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Abstract

We present a novel approach to formalise and solve search-based problems using
large language models, which significantly improves upon previous state-of-the-
art results. We demonstrate the efficacy of this approach on benchmarks like
the logic puzzles tasks in Zebral.ogicBench. Instead of letting the LLM attempt
to directly solve the puzzles, our method prompts the model to formalise the
problem in a logic-focused, human-readable, domain-specific language (DSL)
called Logic.py. This formalised representation is then solved using a constraint
solver, leveraging the strengths of both the language model and the solver. Our
approach achieves a remarkable 65% absolute improvement over the baseline
performance of Llama 3.1 70B on ZebralLogicBench, increasing its accuracy to
over 90%. This significant advancement demonstrates the potential of combining
language models with domain-specific languages and auxiliary tools on traditionally
challenging tasks for LLMs.

1 Introduction

Large language models have revolutionised the field of natural language processing, achieving state-
of-the-art results in various tasks such as language translation, text summarisation, and question
answering. However, despite their impressive performance, LLMs have historically struggled with
certain tasks that require a deeper understanding of mathematical and logical concepts. For instance,
Kambhampati ef al.|[2024]] demonstrated that LLMs are unable to plan and reason about complex
problems, highlighting the need for further research in this area. In this paper, we focus on improving
the performance of LLMs in solving Logic Grid Puzzles, which we explain in more detail in Sec.[I.2}
as well as first order logic tasks. We present the following research contributions:

1. Logic.py: We introduce a domain-specific, human-readable language called Logic.py, which
facilitates expressing logic and search-based problems by LLMs, and simplifies human
annotation processes for fine-tuning.

2. Polymath Logic Agent: We implement an agentic solver engine called polymath which
accepts search-based, informal problem statements, formalises them in Logic.py and solves
them using a constraint sovler.

3. ZebraLogicBench and FOLIO Evaluation: We evaluate the efficacy of this approach on
the logic puzzle benchmark ZebraLogicBench |Lin et al|[2024] and the first order logic
benchmark FOLIO [Han et al.| [2022].

The general case for a DSL is not unlike that for intermediate languages in compilation. Given a new
programming language it is “obvious” from the Church-Turing thesis that a mapping to assembly
language exists, but is not necessarily obvious if a mapping with good efficiency properties (say)
exists, and the compilation research community has found it helpful to use intermediate languages
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to structure the design of compilers. Here, it might seem likely that constraint solvers (automatic
theorem provers) could be helpful to approach logic problems stated in natural language, but just
how helpful or the best way to do so is not a priori obvious; like in compilation, our thesis is that
DSLs can help. A similar analogy is the relation between SQL and first-order logic; SQL provides
facilities that make for briefer or more direct human expression than their expansions into FOL. A
similar example for Logic.py is presented in Section 3.1}

Our results support the case that this DSL can be helpful in structuring the mapping from natural
language to that of a solver. In particular, Berman et al.|[2024] evaluate their approach against a
benchmark set of 114 Zebra puzzles. Their multi-agent system has a more sophisticated translation
process which includes a refinement loop, but this approach raises the puzzle accuracy of GPT-4 from
23.7% to 55.3%, compared to our improvement from 24.9% to 91.4%.

1.1 Related Work
1.1.1 Formal Reasoning and Theorem Provers

Prior research has explored techniques to enhance the ability of LLMs in these central reasoning
tasks, such as chain-of-thought prompting and introducing symbolic representations. However,
according toBerman ef al.|[2024], these frameworks often struggle with complex logical problems
like Zebra puzzles, partly due to the inherent difficulty of translating natural language clues into
logical statements. They propose integrating LLMs with theorem provers to tackle such challenges,
demonstrating significant improvements in puzzle-solving capabilities. Our approach significantly
outperforms the gains of 10-15% reported in their work.

Logic-LM is a framework that combines LLMs with symbolic solvers to enhance logical reason-
ing capabilities, demonstrating substantial performance improvements over traditional LLM-based
approaches [Pan et al.| [2023]]. |Ye et al.| [2023] introduce Satisfiability-aided Language Modeling
(SatLM), a method that combines large language models with automated theorem provers to enhance
reasoning capabilities, demonstrating state-of-the-art performance on multiple datasets. Our approach
again compares favorably to their results, and we also focus on deriving human-readable constraints
that can be easily debugged and applied in human annotations for training.

