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Abstract

Federated learning (FL) for mini and minimax optimization has emerged as a powerful paradigm
for training models across distributed nodes/clients while preserving data privacy and model ro-
bustness on data heterogeneity. In this work, we delve into the decentralized implementation of
federated minimax optimization by proposing K-GT-Minimax, a novel decentralized minimax
optimization algorithm that combines local updates and gradient tracking techniques. Our analysis
showcases the algorithm’s communication efficiency and convergence rate for nonconvex-strongly-
concave (NC-SC) minimax optimization, demonstrating a superior convergence rate compared to
existing methods. K-GT-Minimax’s ability to handle data heterogeneity and ensure robustness
underscores its significance in advancing federated learning research and applications.

1. Introduction

In this paper, we delve into the realm of federated minimax optimization, focusing on a decentralized
network comprising n agents tasked with optimizing the objective function:

1 n
min max f(x,y) =3 fi(xy) (M
=1

xERdx yeRdy

Here, f;(x,y) represents the local function associated with clienti € V = [n] = 1,...,n, where D;
denotes the distribution of the data. Our focus lies on the challenging domain of nonconvex-strongly-
concave (NC-SC) minimax problems, particularly in the context of federated learning setups, where
f(z,y) admits p-strong concavity with respect to y, while each local function f;(x,y) is in expec-
tation form indexed by random vector &;. Problem (1) finds rich applications in adversarial training,
distributionally robust optimization, reinforcement learning, AUC maximization, and learning with
non-decomposable loss [3-5, 23].

Decentralized minimax optimization has emerged as a crucial area of research in machine learn-
ing, addressing complex optimization challenges within decentralized networks. In contrast to cen-
tralized methods, the decentralized approach facilitates efficient collaboration among agents while
mitigating communication bottlenecks. Recent advancements in nonconvex minimization and min-
imax optimization have led to the exploration of achieving stationary points in the primal function
d(x) = maxy cpd, f (x,y), enhancing scalability and model robustness in decentralized optimiza-
tion algorithms tailored for federated learning environments. Significant advancements have been
made in addressing the unique challenges of federated minimax optimization, such as data hetero-
geneity, model robustness, and communication challenges.
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The significance of decentralized minimax optimization spans diverse machine learning ap-
plications, showcasing its versatility and potential in improving learning efficiency and scalabil-
ity. Noteworthy advancements such as variants of decentralized stochastic gradient methods have
demonstrated promising results in both online and offline scenarios [2, 7, 8]. These developments
underline ongoing efforts to address communication bottlenecks and enhance collaboration effi-
ciency in decentralized optimization frameworks, paving the way for novel techniques that navigate
challenging nonconvex optimization landscapes in distributed environments.

Related Work Decentralized minimax optimization, particularly in the context of federated learn-
ing setups, has gained traction for applications like adversarial training, distributionally robust op-
timization, and reinforcement learning [3, 5, 23]. Recent theoretical-front research focuses on e-
stationary points in nonconvex-strongly-concave (NC-SC) minimax problems and the importance
of distributed optimization techniques for large-scale machine learning [8]. While centralized min-
imax optimization remains prominent, particularly in adversarial training and GANSs, leveraging
techniques for specific stochastic gradient complexities [9, 12, 23], decentralized minimax opti-
mization in federated learning from convex-concave to nonconvex-(non)concave objectives still
face challenges regarding decentralization and effective gradient tracking [15, 17]. Various de-
centralized optimization algorithms like SGDA, SREDA, GT-DA, and GT-GDA offer trade-offs in
computational and communication complexities [11, 14, 20, 22]. Building upon variance-reduced
minimax optimization, DREAM shows superior performance in decentralized minimax optimiza-
tion, yet a comprehensive understanding of NC-SC minimax problems remains an active research
area [2].

Addressing data heterogeneity is crucial in federated learning, prompting studies like FedPAGE,
Federated Bose-Einstein Optimization, and Federated Learning with Decentralized Gradient Track-
ing [7, 18, 24]. However, these approaches often lack decentralization and may make restrictive
gradient assumptions. Similarly, decentralized algorithms like K-GT [10] and LU-GT [13] primar-
ily target minimization tasks, limiting their applicability in federated learning. Notably, algorithms
like K-GT have shown promise in improving communication efficiency and robustness in federated
minimax optimization tasks. It is a novel decentralized tracking mechanism that improves commu-
nication efficiency in Gradient Tracking algorithms, overcoming data heterogeneity between clients,
and demonstrating model robustness in solving non-convex optimization problems, including neural
network training tasks. Our work also heavily uses gradient tracking techniques, whereas our algo-
rithm name K-GT-Minimax originates from K-GT proposed by Liu et al. [10] for decentralized
single-agent optimization, although it should not be viewed as a straightforward generalization.

