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ABSTRACT

Large language models (LLMs) are trained on a substantial amount of docu-
ments that contain extensive world knowledge. However, it is still not well-
understood how knowledge is acquired via autoregressive pre-training and ex-
tracted via question-answering. This lack of understanding greatly hinders effec-
tive knowledge learning, especially for continued pre-training on up-to-date infor-
mation, as this evolving information often does not have diverse repetitions like
foundational knowledge. In this paper, we focus on understanding and improv-
ing LLM knowledge learning. We found and verified that knowledge learning
for LLMs can be deemed as an implicit supervised task hidden in the autore-
gressive pre-training objective. Our findings suggest that knowledge learning for
LLMs would benefit from methods designed to improve generalization ability for
supervised tasks. Based on our analysis, we propose to diversify training docu-
ments’ formats as data augmentation to grow in-distribution samples. This data
augmentation method does not present the risk of altering the facts embedded in
documents as text paraphrasing. We also introduce sharpness-aware minimization
as an effective optimization algorithm to better improve generalization. Moreover,
we adapt our method to instruction tuning for generalization to various phrasings
of questions. Extensive experiment results validate our findings and demonstrate
our methods’ effectiveness in improving knowledge learning in both the continued
pre-training and instruction tuning stages. This paper offers new perspectives and
insights to interpret and design effective strategies for LLM knowledge learning.

1 INTRODUCTION

Large language models (LLMs) are pre-trained on large-scale datasets encompassing extensive
knowledge, enabling them to demonstrate remarkable performance on knowledge-intensive tasks
(Brown et al.| (2020); OpenAll (2023)); |Chowdhery et al.| (2023)); Zhang et al.| (2022); Touvron et al.
(2023aib); |Gemini Team| (2023)); [Yang et al.| (2024)). Pre-trained LLMs are able to answer ques-
tions on various domains, like “Who was the first president of America?”, or “What is the second
highest mountain in the world?”. However, it is still unclear how LLMs can acquire knowledge
from the training corpus and answer these questions. This insufficient understanding severely lim-
its the efficiency of knowledge acquisition, particularly when it comes to continued pre-training on
newly updated information. Unlike foundational or textbook knowledge, which typically benefits
from diverse repetitions and widespread coverage, evolving information often lacks such extensive
variation, making it more challenging for LLMs to learn (Kandpal et al.| (2023); Jiang et al.| (2024);
Allen-Zhu & Li/(2024))). Therefore, we hope to better understand the mechanism for autoregressive
language model knowledge learning and enhance it.

We approach this problem by carefully examining the training objective and inference formula for
autoregressive language models. Assuming pre-training on the document “Elon Musk was born on
June 28, 1971. He was raised in South Africa.”, people might ask questions querying knowledge
stored in the bold tokens, which we call as knowledge tokens. Successful elicitation of Elon Musk’s
hometown via question-answering is possible only if P(answer|question) is high enough, where
answer = “South Africa” and question = “Question: Where did Elon Musk grow up? Answer:”.
However, it is not clear how autoregressive pre-training on the document increases this conditional
probability. If we decompose the training objective of autoregressive language models, it can be
viewed as training using the negative log-likelihood (NLL) loss on a dataset where each sample is
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formed in a way that for each token in a document, it is the label while its preceding tokens become
the input. Therefore, we hypothesize document training samples and questions that share the same
knowledge tokens as labels come from the same distribution. In this way, minimizing NLL loss for
document samples would generalize to questions. However, this is not obvious as questions and
document training samples look quite different. Therefore, we construct a human biography dataset
including different attributes similar to|Allen-Zhu & Li/(2024). During training, we observe that the
accuracy of predicting attribute knowledge tokens given questions as inputs increases with the accu-
racy conditioned on the training document sequence. This observation verifies our hypothesis that
LLM knowledge learning is supervised and explains empirical observations that adding rephrased
examples would help knowledge extraction (Allen-Zhu & Li|(2024); Ovadia et al.|(2024)).

As we have demonstrated that LLM knowledge learning is supervised, we then explore methods to
improve the generalization ability. Knowledge learning without sufficient samples is extremely hard.
However, reliable rephrasing by humans is expensive and time-consuming, while LLM rephrasing
might alter facts in documents (Ding et al.| (2024)). Witnessing texts can be presented in differ-
ent formatting without affecting embedded facts, we propose modifying documents’ formats as
data augmentations. By presenting the same training document with different spacing or padding,
the number of in-distribution samples for knowledge learning is increased. Then, with adequate
in-distribution samples synthesized using our data augmentation, we utilize sharpness-aware min-
imization (SAM, |[Foret et al.| (2021)) as the optimization method to better improve generalization.
Last, we identify the importance of generalizing to different questions with the same answer, which
is neglected in instruction tuning (Wang et al.| (2024); Bukharin & Zhao| (2024)). Thus we also
integrate our methods into the instruction tuning phase to enhance the generalization ability for
question-answering. Specifically, we use SAM as the optimization method and augment the ques-
tions of the training QA pairs. In this way, the instruction-tuned model can respond more accurately
to different rephrasings of the questions in the training QA pairs, and apply analogous QA patterns
for similar questions about all pre-training documents.