1.1.2 Neuro-Symbolic Approaches

Al-Negheimish et al.|[2023]] highlight that the challenge of numerical reasoning in machine reading
comprehension has been addressed by various prompting strategies for LLMs. However, these ap-
proaches often struggle to provide robust and interpretable reasoning. They contrast these techniques
against their neuro-symbolic approach, which has shown promising results by decomposing complex
questions into simpler ones and using symbolic learning methods to learn rules for recomposing
partial answers. Our work focuses on logical rather than numerical reasoning, but the two techniques
are ultimately orthogonal and could perhaps even be combined.

1.1.3 Augmenting LLMs with External Knowledge

The LLM-Augmenter system, proposed by [Peng et al.|[2023]], addresses the limitations of LLMs in
real-world applications by augmenting them with plug-and-play modules that ground responses in ex-
ternal knowledge and iteratively revise prompts to improve factuality. Similarly, the Logic-Enhanced
Language Model Agents (LELMA) framework, proposed by [Mensfelt et al.|[2024], integrates LLMs
with symbolic Al to enhance the trustworthiness of social simulations, addressing issues such as
hallucinations and logical inconsistencies through logical verification and self-refinement. Our ap-
proach is agentic as well, but focuses on making formal reasoning tools as accessible as possible to
the model.

1.1.4 Improving Mathematical Reasoning

Imani et al.| [2023|] propose a technique to improve the performance of LLMs on arithmetic problems
by generating multiple algebraic expressions or Python functions to solve the same math problem in
different ways, thereby increasing confidence in the output results. Similarly, Fedoseev et al.| [2024]]
propose a method to enhance LLMs mathematical problem-solving capabilities by fine-tuning them
on a dataset of synthetic problems and solutions generated using Satisfiability Modulo Theories



(SMT) solvers, specifically the Z3 API. Both approaches are focussed on mathematical reasoning,
whereas our engine focuses on logical reasoning in propositional formulas.

1.2 Logic Grid Puzzles

We evaluate the effectiveness of our approach on the ZebralLogicBench benchmark presented in
Lin et al.|[2024). ZebraLogicBench is a dataset of 1000 Logic Grid Puzzles, also referred to as
Zebra Puzzles. These puzzles consist of a series of clues about features of entities in a described
environment. In order to solve the puzzle, one has to guess the correct features of all entities, while
respecting all the information provided in the cluses. We provide a full example of such a Zebra
puzzle, including the expected solution, in the technical appendix in Fig.[6|and Tab. [5] respectively.

2 Preliminaries

In this section, we provide an overview of the formal reasoning engines that serve as the foundation
for our approach. Specifically, we focus on their key properties and capabilities that are crucial to the
success of our implementation.

2.1 Constraint Solvers

Constraint solvers are computational tools that enable the efficient solution of complex constraint
satisfaction problems. In the context of formal reasoning, constraint solvers play a crucial role in
automating logical deductions and verifying the correctness of systems. At their core, constraint
solvers explore possible assignments of unknown or nondeterministic variables in order to satisfy a
set of constraints in a formula. Boolean satisfiability (SAT) solvers are among the most well-known
types of solvers in computer science, where the solver is allowed to assign free boolean variables a
truth value in order to satisfy the clauses in the formula. While SAT solvers can solve NP-complete
problems, mapping problems directly to SAT can be challenging. In this paper we instead use higher
level solvers and APIs that provide support for more complex domains as well as other built-in
features.

2.2 SMT solvers

SAT solvers are incredibly powerful for solving propositional logic formulas, but they provide
limited supports when reasoning over complex domains that involve arithmetic, arrays, or other
data structures. In essence, all these domains need to be mapped to boolean formulas when using
SAT solvers, such as mapping finite integer types in programming languages to a vector of boolean
variables, one for each bit of the finite integer type.