Our Contribution This paper introduces K-GT-Minimax, a novel decentralized minimax opti-
mization algorithm designed specifically for federated learning environments. By combining gradi-
ent tracking and local updates, K-GT-Minimax addresses challenges related to data heterogeneity,
model robustness, and communication efficiency. Furthermore, our algorithm demonstrates superior
performance in terms of convergence rates, scalability, and stochastic gradient complexity compared
to existing methods.

Notations. Throughout this paper, we use || - || for norms, I for identity matrices, and 1,, for a
vector of all ones. Aggregated variables are denoted by x, y, representing agents’ local variables
and gradients. We define V = [n] = {1,...n} as the set of agents, with communication edges
denoted by £ C V x V. Additionally, we introduce d by n real matrix X = [, ...,%| = XJ where
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Algorithm 1 Gradient Tracking for Minimax Optimization (K-GT-Minimax)

1: Initialize: Communication round 7'; Number of local steps K; Local stepsize nX,nY; Com-
munication stepsizes nX,nY; Mixing matrix W = (w;;)nxn; Vi,j € [n], EO) = xgo),
yrEO) = yj(‘O)’ CZC’(O) = _vsz (X(O)ay(o)vgl) + n Zj:l vX-F] ( 7y ©); f )’ C
~V,F; (X(o)’ y(o);&) + % 2?21 Vy F; (x(O),y(O); gj)

2: for client i € [n] parallel do

for communication: t < 0toT — 1 do

for local step: k < 0to K — 1do
KT = O e (TR y 0 g0 4 )
ygtHk“ — l(tHk ny (VFi( Z(tHk l( +k,£ )—l—cg"(t)) > variable update
end
L x,(t+1 t H+K t
D: C’i( )— ()‘i‘Kan] 1( i UMJ)[ () - g)]
b: Z-y’(tﬂ) = Z}-'(t) Kny > i1 (0i wlj)[yj( MK ygt)] > tracking variable update
x( = 3wy (x4 ()
8: yl(tﬂ) > i Wi ( ® 4 mly; (O+K ygt)]) > model parameter update
end
end

9: Output: Xy = X(7) = 711 . lx( ) for randomized T~ € {1,2,---,T}

= %1711;1r and 0;; represents the Kronecker delta with d;; = 1 if ¢ = j and O otherwise. Other
notations will be introduced at their first appearances.

2. Settings and Main Results

We propose Algorithm 1 for solving this problem in a distributed manner. To prepare for our main
result, we introduce the following assumptions.

Assumption 1 (Lower Bound of ©(-)) The function ®(x) = maxyga, f(x,y) is lower bounded,
that is
= inf P(x) > —o0

Assumption 2 (Smoothness and Strong Concavity) For each i € [n] let each local objective f; :
R% x R% — R be twice differentiable and L-smooth for some constant L > 0, i.e. for all x,x’ €
Ry, y' € R
2
IV fi(x,y) = Vfi(x', 5" < L2 (IIx = <[> + lly = ¥'II?)

Assume further f;(x,-) is p-strongly concave for some shared y > 0 across all x € RP, i.e. for all
x € R%, y y' € R%

fixY) < fixy) + Vo fixy) (7 =) = Sy = ¥IP

Call k = L/ the condition number of problem (1).
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Assumption 3 (Unbiaseness and Bounded Variance) We assume that the stochastic gradients are
unbiased and have bounded variance

E[VF(x,y;:&)] = Vfi(x,y) E|VFi(x,y;&) — Vfi(x,y)|* < o?