We evaluate our methods on our constructed biography dataset similar to |Allen-Zhu & Li| (2024)),
and the Wiki2023 dataset (Jiang et al.[(2024]))). Results show that our approach leads to nontrivial im-
provement of generalization ability in both the continued pre-training and instruction tuning phases.
In addition, detailed ablations validate our finding that generalization matters for LLM knowledge
acquisition and extraction. The main contributions of this paper are summarized as follows:

* We hypothesize that LLM knowledge learning is implicitly a supervised learning problem,
and verify on a synthetic human biography dataset that training on the documents can
generalize to question-answering of the knowledge embedded in documents.

» To improve the generalization ability for LLM knowledge learning, we propose to generate
in-distribution training samples by diverse document formatting. This automatic augmen-
tation method mitigates the risk of altering facts in documents, in contrast to rephrasing.
We further apply SAM as the optimizer to enhance the ability to generalize.

* We point out the importance of generalization on different questions with the same answer,
which is previously neglected in the instruction tuning phase. We use SAM and apply our
data augmentation method to the question part of QA pairs used in instruction tuning, to
gain more generalization ability.

* Extensive experimental results and ablation studies validate the supervised nature of LLM
knowledge learning and demonstrate our methods’ effectiveness in improving knowledge
learning in both the continued pre-training and instruction tuning phase.

2 RELATED WORK

Understanding of LLM Knowledge Learning. There are several works trying to understand how
LLMs learn knowledge from documents and retrieve them in question answering. [Akytirek et al.
(2022) tries to detect training documents important for question-answering for pre-trained LLMs.
A number of works find connections between the frequency of certain knowledge appearing in pre-
training documents and its question-answering ability (Kandpal et al.|(2023)); Akyiirek et al.|(2022);
Petroni et al.| (2019); Kassner et al.| (2020); |Wet et al.| (2021); [Févry et al.| (2020); [De Cao et al.
(2021)). Recently, |Allen-Zhu & Li| (2024) and |Ovadia et al.| (2024)) empirically find that adding
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paraphrased samples describing the same knowledge helps knowledge learning in both pre-training
and continued pre-training phase. These works primarily try to explain LLM knowledge learning
by summarizing observed patterns. Our work, on the other hand, aims to provide a more rigorous
explanation.

Continued LLM Knowledge Learning. As the pre-trained knowledge stored in LLMs quickly
becomes outdated, adapting up-to-date information into LLLMs becomes a critical problem. The
primary approach to tackling this problem is through continued pre-training on documents contain-
ing up-to-date knowledge (Ovadia et al.| (2024); Jiang et al.| (2024); Jang et al.| (2022))). However,
straightforward autoregressive pre-training on new corpus usually cannot lead to effective knowl-
edge acquisition. This is likely due to the lack of diverse demonstrations of the same knowledge
like foundational or textbook knowledge (Allen-Zhu & Li| (2024); Jiang et al.| (2024); Ovadia et al.
(2024); |Cheng et al.[ (2024)). Therefore, some works focus on rephrasing documents to alleviate
this issue (Cheng et al.| (2024)); |/Allen-Zhu & Li| (2024);|Ovadia et al.|(2024)). However, paraphras-
ing documents manually can be expensive and tedious, while paraphrasing by LLM might not be
reliable as facts and knowledge inside documents could be changed in this process (Ding et al.
(2024)). Therefore, we aim to avoid the risk of changing facts embedded in documents while en-
abling effective knowledge acquisition. Another line of work tries to include QA data together with
or before adapting to new documents (Allen-Zhu & Li|(2024); Jiang et al.| (2024)). However, these
methods introduce new difficulties in finding effective arrangements and proportions of QA data
and documents. To induce effective knowledge extraction during inference, instruction tuning on
annotated QA pairs after training on raw documents has recently become a common practice (Sanh
et al.[(2022); Wei et al.[(2022); Mishra et al.| (2022); [Tyer et al.|(2022); |Kopf et al.|(2023)); Zhou et al.
(2023));/Sun et al.| (2023bjal)). Current instruction tuning methods generally focus on diversifying the
domain of QA pairs so that questions from different areas can be answered after instruction tuning
(Bukharin & Zhao| (2024); /Wang et al.[ (2024))). However, the diversity of questions with the same
answer is largely overlooked. Since different users might pose the same question using different
wordings and phrases, it is crucial for us to also take this into consideration.