Satisfiability Modulo Theories solvers extend the capability of SAT solvers by incorporating additional
theories, allowing them to reason about richer domains. An SMT solver allows users to express
constraints not just using boolean variables, but also variables of numerical, string, array, or data
structure types. Additionally, SMT solvers add support for explicit quantifiers, allowing users to
express quantifier alternations (e.g. "for each X there exists a Y such that..."). This is also a key
feature why we use SMT solvers as one possible reasoning back-end for Logic.py, specifically for the
first-order logic problems in FOLIO Han et al.|[2022].

2.3 CBMC - Bounded Model Checker for C and C++ programs

CBMC [Clarke et al.|[2004] is a static analysis tool designed for C and C++ programs. It operates
by mapping programs to formulas in a back-end solver, typically SAT or SMT, which are satisfiable
if and only if the mapped program exhibits a specific property. This capability enables CBMC to
effectively check programs for bugs or other properties of interest. Notably, CBMC is powered by the
underlying CPROVER static analysis engine, which also supports other language front-ends, such as
the JBMC [Cordeiro et al.|[2018] Java front-end.

Since CBMC implements a mapping between programs and SAT or SMT formulas, it can serve as
a convenient front-end for such constraint sovlers, exposing an API that allows expressing SAT or
SMT formulas as C programs with free input variables. Expressing formulas in this fashion makes



many constraint solver tasks more accessible for human developers, and it is a core hypothesis of this
paper that it equally simplifies the use of constraint solvers for LLMs. We describe this DSL that we
expose to the LLM in more detail in Sec. [3]

3 The Logic.py language

Our goal in designing Logic.py was to provide a streamlined API language that allows an LLM to
efficiently express search-based problems and leverage a constraint solver. We optimised for the
folowing criteria:

1. Human-Readable: Logic.py should be human-readable, so that it can be interpreted by any
programmer with Python experience. This faciliates debugging as well as annotation of
training data for fine-tuning to improve the performance of models when using Logic.py.

2. Robustness: The language should minimise the surface area for syntax errors.

3. Conciseness: The model should be able to express the necessary constraints to solve a search-
based problem without boilerplate or needing to worry about unrelated implementation
details of the programming language.

4. Expressiveness: While common constraints, such as uniqueness of a property, should be
easy to express in our DSL, the language must not be restricted to just these common cases.
Instead, it must allow the LLM to express arbitrary constraints in the underlying constraint
solver framework if necessary.

To provide a good basis for our DSL in terms of robustness and conciseness, we decided to not
start with CBMC’s native C as a base language for Logic.py but instead, as its name suggests, we
selected Python for this purpose. We use libCSTF_] to transform Logic.py to C for analysis by CBMC,
as explained in more detail in Sec.[5] Python allows the model to introduce new variables without the
need for explicit, typed declarations, and similarly, these variables can be reused for other values later
on without needing to worry about type compatiblity.

3.1 Type Decorators

In order to further improve the conciseness of Logic.py, we borrow well-known language features
from existing languages and combine them in our DSL. As an example, expressing uniqueness of a
property in SMT directy requries code similar to the example in Fig.

(forall ((x T) (y T))
(=> (distinct x y)
(not

(= (id x) (id y))))

id INT UNIQUE

Figure 2: Uniqueness constraint in SQL

Figure 1: Uniqueness constraint in SMT

The snippet in Fig. [I] states that two distinct objects of type 7' should not have the same id property.
Compare this to expressing the same constraint in the Data Definition Language (DDL) of the
Structured Query Language (SQL) in Fig. 2| Motivated by this example, we introduced a set of
custom type decorators to Logic.py which allow to express common property constraints in a much
shorter, less error-prone way. We provide the full list of Logic.py type decorators in Tab.

3.2 Free Variables, Assumptions, and Assertions

A key concept in using constraint solvers are free variables. By default, any variable which is not
explicitly initialised in Logic.py is assumed to be a free variable. Consequently, the constraint solver is
allowed to assign it any value in order to find a satisfying assignment for all the specified constraints.
We also say that such a variable has a nondeterministc value.