Assumption 4 ((1 — p)-Mixing) The n x n mixing matrix W is symmetric, element-wise non-
negative,l doubly stochastic in the sense that W1, = WTln = 1, and there exists a constant
p € [0, 1] such that for any X € R¥>*"

IXW - X% < (1-p)|IX - X[}
We are ready to present our main theorem:

Theorem 1 (Algorithm Complexity of K-GT-Minimax) Let Assumptions 1, 2, 3 and 4 hold.
There exists a global constant v > 0 such that, running K-GT-Minimax as in Algorithm I with
stepsizes choice 10 = z55tger e = Z—g and n* =Y = v -p gives B||VOET)|> < 2 for T
communication rounds, each with K local updates, where

o2 1 o 1 K31 K o
T=0|——+ ——=—5+ —=— | - LI K= 1+— ) — 2
<nK64+p2¢K63+p262> ’ <( +Wp) e> @

To interpret the bound in (2), note we have when ®(xo)—®* = O(1) that 54 = O (1 + m> .

Further balancing 7" and K gives

3 2 2
K o kK \ o
p2e K°ne Jnp) €
The theorem above demonstrates how the convergence rate is affected by the accuracy parame-
ter € > 0 which ¢ vanishes to zero, K-GT-Minimax converges to an e-stationary point within
T = O(1/€?) communication rounds, each round comprising K = O(1/?) local updates. Such

convergence rates incorporate and balance among heterogeneity, local updates and model robust-
ness. We list a table of comparison in Table 1.

3. Conclusion

In conclusion, this work introduces K-GT-Minimax, a pioneering decentralized minimax opti-
mization algorithm for federated learning environments. By incorporating gradient tracking and lo-
cal updates, K-GT-Minimax achieves state-of-the-art theoretical communication efficiency, show-
casing its superiority over existing methods in terms of convergence rates and scalability. We hope
our work addresses the critical challenges of data heterogeneity, communication efficiency and data
heterogeneity robustness in federated learning setups.

1. W;; > 0if and only if ¢ and j are connected.
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Algorithm ‘ Query Communication ‘ Decentralized LU DH
MLSGDA [15] K /net K3 /€3 X v X
SAGDA [21] k4 /net K2/e? X v X
Fed-Norm-SGDA [16] k4 /net K2 /e X v X
DM-HSGD [19] K3 /€3 K3 /€3 v x
DREAM [2] K3 /€3 K2 /e v X
K-GT-Minimax (This work) | r/ne? K3 /€2 v v v

Table 1: Comparison of K-GT-Minimax with related algorithms for decentralized minimax opti-

mization, highlighting stochastic gradient oracle complexity, communication rounds, de-
centralization, local updates (LU) and data heterogeneity (DH) robustness.
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Appendix A. Proof of Main Theorem
To prepare for the proof, we introduce some notions.

* The client variance quantifies how much variables x and y deviate from its average model
across global steps:
o= LN 202
==Yl -x0)
i=1

and
1 @ _
= =" By -y
=1

* The client drift quantifies how variables x and y deviate from its averaged model across local
steps:

« _1l¢ (O+k  — ()2 _K
€t = ZEHXz - x| = Z
i=1 k=0

and

1 n () K-1
t)+ — _
~D By T =0 & =) e,
=1 k=0

where £ characterizes the accumulation of local steps for variable x and analogously &} for
y.

* The quality of correction that assesses the accuracy of the gradient correction across local
steps, aiming to closely align local updates with global updates:

= B4 v (X0,7) 5 (x0,30)
and

% = nL2EHC +V f<X(t (t)) —Vyf <X(t)’Y(t)>JH2F

* The consensus distance for variable y which quantifies the difference between the averaged
value §(*) and the optimal value (when x equals its average X(!)) of y(*) = arg max, cpa, f %0, y):

e =y" -3y

With these notions we present recursion bounds for the aforementioned client variance and
client drift, along with the quality of correction, for both variables x and y. We finally discuss the
consensus distance specifically for variable y.