Data Augmentation for Natural Language Processing. There is a rich literature on data augmen-
tation techniques used for natural language processing (Chen et al.[(2021); |[Ding et al.[(2024); |Wei
& Zou| (2019)). A popular type of traditional data augmentation method is synonym substitution,
which replaces words in documents with their synonyms according to some pre-defined dictionaries
(Kolomiyets et al.|(2011); Yang| (2015); Zhang et al.| (2015)). Another popular class of traditional
data augmentation method is inserting, replacing, deleting, and swapping words in documents (Wei
& Zou (2019); [Iyer et al.[ (2022); Niu & Bansal| (2018)); Miao et al.[ (2020)). In the era of LLMs,
paraphrasing documents or synthesizing data using LLMs become increasingly popular (Ding et al.
(2024); Sharma et al.| (2023); Nair et al.| (2023)). However, these data augmentation methods gen-
erally modify the semantics of original documents, and some tokens where the knowledge and facts
reside have the risk of being altered (Ding et al.| (2024)). Therefore, we opt to avoid such risk and
design our data augmentation method for LLM knowledge learning.

3 LLM KNOWLEDGE LEARNING AS SUPERVISED LEARNING

3.1 AUTOREGRESSIVE LANGUAGE MODEL

Let 0 denote the parameters of an autoregressive language model, and V be a fixed vocabulary of
tokens. Suppose document d contains a sequence of tokens (1,22, ..., zr) from V, where T is
the length of the document. The training sequence has a special token x( prepended, indicating the
sequence’s start. The autoregressive language modeling task estimates the conditional probability
distribution P(x|x<;) foreach¢t = 1,2,...,T. This is typically achieved by training a deep neural
network to predict the next token z; given the previous tokens zg, x1, Z2, ..., x+—1. For document
d, the negative log-likelihood loss function of the observed sequence d is:

T T
((0,d) = —log Po(d) = — logH Po(wt|r<t) = — Zlog Po(xt|r<t). (1)

t=1 t=1
During inference, given a sequence of m tokens (z1,...,2,,) as context, the autoregressive lan-

guage model iteratively generates the next n tokens with one token at a time conditioned on the
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context and prior generations to obtain the completed sequence (21, . . ., Tymtn):
m+n m—+n
log Po(Zm+41 - -« Tmtn|T<t) = log H Py(zi|x<y) = Z log Pg(z¢|T<t). 2)
t=m+1 t=m-+1

Generation at each step would either greedily select the token with the highest likelihood or use
sampling methods such as top-k and nucleus sampling (Holtzman et al.| (2020); [Fan et al.| (2018));
Ippolito et al.| (2019)).

3.2 CASTING KNOWLEDGE LEARNING AS A SUPERVISED LEARNING PROBLEM

Assuming a language model is trained on document d = “Elon Musk was born on June 28, 1971.
He was raised in South Africa.”, users would often be interested in asking questions querying
knowledge stored in the bold tokens, which we refer to as knowledge tokens. From Eq. we
can see that these questions can be answered either by prompting (Brown et al.| (2020); |Petroni
et al.| (2019); Roberts et al.|(2020)) or direct question-answering after instruction tuning (Sanh et al.
(2022); [Wei et al.| (2022); Ouyang et al.|(2022)) only if the probabilities of knowledge tokens condi-
tioned on context questions are high enough. For example, Elon Musk’s hometown can be reliably
elicited from a language model trained on d only if P(answer|question) is high enough, where
answer = “South Africa” and question = “Question: Where did Elon Musk grow up? Answer:”.
Next, we analyze how autoregressive pre-training on document d increases these knowledge tokens’
conditional probabilities.

For autoregressive language model training on document d, we can regard x; 1 as the pseudo-label
y; of the input training sequence (z¢, 21, xa,...,2;), i.€., y; = x;y1, which results in a training
sample ((xo,x1,-..,%;);y;). Thus, the document d can be deemed as a set of training samples
S(d) = {((z0);90), ((zo, z1);51), (o, 21, 22);92), - .-, (%o, @1, ..., x7-1);y7—1)}. The lan-
guage model autoregressively trained on S(d) minimizes the negative log-likelihood (NLL) loss for
each training sample. Furthermore, given a set of training documents D, the training loss along with
the training objective is:

1 1
min Lp(0) = — —_ [— log Py(r)]. 3)
0 D] %:) 1S(d)] Te%(:d)
Then, for training samples ((xzq, z1, - - ., 2;); y;) with knowledge tokens as labels, we hypothesize

questions that share the same knowledge tokens as labels are from the same distribution of
the training samples. If this is the case, then minimizing the NLL loss for training samples would
generalize and increase corresponding knowledge tokens’ probabilities conditioned on input ques-
tion prompts. Thereafter, knowledge learning for LLM can be considered as a supervised learning
problem. However, this is not obvious from the human perspective, as training samples and their cor-
responding questions are quite different in the input space. For example, although sharing “South”
as the label, humans can hardly consider “Question: Where did Elon Musk grow up? Answer:”
and “Elon Musk was born on June 28, 1971. He was raised in” being from the same distribution.
Therefore, we need to verify this hypothesis first.

