∇ϕ(πt)) δ⟩, i.e. there exists an ϵ > 0 s.t. ⟨ĝt,

[
∇2Φ(θt)

]−1
ĝt⟩ =

⟨δ,∇2ϕ∗(∇ϕ(πt)) δ⟩ − ϵ, then, RHS = −cϵ
2 + o(c) which can be negative and hence monotonic improvement can not be

guaranteed. Hence, ⟨ĝt,
[
∇2Φ(θt)

]−1
ĝt⟩ > ⟨δ,∇2ϕ∗(∇ϕ(πt)) δ⟩ is a necessary and sufficient condition for improvement.

Let us now consider the more general case, and define m = SA, ĝt ∈ Rm×1, π(θ) ∈ Rm×1 is a function of θ ∈ Rn×1.
Rewriting Prop. 1,

J(π)− J(πt) ≥ ⟨ĝt, π(θ)− π(θt)⟩ −
(
1

η
+

1

c

)
DΦ(π(θ), π(θt))−

1

c
DΦ∗

(
∇Φ(πt)− c[∇J(πt)− ĝt],∇Φ(πt)

)

19

As before, we shall do a second-order Taylor expansion of the critic objective (blue term) in c around 0 and a second-order
Taylor expansion of the actor objective (green term) around θ = θt. Defining δ := ∇J(θt)− ĝt. From Prop. 14, we know that,

1

c
DΦ∗

(
∇Φ(πt)− c[∇J(πt)− ĝt],∇Φ(πt)

)
=

c

2
⟨δ,∇2ϕ∗(∇ϕ(πt)) δ⟩+ o(c)

In order to calculate the second-order Taylor series expansion of the actor objective, we define ∇θπ(θt) ∈ Rm×n as the
Jacobian of the θ :→ π map, and use ∇θ[π(θt)]i ∈ R1×n for i ∈ [m] to refer to row i

⟨ĝt, π(θ)− π(θt)⟩ =
m∑
i=1

[ĝt]i︸︷︷︸
1×1

∇θ[π(θt)]i︸ ︷︷ ︸
1×n

(θ − θt)︸ ︷︷ ︸
n×1

+
1

2
(θ − θt)︸ ︷︷ ︸

1×n

 m∑
i=1

[ĝt]i︸︷︷︸
1×1

∇2
θ[π(θt)]i︸ ︷︷ ︸
n×n

 (θ − θt)︸ ︷︷ ︸
n×1

+o(∥θ − θt∥22)

where o(∥θ − θt∥22) consist of the higher order terms in the Taylor series expansion. For expanding the divergence term, note
that DΦ(π(θ), π(θt)) = ϕ(π(θ))− ϕ(π(θt))− ⟨∇ϕ(π(θt)), π(θ)− π(θt)⟩

ϕ(π(θ))− ϕ(π(θt)) = ∇πϕ(πt)
T︸ ︷︷ ︸

1×m

∇θπ(θt)︸ ︷︷ ︸
m×n

(θ − θt)︸ ︷︷ ︸
n×1

+
1

2
(θ − θt)

T︸ ︷︷ ︸
1×n

∇θπ(θt)
T︸ ︷︷ ︸

n×m

∇2
πϕ(πt)︸ ︷︷ ︸
m×m

∇θπ(θt)︸ ︷︷ ︸
m×n

+

m∑
i=1

[∇πϕ(πt)]i︸ ︷︷ ︸
1×1

∇2
θ[π(θt)]i︸ ︷︷ ︸
n×n

 (θ − θt)︸ ︷︷ ︸
n×1

+o(∥θ − θt∥22)

⟨∇ϕ(π(θt)), π(θ)− π(θt)⟩ =
m∑
i=1

[∇ϕ(πt)]i︸ ︷︷ ︸
1×1

[∇θπ(θt)]i︸ ︷︷ ︸
1×n

(θ − θt)︸ ︷︷ ︸
n×1

+
1

2
(θ − θt)︸ ︷︷ ︸

1×n

 m∑
i=1

[∇ϕ(πt)]i︸ ︷︷ ︸
1×1

∇2
θ[π(θt)]i︸ ︷︷ ︸
n×n

 (θ − θt)︸ ︷︷ ︸
n×1

+o(∥θ − θt∥22)

Putting everything together,

RHS =

 m∑
i=1

[ĝt]i︸︷︷︸
1×1

∇θ[π(θt)]i︸ ︷︷ ︸
1×n

 (θ − θt)︸ ︷︷ ︸
n×1

+
1

2
(θ − θt)

T︸ ︷︷ ︸
1×n

 m∑
i=1

[ĝt]i︸︷︷︸
1×1

∇2
θ[π(θt)]i︸ ︷︷ ︸
n×n

−
(
1

η
+

1

c

)
∇θπ(θt)

T︸ ︷︷ ︸
n×m

∇2
πϕ(πt)︸ ︷︷ ︸
m×m

∇θπ(θt)︸ ︷︷ ︸
m×n

 (θ − θt)︸ ︷︷ ︸
n×1

− c

2
⟨δ,∇2ϕ∗(∇ϕ(πt)) δ⟩+ o(∥θ − θt∥22) + o(c)

Defining bt :=
∑m

i=1 [ĝt]i ∇θ[π(θt)]i and Ht := ∇θπ(θt)
T ∇2

πϕ(πt)∇θπ(θt)− 1

(1
η+ 1

c)

∑m
i=1

(
[ĝt]i ∇2

θ[π(θt)]i
)

RHS = ⟨bt, θ − θt⟩+
1

2

(
1

η
+

1

c

)
⟨(θ − θt), Ht (θ − θt)⟩ −

c

2
⟨δ,∇2ϕ∗(∇ϕ(πt)) δ⟩+ o(∥θ − θt∥22) + o(c)

As a sanity check, it can be verified that if π(θ) = θ, Ht =
(

1
η + 1

c

)
∇2Φ(θt) and bt = ĝt, and we recover the tabular result

above. Notice that
〈
(θ − θt),

1

(1
η+ 1

c)

∑m
i=1

(
[ĝt]i ∇2

θ[π(θt)]i
)
(θ − θt)

〉
is o(c) as c goes to zero. Subsuming this term in

o(c),

RHS = ⟨bt, θ − θt⟩+
1

2

(
1

η
+

1

c

)
⟨(θ − θt), H̃t (θ − θt)⟩ −

c

2
⟨δ,∇2ϕ∗(∇ϕ(πt)) δ⟩+ o(∥θ − θt∥22) + o(c)

where H̃t := ∇θπ(θt)
T ∇2

πϕ(πt)∇θπ(θt). As before, a necessary and sufficient condition for monotonic improvement is
equivalent to finding a (θ, c) such that RHS is positive. As c tends to 0, the θ maximizing the RHS is

θ∗ = θt +
c η

(c+ η)

[
H̃t

]†
bt

With this choice,

RHS =
1

2

1
1
η + 1

c

⟨bt,
[
H̃t

]†
bt⟩ −

c

2
⟨δ,∇2ϕ∗(∇ϕ(πt)) δ⟩+ o(c) (o(∥θ − θt∥22) is subsumed in o(c))

20

As in the tabular case, since 1
1
η+ 1

c

is o(c), we can subsume it, and we get that,

RHS =
c

2
⟨bt,

[
H̃t

]†
bt⟩ −

c

2
⟨δ,∇2ϕ∗(∇ϕ(πt)) δ⟩+ o(c)

Using the same reasoning as in the tabular case above, we can prove that

⟨bt,
[
H̃t

]†
bt⟩ > ⟨δ,∇2ϕ∗(∇ϕ(πt)) δ⟩

is a necessary and sufficient condition for monotonic policy improvement. Finally, we use Gorni [19, Eq (1.5)] which shows
that ∇2ϕ∗(∇ϕ(πt)) = [∇2

πΦ(πt)]
−1 and complete the proof.

D.1 Proof of Prop. 3

The following proposition shows the convergence of inexact mirror ascent in the functional space.

Proposition 9. Assuming that (i) J + 1
η Φ is convex in π, for a constant c > 0, after T iterations of mirror ascent with

1
η′ =

2
η + 2

c we have

E
DΦ(π̄R+1, π̄R)

ζ2
≤ 1

ζT

[
[J(π∗)− J(π0)] +

1

c

T−1∑
t=0

EDϕ∗

(
∇ϕ(π̄t)− c[∇J(π̄t)− ĝ(π̄t)],∇ϕ(π̄t)

)]

where ζ = η′/2 and R is picked uniformly random from {0, 1, 2, . . . T − 1}.

Proof. We divide the mirror ascent (MA) update into two steps:

∇ϕ(π̃t+1) = ∇ϕ(π̄t) + η′tĝ(π̄t) =⇒ ĝ(π̄t) =
1

η′t
[∇ϕ(π̃t+1)−∇ϕ(π̄t)]

π̄t+1 = argmin
π∈Π

DΦ(π, π̃t+1).

We denote the above update as π̄t+1 = MA(π̄t). Using Prop. 1 with π = π̄t+1, π′ = π̄t,

J(π̄t+1) ≥ J(π̄t) + ĝ(π̄t)
⊤(π̄t+1 − π̄t)−

(
1

η
+

1

c

)
DΦ(π̄t+1, π̄t)−

1

c
Dϕ∗

(
∇ϕ(π̄t)− c[∇J(π̄t)− ĝ(π̄t)],∇ϕ(π̄t)

)
︸ ︷︷ ︸

:=ϵct

≥ J(π̄t) +
1

η′t
⟨∇ϕ(π̃t+1)−∇ϕ(π̄t), π̄t+1 − π̄t⟩ −

(
1

η
+

1

c

)
DΦ(π̄t+1, π̄t)− ϵct (Using the update)

≥ J(π̄t) +
1

η′t
{DΦ(π̄t+1, π̄t) +DΦ(π̄t, π̃t+1)−DΦ(π̄t+1, π̃t+1)} −

(
1

η
+

1

c

)
DΦ(π̄t+1, π̄t)− ϵct

(using Lemma 4)

= J(π̄t) +
1

η′t
{DΦ(π̄t, π̃t+1)−DΦ(π̄t+1, π̃t+1)}︸ ︷︷ ︸

:=A

+

(
1

η′t
− 1

η
− 1

c

)
DΦ(π̄t+1, π̄t)− ϵct

≥ J(π̄t) +

(
1

η′t
− 1

η
− 1

c

)
DΦ(π̄t+1, π̄t)− ϵct (A ≥ 0 since π̄t+1 is the projection of π̃t+1 onto Π)

≥ J(π̄t) +

(
1

η
+

1

c

)
︸ ︷︷ ︸

:= 1
ζ

DΦ(π̄t+1, π̄t)− ϵct (Sinc 1/η′t = 2/η + 2/c)

21

Recursing for T iterations and dividing by 1/ζ, picking R uniformly random from {0, 1, 2, . . . T − 1} and taking expectation
we get

E
DΦ(π̄R+1, π̄R)

ζ2
=

1

ζ2T

T−1∑
t=0

EDΦ(π̄t+1, π̄t)

≤ E[J(π̄T)− J(π0)]

ζT
+

∑T−1
t=0 Eϵct
T

≤ [J(π∗)− J(π0)]

ζT
+

∑T−1
t=0 Eϵct
T

=
1

ζT

[
[J(π∗)− J(π0)] +

1

c

T−1∑
t=0

EDϕ∗

(
∇ϕ(π̄t)− c[∇J(π̄t)− ĝ(π̄t)],∇ϕ(π̄t)

)]

Compared to Dragomir et al. [15], D’Orazio et al. [12] that analyze stochastic mirror ascent in the smooth, non-convex setting,
our analysis ensures that the (i) sub-optimality gap (the LHS in the above proposition) is always positive, and (ii) uses a
different notion of variance that depends on DΦ∗ .

Similar to Vaswani et al. [57], we assume that each π ∈ Π is parameterized by θ. In Algorithm 1, we run gradient ascent (GA)
on ℓt(θ) to compute πt+1 = π(θt+1) and interpret the inner loop of Algorithm 1 as an approximation to the projection step in
the mirror ascent update. We note that ℓt(θ) does not have any additional randomness and is a deterministic function w.r.t θ.
Note that π̄t+1 = where πt = π(θt). Assuming that ℓt(θ) is smooth, and satisfies the PL condition [27], we get the following
convergence guarantee for Algorithm 1.