We first bound the local drift for variables x and y as

Lemma 2 Suppose ¥, n < SK% we have

2
£X < BKEXH12K2(nX)2 L2 +12K° ()2 L2 F 412K 3 ()2 L2, + 123 (nX)2E qu>(s<(t>)H 32 (57%) 202
and

EY <3KEY + 12K2(nY)2L2EX + 12K3(nY)? LY + 6 K3(nY)2 L% 4 3K%(nY )% 0
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Set ¥ = n¥n¥ and ¥ = nYnY. We now bound the client variance for variables x and y, as

follows

Lemma 3 We have

6K x2L2 6K2 x2L2
=< (1-2) = 4 SKUETL (5g<+gz)+(’;) W+ K ()20

p

‘—‘t+1 t

In the upcoming we bound the quality of correction for variables x and y

/P

Lemma 4 Suppose n*,n¥ < NI have
p 30 12K2 L2 5 5 24K2(n
i < (L= G) ot (6 &)+ (207 + (%)) et EHV‘I’ O +2
272 2 ) 2
y P\ y 30 vy | 12K°L 9 9 24 K4( o
Wor < (1= 5) 4 (6 + &)+ (2079 + (7)) et o R =
“)
In the following we bound on the consensus distance for variable y
Lemma 5 Suppose n* < 4%# and ¥ < ﬁ we have
KnvL 16k3K (n 8nY
1 < (1 _ 20 )et+12nym (EF+&Y) + "‘7EHV<1> H 77 P
6K ny
We further have the following bound on E®(x(*+1)
Lemma 6 Suppose n* < m we have the following
XK 2 K(n* 2L
E [@()‘((t+1)) - <1>(>—<(t>)} < —"TE Hv<1>(>-<(t>)H + 2 L2 (EF + EY) + 2% Key + WUZ’
Let v > 1 be a global constant to be determined in our upcoming Lyapunov analysis. In light of
Lemma 6 we set the Lyapunov function as
1
M =E [cb(ic(“) - <I>(X*)} + B LY + BV LY + AXK2 LY Py + AYKPLA (0P + C 2
K
)
Then we have the following recursion for (5):
Lemma 7 Suppose i} = ”C with 0y = W, r=n =v- p, then one can choose global
constant v > 1 such that Ax = AY = W, B* = BY = and C = 4 SO as to ensure
C¥ = 0(1) and CY = O(1). We have
K(n*)°L Y
Hpr — A< C’ijnXIEHV(I) %(1)) H (KL) (7 po? o BVLE oo 81

Ly BE(PPL 612 (1Y) L2
< (1-g) T G ) + W+ Ko

nLKp
(6)

With all preliminary lemmas at hand we are ready for the final proof of our main theorem.




DECENTRALIZED GT FOR FL

Proof of Theorem 1. Taking telescoping sum on both sides of (6) fort = 0,1,...,7 — 1 gives

1 1
T («%’%H—%’i):f(%—%)
t=0
K(n*)?Lk 8nY
XK E|vex t>” L kL2 (eyo? + KOLE o o 807 o
1Kn TZ v )2 (n¥)’0® + - nLEp”
yielding
LN g o} < o= 1 0Lk , Skrm 8
— % < v
T; H (% )H -  TCY Knx+ anfU + Clnx ot nLijKQpnxJ
< Sy 1 77XL’<02+ CZKLz(ﬁX)202+ 8CnY o2
~TCY¥Kn* nC¥ C¥vdpt nLCFK?pn*

(N
Given desired accuracy € > 0 since we want the expected squared gradient norm of the randomized
output ~ 3"/ 'E HV(I)(X“))H2 < 4¢? we need to calibrate given the choice of C¥, CY, n* and
7¥. We make K 2 \/Lnfp% so the last term is bounded by £2. Using stepsize tuning lemma exempli-

fied by Koloskova et al. [6, Lemma 17] guarantees the existence of constant stepsize such that the
average of accumulation of gradient is upper bounded by

T-1 2

1 2 o2 LA oL \3 KL
1 ON | 0 0 K LA
T;EHV‘P(X )H —O< nKT +<p2,ﬁKT> T )

STk k) LA,
Here since the initialization is shared across clients we have x(©) = XE ) forall i € [n] and the
way correction terms c?’(o), cg”(o) are defined ensures 7% = O ( FxO) — f(x*) + ) and

g =0 <%>

Appendix B. Deferred Auxiliary Proofs

so the complexity of communication 7" given local steps K is O (n ot T+

Klip

B.1. Proof of Lemma 2

Lemma 8 Using Assumption 2 and Young’s Inequality we have
2 2 2
E Hvxf (x@),y(t)) H < 2L2%, +2E HV@(X(”)H E HVyf (}‘{(t),y(t)> H < L%,

Proof [Proof of Lemma 8] We can write

[ (0, 9) [ <[] (£0,5) ~ s (x9.51) s (20, 5)