3.3 VERIFICATION

To validate our hypothesis in a well-controlled setting, we generate synthetic human biography data
similar to |Allen-Zhu & Li| (2024). Specifically, we randomly generate 1000 human biography pro-
files, each with 5 attributes, including the birth date, college, major, hometown, and company. For
each profile, we generate 3 different text entries illustrating the same 5 attributes using rephrased
templates, as training documents. For each attribute of an individual, we generate 5 different ques-
tions asking the attribute to take question diversity into account, as a testing dataset. We additionally
generate a QA pair for each attribute of an individual for instruction fine-tuning. Here is an example
of the biography text entry and QA pair:

* Eden Benitez completed his education at University of Wisconsin, Madison. His field of
study was Marketing. He was employed at General Dynamics. His place of origin was
Santa Clarita. He entered the world on January 18, 1959.
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Figure 1: Average first knowledge token accuracy for each attribute conditioned on: (1) context
training document sentences, (2) context questions.

* Question: Which company did Eden Benitez have a professional role at? Answer: General
Dynamics.

Then we study two scenarios on whether training on raw documents can generalize to question-
answering: (1) single, training on biography documents where each biography profile has a single
text entry; (2) rephrase, training on biography documents where each biography profile has all the
three text entries. We continually pre-train from Qwen 2 1.5B model (Yang et al.[(2024)) with the
above setting and record the first'|knowledge token’s accuracy conditioned on sentences from train-
ing documents and testing questionsﬂ If P(first_knowledge_token|context_question) increases
along with P( first_knowledge_token|context_doc), LLM knowledge learning should be consid-
ered as a supervised problem. When we consider the biography above, first_knowledge_token
would be “General”, context_question would be “Question: Which company did Eden Benitez
have a professional role at? Answer:”, and context_doc would be “Eden Benitez completed his ed-
ucation at University of Wisconsin, Madison. His field of study was Marketing. He was employed
at”.

In Fig. [I] dashed lines represent the accuracy of first knowledge tokens conditioned on sentences
from training documents, while solid lines represent the accuracy of first knowledge tokens condi-
tioned on testing questions. We can see that the testing accuracy is increasing along with the training
accuracy. This indicates that training on documents can generalize to question-answering, and thus
knowledge learning for LLM is supervised. Moreover, we can see that training on all paraphrased
biography text entries leads to much higher testing accuracy than training on a single text entry.
This aligns with the empirical observations that including paraphrased samples for continued pre-
training helps knowledge extraction (Allen-Zhu & Li/(2024); Ovadia et al.[(2024)). From our posed
supervised learning perspective, this is because when training on a single document, each knowl-
edge token label only has one training sample, which makes generalization very difficult. Adding
rephrased documents increases the training samples each knowledge token label has, which would
lead to better generalization.

4 METHODS

Sec. [3]has posed LLM knowledge learning as a supervised learning problem. This section explores
methods to improve the generalization ability for LLM knowledge learning. Since knowledge to-

!The accuracy of all knowledge tokens (exact match) exhibits similar results and can be seen in the experi-
ment section.

>We prepend 1 held-out QA pair to testing questions to align the QA format that directly outputs knowledge
tokens.
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kens of a document are usually unknown, the methods developed would apply to all tokens in the
document.

4.1 DATA AUGMENTATION VIA FORMATTING

As we analyzed in Sec. [3.3] knowledge learning without rephrased documents can be extremely
hard due to insufficient samples for knowledge token labels. However, paraphrasing documents
manually can be expensive and laborious, while paraphrasing using LLM might not be reliable. It is
not easy to ensure that knowledge or facts in documents are not altered by LLM during paraphrasing
(Ding et al.|(2024)). Moreover, certain expressions and terminologies are irreplaceable and must be
used in their exact form. Nor should mottoes and poems be rephrased when they are in training
documents. Therefore, it is crucial to develop methods to reliably increase in-distribution samples
with knowledge token labels without paraphrasing.

We may often encounter variations in the formatting used to present texts, such as whether to indent
the beginning of a paragraph and whether to use spaces or tabs as indentations for codes. There are
also variations for using single-space or double-space spacing in the era of typewriters (Wikipedia
contributors|(2024)). These formatting differences, while altering some of the format tokens, do not
affect the semantic meaning and knowledge of the text itself. Therefore, given a training document
d, we propose to apply the following data augmentations:

* Wrapping. Augmented documents are created by wrapping document d with quotes, aster-
isks, brackets, or parentheses. This is used to imitate the case that the document is quoted,
highlighted, or appears in a Markdown document.

 Left padding. Augmented documents are created by padding spaces, tabs, or pound signs
to the left of the document d. This is to mimic the scenarios that d appears as a paragraph
in a paper or be in a document written using Markdown.

* Random space insertion. Augmented documents are created by randomly inserting addi-
tional spaces adjacent to original spaces inside document d. This is to simulate the case that
the training document is presented using different spacing and includes some unintentional
extra spaces.