Proposition 3. For any policy representation and mirror map Φ such that (i) J+ 1
ηΦ is convex in π, any policy parameterization

such that (ii) ℓt(θ) is smooth w.r.t θ and satisfies the Polyak-Lojasiewicz (PL) condition, for c > 0, after T iterations
of Algorithm 1 we have that,

E
[
DΦ(π̄R+1, πR)

ζ2

]
≤ 1

ζT

J(π∗)− J(π0)︸ ︷︷ ︸
Term (i)

+

T−1∑
t=0

1

c
EDΦ∗

(
∇Φ(πt)− c δt,∇Φ(πt)

)
︸ ︷︷ ︸

Term (ii)

+ E[et]︸ ︷︷ ︸
Term (iii)




where δt := ∇J(πt) − ĝt, 1
ζ := 1

η + 1
c , R is a random variable chosen uniformly from {0, 1, 2, . . . T − 1} and et ∈

O(exp (−ma)) is the projection error (onto Π) at iteration t.

Proof. For this proof, we define the following notation:

πt := π(θt)

ℓt(θ) := J(πt) + ĝ(πt)
⊤(π(θ)− πt)−

(
1

η
+

1

c

)
DΦ(π(θ), πt)

θ̄t+1 := argmax ℓt(θ)

π̄t+1 := π(θ̄t+1) = argmax
π∈Π

{⟨ĝt(πt), π − πt⟩ −
1

η′
DΦ(π, πt)} = MA(πt)

(Iterate obtained after running 1 step of mirror ascent starting from πt)
θt+1 := GradientAscent(ℓt(θ), θt,ma)

πt+1 := π(θt+1) ,

where GradientAscent(ℓt(θ), θt,ma) means running GradientAscent for ma iterattions on ℓt(θ) with the initialization equal to
θt. Since we assume that ℓt satisfies the PL-condition w.r.t. θ for all t, based on the results from Karimi et al. [27], we get

ℓt(θ̄t+1)− ℓt(θt+1) ≤ c1 exp(−c2ma)
(
ℓt(θ̄t+1)− ℓt(θt)

)︸ ︷︷ ︸
:=et

22

where c1, c2 are problem-dependent constants related to the smoothness and curvature of ℓt, and et is the approximation error
diminishes as we increase the value of ma. Following the same steps as before,

J(πt+1) ≥ J(πt) + ĝ(πt)
⊤(π(θt+1)− πt)−

(
1

η
+

1

c

)
DΦ(π(θt+1), πt)− ϵt (Using Prop. 1)

≥ J(πt) + ĝ(πt)
⊤(π(θ̄t+1)− πt)−

(
1

η
+

1

c

)
DΦ(π(θ̄t+1), πt)− ϵt (Using the above bound for GA)

= J(πt) + ĝ(πt)
⊤(π̄t+1 − πt)−

(
1

η
+

1

c

)
DΦ(π̄t+1, πt)− et − ϵt

≥ J(πt) +
1

η′t
⟨∇Φ(π̃t+1)−∇Φ(πt), π̄t+1 − πt⟩ −

(
1

η
+

1

c

)
DΦ(π̄t+1, πt)− ϵct − et (Using the MA update)

≥ J(πt) +
1

η′t
{DΦ(π̄t+1, πt) +DΦ(πt, π̃t+1)−DΦ(π̄t+1, π̃t+1)} −

(
1

η
+

1

c

)
DΦ(π̄t+1, πt)− ϵct − et

(using Lemma 4)

= J(πt) +
1

η′t
{DΦ(πt, π̃t+1)−DΦ(π̄t+1, π̃t+1)}︸ ︷︷ ︸

:=A

+

(
1

η′t
− 1

η
− 1

c

)
DΦ(π̄t+1, πt)− ϵct − et

≥ J(πt) +

(
1

η′t
− 1

η
− 1

c

)
DΦ(π̄t+1, πt)− ϵct − et (A ≥ 0 since π̄t+1 is the projection of π̃t+1 into the simplex)

≥ J(πt) +

(
1

η
+

1

c

)
︸ ︷︷ ︸

:= 1
ζ

DΦ(π̄t+1, πt)− ϵct − et (setting η′t s.t. 1/η′t ≥ 2/η + 2/c)

Recusing for T iterations and dividing by 1/ζ, picking R uniformly random from {0, 1, 2, . . . T − 1} and taking expectation
we get

E
DΦ(π̄R+1, πR)

ζ2
=

1

ζ2T

T−1∑
t=0

EDΦ(π̄t+1, πt)

≤ E[J(πT)− J(π0)]

ζT
+

∑T−1
t=0 Eϵct
ζT

+

∑T−1
t=0 Eet
ζT

≤ [J(π∗)− J(π0)]

γT
+

∑T−1
t=0 Eϵct
γT

+

∑T−1
t=0 Eet
γT

=⇒ E
DΦ(π̄R+1, πR)

ζ2
≤ 1

ζT

[
[J(π∗)− J(π0)] +

1

c

T−1∑
t=0

EDΦ∗

(
∇Φ(πt)− c[∇J(πt)− ĝ(πt)],∇Φ(πt)

)
+

T−1∑
t=0

Eet

]

Note that it is possible to incorporate a sampling error (in the distribution dπ across states) for the actor update in Algorithm 1.
This corresponds to an additional error in calculating DΦ, and we can use the techniques from Lavington et al. [31] to
characterize the convergence in this case.

23

D.2 Exact setting with Lifting (Direct representation)

Recall the mirror ascent update in the functional space.

π̄t+1 = argmax
π∈Π

[
J(πt) +∇J(πt)

⊤(π − πt)−
1

η′t
DΦ(π, πt)

]
,

For the direct representation, we define πs := pπ(·|s), ĝ(πt)(s, ·) = dπt(s)Qπt(s, ·) and DΦ(π, πt) =∑
s d

πt(s)Dϕ(π
s, πt

s). Rewriting the MA update,

π̄t+1 = argmax
{πs∈∆A}s∈S

[
J(πt) +

∑
s

dπt(s)

[
⟨Qπt(s, ·), πs − πt

s⟩ − 1

η′t
Dϕ(π

s, πt
s)

]]

=⇒ π̄s
t+1 = argmax

πs∈∆A

[
⟨Qπt(s, ·), πs − πt

s⟩ − 1

η′t
Dϕ(π

s, πt
s)

]
(Can decompose across states since dπt(s) ≥ 0)

For each state s and Qπt(s, .) we define the set Πs
t = {πs : πs ∈ argmaxps∈∆A

⟨Qπt(s, .), ps⟩} i.e. a set of greedy policies
w.r.t. Qπt(s, .). Similar to Johnson et al. [24] we define η′t as follows

η′t ≥
1

ct
max

s

{
min
π∈Πs

t

DΦ(π, πt)

}
(5)

where ct > 0 is a constant. Now we consider the policy parameterization, π = π(θ). We assume that the mapping from θ → π
is Lπ Lipschitz continuous.

ℓt(θ) := J(πt) +
∑
s

dπt(s)

[
⟨Qπt(s, ·), π(θ)s − πt

s⟩ − 1

η′t
Dϕ(π(θ)

s, πt
s)

]
θ̃t+1 := argmax

θ
ℓt(θ)

θt+1 := GradientAscent(ℓt(θ), θt,m)

π̃t+1 := π(θ̃t+1)

πt+1 := π(θt+1)

GradientAscent(ℓt(θ), θt,m) means that we run gradient ascent for m iterations to maximize ℓt with θt as the initial value.
We assume that ℓt satisfies Restricted Secant Inequality (RSI) and is smooth w.r.t. θ. Based on the convergence property of
Gradient Ascent for RSI and smooth functions [27], we have:∥∥∥θ̃t+1 − θt+1

∥∥∥2
2
≤ O(exp(−m))

=⇒ ∥π̃t+1 − πt+1∥22 =
∥∥∥π(θ̃t+1)− π(θt+1)

∥∥∥2
2
≤ L2

π

∥∥∥θ̃t+1 − θt+1

∥∥∥2
2
≤ e2t := O(exp(−m))︸ ︷︷ ︸

approximation error

(since π(θ) is Lipschitz continuous)

Furthermore, we assume that ∥π̄t+1 − π̃t+1∥22 ≤ b2t for all t which represents the bias because of the function approximation.
Before stating the main proposition of this section, we restate Johnson et al. [24, Lemma 2].
Lemma 3 (Lemma 2 of Johnson et al. [24]). For all (s, a) ∈ S ×A we have

Qπ̄t+1(s, a) ≥ Qπt(s, a).

24

Now we state the main proposition of this part.

Proposition 10 (Convergence of tabular MDP with Lifting). Assume that (i) ℓt(θ) is smooth and satisfies RSI condition, (ii)
π(θ) is Lπ-Lipschitz continuous, (iii) the bias is bounded for all t i.e. ∥π̄t+1 − π̃t+1∥22 ≤ b2t , (iv) ∥Qπ(s, ·)∥ ≤ q for all π
and s. By setting η′t as in Eq. (5) and running Gradient Ascent for m iterations to maximize ℓt we have

∥J(π∗)− J(πT)∥∞ ≤ γT

(
∥J(π∗)− J(π0)∥∞ +

T∑
t=1

γ−t

(
ct +

q

1− γ
[et + bt]

))
where π∗ is the optimal policy, π∗s refers to the optimal action in state s. Here, et = O(exp(−m)) is the approximation error.

Proof. This proof is mainly based on the proof of Theorem 3 of Johnson et al. [24]. Using Lemma 3 and the fact that πs ≥ 0,
we have ⟨Qπt(s, ·), π̄s

t+1⟩ ≤ ⟨Qπ̄t+1(s, ·), π̄s
t+1⟩ = Js(π̄t+1). Using this inequality we get,

⟨Qπt(s, ·), π∗s − π̄s
t+1⟩ ≥ ⟨Qπt(s, ·), π∗s⟩ − Js(π̄t+1)

= ⟨Qπt(s, ·)−Qπ∗
(s, ·), π∗s⟩+ ⟨Qπ∗

(s, ·), π∗s⟩ − Js(π̄t+1)

≥ −
∥∥∥Qπt(s, ·)−Qπ∗

(s, ·)
∥∥∥
∞

+ Js(π
∗)− Js(π̄t+1) (Holder’s inequality)

≥ −γ ∥J(πt)− J(π∗)∥∞ + Js(π
∗)− Js(π̄t+1)

The last inequality is from the definition of Q and J as follows. For any action a,

Qπt(s, a)−Qπ∗
(s, a) = γ

∑
s′

P (s′|s, a) [Js′(πt)− Js′(π
∗)]

≤ γ
∑
s′

P (s′|s, a) ∥J(πt)− J(π∗)∥∞

≤ γ ∥J(πt)− J(π∗)∥∞

From the above inequality,

−γ ∥J(πt)− J(π∗)∥∞ + Js(π
∗)− Js(π̄t+1) ≤ ⟨Qπt(s, ·), π∗s − π̄s

t+1⟩
≤ ⟨Qπt(s, ·), pst − π̄s

t+1⟩ (For any pst ∈ Πs
t)

≤
Dϕ(p

s
t , πt

s)−Dϕ(p
s
t , π̄

s
t+1)−Dϕ(π̄

s
t+1, πt

s)

η′t
(Using Lemma 5 with d = Qπt(s, ·), y = π̄s

t+1, x = pst)

≤ Dϕ(p
s
t , πt

s)

η′t

=⇒ −γ ∥J(πt)− J(π∗)∥∞ + Js(π
∗)− Js(π̄t+1) ≤ min

ps
t∈Πs

t

Dϕ(p
s
t , πt

s)

η′t
≤ ct (Based on the definition of η′ in Eq. (5))

=⇒ −γ ∥J(πt)− J(π∗)∥∞ + Js′(π
∗)− Js′(πt+1) ≤ ct + Js′(π̄t+1)− Js′(πt+1)

(Since s is an arbitrary state, changing s = s′ for convenience)

= ct +
1

1− γ

∑
s

dπ̄t+1(s)⟨Qπt+1(s, ·), π̄s
t+1 − πt+1

s⟩

(Using performance difference lemma 6 with the starting state equal to s′)

≤ ct +
1

1− γ

∑
s

dπ̄t+1(s) ∥Qπt+1(s, ·)∥
∥∥π̄s

t+1 − πt+1
s
∥∥

(Cauchy Schwartz)

≤ ct +
q

1− γ

∑
s

dπ̄t+1(s)
∥∥π̄s

t+1 − πt+1
s
∥∥

≤ ct +
q

1− γ

∑
s

dπ̄t+1(s)
[∥∥π̄s

t+1 − π̃s
t+1

∥∥+ ∥∥π̃s
t+1 − πt+1

s
∥∥]

≤ ct +
q

1− γ
(et + bt)

25

Since the above equation is true for all s′ we have:

∥J(π∗)− J(πt+1)∥∞ ≤ γ ∥J(πt)− J(π∗)∥∞ + ct +
q

1− γ
(et + bt)

Recursing for T iterations we get:

∥J(π∗)− J(πT)∥∞ ≤ γT

(
∥J(π∗)− J(π0)∥∞ +

T∑
t=1

γ−t(ct +
q

1− γ
[et + bt])

)

We can control the approximation error et by using a larger m. The bias term bt can be small if our function approximation
model is expressive enough. ct is an arbitrary value and if we set ct = γtc for some constant c > 0, then

∑T
t=1 γ

−t(ct) = Tc
and therefore γTTc can diminish linearly. The above analysis relied on the knowledge of the true Q functions, but can be
easily extended to using inexact estimates of Qπ by using the techniques developed in [61, 24].