< 2L°E Hy(t> - y“)H 49 pr(x(“)u = 21%, +9E HV<I>(5<“>)H2

10
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Moreover,
£ (<0, 5) [ - 2, (<0.59) - 5,5 (0.9) [ < 20

The equality in (8) holds due to the fact that V f ( , y(t)) =0. [ ]

Proof [Proof of Lemma 2] For K = 1 the inequalities obviously hold since £ = EF = %E HX(t) - X® H?

and & ==Y = LE||[Y® —Y® H? and other terms on the RHSs are positive. For K > 2 we have

ney, =E HX<t)+k —X® Hi

—F HX(t)+k—1 X (VXF <X(t)+k—1’ y®O+k-1. 5(t)+k—1> i Cx,(t)) _X® H
<1+K1>EHXt)+k 1 (t)H2+n(77§)20'2

+ KR Vo f (XOH1 yOF1) — g, p (X0, ¥0) 4 ¢

2

F

v ( Y<t>) (I—J) + Vif (X@),Y(t)) JH2

< <1+K1_1+4K(ng‘)2L2>EHX<t>+’“—1 “H AR (L2 |y (4 ?“)Hi

=q

AR (L 4+ 2K ()0 [V f (30, 50) | 4+ )20

< ¢ x© - X0,

+ ki:lqr <4K(772‘)2L2]E HY('S)H“_1 - Y(t)H + 4K(770)2L2n7t + 2K (nY) nE HV f ( (t)> H +n nc) 2
r=0

If the condition 7X < g7+ holds, then it follows that 4K (1) XY < o < m. Given ¢ > 1,
it can be established that ¢¥ < ¢ < (1 + 2+ m> < e < 3 and YF g <
K¢® < 3K. Now, we can obtain a bound on client drift for variable x

K-1

2
EF = ey < BKEF +12K2 ()2 L2EY + 12K ()2 L2 + 6K° () E |V (3, 50) ||+ 8K ()0

k=0
©)

Similarly, a bound on client drift for variable y can be formulated by

K-1
2
=3 e, < BKEY + 12K200) 212 + 12K° ()21 + 6K R E Wy s (%O, 30 |+ 8K ()%

k=0
(10)
Using Lemma 8 in (9) and (10) will complete the proof. |

11

/
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B.2. Proof of Lemma 3

Proof [Proof of Lemma 3] Using the update rule from Algorithm 1, we can bound the client variance
for variable x

_ 2
nZy, = B[00 - x40

2

K-1
) (X(t) o Z (VxF (X(t)+k7Y(t)+k;§(t)+k) + C;c,(t))) (W —J)
- F
() K-l 2
< (1-pE (X(” =i > (Tof (XOTE YO CW))) T=3)|| +nK(*)>e>
k=0 P

<nK@fF¥4%1+aX1—WEHXma_JWi

(it n*)’E
(1+2) o

(b) 2
2 eyt (1) g0 xo

<K( ) L2||I JH2 <Z HX(t)+k X(t

+EK2(n ]EHV F(X0,¥0) (1= 3) + €20

2

Kf Vif (X Y OF) - KV, 7 (XO,YO) + KV f (x<t>,s?<t>)] (I-J)+KC>®

k=0
2
F

F

_|_

+ Z EHY —Y®

F>
272

6K 2L? 6K
< (1- D) nzr+ O v ey + T o

6
P

where we used Assumption 4 in (a) and a = %, p < 1in (b). Similarly, we can derive an upper
bound on client variance for variable y, thereby concluding the proof. |

B.3. Proof of Lemma 4

Lemma 9 If we initialize C*(©) and C¥(©) as below

0 = v, (x©,y0;8) + % Zn: VB (x0,y0;¢)
cz}’v(o):_vai< 0 y ) ZVF( ”5-)

then the averaged correction for variables x and 'y in any communication round equals to zero.

1)

Proof [Proof of Lemma 9] According to Algorithm 1 we have

cutDy = =] 4 (X(t) _XO+K ) (W -T)J = Cco®]

KX

Using the initialization assumption in (11), we have C*=®J = C%(0J = 0. Similarly, we have
cvy =cv0]F = 0. |

Let AY,, = E[[xt) —x®| AY,, = E ||y*D — 3® . We have

12
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Lemma 10 The sum of averaged progress between communications for variables x and y can be
bounded by

AF L+ A S2KE (079 4 (07)?) (&5 + &) +2K°L” (2(7)” + (n)?) &
0.2
AR (%) HV<I> ( )HQ n KT ((7)? + (n*)?)