Therefore, for a training document being “Elon Musk was raised in South Africa.”, some examples
of its augmentations are as follows:

Wrapping augmented examples

"Elon Musk was raised in South Africa."
*Elon Musk was raised in South Africa.x
**Elon Musk was raised in South Africa.=*=*
(Elon Musk was raised in South Africa.)

Left padding augmented examples

Elon Musk was raised in South Africa.
# Elon Musk was raised in South Africa.
## Elon Musk was raised in South Africa.
Random space insertion augmented examples

Elon Musk was raised in South Africa.
Elon Musk was raised in South Africa.

Detailed specifications of the data augmentations are discussed in Appendix With these aug-
mented documents, we diversify the in-distribution samples with knowledge token labels while not
changing the knowledge and facts inside these documents.

4.2 SHARPNESS-AWARE MINIMIZATION

With our proposed data augmentation methods increasing in-distribution samples with knowledge
token labels, we can further enhance the generalization ability by applying generalizable optimiza-
tion or regularization methods designed for traditional supervised problems. Recently, |[Foret et al.
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(2021)) developed the Sharpness-Aware Minimization (SAM) to improve the generalization ability
of DNN for supervised problems, which has achieved substantial generalization improvement on
widely studied supervised learning problems like image classification (Baek et al| (2024); (Chen
et al.|(2022); |[Foret et al.| (2021)). We adopt this technique for the LLM knowledge learning task.

Given a training document d, let B = S(d), and according to SAM we solve the following problem:

min max Lz(0 + €) + \||6]2, S

0 Jlell2<p
where p > 0 is a given perturbation radius, A is a small positive regularization constant. The
objective is to find a minimizer with the neighborhood where the loss does not increase too much.
According to SAM, the inner maximization problem in Eq. is solved approximately at € =

pVLi(0)/||VLg(0)|2 by the first-order Taylor expansion. Then, the objective function of Eq.
changes to L(0 + €) + A||@]|3, on which the gradient descent is performed.

4.3 ADAPTATION TO INSTRUCTION TUNING

Instruction tuning has recently become a common practice to make LL.Ms follow human instruc-
tions and perform question-answering (Sanh et al.|(2022); Wei et al.|(2022)); Ouyang et al.[(2022)).
Instruction tuning computes the negative log-likelihood loss only on tokens in the answer with the
question as the context: Lo, = — ), log P(a:|q,a;). The QA pairs used in instruction tuning
are derived from specific documents in the pre-training dataset. After instruction tuning, LLM can
make analogies and perform similar QAs on other documents seen during the pre-training phase.
As different users might pose variations of the same question to LLM, generalization should also
matter for the instruction tuning phase. Therefore, we use SAM and apply our data augmentation
only to the context questions for instruction tuning. In this way, LLM would be able to respond
accurately to different rephrases of a question seen during instruction tuning, consistently eliciting
the same correct answer. As instruction tuning would make LLM apply analogous QA patterns for
other documents seen during pre-training, we expect the generalization ability can also be brought
to other pre-training documents. As prior works on instruction tuning generally focus on the di-
versity of QA pairs from different domains and tasks while ignoring the diversity of questions with
the same answer (Bukharin & Zhao|(2024); |Wang et al.[(2024)), we hope our exploration can bring
more insights.

5 EXPERIMENTS

5.1 EXPERIMENT SETTINGS

Baseline methods. We experiment with two standard baselines: (1) continued pre-training and
(2) continued pre-training with instruction tuning (SFT), and demonstrate the effectiveness of our
methods in improving knowledge learning abilities of these baselines.

Base models. We use Qwen 2 1.5B (Yang et al.|(2024)) and LLaMA 2 7B (Touvron et al. (2023b))
as base models and test all baselines and their combination with our methods on these models.

Datasets. We use our generated biography dataset and Wiki2023-film dataset proposed in Jiang
et al.| (2024) for the experiment. For the biography dataset, we follow |Allen-Zhu & Li (2024)) to
continually pre-train on all individuals and instruction-tune on 1 QA pair per attribute of half of
the individuals. Our evaluation differs from Allen-Zhu & Li| (2024), which evaluates on only 1 QA
pair that uses the same template as the one used for instruction tuning, for each attribute of the
remaining half individuals. We generate 5 different QA pairs for each attribute to better evaluate the
generalization ability, totaling 12500 QA pairs. The Wiki2023-film dataset we used is regenerated
following the same recipe in Jiang et al.| (2024) since the original dataset is not publicly available.
The biography dataset is synthetic while the recipe for generating the Wiki2023-film dataset tries
to minimize overlap with the pre-training corpus. Thus, experimenting on these two datasets can
mimic the difficult case of continued knowledge learning on up-to-date information.