D.3 Exact setting with lifting trick (Softmax representation)

In the softmax representation in the tabular MDP, we consider the case that π is parameterized with parameter θ ∈ Rn. In this
setting Φ is the Euclidean norm. Using Prop. 1, for η such that J + 1

ηϕ is convex we have for a given πt,

J(π) ≥ J(πt) + ⟨∇J(πt), π − πt⟩ −
1

η
DΦ(π, πt)

= J(πt) + ⟨∇J(πt), π − πt⟩ −
1

2η
∥π − πt∥22︸ ︷︷ ︸

:=h(π)

(Since ϕ(.) = 1
2 ∥.∥

2
2)

If we maximize h(π) w.r.t. π we get

π̄t+1 = argmax
π

{h(π)} =⇒ π̄t+1 = πt + η∇πJ(πt)

Mei et al. [37, Lemma 8] proves that J(π) satisfies a gradient domination condition w.r.t the softmax representation. In
particular, if a∗(s) is the optimal action in state s and µ := minπ

mins pπ(a∗(s)|s)
√
S
∥∥∥ dπ

∗
dπ

∥∥∥
∞

, they prove that for all π,

∥∇πJ(π)∥ ≥ µ [J(π∗)− J(π)]

Consider optimization in the parameter space where ℓt(θ) := J(πt) + ⟨∇J(π(θt), π(θ)− π(θt)⟩ − 1
η DΦ(π(θ), π(θt)).

θ̃t+1 := argmax
θ

ℓt(θ)

π̃t+1 = π(θ̃t+1)

θt+1 := GradientAscent(ℓt, θt,m)

πt+1 = π(θt+1)

GradientAscent(ℓt(θ), θt,m) means that we run gradient ascent for m iterations to maximize ℓt with θt as the initial value.
Assuming that ℓt is Lipschitz smooth w.r.t. θ and satisfies the Polyak-Lojasiewicz (PL) condition, we use the gradient ascent
property for PL functions [27] to obtain,

h(π̃t+1)− h(πt+1) = ℓt(θ̃t+1)− ℓ(θt+1) ≤ et := O(exp(−m))︸ ︷︷ ︸
approximation error

26

Proposition 11 (Convergence of softmax+tabular setting with Lifting). Assume (i) J + 1
ηϕ is convex, (ii) J satisfies gradient

domination property above with µ > 0, (iii) ℓt(θ) is Lipschitz smooth and satisfies PL condition, (iv) |h(π̄t+1)−h(π̃t+1)| ≤ bt
for all t. Then after running Gradient Ascent for m iterations to maximize ℓt we have

min
t∈[T−1]

[J(π∗)− J(πt)] ≤

√
J(π∗)− J(π0) +

∑T−1
t=0 [et + bt]

αT

where α := η µ2

2 and et is the approximation error at iteration t and [T − 1] := {0, 1, 2, . . . T − 1}.

Proof. Since J + 1
ηϕ is convex,

J(πt+1) ≥ h(πt+1) = J(πt) + ⟨∇J(πt), πt+1 − πt⟩ −
1

2η
∥πt+1 − πt∥22

≥ h(π̃t+1)− et (Using the GA bound from above)

≥ h(π̄t+1)− et − bt = J(πt) + ⟨∇J(πt), π̄t+1 − πt⟩ −
1

2η
∥π̄t+1 − πt∥22 − et − bt

≥ J(πt) +
η

2
∥∇πJ(πt)∥22 − et − bt (Since π̄t+1 = πt + η∇πJ(πt))

≥ J(πt) +
η µ2

2
[J(π∗)− J(πt)]

2 − et − bt (Using gradient domination of J)

=⇒ J(π∗)− J(πt+1) ≤ J(π∗)− J(πt)︸ ︷︷ ︸
:=δt

− η µ2

2︸︷︷︸
:=α

[J(π∗)− J(πt)]
2
+ et + bt

=⇒ δt+1 ≤ δt − αδ2t + et + bt

=⇒ αδ2t ≤ δt − δt+1 + et + bt

Summing up for T iterations and dividing both sides by T

α min
t∈[T−1]

δ2t ≤ 1

T
α

T−1∑
t=0

δ2t

≤ 1

T
[δ0 − δT+1] +

1

T

T−1∑
t=0

[et + bt] ≤
1

T
[δ0] +

1

T

T−1∑
t=0

[et + bt]

=⇒ min
t∈[T−1]

δt ≤

√
δ0 +

∑T−1
t=0 [et + bt]

αT

The above analysis relied on the knowledge of the exact gradient ∇J(π), but can be easily extended to using inexact estimates
of the gradient by using the techniques developed in [63].

D.4 Helper Lemmas

Lemma 4 (3-Point Bregman Property). For x, y, z ∈ X ,

⟨∇ϕ(z)−∇ϕ(y), z − x⟩ = DΦ(x, z) +DΦ(z, y)−DΦ(x, y)

Lemma 5 (3-Point Descent Lemma for Mirror Ascent). For any z ∈ rint dom ϕ, and a vector d, let

y = argmax
x∈X

{⟨d, x⟩ − 1

η
DΦ(x, z)}.

Then y ∈ rint dom ϕ and for any x ∈ X

⟨d, y − x⟩ ≥ 1

η
[DΦ(y, z) +DΦ(x, y)−DΦ(x, z)]

27

Lemma 6 (Performance Difference Lemma [26]). For any π, π′ ∈ Π,

J(π)− J(π′) =
1

1− γ
Es∼dπ

[
⟨Qπ′

(s, ·), pπ(·|s)− pπ
′
(·|s)⟩

]

E Proofs for Sec. 5
Proposition 12 (State-wise lower bound). For (i) any representation π that is separable across states i.e. there exists πs ∈ RA

such that πs,a = [πs]a, (ii) any strictly convex mirror map Φ that induces a Bregman divergence that is separable across states
i.e. DΦ(π, π

′) =
∑

s d
π(s)Dϕ(π

s, π′s), (iii) any η such that J + 1
ηΦ is convex, if (iv) ∇J(π) is separable across states i.e.

[∇J(π)]s,a = dπ(s) [∇πsJ(π)a where ∇πsJ(π) ∈ RA, then (v) for any separable (across states) gradient estimator ĝ i.e.
[ĝ(π)]s,a = dπ(s) [ĝs(π)]a where ĝs(π) ∈ RA, and c ∈ (0,∞)S ,

J(π) ≥ J(πt) + ⟨ĝ(πt), (π − πt)⟩ −
∑
s

dπt(s)

(
1

η
+

1

cs

)
Dϕ(π

s, πt
s)−

∑
s

dπt(s)Dϕ∗ (∇ϕ(πt
s)− cs δ

s
t ,∇ϕ(πt

s))

cs

Proof. Using condition (iii) of the proposition with Lemma 2,

J(π) ≥ J(πt) + ⟨∇J(πt), π − πt⟩ −
1

η
Dϕ(π, πt)

= J(πt) + ⟨ĝ(πt), π − πt⟩+ ⟨∇J(πt)− ĝ(πt), π − πt⟩ −
1

η
Dϕ(π, πt)

Using conditions (iv) and (v), we know that [∇J(πt)]s,a = dπt(s) [∇πsJ(πt)]a and [ĝ(πt)]s,a = dπt(s) [ĝs(πt)]a. Defining
δst := ∇πsJ(πt)− ĝs(πt) ∈ RA. Using conditions (i) and (ii), we can rewrite the lower-bound as follows,

J(π) ≥ J(πt) + ⟨ĝ(πt), (π − πt)⟩+
∑
s

dπt(s) ⟨δst , πs − πt
s⟩ − 1

η

∑
s

dπt(s)Dϕ(π
s, πt

s)

= J(πt) + ⟨ĝ(πt), π − πt⟩+
∑
s

dπt(s)

[
⟨δst , πs − πt

s⟩ − 1

η
Dϕ(π

s, πt
s)

]
Using Lemma 1 with x = δst , y = πs and y′ = πt

s,

≥ J(πt) + ⟨ĝ(πt), π − πt⟩ −
∑
s

dπt(s)

[
Dϕ∗ (∇ϕ(πt

s)− cs δ
s
t ,∇ϕ(πt

s))

cs
+

(
1

η
+

1

cs

)
Dϕ(π

s, πt
s)

]
J(π) ≥ J(πt) + ⟨ĝ(πt), π − πt⟩ −

∑
s

dπt(s)

(
1

η
+

1

cs

)
Dϕ(π

s, πt
s)−

∑
s

dπt(s)Dϕ∗ (∇ϕ(πt
s)− cs δ

s
t ,∇ϕ(πt

s))

cs

Proposition 4. For the direct representation and negative entropy mirror map, c > 0, η ≤ (1−γ)3

2γ |A| ,

J(π)− J(πt) ≥ C + Es∼dπt

[
Ea∼pπt (·|s)

[
pπ(a|s)
pπt(a|s)

(
Q̂πt(s, a)−

(
1

η
+

1

c

)
log

(
pπ(a|s)
pπt(a|s)

))]]
− Es∼dπt

[
Ea∼pπt (·|s) [Q

πt(s, a)− Q̂πt(s, a)] +
1

c
log

(
Ea∼pπt (·|s)

[
exp

(
−c [Qπt(s, a)− Q̂πt(s, a)]

)])]
where C is a constant and Q̂πt is the estimate of the action-value function for policy πt.

Proof. For the direct representation, πs,a = pπ(a|s). Using the policy gradient theorem, [∇πJ(π)]s,a = dπ(s)Qπ(s, a). We
choose ĝ(π) such that [ĝ(π)]s,a = dπ(s) Q̂π(s, a) as the estimated gradient. Using Vaswani et al. [57, Proposition 2], J + 1

ηΦ

is convex for η ≤ (1−γ)3

2γ |A| . Defining δst := ∇πsJ(πt)− ĝs(πt) = Qπt(s, ·)− Q̂πt(s, ·) ∈ RA, and using Prop. 12 with cs = c

for all s,

J(π) ≥ J(πt) + ⟨ĝ(πt), π − πt⟩ −
∑
s

dπt(s)

(
1

η
+

1

c

)
Dϕ(π

s, πt
s)−

∑
s

dπt(s)Dϕ∗ (∇ϕ(πt
s)− c δst ,∇ϕ(πt

s))

c

28

Since ϕ(πs) = ϕ(pπ(·|s)) =
∑

a p
π(a|s) log(pπ(a|s)), using Lemma 10, Dϕ(π

s, πt
s) = KL(pπ(·|s)||pπt(·|s)). Hence,

J(π) ≥ J(πt) +
∑
s

dπt(s)
∑
a

Q̂πt(s, a) [pπ(a|s)− pπt(a|s)]−
(
1

η
+

1

c

) ∑
s

dπt(s)KL(pπ(·|s)||pπt(·|s))

−
∑
s

dπt(s)Dϕ∗ (∇ϕ(πt
s)− c δst ,∇ϕ(πt

s))

c

Using Lemma 7 to simplify the last term,∑
s

dπt(s)Dϕ∗ (∇ϕ(πt
s)− c δst ,∇ϕ(πt

s))

c

=
1

c

[∑
s

dπt(s)

[
c ⟨pπt(·|s), δst ⟩+ log

(∑
a

pπt(a|s) exp(−c δst [a])

)]]

=
∑
s

dπt(s)

[∑
a

pπt(a|s) [Qπt(s, a)− Q̂πt(s, a)] +
1

c
log

(∑
a

pπt(a|s) exp
(
−c [Qπt(s, a)− Q̂πt(s, a)]

))]
Putting everything together,

J(π) ≥ J(πt) +
∑
s

dπt(s)
∑
a

Q̂πt(s, a) [pπ(a|s)− pπt(a|s)]−
(
1

η
+

1

c

) ∑
s

dπt(s)KL(pπ(·|s)||pπt(·|s))

−

[∑
s

dπt(s)

[∑
a

pπt(a|s) [Qπt(s, a)− Q̂πt(s, a)] +
1

c
log

(∑
a

pπt(a|s) exp
(
−c[Qπt(s, a)− Q̂πt(s, a)]

))]]

= J(πt)− Es∼dπt

[
Ea∼pπt (·|s)[Q̂

πt(s, a)]
]

︸ ︷︷ ︸
:=−C

+Es∼dπt

[
Ea∼pπ(·|s)

[
Q̂πt(s, a)−

(
1

η
+

1

c

)
log

(
pπ(a|s)
pπt(a|s)

)]]

−

[∑
s

dπt(s)

[∑
a

pπt(a|s) [Qπt(s, a)− Q̂πt(s, a)] +
1

c
log

(∑
a

pπt(a|s) exp
(
−c[Qπt(s, a)− Q̂πt(s, a)]

))]]

J(π) ≥ J(πt) + C + Es∼dπt

[
Ea∼pπt (·|s)

[
pπ(a|s)
pπt(a|s)

(
Q̂πt(s, a)−

(
1

η
+

1

c

)
log

(
pπ(a|s)
pπt(a|s)

))]]
− Es∼dπt

[
Ea∼pπt (·|s) [Q

πt(s, a)− Q̂πt(s, a)] +
1

c
log
(
Ea∼pπt (·|s)

[
exp

(
−c [Qπt(s, a)− Q̂πt(s, a)]

)])]

Proposition 6. For the softmax representation and log-sum-exp mirror map, c > 0, η ≤ 1− γ,

J(π)− J(πt) ≥ Es∼dπt Ea∼pπt (·|s)

[(
Âπt(s, a) +

1

η
+

1

c

)
log

(
pπ(a|s)
pπt(a|s)

)]
− 1

c
Es∼dπtEa∼pπt (·|s)

[(
1− c [Aπt(s, a)− Âπt(s, a)]

)
log

(
1− c [Aπt(s, a)− Âπt(s, a)]

)]
where Âπt is the estimate of the advantage function for policy πt.