Proof [Proof of Lemma 10] First, we derive an upper bound on the averaged progress for variable
x as follows

= B0 20— 50, (0 00) 1 K

n <
i,k

—

2WZE\\vxfi(xgt>+k,ygt>+k>vxfi(w OV o s (0.9 [+ K

5 s (x5t 5

< 2K (n*)*L? 3 <IE ngt)% _

n n

®) x\272 (ox y 2/ %12 2 —(t) 2 KU:%UQ
< 2K (n¥)2L2 (£ + &) + 2K2(n*)? (2L Et—|—2EHV<I)(x )H +

12)
Similar to the above derivations, we have

2
AY :EHy(tH)_y(t)H < 2KP(Y)2LA (EX + &) + 2K2(n 2EHVyf< )H
(c) K(nY)252
Lo (2L (6 + &) + 2K (Y 212, + L
n

(13)
We used Lemma 9, 8, and 8 in (a), (b), and (c), respectively. Combining (12) and (13) completes
the proof. |
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Proof [Proof of Lemma 4] We have

2

nI? no
’Yt—i-l K
2 2
_ @, (t+1) 5 (t+1) (DY (7 _ H _no”
—Ellc +fo(X Y )(1 |, -

_E Cx()W—FiZV F(X(t)+k YO+ £t +k) W — 1) + Vy f( X(t+1) Y(t+1)) (I-J)
K—

1

=0

(V f( X+ Y(t—l—l)) V. f < X0y (t)) H

< (1+a)(1 —p)nL*yf

s (1 . ;) [HW_IHQL <EHX X(t)Hz +EHY(t”k _Y(t)H2>
k=0

o (e 50 el o))

—
=

<b) « 6 (4AL*n N
(1—§)nL2 ¥+ = < e (EX +&)) +nL? (At+1+AtyH))

where in (b) we applied « = £, > > 1, and in (a) we applied Assumption 4 and the fact that

1
' p
(czv“) + Vo f (X“), Y<t>) (I- J)) J=C"0F 1V, f (X@,Y(ﬂ) J-J)=

where in the last equality we used Lemma 9. Using Lemma 10 to bound A¥, | + Ag:rl we have

24
s (L= B) st (5 w22 + 12K(77y)2/32) (& +7)
N 12K2[2 24K2%(n 6Ko? ((n)? + (n¥)?) N o?

<E (C‘”’(t) +Vif (X@,Y(t)) (I-J ) ( ! 3 VS (X“Hk Y“Hk) Vaf ( ),y >)> (W —1)

; (2(7%)% + (11¥)?) &0 + IEHVQ) ®)) H

np KIL?

Applying the conditions on the step sizes will result in (3). In a similar fashion, we can show (4). B

B.4. Proof of Lemma 5

Lemma 11 Using Proposition 13 and assuming that n¥ < ﬁ we have the following bound on
E Hy(ﬂ - y(t“)HQfor any o > 0:

E K77502

1
y® -y H (1+a)A—EKnpu)e + <1 + a) (Y )2LPK (EX+&Y) +

14
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Proof [Proof of Lemma 11] If we replace x = X(!), y = (V) and y’ = y(*) in Proposition 13, we
have

Vy FEO, 30T (70— 50) + [y, 30|+ Ly - 5012 <0 aa
We can also write that
E Hy(t) _ 0 _ vy f (,—{a), 5,@)) H2
) ‘ §® _ 5,(t>‘  oKmE <y<t> EEOR (,—(( F(t >)> + K2(P R Hv f ( (t)) H2

S (w—y<t>,vyf<x<t>,y<t>>> e o (x50

@ .
<El|y

H> (L—Kn'u)e

|
—~
o~
N>

2
+2KnY <

In (a), we used the assumption that 7Y < 1+ and (14). Now, we can write

E|ly® — y(t+1)H2 _ K”E“Q OR|g®» g0 _ % Z; VyF; (th)“‘k’ygt)‘f'k;f(t)—l—k) 2 _ KZL;UQ
<E|lg® -y — kp¥v, s (>—<<t>,y(t>) _ % Zvy £ (x§t>+k7yz(t)+k) n % Zk:vy £ (,—{(t),ym
<(1+a)E Hym — ¥~ KOy f (30,5 )H