Hyperparameter settings. We use AdamW (Loshchilov & Hutter|(2019)) as the base optimizer and
a weight decay of 0.1. The learning rate for continued pre-training is set to 3e-5 while the learning
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rate for instruction tuning is set to Se-6 for experiments on both the biography and Wiki2023 dataset.
We use a batch size of 128 for the biography dataset and a batch size of 256 for the Wiki2023 dataset.
For continued pre-training, we include the value of p in Tab. [} For instruction tuning, we use
p = 0.025 for all our experiments. For the experiment on the Wiki2023 dataset (Jiang et al.| (2024)),
we continually pre-train both Qwen 2 1.5B (Yang et al.|(2024)) and LLaMA 2 7B (Touvron et al.
(2023b))) for 30 epochs. Qwen 2 1.5B is instruction-tuned for 5 epochs while LLaMA 2 7B is tuned
for 2 epochs. For the experiment on the biography dataset, we continually pre-train both Qwen 2
1.5B (Yang et al.|(2024))) for 30 epochs and LLaMA 2 7B (Touvron et al.| (2023b))) for 15 epochs.
Both models are instruction-tuned for 5 epochs. We use the iteration number of training without
rephrased samples as a reference and ensure that all methods, regardless of data augmentation or
the addition of paraphrased texts, are training for the same number of iterations to ensure a fair
comparison.

Table 1: The value of SAM’s p used in different continued pre-training experiment settings.

Base model  Biography w/o rephrase  Biography w/ rephrase ~ Wiki2023-film
Qwen 2 1.5B 0.05 0.015 0.05
LLaMA 2 7B 0.025 0.015 0.025

Evaluation metrics. As we aim to evaluate the closed-book free-form question-answering abil-
ity, we utilize exact match (EM) between the model generations and ground truth answers as the
evaluation metric (Kwiatkowski et al.| (2019)). We also report Recall and F1 scores to better as-
sess questions with long answers. When evaluating models that have not been instruction-tuned, we
prepend 1 QA pair for the biography dataset and 5 QA pairs for the Wiki2023-film dataset to make
sure that models can follow the QA format.

5.2 MAIN RESULTS

This section gives the main results comparing our methods with baselines. Unless otherwise speci-
fied, we use base to refer to the base model, single to refer to continued pre-training using the single
document, rephrase to refer to continued pre-training on all rephrasing documents, and ours to refer
to using both our data augmentation and the sharpness-aware minimization. For the results on in-
struction tuning, ours refers to using our methods on both the continued pre-training and instruction
tuning stages.

Table 2: Evaluation results on the biography dataset with the base models continued pre-training and
instruction-tuning w/ and w/o our methods. Our methods lead to substantial generalization improve-
ment for both phases and show outstanding knowledge learning abilities compared to baselines.

Qwen 2 1.5B ‘ Qwen 2 1.5B w/ SFT ‘ LLaMA 2 7B ‘ LLaMA 2 7B w/ SFT
EM Recal F1 | EM Recal F1 | EM Recall F1 | EM Recall F1
base 07 71 62| - - - 107 89 76| - - -

single 7.1 16.1 124 | 528 576 571 | 520 59.1 585|896 913 91.2
w/ ours 432 577 523|579 622 618 | 854 882 88.0 (933 942 9.1

rephrase 249 454 351 | 545 599 596 | 543 706 63.6 | 942 959 95.9
w/ours 749 804 80.0 | 753 772 769 | 89.2 931 928|984 99.0 99.0

Results on biography dataset. We present the results on the biography dataset in Tab. 2} From
Tab. [2] we can see that the base models cannot answer questions about the synthesized biography
profiles at all. This effectively simulates the case of LLMs adapting to up-to-date information, which
is considered nontrivial (Jiang et al.| (2024); |Ovadia et al|(2024)). From the table, we can see that
our methods lead to substantial improvement in knowledge learning when training on both non-
rephrased and rephrased documents. Using our methods on non-rephrased documents significantly
outperforms training on rephrased samples without our method during the continued pre-training
phase, and leads to on-par performance after the instruction tuning phase. This result shows that our
method can serve as an effective and reliable alternative to tedious and expensive manual rephrasing
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and unreliable LLM rephrasing. It can also be applied to documents containing mottoes or poems,
which are not suitable for rephrasing. When applying our methods to rephrased documents, the
knowledge learning performance becomes even better, showing that our methods can induce more
generalization ability with more diverse in-distribution samples. Moreover, we can see our methods
lead to much more effective knowledge learning and extraction than baselines prior to the instruction
tuning stage. This property could be beneficial in scenarios with limited resources, such as adapting
LLMs to new domains where it is challenging and labor-intensive to annotate instruction-following
examples.

Table 3: Evaluation results on the Wiki2023-film dataset with the base models continued pre-training
and instruction-tuning w/ and w/o our methods. Our methods lead to nontrivial improvement in
knowledge acquisition and extraction for both phases compared to baselines.