"https://github.com/Instagram/LibCST



— Feature Description
Decorator Description e — - - —
UniquelT] Equivalent to type 7, but no two ob- Uninitialised Uninitialised variables receive a nondeterminis-
q ects of the same cla;s can have the variables tic value. When solving search-based problems,
JS ame value for a property marked the solution is automaically marked nondeter-
Uniaue. The behrz)l vigur )i/s equiva- ministic by our engine and the model can con-
lent 30 t};e SQL UNIQUE ke (\lvor d straint the solution according to its requirements.
Domain[T, D] | Restricts the possible valuesyof thé assume(pred) | Constrains search paths for solutions to only the
\ :
property of type 7' to the values in values .where pre dis true. -
D, where D is either a sequence of assert pred In static analysis verification scenarios, asser-
vaiues or a numerical rance. This tions must be true for all possible inputs satisfy-
a moré concise way of exgréssin ing assumptions. In our search-based problem
value domains in z/he CPII){OVEE harness, they are equivalent to assumptions.
framework using assumptions nondet(list) Returns a nondeterministic but valid element
lis1[T, 5] Creates a fixed-size list of ele'ment from list. This can be used in combination with
’ tvoe ‘T’ and size S, This is equiva- assumptions to find elements in a list that satisfy
1Z§t to fixed size arra-l s in ANqSI C a predicate, then express additional constraints
Y . about them.

Table 1: Logic.py type decorators

Table 2: Logic.py nondet features

The CPROVER framework further allows users to specify assumptions and assertions. These two
features work in tandem: Assumptions act as preconditions, usually expressed over free variables, to
constrain the solver’s search to valid or interesting inputs. Assertions, on the other hand, represent
safety properties, for which the solver tries to find a falsifying assignment in order to prove the
presence of a bug. Both of these features are exposed in Logic.py via the assume(...) function and
the assert... statement, respectively.

In Logic.pyand the polymath engine, these two are actually treated interchangeably. That means we
interpret assertions specified by the model not as safety properties to be checked for violations, but
instead as requirements on a valid solution. Interpreting assertions as assumptions and passing only a
single reachability assertion to the constraint solver is a common pattern in program synthesis use
cases David e al.|[2018]]. We will explain the structure of constraints we produce at CPROVER
intermediate representation level in more detail in Sec.[5] All nondeterminism-related Logic.py
features are summarised in Tab. 2l

4 Search Problem Formalisation

After reviewing the features of Logic.py in Sec.[3] we now review how we prompt the model to
express search problems in this language. We provide the full prompts in our open source agent
project polymat Note that all our prompts are zero-shot in that we do not provide any full Zebra
puzzles as examples to the model. Instead, we only explain Logic.py and how to use its extended
features to express generic search-based problems.

4.1 Solver backends

At the time of writing, polymath supports two solver back-ends: CBMC for SAT and Z3 for SMT
problems. CBMC also has an SMT solver engine, but has limited support for quantifiers, which is
why we implemented a dedicated mapping from Logic.py to SMT. The CBMC back-end is intended
for the ZebralLogcBench benchmark in our experiments, whereas the Z3 back-end is used for the first
order logic tasks in FOLIO. Note that while the Logic.pylanguage remains fundamentally the same
irrespective of the back-end, the Z3 back-end allows us to reason more easily over unconstrained
lists using universal quantifiers. The running examples in the following sections will focus on a
ZebraLogicbench example and the CBMC back-end.

*https://github.com/facebookresearch/polymath



4.2 Describing a Result Data Structure

Before attempting to convert the clues in the natural language puzzle description to solver constraints,
we first prompt the model to simply define a data structure that can best represent a valid solution.
We ask the model to define this data structure in Logic.py and be as precise as possible with respect
to type annotations. This allows us to constrain the search space for valid solutions purely based on
the domain of the problem, irrespective of explicit clues and constraints. Fig. [3] provides an example
of the kind of data structure the LLM will generate.

class House:
house_number: Unique[Domain[int, range(1l, 7)]1]
name: Unique[Domain[str, "Alice", "Eric", ...]1]
#

class PuzzleSolution:
houses: list[House, 6]