Hfen) ZEHV ) e )
<(1+a)(1_Kth+< ) K (% + &Y)
where in step (b) we used Lemma 9i.e., 2 Y. cly’(t) =0. n

15
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Proof [Proof of Lemma 5] We have

o (t+1)

(a) ) B 2 1 2
1 < (14 B)E |y - y(t“)H + (1 + 6) E|ly y(t)H
S@+8)1+a) (1 - Ky p) e

1 1 2 K(nY)202
+(1+5) (1 + a) (P )2LPK (EF+ &)+ (1 + E)KQE Hi(t-i-l) _ i(t)H a4 5)M
© (K 61Y L2 Y o2
§<1 w)’fﬁ (e
3 H T
4 ’ K(n* 2 2
+ K:yu <2K(77X)2L2 (5,gx +(€ty) +4K2L2(77x>2€t +4K2(nx)2E“V(I)(i<t))"2 n (nn)o'>
Yy 3 X2
_ <1_K17 L 16Lx K(nX) >€t
3K 7’]}’
8L,‘<;3(77x)2 v N v 16K3K(nx)2 L 9 4:‘€3(77x)20'2 4773'0—2,@
+ <77y + 67 LH) (Et +€t ) + TE"V(I)(X )H + v L -

Using the assumption 7* < 4\’}% completes the proof. In (a), we used the bound in Lemma 11

for the first term and Proposition 12 for the second term. In (), we replaced « = 8 = % and
used (12) in Lemma 10. |

B.5. Proof of Lemma 6

Proof [Proof of Lemma 6] Proposition 12 indicates that ®(-) is 2k L-smooth, and hence yields

(D) = ¢ [ x® - m (VxFi (Xz(t)+k’y(t)+k; 5é(t)+k> I C;c,(t))

n < ’
ik

< @(i(t)) + <V<I>(x(t)), _ZTX %: <vxFi <X§t)+’<?7 yl(t)+k; gi(t)Jrk) 4 Czc,(t)>> L kIE H)—((tﬂ) _x® H2

=U
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Further derivation of an upper bound for E[U] as follows gives

X

E[U] = E <v<1>(>—<<t>), -y (VxFi <x§.t)+’“, y ) 4 cf’(t)>>

n <
i,k

- s )

1y

— K <vq>(,—<(t))7 % Z (foi (Xz(t)—&-k’ ylgt)+k)

ik

—Vxfi (x”),y(“) + Vx fi <5<(t), ) Vi fi ( Y )> + Vfi ( Y (t))>>

— —Kn°E Hwb(i(ﬂ)H?

(T 1) B (<0.5) Bk (<0.5) B (<.5))

ik

S_

o

2
S (g (507 ) Tt (50,50 e (5.7) 5 (5.5 )

2

< _

2

,(t))H —|—’I7XL2 (gtx_‘_gty) +K77XL251€

Now, we apply the above upper bound for E[U] and (12) in the proof of Lemma 10 as follows
E [cp(sét“)) _ cp(sc@f))} < L2 (EF + &)

<EQ(xW) + (n*L* + 2K (1¥)2L3k) (EF + &)
n K(n*)?Lko?
n

o aafe

+ (L2'I7XK+4K2L3('I7X)2I€) £ 4 <4K2(7]x)2L/{, _ 772K> E Hv(ﬁ(i(t))HQ

Applying the assumption n* < 7. completes the proof. |

16K

B.6. Proof of Lemma 7

Proof [Proof of Lemma 7] According to the Lemma 2, we have

L
0< —FE*

T ES + BB LY By + 128K (17) i L&Y + 125K () " P

2
2B K2 (7) Y e, + 12K (P LE | Vo (x )|+ 3E*K (1) Lo?