Qwen 2 1.5B ‘ Qwen 2 1.5B w/ SFT ‘ LLaMA 2 7B ‘ LLaMA 2 7B w/ SFT
EM Recal F1 | EM Recal F1 | EM Recall F1 | EM Recall F1
base 34 72 75 | - - - |56 188 169 - i -

single 7.2 194 178 | 123 239 240 | 11.8 327 27.1 | 313 474 46.9
w/ours 98 249 220|148 270 273 | 17.6 423 34.7 | 38.6  56.0 55.2

Results on Wiki2023 dataset. Next, we evaluate our methods with baselines on the Wiki2023-film
dataset. As this dataset does not have rephrased training documents, we continually pre-train using a
single document for all comparing methods. From Tab. [3|we can see that our methods lead to stable
improvement over the baselines for both the continued pre-training and instruction tuning stages.

We can observe from Tab. [2| and Tab. [3|that our approach is consistently effective across different
models, training phases, and datasets, demonstrating the robustness of our approach. We also want
to stress that all comparing methods are trained with the same number of iterations in both the
continued pre-training and instruction tuning phases. The performance gain of our approach and
adding rephrased samples is not attributable to an increased number of training steps on enlarged
datasets. On the other hand, it is because that generalization matters for LLM knowledge learning.

5.3 ABLATION STUDIES
In this section, we conduct comprehensive ablation studies on the effect of each component of our

methods on both the continued pre-training and instruction tuning phases.

Table 4: Ablation study on the effect of integrating each component of our method into the contin-
ued pre-training phase.

Training setting Single Rephrase
EM Recall Fl EM Recall Fl
Continued pre-train 7.1 16.1 124 249 454 351
w/ Data augmentation 243 386 331 549 788 653
w/ SAM 197 291 266 528 633 608

w/ Data augmentation + SAM  43.2 577 523 749 804 80.0

Effect of our methods on continued pre-training. We first ablate the effect of our data augmenta-
tion and SAM for the continued pre-training phase. We use Qwen 2 1.5B (Yang et al.|(2024)) as the
base model and conduct experiments on our synthesized biography dataset. We can see from Tab. []
that when training with rephrased documents, both SAM and our data augmentation alone can bring
measurable enhancement over the baseline. Furthermore, when SAM and our data augmentation are
combined, the performance gains are further amplified. When training under the single document
setting, the lack of in-distribution samples for knowledge tokens decreases the performance gain
from SAM alone. Our data augmentation, on the other hand, brings adequate in-distribution sam-
ples, which leads to substantial improvement over the baseline. With these in-distribution samples,
SAM is able to boost the performance even further.
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Table 5: Ablation study on the effect of integrating each component of our method into the instruc-
tion tuning phase.

Pre-trained on single  Pre-trained on rephrase
EM Recall Fl EM Recall F1

Training setting

Instruction tuning 528 576 57.1 704 728 72.6
w/ Data augmentation 553 595 592 732 751 74.9
w/ SAM 560 605 600 73.6 758 75.5

w/ Data augmentation + SAM 579 622 61.8 753 772 76.9

Effect of our methods on instruction tuning. Next, we ablate the effect of our methods on the
instruction tuning phase. Still, we conduct experiments on our generated biography dataset. We
use continual pre-trained Qwen 2 1.5B (Yang et al.| (2024)) by our methods as the base model for
instruction tuning. Prior works generally consider that knowledge is learned during continued pre-
training and then made extractable in the instruction tuning phase (Allen-Zhu & Li|(2024); Ouyang
et al.| (2022); |Sanh et al.| (2022); |Wei et al| (2022))). Therefore, starting from the same continual
pre-trained model, we can analyze how our methods influence knowledge extraction in this ablation.
From Tab. [5] we can see that both SAM and data augmentation alone can improve knowledge
elicitation over baseline instruction tuning. Furthermore, the combination of them leads to better
performance. This result echoes our analysis in Sec. [f.3] that the generalization for questions with
the same answer is crucial for effective and robust instruction following. Prior works generally
focus on diversifying different QA pairs from different domains (Wang et al.| (2024)); [Bukharin &
Zhao| (2024))), while ignoring this issue. We hope our analysis can provide a deeper understanding.

6 CONCLUSION

In this paper, we try to understand how LLMs acquire knowledge through autoregressive pre-training
and retrieve the knowledge in question-answering. We found and verified that the knowledge learn-
ing for LLM is an implicitly supervised problem. We found that for certain knowledge tokens in
documents that might serve as answers to questions, minimizing the negative log-likelihood loss
on samples with prefixed document sequences as input and the next knowledge tokens as labels
would generalize to samples with questions as input and the same knowledge token as labels. Thus,
we verified that knowledge learning for LLMs is indeed a supervised problem. We subsequently
propose a data augmentation method to increase in-distribution samples via presenting training doc-
uments in different formats, which does not have the risk of altering knowledge and facts embedded
in documents as paraphrasing. We also introduce the sharpness-aware minimization as the opti-
mizer to better improve generalization ability. Then we extend our analysis to the instruction tuning
phase and point out the importance of generalization on different questions with the same answer
for effective knowledge extraction, which is overlooked by previous works. Extensive experiments
and ablation studies validate our finding of the supervised nature of LLM knowledge learning and
demonstrate our methods’ effectiveness in improving knowledge acquisition and extraction for both
continued pre-training and instruction tuning phases. We hope our work can provide insights to
better understand and develop effective methods for LLM knowledge learning.
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A APPENDIX

A.1 DATA AUGMENTATION SPECIFICATIONS

We include all variations of data augmentations we used in the following. For the random space
insertion augmentation, we randomly insert an additional space adjacent to spaces in documents
with a probability of 0.2.