Figure 3: Model Output Example: Result Data Structure

4.3 Constraining a Correct Solution

Once the data structure is defined, we prompt the model to generate a validation function that accepts
an argument of this type and asserts that it is the correct solution we are searching for. In the case
of Zebra puzzles, this leads to the model adding assertions corresponding to the clues in the puzzle.
This approach transforms the challenge for the LLM fundamentally: Instead of searching the solution
space for configurations that satisfy the clues stated in the puzzle, it just needs to be able to reason
about the clues themselves. Fig.4|shows a few example clues and how they can be formalised in a
Logic.py data strucutre chosen by the model.

def validate(solution: PuzzleSolution) -> None:
# Clue 1: Bob is the person who uses a Xiaomi Mi 11.

bob = nondet (solution.houses)
assume (bob.name == "Bob")

assert bob.phone == "xiaomi mi_ 11"
#

# Clue 3: The Dragonfruit smoothie lover is somewhere to the
# left of the person in a ranch-style home.

d = nondet(solution.houses)

assume (d.smoothie == "dragonfruit")

r = nondet(solution.houses)

assume (r.house_style == "ranch")

assert d.house_number < r.house_number

#

Figure 4: Model Output Example: Solution Constraints

5 Logic Agent Architecture

Fig. [8illustrates the full implementation architecture of our solver engine, starting with the formal-
isation steps outlined in Sec. ] Our engine converts these Logic.py constraints into an equivalent,
lower-level C representation using a libCST transformer. During this process, the type decorators
introduced in Sec. [3.T]are mapped to matching initialisation helpers in CBMC’s IR. An example of
this mapping is illustrated in the technical appendinx in Fig.

The validation function containing the constraints derived from the Zebra Logic clues is equally
converted into a C representation, and embedded into a search harness. In this harness, a nonde-
terministic instance of the result data structure proposed by the model is initialised using the type
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Figure 5: Logic Agent Architecture

decorator information, then constrained using the converted validation function. All assertions in
the validation function are converted into assumptions, and we add a single reachabilty assertion
to prompt the constraint solver to find an assignment for the nondeterministc puzzle solution such
that it satisifes all constraints. We provide an example of a CBMC ANSI-C harness in the technical
appendix in Fig.[]

5.1 Error Recovery

Due to the heuristic nature of the formalisation and constraint solver steps, our solver engine can fail
at various steps along the pipeline. The model might produce invalid Logic.py code to begin with,
leading to syntax errors in libCST. These errors are caught during the C harness generation, in which
case we revert to the original data structure generation step and start the process from scratch. We
currently do not provide any information about the syntax error to the model or ask it to fix its prior
mistakes, and such approaches could be explored in future work.

Our solver back-ends can also detect that a formalisation has no solution, i.e. is unsatisfiable, or
whether there are multiple solutions, i.e. the constraints are ambiguous. In general, logic problems
provided as user input may indeed be inherently contradictory, or might allow for multiple independent
solutions. Thus it cannot automatically be concluded that unsatisfiable or ambigous constraints are a
formalisation mistake by the LLM. However, if it is known beforehand that the problem must have a
solution, or must have exactly one solution, it can of course only improve outcomes to treat UNSAT
or ambiguous constraints as errors and restart.

For example, for ZebralLogicBench in our experimental evaluation, it is known beforehand that each
sample must have exactly one solution. For this reason we implemented restarting on UNSAT, but
did not yet implement restarting on ambiguity. For this particular benchmark, we did not observe any
significant difference in score in our experimental evaluation in Sec. [§] whether we restart on UNSAT
or not, since UNSAT results were extremely rare in our experimental runs. Future work should also
explore how well models can predict based on the input puzzle whether multiple valid solutions or no
valid solutions are plausible.