Proof. For the softmax representation, πs,a = z(s, a) s.t. pπ(a|s) = exp(z(s,a))∑
a′ exp(z(s,a′)) . Using the policy gradient theorem,

[∇πJ(π)]s,a = dπ(s) pπ(a|s)Aπ(s, a). We choose ĝ(π) such that [ĝ(π)]s,a = dπ(s) pπ(a|s) Âπ(s, a) as the estimated
gradient. Using Vaswani et al. [57, Proposition 3], J + 1

ηΦ is convex for η ≤ 1 − γ. Define δs ∈ RA such that δst [a] :=

∇πsJ(πt)− ĝs(πt) = pπt(a|s) [Aπt(s, a)− Âπt(s, a)]. Using Prop. 12 with cs = c for all s,

J(π) ≥ J(πt) + ⟨ĝ(πt), π − πt⟩ −
∑
s

dπt(s)

(
1

η
+

1

c

)
Dϕ(π

s, πt
s)−

∑
s

dπt(s)Dϕ∗ (∇ϕ(πt
s)− c δst ,∇ϕ(πt

s))

c

29

Since ϕ(πs) = ϕ(z(s, ·)) = log (
∑

a exp(z(s, a))), using Lemma 11, Dϕ(π
s, πt

s) = KL(pπt(·|s)||pπ(·|s)) where pπ(a|s) =
exp(z(s,a))∑
a′ exp(z(s,a′)) and pπt(a|s) = exp(zt(s,a))∑

a′ exp(zt(s,a′)) . Hence, the above bound can be simplified as,

J(π) ≥ J(πt) +
∑
s

dπt(s)
∑
a

Âπt(s, a) pπt(a|s) [z(s, a)− zt(s, a)]−
(
1

η
+

1

c

)∑
s

dπt(s)KL(pπt(·|s)||pπ(·|s))

−
∑
s

dπt(s)Dϕ∗ (∇ϕ(πt
s)− c δst ,∇ϕ(πt

s))

c

Using Lemma 8 to simplify the last term,∑
s

dπt(s)Dϕ∗ (∇ϕ(πt
s)− c δst ,∇ϕ(πt

s))

c

=
1

c

[∑
s

dπt(s)

[∑
a

(pπt(a|s)− c δst [a]) log

(
pπt(a|s)− c δst [a]

pπt(a|s)

)]]

=
1

c

∑
s

dπt(s)

∑
a

(
pπt(a|s)− c

[
pπt(a|s) [Aπt(s, a)− Âπt(s, a)]

])
log

pπt(a|s)− c
[
pπt(a|s) [Aπt(s, a)− Âπt(s, a)]

]
pπt(a|s)


=

1

c

[∑
s

dπt(s)

[∑
a

pπt(a|s)
[(

1− c [Aπt(s, a)− Âπt(s, a)]
)
log
(
1− c [Aπt(s, a)− Âπt(s, a)]

)]]]
Putting everything together,

J(π) ≥ J(πt) +
∑
s

dπt(s)
∑
a

Âπt(s, a) pπt(a|s) [z(s, a)− zt(s, a)]−
(
1

η
+

1

c

)∑
s

dπt(s)KL(pπt(·|s)||pπ(·|s))

− 1

c

[∑
s

dπt(s)

[∑
a

pπt(a|s)
[(

1− c [Aπt(s, a)− Âπt(s, a)]
)
log
(
1− c [Aπt(s, a)− Âπt(s, a)]

)]]]

= J(πt) +
∑
s

dπt(s)
∑
a

[
pπt(a|s) Âπt(s, a) [z(s, a)− zt(s, a)]−

(
1

η
+

1

c

)
pπt(a|s) log

(
pπt(a|s)
pπ(a|s)

)]
− 1

c
Es∼dπtEa∼pπt (·|s)

[(
1− c [Aπt(s, a)− Âπt(s, a)]

)
log
(
1− c [Aπt(s, a)− Âπt(s, a)]

)]
Let us focus on simplifying

∑
a

[
pπt(a|s) Âπt(s, a) [z(s, a)− zt(s, a)]

]
for a fixed s. Note that

∑
a p

πt(a|s) Âπt(s, a) =

0 =⇒ log (
∑

a′ exp(z(s, a′)))
∑

a p
πt(a|s) Âπt(s, a) = 0.

∑
a

[
pπt(a|s) Âπt(s, a) z(s, a)

]
=
∑
a

[
pπt(a|s) Âπt(s, a)

(
z(s, a)− log

(∑
a′

exp(z(s, a′))

))]

=
∑
a

[
pπt(a|s) Âπt(s, a)

(
log(exp(z(s, a))− log

(∑
a′

exp(z(s, a′))

))]

=
∑
a

[
pπt(a|s) Âπt(s, a) log

(
exp(z(s, a))∑
a′ exp(z(s, a′))

)]
= Ea∼pπt (·|s)

[
Âπt(s, a) log(pπ(a|s))

]
Similarly, simplifying

∑
a

[
pπt(a|s) Âπt(s, a) zt(s, a)

]
∑
a

[
pπt(a|s) Âπt(s, a) zt(s, a)

]
= Ea∼pπt (·|s)

[
Âπt(s, a) log(pπt(a|s))

]
=⇒

∑
a

[
pπt(a|s) Âπt(s, a) [z(s, a)− zt(s, a)]

]
= Ea∼pπt (·|s)

[
Âπt(s, a) log

(
pπ(a|s)
pπt(a|s)

)]

30

Using the above relations,

J(π) ≥ J(πt) +
∑
s

dπt(s)Ea∼pπt (·|s)

[
Âπt(s, a) log

(
pπ(a|s)
pπt(a|s)

)
−
(
1

η
+

1

c

)
log

(
pπt(a|s)
pπ(a|s)

)]
− 1

c
Es∼dπtEa∼pπt (·|s)

[(
1− c [Aπt(s, a)− Âπt(s, a)]

)
log
(
1− c [Aπt(s, a)− Âπt(s, a)]

)]
= J(πt) + Es∼dπt Ea∼pπt (·|s)

[(
Âπt(s, a) +

1

η
+

1

c

)
log

(
pπ(a|s)
pπt(a|s)

)]
− 1

c
Es∼dπtEa∼pπt (·|s)

[(
1− c [Aπt(s, a)− Âπt(s, a)]

)
log
(
1− c [Aπt(s, a)− Âπt(s, a)]

)]
.

Proposition 8. For the stochastic value gradient representation and Euclidean mirror map, c > 0, η such that J + 1
ηΦ is

convex in π.

J(π)− J(πt) ≥ C + Es∼dπtEε∼χ

[
∇̂aQπt(s, a)

∣∣
a=πt(s,ε)

π(s, ε)− 1

2

(
1

η
+

1

c

)
[πt(s, ϵ)− π(s, ϵ)]

2

]
− c

2
Es∼dπtEε∼χ

[
∇aQ

πt(s, a)
∣∣
a=πt(s,ε)

− ∇̂aQπt(s, a)
∣∣
a=πt(s,ε)

]2
where C is a constant and ∇̂aQπt(s, a)

∣∣
a=πt(s,ε)

is the estimate of the action-value gradients for policy π at state s and
a = πt(s, ϵ).

Proof. For stochastic value gradients with a fixed ε,
∂J(π)

∂π(s, ϵ)
= dπ(s)∇aQ

π(s, a)
∣∣
a=π(s,ϵ)

. We choose ĝ(π) such that

[ĝ(π)]s,a = dπ(s)∇̂aQπ(s, a)
∣∣
a=π(s,ϵ)

. Define δst ∈ RA such that δst [a] := ∇aQ
πt(s, a)

∣∣
a=πt(s,ϵ)

− ∇̂aQπt(s, a)
∣∣
a=πt(s,ϵ)

.
Using Prop. 12 with cs = c for all s,

J(π) ≥ J(πt) + Eε∼χ

[∑
s

dπt(s) ∇̂aQπt(s, a)
∣∣
a=πt(s,ϵ)

[π(s, ε)− πt(s, ε)]−
∑
s

dπt(s)

(
1

η
+

1

c

)
Dϕ(π

s, πt
s)

−
∑
s

dπt(s)Dϕ∗ (∇ϕ(πt
s)− c δst ,∇ϕ(πt

s))

c

]
For a fixed ε, since ϕ(πs) = ϕ(π(s, ϵ)) = 1

2 [π(s, ϵ)]
2, Dϕ(π

s, πt
s) = 1

2 [π(s, ϵ)− πt(s, ϵ)]
2. Hence,

J(π) ≥ J(πt) + Eε∼χ

[∑
s

dπt(s) ∇̂aQπt(s, a)
∣∣
a=πt(s,ϵ)

[π(s, ε)− πt(s, ε)]−
1

2

(
1

η
+

1

c

) ∑
s

dπt(s) [π(s, ϵ)− πt(s, ϵ)]
2

−
∑
s

dπt(s)Dϕ∗ (∇ϕ(πt
s)− c δst ,∇ϕ(πt

s))

c

]
Simplifying the last term, since ϕ(π(s, ϵ)) = 1

2 [π(s, ϵ)]
2,

Dϕ∗ (∇ϕ(πt
s)− c δst ,∇ϕ(πt

s))

c
=

c

2
[δst]

2 =
c

2

[
∇aQ

πt(s, a)
∣∣
a=πt(s,ϵ)

− ∇̂aQπt(s, a)
∣∣
a=πt(s,ϵ)

]2
31

Putting everything together,

J(π) ≥ J(πt) + Eε∼χ


∑
s

dπt(s) ∇̂aQπt(s, a)
∣∣
a=πt(s,ϵ)

π(s, ε)−
∑
s

dπt(s)∇aQ
πt(s, a)

∣∣
a=πt(s,ϵ)

πt(s, ε)]︸ ︷︷ ︸
:=−C


− Eε∼χ

[
1

2

(
1

η
+

1

c

) ∑
s

dπt(s) [π(s, ϵ)− πt(s, ϵ)]
2 − c

2

∑
s

dπt(s)
[
∇aQ

πt(s, a)
∣∣
a=πt(s,ϵ)

− ∇̂aQπt(s, a)
∣∣
a=πt(s,ϵ)

]2]

J(π) ≥ J(πt) + C + Eε∼χ

[
Es∼dπt

[
∇̂aQπt(s, a)

∣∣
a=πt(s,ϵ)

π(s, ε)− 1

2

(
1

η
+

1

c

)
[π(s, ϵ)− πt(s, ϵ)]

2

]]
− c

2
Eε∼χ

[
Es∼dπt

[
∇aQ

πt(s, a)
∣∣
a=πt(s,ϵ)

− ∇̂aQπt(s, a)
∣∣
a=πt(s,ϵ)

]2]

Proposition 13. For the softmax representation and Euclidean mirror map, c > 0, η ≤ (1−γ)3

8 then

J(π) ≥ J(πt) + C + Es∼dπt (s)

[
Ea∼pπt (.|s)

[
Âπt(s, a) z(s, a)

]
− 1

2

(
1

η
+

1

c

)
||z(s, ·)− zt(s, ·)||2

]
− c

2
Es∼dπtEa∼pπt (.|s)

[
Aπt(s, a)− Âπt(s, a)

]2
where C is a constant and Âπ is the estimate of advantage function for policy πt.