Wrapping augmented examples

"Elon Musk was raised in South Africa.’
"Elon Musk was raised in South Africa."
*Elon Musk was raised in South Africa.x
**Elon Musk was raised in South Africa.=*=*
x**x*Elon Musk was raised in South Africa.xx*x
==Elon Musk was raised in South Africa.==
<Elon Musk was raised in South Africa.>
(Elon Musk was raised in South Africa.)

Left padding augmented examples

<space>Elon Musk was raised in South Africa.
<space><space>Elon Musk was raised in South Africa.
<tab>Elon Musk was raised in South Africa.
#<space>Elon Musk was raised in South Africa.
##<space>Elon Musk was raised in South Africa.
###<space>Elon Musk was raised in South Africa.

Two augmented examples by our random space insertion described above
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A.2 BIOGRAPHY DATA TEMPLATES

We include in the following example data templates for our synthesized biography dataset. For
each biography profile, we include three rephrases of biography entries, 1 QA pair per attribute for
instruction tuning, and another 5 QA pair per attribute for evaluation.

Single document training data

* Eden Benitez was born on January 18, 1959. He was from Santa Clarita. He graduated
from University of Wisconsin, Madison. His major was Marketing. He worked for General
Dynamics.

Rephrase document training data

* Eden Benitez was born on January 18, 1959. He was from Santa Clarita. He graduated
from University of Wisconsin, Madison. His major was Marketing. He worked for General
Dynamics.

* Eden Benitez completed his education at University of Wisconsin, Madison. His field of
study was Marketing. He was employed at General Dynamics. His place of origin was
Santa Clarita. He entered the world on January 18, 1959.

* Eden Benitez majored in Marketing. He developed his career at General Dynamics. His
life began on January 18, 1959. He attended University of Wisconsin, Madison. He came
from Santa Clarita.

Instruction tuning QA pairs

* When was Eden Benitez born? January 18, 1959

* Which university did Eden Benitez graduate from? University of Wisconsin, Madison
* Which company did Eden Benitez work for? General Dynamics

* Where was Eden Benitez from? Santa Clarita

* What was Eden Benitez’s major?” Marketing
Evaluation QA pairs

* When did Eden Benitez come into this world? January 18, 1959

* What was Eden Benitez’s birth date? January 18, 1959

* When was Eden Benitez brought into the world? January 18, 1959
* When did Eden Benitez first open his eyes? January 18, 1959

* What was the birth date of Eden Benitez? January 18, 1959

* Which university did Eden Benitez finish his education at? University of Wisconsin, Madi-
son

* Which university did Eden Benitez complete his degree program at? University of Wiscon-
sin, Madison

* Which university did Eden Benitez obtain his degree from? University of Wisconsin, Madi-
son

* Which university did Eden Benitez receive education at? University of Wisconsin, Madison

* Which university did Eden Benitez earn his degree from? University of Wisconsin, Madi-
son

* Which company did Eden Benitez have a job at? General Dynamics

* Which company did Eden Benitez find employment at? General Dynamics

* Which company did Eden Benitez work at? General Dynamics

* Which company did Eden Benitez have a professional role at? General Dynamics

* Which company did Eden Benitez hold a position at? General Dynamics

16



Under review as a conference paper at ICLR 2025

A3

* Where was Eden Benitez’s hometown? Santa Clarita

* Where did Eden Benitez originate from? Santa Clarita

* Where was Eden Benitez raised? Santa Clarita

* Where did Eden Benitez hail from? Santa Clarita

* Where was Eden Benitez a native of? Santa Clarita

* What major did Eden Benitez pursue a degree in? Marketing

* What major did Eden Benitez dedicate his studies to? Marketing

* What major did Eden Benitez work toward earning a degree in? Marketing
* What major did Eden Benitez study? Marketing

* What major was Eden Benitez majoring in? Marketing

COMPARISON OF AVERAGE FIRST KNOWLEDGE TOKEN ACCURACY CONDITIONED ON
CONTEXT QUESTIONS FOR MODELS CONTINUALLY PRE-TRAINED WITH AND WITHOUT
OUR METHOD.

We compare the average first knowledge token accuracy conditioned on context questions for models
continually pre-trained with and without our method in Fig. ] The experiment setting is the same
as in Sec. [3.3] of the main text. We can see that our method leads to significant improvement over
naive continued pre-training with and without rephrased samples.
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801 single w/ ours
—8— rephrase

70 4 —®— rephrase w/ ours
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Figure 2: Comparison of average first knowledge token accuracy conditioned on context questions
for models continually pre-trained with and without our method.
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