L
0 < —EY =l &) +3EY L=} + 12EYK (Y )L + 12EY K*(nY)* L3~y + 6EYK?(nY)* L%, + 3EY K (n¥)* Lo
15)
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By applying the definition of .77 from (5) and using (15), Lemmas 2, 3, 4, 5 and 6, we have

Hiy1 —
_E [q)()—{(tJrl)) _ @(i(t))]
+ By L(EYy, — BF) + BV L(E),, — E)
+ AXKPLP(Y)* (0 — ) + A KL (nY)? (31 =)

1
+CKI€p(Et+1 —&)+0+0

< 2L (EX + &) + 202 Ke, — #E qu>(5<<t>)H2 | KoY Los
+ B*nY L ( 12):2‘ + GK(T];)ZLQ (EF+ &)+ GKQ(ZX)QLZ v+ K(r]x)202>
+ BYnYL (—SEZ + GK(U;W (EF+E&)+ (H{Q(T]I)W’yt" + K(ny)202>
ey (B + S ven + EEL e+ o) e+ B g vuo |+ f;;)
4 (Bt + 2 e v e+ EEL ety + o0 e+ 2 g vae |+ 222)

1 KL 16853 K (1
— (- 120 L (EX + & 7]EHV<I> ® H
+CKW< o et + 120 Le (EXF + &) + L )

| 8no’s
nL

L
= BX Y € + 3E* LY By + 125K (n?) nY L*€Y + 125> K (nY)*nY L~
2
2B K2 (i) 20 L3¢, + 125K 2 (%)Y LE Hv<1>(5<<t>)H + 3E*K (7)Y Lo?
L
— Ey?ngety +3EYLYEY + 12EY K (¥ )3 L3EX + 12EY K% (Y )3 L3~Y + 6 EY K2(n¥ )2 L3¢, + 3EY K (Y )3 Lo

Further rearranging gives

L
Hisy = <CF - (KL + CF - ()KL + CF - EfnY L+ CF - EnY L+ Y &

L LnY 2
+OY e+ 5 X Ki¥E HW(::M)H
cy K( *V2 Lk 8y
4 KL y\3 2 S ) 2 2

18
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where constants C¥, CY, C¥, CY, C¥, C5, C¥ and C are chosen such that

x\2
—A"%+B"Lm) +12B% < OF
p
y\2
,Ayg+BYM+12EY § Cy
2 P !
— P y3px <o
2 = 2
fo§+3Ey§C§’
272(,%\2 272(y)2 V27272 V27272
6K°L(n™) +By6KL(77) +Ax30(nc)LK +Ay30(nc)LK

P p P
272 2 12nY
+ 12EYK2L2(pY)? + 20°K L + C—"% < C¥
y 12K4L* 12K4L*
O AT )7 B A (1) 301"
+12EXK2L2(nX)?k2 + 6EY K2L2 (Y2 + 2LK k2 < C5
1 24K3L3 24K3L3 16K20*
_ AX Y)3,,% AYZ T 7 (Y 3,.x C
i ()" n™* + ()"0 + C et v
+12EXK LY e < o
ns
Cy
BX(n¥)? + BY(nY)? + 24% + 2AY 4 3E* + 3EY < —%
p

. Y
By letting EX = EY = v, ny < 73005{](” e < Z%, X =n¥ =pv, B*=BY = %v, AX =AY =

L7903 4+ 24v), and C = L., there exists a global constant v > 1 that ensures C*, CY, C¥, CY, C%,
P 24 g 1 2 3

cy, C; <0,CF <0and CZ > 0, hence proving Lemma 7. [ ]

Appendix C. Toolbox Lemmas

We introduce some technical lemmas we will use from time to time in this paper. Proofs are either
standard or can be found in provided references.

Proposition 12 ([9]) Under Assumption 2, ®(-) is L(1+r)-smooth. Furthermore, y*(-) = arg maxycga, f(-,y)
is k-Lipschitz in the sense that for any x and x'

ly*(0) =y (D < e f[x = x|

Proposition 13 ([1]) Under Assumption 2, for every x € R% and y,y’ € R%, we have
1 u 2
Vyfxy) (y—y) + 3T IVy f(x,¥)]1 + 5 ly =¥y'["<f(xy") - f(xY)

where yT =y — %Vyf(x, y).

19
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Lemma 14 For a set of arbitrary vectors ay, . . ., a, such that a; € R% we have
- . — 12
TlZE;‘% < n,zz;’h%’

1= 1=

Lemma 15 (Young’s + Cauchy-Schwarz Inequality) For any vectors a,b € R% and o > 0 we
have

1
2(a,b) < aflall” + ~[|b]*

and 1
la+b)* < (1+a)llal* + (1 + a)HW

20
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