Proof. For the softmax representation, πs,a = z(s, a) s.t. pπ(a|s) = exp(z(s,a))∑
a′ exp(z(s,a′)) . Using the policy gradient theorem,

[∇πJ(π)]s,a = dπ(s) pπ(a|s)Aπ(s, a). We choose ĝ(π) such that [ĝ(π)]s,a = dπ(s) pπ(a|s) Âπ(s, a) as the estimated
gradient. Define δs ∈ RA such that δst [a] := ∇πsJ(πt) − ĝs(πt) = pπt(a|s) [Aπt(s, a) − Âπt(s, a)]. Using Mei et al. [37,
Lemma 7], J + 1

ηΦ is convex for η ≤ 1− γ. Using Prop. 12 with cs = c for all s,

J(π) ≥ J(πt) + ⟨ĝ(πt), π − πt⟩ −
(
1

η
+

1

c

) ∑
s

dπt(s)Dϕ(π
s, πt

s)−
∑
s

dπt(s)Dϕ∗ (∇ϕ(πt
s)− c δst ,∇ϕ(πt

s))

c

Since ϕ(πs) = ϕ(z(s, ·)) = 1
2

∑
a[zs,a]

2, Dϕ(π
s, πt

s) = 1
2 ∥z(s, ·)− zt(s, ·)∥22. Hence,

J(π) ≥ J(πt) +
∑
s

dπt(s)
∑
a

Âπt(s, a) pπt(a|s) [z(s, a)− zt(s, a)]−
1

2

(
1

η
+

1

c

) ∑
s

dπt(s) ∥z(s, ·)− zt(s, ·)∥22

−
∑
s

dπt(s)Dϕ∗ (∇ϕ(πt
s)− c δst ,∇ϕ(πt

s))

c

Simplifying the last term, since ϕ(z(·, a)) = 1
2 [z(s, a)]

2,∑
s d

πt(s)Dϕ∗ (∇ϕ(πt
s)− c δst ,∇ϕ(πt

s))

c
=

c

2

∑
s

dπt(s)
∑
a

[δst (a)]
2

=
c

2

∑
s

dπt(s)
∑
a

pπt(a|s)2 [Aπt(s, a)− Âπt(s, a)]2

≤ c

2

∑
s

dπt(s)
∑
a

pπt(a|s)
[
Aπt(s, a)− Âπt(s, a)

]2
(Since pπt(a|s) ≤ 1)

32

Putting everything together,

J(π) ≥ J(πt) +
∑
s

dπt(s)
∑
a

Âπt(s, a) pπt(a|s) [z(s, a)− zt(s, a)]−
1

2

(
1

η
+

1

c

)∑
s

dπt(s) ∥z(s, ·)− zt(s, ·)∥22

− c

2

∑
s

dπt(s)
∑
a

pπt(a|s)
[
Aπt(s, a)− Âπt(s, a)

]2
= J(πt)−

∑
s

dπt(s)
∑
a

Âπt(s, a) pπt(a|s) zt(s, a)︸ ︷︷ ︸
:=−C

+
∑
s

dπt(s)

[∑
a

Âπt(s, a) pπt(a|s) z(s, a)− 1

2

(
1

η
+

1

c

)
∥z(s, ·)− zt(s, ·)∥22

]

− c

2

∑
s

dπt(s)
∑
a

pπt(a|s)
[
Aπt(s, a)− Âπt(s, a)

]2
= J(πt) + C + Es∼dπt

[
Ea∼pπt (·|s)

[
Âπt(s, a) z(s, a)

]
− 1

2

(
1

η
+

1

c

)
∥z(s, ·)− zt(s, ·)∥22

]
− c

2
Es∼dπtEa∼pπt (·|s)

[
Aπt(s, a)− Âπt(s, a)

]2

Proposition 14. For both the direct (with the negative-entropy mirror map) and softmax representations (with the log-
sum-exp mirror map), for a fixed state s, if δ ∈ RA := ∇πsJ(πt) − ĝs(πt), the second-order Taylor expansion of
f(c) = Dϕ∗(∇ϕ(πt

s)− cδ,∇ϕ(πt
s)) around c = 0 is equal to

f(c) ≈ c2

2

∑
a

pπt(a|s)[A(s, a)− Â(s, a)]2 .

Proof.

f(c) = Dϕ∗(∇ϕ(πt
s)− cδ,∇ϕ(πt

s)) =⇒ f(0) = D∗
ϕ(∇ϕ(πt

s),∇ϕ(πt
s)) = 0

f(c) = Dϕ∗(∇ϕ(πt
s)− cδ,∇ϕ(πt

s)) = ϕ∗(∇ϕ(πt
s)− cδ)− ϕ∗(∇ϕ(πt

s))− ⟨∇ϕ∗(∇ϕ(πt
s)),∇ϕ(πt

s)− cδ −∇ϕ(πt
s)⟩

=⇒ f ′(c) = ⟨∇ϕ∗(∇ϕ(πt
s)− cδ),−δ⟩+ ⟨πt

s, δ⟩ =⇒ f ′(0) = ⟨πt
s,−δ⟩+ ⟨πt

s, δ⟩ = 0

f ′′(c) = ⟨δ,∇2ϕ∗(∇ϕ(πt
s)− cδ)δ⟩ =⇒ f ′′(0) = ⟨δ,∇2ϕ∗(∇ϕ(πt

s)) δ⟩.

By the second-order Taylor series expansion of f(c) around c = 0,

f(c) ≈ f(0) + f ′(0)(c− 0) +
f ′′(0) (c− 0)2

2
=

c2

2
⟨δ,∇2ϕ∗(∇ϕ(πt

s)) δ⟩

Let us first consider the softmax case with the log-sum-exp mirror map, where πs = z(s, ·) and ϕ(z(s, ·)) =
log(

∑
a exp(z(s, a))), ϕ

∗(pπ(·|s)) =
∑

a p
π(a|s) log(pπ(a|s)). Since the negative entropy and log-sum-exp are Fenchel

conjugates (see Lemma 9), ∇ϕ(zt(s, ·)) = pπt(·|s). Hence, we need to compute ∇2ϕ∗(pπt(·|s)).

∇ϕ∗(pπt(·|s)) = 1 + log(pπt(·|s)) ; ∇2ϕ∗(pπt(·|s)) = diag (1/pπt (·|s))

For the softmax representation, using the policy gradient theorem, [δ]a = pπt(a|s)[A(s, a)− Â(s, a)] and hence,

⟨δ,∇2ϕ∗(∇ϕ(πt)) δ⟩ =
∑
a

pπt(a|s)[A(s, a)− Â(s, a)]2 .

Hence, for the softmax representation, the second-order Taylor series expansion around c = 0 is equal to,

f(c) ≈ c2

2

∑
a

pπt(a|s)[A(s, a)− Â(s, a)]2 .

Now let us consider the direct case, where πs = pπ(·|s), ϕ(pπ(·|s)) =
∑

a p
π(a|s) log(pπ(a|s)), ϕ∗(z(s, ·)) =

log(
∑

a exp(z(s, a))). Since the negative entropy and log-sum-exp are Fenchel conjugates (see Lemma 9), ∇ϕ(pπt(·|s)) =

33

zt(s, ·). Hence, we need to compute ∇2ϕ∗(zt(s, ·)).

[∇ϕ∗(zt(s, ·))]a =
exp zt(s, a)∑

a′ exp(zt(s, a′))
= pπt(a|s) ; [∇2ϕ∗(zt(s, ·))]a,a = pπt(a|s)− [pπt(a|s)]2

[∇2ϕ∗(zt(s, ·))]a,a′ = −pπt(a|s) pπt(a′|s) =⇒ ∇2ϕ∗(zt(s, ·)) = diag(pπt(·|s))− pπt(·|s) [pπt(·|s)]T .

For the direct representation, using the policy gradient theorem, [δ]a = Qπt(s, a)− Q̂πt(s, a) and hence,

⟨δ,∇2ϕ∗(∇ϕ(πt)) δ⟩ = [Qπt(s, ·)− Q̂πt(s, ·)]T [diag(pπt(·|s))− pπt(·|s) [pπt(·|s)]T] [Qπt(s, ·)− Q̂πt(s, ·)]

=
∑
a

pπt(a|s) [Qπt(s, a)− Q̂πt(s, a)]2 −
[
⟨pπt(a|s), Qπt(s, ·)− Q̂πt(s, ·)⟩

]2
=
∑
a

pπt(a|s) [Qπt(s, a)− Q̂πt(s, a)]2 −
[
Js(πt)− Ĵs(πt)

]2
(where Ĵs(πt) is the estimated value function for starting state s)

Hence, for the direct representation, the second-order Taylor series expansion around c = 0 is equal to,

f(c) ≈ c2

2

[∑
a

pπt(a|s) [Qπt(s, a)− Q̂πt(s, a)]2 −
[
Js(πt)− Ĵs(πt)

]2]

=
c2

2

[∑
a

pπt(a|s) [Qπt(s, a)− Q̂πt(s, a)]2 − 2
[
Js(πt)− Ĵs(πt)

]2∑
a

pπt(a|s) +
[
Js(πt)− Ĵs(πt)

]2∑
a

pπt(a|s)

]

=
c2

2

[∑
a

pπt(a|s) [Qπt(s, a)− Q̂πt(s, a)]2 − 2
[
Js(πt)− Ĵs(πt)

]∑
a

pπt(a|s)[Qπt(s, a)− Q̂πt(s, a)]

+
[
Js(πt)− Ĵs(πt)

]2∑
a

pπt(a|s)
]

=
c2

2

[∑
a

pπt(a|s)
[
[Qπt(s, a)− Q̂πt(s, a)]2 − 2

[
Js(πt)− Ĵs(πt)

]
[Qπt(s, a)− Q̂πt(s, a)] +

[
Js(πt)− Ĵs(πt)

]2]]

=
c2

2

[∑
a

pπt(a|s)
(
[Qπt(s, a)− Q̂πt(s, a)]− [Js(πt)− Ĵs(πt)]

)2]

=
c2

2

[∑
a

pπt(a|s)
[
Aπt(s, a)− Âπt(s, a)

]2]

34

E.1 Bandit examples to demonstrate the benefit of the decision-aware loss

Proposition 15 (Detailed version of Prop. 5). Consider a two-armed bandit example with deterministic rewards where arm 1
is optimal and has a reward r1 = Q1 = 2 whereas arm 2 has reward r2 = Q2 = 1. Using a linear parameterization for the
critic, Q function is estimated as: Q̂ = xω where ω is the parameter to be learned and x is the feature of the corresponding
arm. Let x1 = −2 and x2 = 1 implying that Q̂1(ω) = −2ω and Q̂2(ω) = ω. Let pt be the probability of pulling the optimal
arm at iteration t, and consider minimizing two alternative objectives to estimate ω:
(1) Squared loss: ω(1)

t := argmin
{

pt
2
[Q̂1(ω)−Q1]

2 + 1−pt
2

[Q̂2(ω)−Q2]
2
}

.

(2) Decision-aware critic loss: ω
(2)
t := argminLt(ω) := pt [Q1 − Q̂1(ω)] + (1 − pt) [Q2 − Q̂2(ω)] +

1
c
log

(
pt exp

(
−c [Q1 − Q̂1(ω)] + (1− pt) exp

(
−c [Q2 − Q̂2(ω)]

))]
.

Using the tabular parameterization for the actor, the policy update at iteration t is given by: pt+1 =
pt exp(ηQ̂1)

pt exp(ηQ̂1)+(1−pt) exp(ηQ̂2)
, where η is the functional step-size for the actor. For p0 < 2

5 , minimizing the squared loss results
in convergence to the sub-optimal action, while minimizing the decision-aware loss (for c, p0 > 0) results in convergence to
the optimal action.

Proof. Note that Q̂1(ω)−Q1 = −2(ω+1) and Q̂2(ω)−Q2 = ω−1. Calculating ω(1) for a general policy s.t. the probability
of pulling the optimal arm equal to p,

MSE(ω) =
p

2
[Q̂1(ω)−Q1]

2 +
1− p

2
[Q̂2(ω)−Q2]

2 =
1

2

[
4p (ω + 1)2 + (1− p) (ω − 1)2

]
=⇒ ∇ωMSE(ω) = 4p (ω + 1) + (1− p) (ω − 1)

Setting the gradient to zero,

=⇒ ω(1) =
1− 5p

3p+ 1

Calculating ω(2) for a general policy s.t. the probability of pulling the optimal arm equal to p,

Lt(ω) = 2p (ω + 1)− (1− p) (ω − 1) +
1

c
log(p exp(−2c (ω + 1)) + (1− p) exp(c (ω − 1)))

=⇒ ∇ωLt(ω) = (3p− 1) +
1

c
∇ω [log(p exp(−2c (ω + 1)) + (1− p) exp(c (ω − 1)))]

Setting the gradient to zero,

=⇒ ∇ω [log(p exp(−2c (ω + 1)) + (1− p) exp(c (ω − 1)))] = (1− 3p) c

Define A := exp(−2c (ω + 1)) and B := exp(c (ω − 1)))

=⇒ −2p cA+ (1− p) cB

pA+ (1− p)B
= (1− 3p) c =⇒ A

pA+ (1− p)B
= 1 =⇒ ω(2) =

−1

3
.

Now, let us consider the actor update,

pt+1 =
pt exp(ηQ̂1)

pt exp(ηQ̂1) + (1− pt) exp(ηQ̂2)
=⇒ pt+1

pt
=

1

pt + (1− pt) exp(η (Q̂2 − Q̂1))

Since arm 1 is optimal, if pt+1

pt
< 1 for all t, the algorithm will converge to the sub-optimal arm. This happens when

1
pt+(1−pt) exp(η (Q̂2−Q̂1))

< 1 =⇒ Q̂2 − Q̂1 > 0 =⇒ ω > 0. Hence, for any η and any iteration t, if ωt > 0, pt+1 < pt.

For the decision-aware critic loss, ω(2)
t = − 1

3 for all t, implying that pt+1 > pt and hence the algorithm will converge to the
optimal policy for any η and any initialization p0 > 0. However, for the squared MSE loss, ω(2)

t = 1−5pt

3pt+1 , ω(2)
t > 0 if pt < 1

5 .
Hence, if p0 < 1

5 , p1 < p0 < 1
5 . Using the same reasoning, p2 < p1 < p0 < 1/5, and hence the policy will converge to the

sub-optimal arm.

35

Proposition 16. Consider two-armed bandit problem with deterministic rewards - arm 1 has a reward r1 = Q1 whereas arm 2
has a reward r2 = Q2 such that arm 1 is the optimal, i.e. Q1 ≥ Q2. Using a linear parameterization for the critic, Q function
is estimated as: Q̂ = xω where ω is the parameter to be learned and x is the feature of the corresponding arm. Let pt be the
probability of pulling the optimal arm at iteration t, and consider minimizing the decision-aware critic loss to estimate ω: ωt :=

argminLt(ω) := pt [Q1−Q̂1(ω)]+(1−pt) [Q2−Q̂2(ω)]+
1
c
log

(
pt exp

(
−c [Q1 − Q̂1(ω)] + (1− pt) exp

(
−c [Q2 − Q̂2(ω)]

))]
.

Using the tabular parameterization for the actor, the policy update at iteration t is given by: pt+1 =
pt exp(ηQ̂1)

pt exp(ηQ̂1)+(1−pt) exp(ηQ̂2)
, where η is the functional step-size for the actor. For the above problem, minimizing the

decision-aware loss (for c, p0 > 0) results in convergence to the optimal action, and Lt(ωt) = 0 for any iteration t.

Proof. Define A := exp(−c[Q1 − Q̂1(ω)]) and B := exp(−c[Q2 − Q̂2(ω)]). Calculating the gradient of Lt w.r.t ω and
setting it to zero,

∇ωLt(ω) = pt x1 + (1− pt)x2 −
pt x1 A+ (1− pt)x2 B

pt A+ (1− pt)B
= 0

=⇒ pt (1− pt)A (x1 − x2) = pt (1− pt)B (x1 − x2)

=⇒ Q1 − x1 ωt = Q2 − x2 ωt =⇒ ωt =
Q1 −Q2

x1 − x2
.

Observe that Q1 − Q̂1(ωt) = Q2 − Q̂2(ωt) and thus Lt(ωt) = 0 for all t. Writing the actor update,

pt+1 =
pt exp(η x1 ωt)

pt exp(η x1 ωt) + (1− pt) exp(η x2 ωt)

=⇒ pt+1

pt
=

1

pt + (1− pt) exp(η (x2 − x1)ωt)
=

1

pt + (1− pt) exp(η (Q2 −Q1))
≥ 1

Proposition 17 (Detailed version of Prop. 7). Consider a two-armed bandit example and define p ∈ [0, 1] as the probability
of pulling arm 1. Given p, let the advantage of arm 1 be equal to A1 := 1

2 > 0, while that of arm 2 is A2 := − p
2 (1−p) < 0

implying that arm 1 is optimal. For the critic, consider approximating the advantage of the two arms using a discrete
hypothesis class with two hypotheses that depend on p for: H0 : Â1 = 1

2 + ε , Â2 = − p
1−p

(
1
2 + ε

)
and H1 : Â1 =

1
2 − ε sgn

(
1
2 − p

)
, Â2 = − p

1−p

(
1
2 − ε sgn

(
1
2 − p

))
where sgn is the signum function and ε ∈

(
1
2 , 1
)
. If pt is the

probability of pulling arm 1 at iteration t, consider minimizing two alternative loss functions to choose the hypothesis Ht:
(1) Squared (MSE) loss: Ht = argmin{H0,H1}

{
pt
2
[A1 − Â1]

2 + 1−pt
2

[A2 − Â2]
2
}

.

(2) Decision-aware critic loss (DA) with c = 1 : Ht = argmin{H0,H1}{
pt (1− [A1 − Â1]) log(1− [A1 − Â1]) + (1− pt) (1− [A2 − Â2]) log(1− [A2 − Â2])

}
.

Using the tabular parameterization for the actor, the policy update at iteration t is given by: pt+1 = pt (1+η Â1)

pt (1+η Â1)+(1−pt) (1+η Â2)
.

For p0 ≤ 1
2 , the squared loss cannot distinguish between H0 and H1, and depending on how ties are broken, minimizing

it can result in convergence to the sub-optimal action. On the other hand, minimizing the divergence loss (for any p0 > 0)
results in convergence to the optimal arm.

Proof. First note that when p > 1
2 , H0 and H1 are identical, ensure that Â1 > Â2 and the algorithm will converge to the

optimal arm no matter which hypothesis is chosen. The regime of interest is therefore when p ≤ 1
2 and we focus on this case.

Let us calculate the MSE and decision-aware (DA) losses for H0.

A1 − Â1 =
1

2
−
(
1

2
+ ε

)
= −ε ; A2 − Â2 = − p

1− p
[1− (1 + ε)] =

p

1− p
ε

MSE(Â1, Â2) = p ε2 + (1− p)

(
p

1− p
ε

)2

= pε2 +
ε2 p2

1− p

DA(Â1, Â2) = p (1 + ε) log(1 + ε) + (1− p)

(
1− ε p

1− p

)
log

(
1− ε p

1− p

)

36

Similarly, we can calculate the MSE and decision-aware losses for H1.

A1 − Â1 =
1

2
−
(
1

2
− ε

)
= ε ; A2 − Â2 = − p

1− p

[
1

2
−
(
1

2
− ε

)]
= − p

1− p
ε

MSE(Â1, Â2) = p ε2 + (1− p)

(
p

1− p
ε

)2

= pε2 +
ε2 p2

1− p

DA(Â1, Â2) = p (1− ε) log(1− ε) + (1− p)

(
1 +

ε p

1− p

)
log

(
1 +

ε p

1− p

)
For both H0 and H1, the MSE loss is equal to pε2 + ε2 p2

1−p and hence it cannot distinguish between the two hypotheses.
Writing the actor update,

pt+1 =
pt (1 + η Â1)

pt (1 + η Â1) + (1− pt) (1 + η Â2)
=⇒ pt+1

pt
=

1

pt + (1− pt)
1+ηÂ2

1+ηÂ1

Hence, in order to ensure that pt+1 > pt and eventual convergence to the optimal arm, we want that Â2 < Â1. For ε ∈
(
1
2 , 1
)
,

for H0, Â1 > 0 while Â2 < 0. On the other hand, for H1, Â1 < 0 and Â2 > 0. This implies that the algorithm should choose
H0 in order to approximate the advantage. Since the MSE loss is the same for both hypotheses, convergence to the optimal
arm depends on how the algorithm breaks ties. Next, we prove that for the decision-aware loss and any iteration such that
pt < 0.5, the loss for H0 is smaller than that for H1, and hence the algorithm chooses the correct hypothesis and pulls the
optimal arm. For this, we define f(p) as follows,

f(p) :=

[
p (1 + ε) log(1 + ε) + (1− p)

(
1− ε p

1− p

)
log

(
1− ε p

1− p

)]
−
[
p (1− ε) log(1− ε) + (1− p)

(
1 +

ε p

1− p

)
log

(
1 +

ε p

1− p

)]
For f(p) to be well-defined, we want that, 1− ϵ > 0 =⇒ ϵ < 1 and 1− ϵ p

1−p > 0 =⇒ p < 1
1+ϵ . Since ϵ ∈ (1/2, 1), p < 1

2 .
In order to prove that the algorithm will always choose H0, we will show that f(p) ≤ 0 for all p ∈ [0, 1/2] next. First note that,

f(0) = 0 ; f(1/2) =
1 + ε

2
log(1 + ε) +

(1− ε)

2
log(1− ε)− 1− ε

2
log(1− ε)− 1 + ε

2
log(1 + ε) = 0

Next, we will prove that f(p) is convex. This combined with the fact f(0) = f(1/2) = 0 implies that f(p) < 0 for all
p ∈ (0, 1/2). For this, we write f(p) = g(p) + h1(p)− h2(p) where,

g(p) = p (1 + ε) log(1 + ε)− p (1− ε) log(1− ε)

h1(p) = (1− p)

(
1− ε p

1− p

)
log

(
1− ε p

1− p

)
= (1− ϵ′ p) log

(
1− ϵ′ p

1− p

)
(ϵ′ = 1 + ϵ)

h2(p) = (1− p)

(
1 +

ε p

1− p

)
log

(
1 +

ε p

1− p

)
= (1− ϵ′′ p) log

(
1− ϵ′′ p

1− p

)
(ϵ′′ = 1− ϵ)

Differentiating the above terms,

g′(p) = (1 + ε) log(1 + ε)− (1− ε) log(1− ε) ; g′′(p) = 0

h′
1(p) = −ϵ′ log

(
1− ϵ′ p

1− p

)
+

1− ϵ′

1− p

h′′
1(p) = − ϵ′

1− ϵ′ p

1− ϵ′

1− p
− (1− ϵ′)2

(1− p)2
=

(ϵ′ − 1) p
[
(ϵ′ − 1)

2
+
(

1
p − 1

)]
(1− ϵ′p) (1− p)2

> 0

Similarly,

h′′
2(p) =

(ϵ′′ − 1) p
[
(ϵ′′ − 1)

2
+
(

1
p − 1

)]
(1− ϵ′′p) (1− p)2

< 0

Combining the above terms, f ′′(p) = g′′(p) + h′′
1(p)− h′′

2(p) > 0 for all p ∈ (0, 1/2) and hence f(p) is convex. Hence, for all
p < 1

2 , minimizing the divergence loss results in choosing H0 and the actor pulling the optimal arm. Once the probability of

37

pulling the optimal arm is larger than 0.5, both hypotheses are identical and the algorithm will converge to the optimal arm
regardless of the hypothesis chosen.

E.2 Lemmas

Lemma 7. For a probability distribution p ∈ RA, the negative entropy mirror map ϕ(p) =
∑

i pi log(pi), δ ∈ RA, c > 0,

Dϕ∗

(
∇ϕ(p)− c δ,∇ϕ(p)

)
= c⟨p, δ⟩+ log

∑
j

pj exp(−cδj)

 .

Proof. In this case, [∇ϕ(p)]i = 1 + log(pi). Hence, we need to compute Dϕ∗(z′, z) where z′i := 1 + log(pi) − cδi and
zi := 1+log(pi). If ϕ(p) =

∑
i pi log(pi), using Lemma 9, ϕ∗(z) = log (

∑
i exp(zi)) where zi−log(

∑
i exp(zi)) = log(pi).

Define distribution q such that qi :=
exp(1+log(pi)−cδi)∑
j exp(1+log(pj)−cδj)

. Using Lemma 11,

Dϕ∗(z′, z) = KL(p||q) =
∑
i

pi log

(
pi
qi

)
Simplifying q,

qi =
exp(1 + log(pi)− cδi)

exp(
∑

j(1 + log(pj)− cδj))
=

pi exp(−cδi)∑
j pj exp(−cδj)

=⇒ Dϕ∗(z′, z) =
∑
i

pi log

(
pi
∑

j pj exp(−cδj)

pi exp(−cδi)

)
=
∑
i

pi log

exp(cδi)
∑
j

pj exp(−cδj)


= c

∑
i

pi δi +
∑
i

pi log

∑
j

pj exp(−cδj)

 = c⟨p, δ⟩+ log

∑
j

pj exp(−cδj)



Lemma 8. For z ∈ RA, the log-sum-exp mirror map ϕ(z) = log(
∑

i exp(zi)), δ ∈ RA s.t.
∑

i δi = 0, c > 0,

Dϕ∗

(
∇ϕ(z)− c δ,∇ϕ(z)

)
=
∑
i

(pi − cδi) log

(
pi − cδi

pi

)
,

where pi =
exp(zi)∑
j exp(zj)

.

Proof. In this case, [∇ϕ(z)]i =
exp(zi)∑
j exp(zj)

= pi. Define distribution q s.t. qi := pi − cδi. Note that since
∑

i δi = 0,
∑

i qi =∑
i pi = 1 and hence, q is a valid distribution. We thus need to compute Dϕ∗(q, p). Using Lemma 9, ϕ∗(p) =

∑
i pi log(pi)

where pi =
exp(zi)∑
j exp(zj)

. Using Lemma 10,

Dϕ∗(q, p) = KL(q||p) =
∑
i

(pi − cδi) log

(
pi − cδi

pi

)

Lemma 9. The log-sum-exp mirror map on the logits and the negative entropy mirror map on the corresponding probability
distribution are Fenchel duals. In particular for z ∈ Rd, if ϕ(z) := log (

∑
i exp(zi)), then ϕ∗(p) =

∑
i pi log(pi) where

pi =
exp(zi)∑
j exp(zj)

. Similarly, if ϕ(p) =
∑

i pi log(pi), then ϕ∗(z) = log (
∑

i exp(zi)) where zi − log(
∑

i exp(zi)) = log(pi).

Proof. If ϕ(z) := log (
∑

i exp(zi)),

ϕ∗(p) := sup
z

[⟨p, z⟩ − ϕ(z)] = sup
z

[∑
i

pizi − log

(∑
i

exp(zi)

)]

38

Setting the gradient to zero, we get that pi =
exp(z∗

i)∑
j exp(z∗

j)
for z∗ ∈ Z∗ where Z∗ is the set of maxima related by a shift (i.e. if

z∗ ∈ Z∗, z∗ + C ∈ Z∗ for a constant C). Using the optimality condition, we know that
∑

i pi = 1 and

log(pi) = z∗i − log

∑
j

exp(z∗j)

 =⇒ z∗i = log(pi) + ϕ(z∗)

Using this relation,

ϕ∗(p) =

[∑
i

piz
∗
i − log

(∑
i

exp(z∗i)

)]
=

[∑
i

pi log(pi) + ϕ(z∗)
∑
i

pi − ϕ(z∗)

]
=⇒ ϕ∗(p) =

∑
i

pi log(pi)

The second statement follows since the ϕ∗(ϕ∗) = ϕ.

Lemma 10. For probability distributions, p and p′, if ϕ(p) =
∑

i p log(pi), then Dϕ(p, p
′) = KL(p||p′).

Proof. Note that [∇ϕ(p)]i = 1 + log(pi). Using the definition of the Bregman divergence,

Dϕ(p, p
′) := ϕ(p)− ϕ(p′)− ⟨∇ϕ(p′), p− p′⟩

=
∑
i

[pi log(pi)− p′i log(p
′
i)− (1 + log(p′i))(pi − p′i)]

=
∑
i

[
pi log

(
pi
p′i

)]
−
∑
i

pi +
∑
i

p′i

Since p and p′ are valid probability distributions,
∑

i pi =
∑

i p
′
i = 1, and hence, Dϕ(p, p

′) = KL(p||p′).

Lemma 11. If ϕ(z) = log(
∑

i exp(zi)), then Dϕ(z, z
′) = KL(p′||p), where pi :=

exp(zi)∑
j exp(zj)

and p′i :=
exp(z′

i)∑
j exp(z′

j)
.

Proof. Note that [∇ϕ(z)]i =
exp(zi)∑
j exp(zj)

= pi where pi :=
exp(zi)∑
j exp(zj)

. Using the definition of the Bregman divergence,

Dϕ(z, z
′) := ϕ(z)− ϕ(z′)− ⟨∇ϕ(z′), z − z′⟩

= log

∑
j

exp(zj)

− log

∑
j

exp(z′j)

−
∑
i

[
exp(z′i)∑
j exp(z

′
j)
(zi − z′i)

]

=
∑
i

p′i

log
∑

j

exp(zj)

− log

∑
j

exp(z′j)

− zi + z′i

 (Since
∑

i p
′
i = 1)

=
∑
i

p′i

log
∑

j

exp(zj)

− log

∑
j

exp(z′j)

− log(exp(zi)) + log(exp(z′i))


=
∑
i

p′i

[
log

(
exp(z′i)∑
j exp(z

′
j)

)
− log

(
exp(zi)∑
j exp(zj)

)]

=
∑
i

p′i [log(p
′
i)− log(p′i)] =

∑
i

p′i

[
log

(
p′i
pi

)]
= KL(p′||p)

39

F Implementation Details

F.1 Heuristic to estimate c

We estimate c to maximize the lower-bound on J(π). In particular, using Prop. 1,

J(π) ≥ J(πt) + ĝ(πt)
⊤(π − πt)−

(
1

η
+

1

c

)
DΦ(π, πt)−

1

c
DΦ∗

(
∇Φ(πt)− c[∇J(πt)− ĝ(πt)],∇Φ(πt)

)
For a fixed ĝ(πt), we need to maximize the RHS w.r.t π and c, i.e.

max
c>0

max
π∈Π

J(πt) + ĝ(πt)
⊤(π − πt)−

(
1

η
+

1

c

)
DΦ(π, πt)−

1

c
DΦ∗

(
∇Φ(πt)− c[∇J(πt)− ĝ(πt)],∇Φ(πt)

)
(6)

Instead of maximizing w.r.t π and c, we will next aim to find an upper-bound on the RHS that is independent of π and aim to
maximize it w.r.t c. Using Lemma 1 with y′ = π, y = πt, x = −ĝ(πt) and define c′ such that 1

c′ =
1
η + 1

c .

⟨−ĝ(πt), π − πt⟩ ≥ − 1

c′
[DΦ(π, πt) +D∗

Φ(∇Φ(πt) + c′ĝ(πt),∇Φ(πt))]

=⇒ J(πt) + ⟨ĝ(πt), π − πt⟩ −
(

1

η′
+

1

c

)
DΦ(π, πt) ≤ J(πt) +

1

c′
D∗

Φ(∇Φ(πt) + c′ĝ(πt),∇Φ(πt))

Using the above upper-bound in Eq. (6),

max
c>0

[
J(πt) +

1

c′
D∗

Φ(∇Φ(πt) + c′ĝ(πt),∇Φ(πt))−
1

c
DΦ∗

(
∇Φ(πt)− c[∇J(πt)− ĝ(πt)],∇Φ(πt)

)]
This implies that the estimate ĉ can be calculated as:

ĉ = argmax
c>0


(
1

η
+

1

c

)
D∗

Φ

∇Φ(πt) +
1(

1
η + 1

c

) ĝ(πt),∇Φ(πt)

− 1

c
DΦ∗

(
∇Φ(πt)− c[∇J(πt)− ĝ(πt)],∇Φ(πt)

)
In order to gain some intuition, let us consider the case where DΦ(u, v) =

1
2 ∥u− v∥22. In this case,

ĉ = argmax
c>0

 ∥ĝ(πt)∥22
2
(

1
η + 1

c

) − c

2
∥ĝ(πt)−∇J(πt)∥22


If ∥ĝ(πt)−∇J(πt)∥22 → 0,

ĉ = argmax
c>0

 ∥ĝ(πt)∥22
2
(

1
η + 1

c

)
 =⇒ c → ∞

If ∥ĝ(πt)−∇J(πt)∥22 → ∞,

ĉ = argmax
c>0

{
− c

2

}
=⇒ c → 0

F.2 Environments and constructing features

Cliff World: We consider a modified version of the CliffWorld environment [53, Example 6.6]. The environment is
deterministic and consists of 21 states and 4 actions. The objective is to reach the Goal state as quickly as possible. If the agent
falls into a Cliff, it yields reward of −100, and is then returned to the Start state. Reaching the Goal state yields a reward of +1,
and the agent will stay in this terminal state. All other transitions are associated with a zero reward, and the discount factor is
set to γ = 0.9.

Frozen Lake: We Consider the Frozen Lake v.1 environment from gym framework [6]. The environment is stochastic and
consists of 16 states and 4 actions. The agent starts from the Start state and according to the next action (chosen by the policy)
and the stochastic dynamics moves to the next state and yields a reward. The objective is to reach the Goal state as quickly as
possible without entering the Hole States. All the Hole states and the Goal are terminal states. Reaching the goal state yields
+1 reward and all other rewards are zero, and the discount factor is set to γ = 0.9.

40

Sampling: We employ the Monte-Carlo method to sample from both environments and we use the expected return to estimate
the action-value function Q. Specifically, we iteratively start from a randomly chosen state-action pair (s, a), run a roll-out
with a specified length starting from that pair, and collect the expected return to estimate Q(s, a).

Constructing features: Also, in order to use function approximation on the above environments, we use tile-coded features
[53]. Specifically, tilde-coded featurization needs three parameters to be set: (i) hash table size (equivalent to the feature
dimension) d, (ii) number of tiles N and (iii) size of tiles s. For Cliff world environment, we consider following pairs to
construct features: {(d = 40, N = 5, s = 1), (d = 50, N = 6, s = 1), (d = 60, N = 4, s = 3), (d = 80, N = 5, s =
3), (d = 100, N = 6, s = 3)}. This means whenever we use d = 40, the number of tiles is N = 5 and the tiling size is s = 1.
The reported number of tiles and tiling size parameters are tuned and have achieved the best performance for all algorithms.
Similarly for Frozen Lake environment, we use the following pairs to construct features: {(d = 40, N = 3, s = 3), (d =
50, N = 4, s = 13), (d = 60, N = 5, s = 3), (d = 100, N = 8, s = 3)}.

F.3 Critic optimization

We explain implementation of MSE, Adv-MSE and decision-aware critic loss functions. We use tile-coded features X(s, a) and
linear function approximation to estimate action-value function Q, implying that Q̂(s, a) = ωTX(s, a) where ω ,X(s, a) ∈ Rd.

Baselines: For policy π, the MSE objective is to return the ω that minimizes the squared norm error of the action-value
function Qπ across all state-actions weighted by the state-action occupancy measure µπ(s, a).

ωMSE = argmin
ω∈Rd

E(s,a)∼µπ(s,a)[Q
π(s, a)− ωTX(s, a)]2

Taking the derivative with respect to ω and setting it to zero:

E(s,a)∼µπ(s,a)

[(
Qπ(s, a)− ωTX(s, a)

)
X(s, a)T

]
= 0

=⇒
∑
s,a

µπ(s, a)Qπ(s, a)X(s, a)T︸ ︷︷ ︸
:=y

=
[∑

s,a

µπ(s, a)X(s, a)X(s, a)T
]

︸ ︷︷ ︸
:=K

ω

Given features X, the true action-value function Qπ and state-action occupancy measure µπ , we can compute K, y and solve
ωMSE = K−1y.

Similarly for policy π, the advantage-MSE objective is to return ω that minimizes the squared error of the advantage function
Aπ across all state-actions weighted by the state-action occupancy measure µπ .

ωAdv-MSE = argmin
ω∈Rd

E(s,a)∼µπ(s,a)

[
Aπ(s, a)− ωT

(
X(s, a)−

∑
a′

X(s, a′)
)]2

Taking the derivative with respect to ω and setting it to zero:

E(s,a)∼µπ(s,a)

[[
Aπ(s, a)− ωT

(
X(s, a)−

∑
a′

X(s, a′)
)][

X(s, a)−
∑
a′

X(s, a′)

]T
= 0

=⇒
∑
s,a

µπ(s, a)Aπ(s, a)

[
X(s, a)−

∑
a′

X(s, a′)

]T
︸ ︷︷ ︸

:=y

=
∑
s,a

µπ(s, a)

[
X(s, a)−

∑
a′

X(s, a′)

][
X(s, a)−

∑
a′

X(s, a′)

]T
︸ ︷︷ ︸

:=K

ω

Given features X, the true advantage function Aπ and state-action occupancy measure µπ , we ca compute K and y and solve
wAdv-MSE = K−1y.

Decision-aware critic in direct representation: Recall that for policy π, the decision-aware critic loss in direct representation
is the blue term in Prop. 4, which after linear parameterization on Q̂π would be as follows:

Es∼dπ

[
Ea∼pπ(·|s) [Q

π(s, a)− ωTX(s, a)] +
1

c
log
(
Ea∼pπ(·|s)

[
exp

(
−c [Qπ(s, a)− ωTX(s, a)]

)])]
The above term is a convex function of ω for any c > 0. We minimize the term using gradient descent, where the gradient with
respect to ω is:

41

−Es∼dπ

[
Ea∼pπ(·|s)X(s, a)−

Ea∼pπ(·|s)
[
exp

(
−c
[
Qπ(s, a)− ωTX(s, a)

])
X(s, a)

]
Ea∼pπ(·|s) [exp (−c [Qπ(s, a)− ωTX(s, a)])]

]

The step-size of gradient ascent is determined using Armijo line-search [3] where the maximum step size is set to 1000 and
it decays with the rate β = 0.9. The number of iteration for critic inner-loop, mc in Algorithm 1, is set to 10000, and if the
gradient norm becomes smaller than 10−6 we terminate the inner loop.

Decision-aware critic in softmax representation: Recall that for policy π, the decision-aware critic loss in softmax
representation is the blue term in Prop. 6, which after linear parameterization on Q̂π and substituting Âπ(s, a) with
ωT (X(s, a)−

∑
a′ X(s, a′)) would be as follows:

1

c
Es∼dπtEa∼pπt (·|s)

[(
1− c [Aπt(s, a)− ωT (X(s, a)−

∑
a′

X(s, a′))]

)
log

(
1− c [Aπt(s, a)− ωT (X(s, a)−

∑
a′

X(s, a′))

)]
Similarly, the above term is convex with respect to ω and we minimize it using gradient descent. The step-size is determined
using Armijo line-search with the same parameters as mentioned in direct case. The number of iterations in inner loop is set to
10000 and we terminate the loop if the gradient norm becomes smaller than 10−8. The gradient with respect to ω:

Es∼dπtEa∼pπt (·|s)

[(
1 + log

(
1− c [Aπt(s, a)− ωT (X(s, a)−

∑
a′

X(s, a′))

))(
X(s, a)−

∑
a′

X(s, a′)

)]

F.4 Actor optimization

Direct representation: For all actor-critic algorithms, we maximize the green term in Prop. 4 known as MDPO [56].

Es∼dπt

[
Ea∼pπt (·|s)

[
pπ(a|s)
pπt(a|s)

(
Q̂πt(s, a)−

(
1

η
+

1

c

)
log

(
pπ(a|s)
pπt(a|s)

))]]
In tabular parameterization of the actor, θs,a = pπ(s, a), the actor update is exactly natural policy gradient [25] and can be
solved in closed-form. We refer the reader to Appendix F.2 of [57] for explicit derivation. At iteration t, given policy πt, the
estimated action-value function from the critic Q̂πt and η as the functional step-size, the update at iteration t is:

pπt+1(a|s) =
pπt(a|s) exp

(
ηQ̂πt(s, a)

)
∑

a′ pπt(a′|s) exp
(
ηQ̂πt(s, a′)

) =⇒ θs,a =
θs,a exp

(
ηQ̂πt(s, a)

)
∑

a′ θs,a′ exp
(
ηQ̂πt(s, a′)

)
When we linearly parameterize the policy, implying that for policy π, pπ(a|s) = exp (θT X(s,a))∑

a′ exp (θT X(s,a′))
where θ, X(s, a) ∈ Rn

and n is the actor expressivity, we use the off-policy update loop (Lines 10-13 in Algorithm 1) and we iteratively update the
parameters using gradient ascent. The MDPO objective with linear parameterization will be:

Es∼dπt

[
Ea∼pπt (·|s)

[
exp (θTX(s, a))

pπt(a|s)
∑

a′ exp (θTX(s, a′))

(
Q̂πt(s, a)−

(
1

η
+

1

c

)
log

(
exp (θTX(s, a))

pπt(a|s)
∑

a′ exp (θTX(s, a′))

))]]
And the gradient of objective with respect to θ is:

Es∼dπt

[
Ea∼pπt (·|s)

[
pπ(a|s)
pπt(a|s)

(
X(s, a)−

∑
a′ exp(θTX(s, a))X(s, a′)∑

a′ exp(θTX(s, a′))

)(
Q̂πt(s, a)−

(1
η
+

1

c

)(
1 + log(

pπ(a|s)
pπt(a|s)

)
))]]

Softmax representation: For all actor-critic algorithms, we maximize the green term in Prop. 6 known as sMDPO [57].

Es∼dπt Ea∼pπt (·|s)

[(
Âπt(s, a) +

1

η
+

1

c

)
log

(
pπ(a|s)
pπt(a|s)

)]
In tabular parameterization of the actor, θs,a = pπ(s, a), at iteration t given the policy πt, the estimated advantage function
from the critic Âπt(s, a) = Q̂πt(s, a)−

∑
a′ pπt(a|s)Q̂πt(s, a′), and functional step-size η, the actor update can be solved in

closed-form and is as follows:

42

pπt+1(a|s) = pπt(a|s)max(1 + ηAπt(s, a), 0)∑
a′ pπt(a′|s)max(1 + ηAπt(s, a′), 0)

=⇒ θs,a =
θs,a max(1 + ηAπt(s, a), 0)∑
a′ θs,a′ max(1 + ηAπt(s, a′), 0)

We refer the reader to Appendix F.1 of [57] for explicit derivation. When we linearly parameterize the policy, implying that for
policy π, pπ(a|s) = exp (θT X(s,a))∑

a′ exp (θT X(s,a′))
, we need to maximize the following with respect to θ:

Es∼dπt Ea∼pπt (·|s)

[(
Âπt(s, a) +

1

η
+

1

c

)
log

(
exp (θT X(s, a))

pπt(a|s)
∑

a′ exp (θT X(s, a′))

)]
Similar to direct representation, we use the off-policy update loop and we iteratively update the parameters using gradient
ascent. The gradient with respect to θ is:

Es∼dπt Ea∼pπt (·|s)

[(
Âπt(s, a) +

1

η
+

1

c

) (
X(s, a)−

∑
a′ exp(θTX(s, a))X(s, a′)∑

a′ exp(θTX(s, a))

)]
F.5 Parameter Tuning

Parameter Value/Range
Sampling # of samples {1000, 5000}

length of episode {20, 50}
Actor Gradient termination criterion {10−3, 10−4}

ma {1000, 10000}
Armijo max step-size 1000

Armijo step-size decay β 0.9
Policy initialization (linear) N (0, 0.1)
Policy initialization (tabular) Random

Linear Critic Gradient termination criterion
(direct) {10−6, 10−8}

Gradient termination criterion
(softmax) {10−8, 10−10}

mc {1000, 10000}
Armijo max step-size 1000

Armijo step-size decay β 0.9
Others η in direct {0.001, 0.005, 0.01, 0.1, 1}

c in direct {0.001, 0.01, 0.1, 1}
η in softmax {0.001, 0.005, 0.01, 0.1, 1}
c in softmax {0.001, 0.01, 0.1}

d {40, 50, 60, 80, 100}
Table 1: Parameters for the Cliff World environment

43

Parameter Value/Range
Sampling # of samples {1000, 10000}

length of episode {20, 50}
Actor Gradient termination criterion {10−4, 10−5}

ma {100, 1000}
Armijo max step-size 1000

Armijo step-size decay β 0.9
Policy initialization (linear) N (0, 0.1)
Policy initialization (tabular) Random

Linear Critic Gradient termination criterion
(direct) {10−6, 10−8}

Gradient termination criterion
(softmax) {10−6, 10−8}

mc {10000, 1000000}
Armijo max step-size 1000

Armijo step-size decay β 0.9
Others η in direct {0.01, 0.1, 1, 10}

c in direct {0.01, 0.1, 1}
η in softmax {0.01, 0.1, 1, 10}
c in softmax {0.01, 0.1}

d {40, 50, 60, 100}
Table 2: Parameters for the Frozen Lake environment

44

G Additional Experiments

Figure 2: Cliff World – Linear actor and Linear critic with exact Q computation Assessing the impact of c (trade-off
parameter in decision-aware framework) on the performance. We perform the experiment on the same setting as Fig. 1, linear
actor and linear (with four different dimensions) critic with known MDP on Cliff World environment. We consider two values
of functional step-size η ∈ {0.01, 0.1} and three values of c ∈ {0.01, 0.1, 1} for direct and c ∈ {0.001, 0.01, 0.1} for softmax
representations, and compare the performance of 6 combinations. Overall, among different critic capacities and step-sizes, the
value of c = 0.01 demonstrates superior performance in both policy representations.

45

(a) Linear policy parameterization

(b) Tabular policy parameterization

Figure 3: Cliff World – Linear/Tabular actor and Linear critic with exact Q computation: Comparison of decision-
aware, Adv-MSE, and MSE loss functions using a linear actor Fig. 3a and Fig. 3b coupled with a linear (with four different
dimensions) critic in the Cliff World environment for direct and softmax policy representations with known MDP. For d = 100
(corresponding to an expressive critic) in both actor parameterizations and d = 80 in linear parameterization, all algorithms
have almost the same performance. In other scenarios, minimizing MSE loss function with any functional step-size leads to a
sub-optimal policy. In contrast, minimizing Adv-MSE and decision-aware loss functions always result in reaching the optimal
policy even in the less expressive critic d = 40. Additionally, decision-aware convergence is faster than Adv-MSE particularly
when the critic has limited capacity (e.g. In d = 40 for direct and softmax representations and for both actor parameterizations,
decision-aware reaches the optimal policy faster.)

46

(a) Linear policy parameterization

(b) Tabular policy parameterization

Figure 4: Cliff World – Linear/Tabular actor and Linear critic with estimated Q: Comparison of decision-aware, Adv-MSE,
and MSE loss functions using a linear actor Fig. 4a and Fig. 4b coupled with a linear (with three different dimensions) critic in
the Cliff World environment for direct and softmax policy representations with Monte-Carlo sampling. When employing a
linear actor alongside an expressive critic (d = 80), all algorithms have nearly identical performance. However, minimizing the
MSE loss with a linear actor and a less expressive critic (d = 40, 60) leads to a loss of monotonic policy improvement and
converging towards a sub-optimal policy in both representations. Conversely, minimizing the decision-aware and Adv-MSE
losses enables reaching the optimal policy. Notably, decision-aware demonstrates a faster rate of convergence when the critic
has limited capacity (e.g., d = 40) in both policy representations. The disparity among algorithms becomes more apparent
when using tabular parameterization. In this case, the decision-aware loss either achieves a faster convergence rate (in d = 80
and d = 60), or it alone reaches the optimal policy (d = 40).

47

(a) Linear policy parameterization

(b) Tabular policy parameterization

Figure 5: Frozen Lake – Linear/Tabular actor and Linear critic with exact Q computation: Comparison of decision-
aware, Adv-MSE, and MSE loss functions using a linear actor Fig. 5a and Fig. 5b coupled with a linear (with four different
dimensions) critic in the Frozen Lake environment for direct and softmax policy representations with known MDP. For d = 100
(corresponding to an expressive critic) in both actor paramterizations and d = 60 in linear paramterization, all algorithms have
the same performance. In other scenarios, minimizing MSE loss functions leads to worse performance than decision-aware and
Adv-MSE loss functions and for d = 40 in linear parameterization MSE does not have monotonic improvement. Adv-MSE
and decision-aware almost have a similar performance for all scenarios except d = 50 with tabular actor where decision-aware
reaches a better sub-optimal policy.
Frozen Lake – Linear/Tabular actor and Linear critic with estimated Q: For the Frozen Lake environment, when estimating
the Q functions using Monte Carlo sampling (all other choices being the same as in Fig. 5), we found that the variance resulting
from Monte Carlo sampling (even with ≥ 1000 samples) dominates the bias. As a result, the effect of the critic loss is minimal,
and all algorithms result in similar performance.

48

	Introduction
	Problem Formulation
	Methodology
	Functional Mirror Ascent for Policy Gradient (FMAPG) framework
	Generalizing FMAPG to Actor-Critic

	Theoretical Guarantees
	Conditions for monotonic policy improvement
	Convergence of alg:generic

	Instantiating the generic actor-critic framework
	Direct representation
	Softmax representation

	Experiments
	Discussion
	Definitions
	Extension to stochastic value gradients
	Proofs for sec:methodology
	Proofs for sec:theory
	Proof of prop:ssocvrg
	Exact setting with Lifting (Direct representation)
	Exact setting with lifting trick (Softmax representation)
	Helper Lemmas

	Proofs for sec:instantiation
	Bandit examples to demonstrate the benefit of the decision-aware loss
	Lemmas

	Implementation Details
	Heuristic to estimate c
	Environments and constructing features
	Critic optimization
	Actor optimization
	Parameter Tuning

	Additional Experiments