6 Experimental Evaluation

To evaluate the effectiveness of our approach, we conducted experiments on ZebraLogicBench, a
benchmark suite consisting of 1000 logic grid tasks. In order to run the evaluation independently,
researchers must request access to a private dataset hosted huggingface.co. We implemented a
benchmark runner that accepts this dataset as its input, which we share in our open source project



Model Puzzle Accuracy Cell Ac-
All | Small | Medium | Large | XL | curacy
grok-3-mini-fast-beta-high 92.6 | 98.75 96.43 935 | 76.5 94.63
03-mini-2025-01-31-high 91.7 | 99.69 97.14 87.5 | 75.5 95.7
Polymath Meta-Llama-3.1-70B-Instruct | 90.7 | 93.75 93.21 90 83 92.56
03-mini-2025-01-31-medium 88.9 | 99.69 97.86 88 60 90.41
01-2024-12-17 81 | 97.19 92.14 78 | 42.5 78.74
grok-3-mini-fast-beta-low 80.7 | 98.75 96.43 77 | 33.5 84.22
deepseek-R1 78.7 | 98.44 95.71 73.5 | 28.5 80.54
Polymath gpt-4o 77.8 | 91.88 79.64 | 755 55 76.34
Polymath claude-3-5-sonnet-20241022 76.9 | 85.31 78.57 76 62 80.58
03-mini-2025-01-31-low 74.8 | 99.38 91.07 64.5 23 72.6
ol-preview-2024-09-12 71.4 | 98.12 88.21 59.5 17 75.14
claude-3-5-sonnet-20241022 36.2 | 84.69 28.93 4 1 54.27
Llama-3.1-405B-Inst-fp8 @together 32.6 | 81.25 22.5 1.5 0 45.8
gpt-40-2024-08-06 31.7 80 19.64 25| 05 50.34
gemini-1.5-pro-exp-0827 30.5 | 75.31 20.71 3 0 50.84
Mistral-Large-2 29 | 75.94 15 2.5 0 47.64
Qwen2.5-72B-Instruct 26.6 72.5 12.14 0 0 40.92
Meta-Llama-3.1-70B-Instruct 249 | 67.81 10.36 1.5 0 27.98

Table 3: ZebralL.ogicBench Puzzle Accuracy Results

polymath. The output result of the benchmark runner is evaluated using the ZeroEva evaluation
suite provided by the benchmark authors.

Due to resource and time constraints, we only evaluated the effect of polymath on the models Llama
3.1 70B, GPT-40, and Claude 3.5 Sonnet. We run the logic agent implementation on a developer
server with 56 cores and 114GB RAM. We self-hosted Llama 3.1 70B on a clust wither 700 GPUs.
In this environment, running 100 tasks concurrently, full benchmark run takes approximatley 15
minutes. We evaluted only our own polymath agent implementation using this setup. All other results
listed were taken directly from the ZebralLogicBench leaderboard [Lin et al.|[2024]. All experiments
were performed on these off-the-shelf models without additional fine-tunging.

Tab. [B]illustrates that using polymath boosts the performance of all three models. Most notably, Llama
3.1 70B previously attained a new SOTA using our agent, with 91.4% accuracy, achieving a 20%
margin over OpenAl ol-preview. However, 03-mini and grok-3-mini-fast-beta-high since exceeded
this result by 1% and 1.9% respectively. However, our implementation still solves the most puzzles
in the hardest XL puzzle category, where it consistently provides the highest gains across all models.
This demonstrates that polymath can support models particularly on challenging reasoning problems.

As mentioned in Sec. referror-recovery, our experimental setup includes restarting on UNSAT, but
not on ambiguity. Removing this restart on UNSAT logic did not lead to any measurable decrease in
score across our experimental evaluation runs. In general, we restart at most five times in case of
formalisation syntax errors or UNSAT results before aborting. Independently, we also retry at most
five times if we receive an HTTP error from our LLM inference API, e.g. due to throttling. In our
final ZebralLogicBench benchmark run of 1000 samples, we observe 51 occurrences of unsatisfiable
constraints across all attempts and tasks, and 70 occurrences of syntax errors in Logic.py. Of the
9.3% of puzzles where our approach did not produce an entirely correct solution, in 2.9% of cases
we were not able to produce a solution at all in five attempts, due to the aforementioned syntax or
unsatisfiability errors. In the remaining 6.4% of cases, polymath produced a valid, but incorrect
constraint and thus produced an incorrect or only partially correct solution.

Overall, our performance gain is particularly striking when compared to how our base model, LLama
3.1 70B Instruct, performs without the help of a constraint solver. On average, it reached 24.9%
accuracy across all puzzles, compared to 91.4% accuracy with the constraint solver. We were unable
to evaluate the effect of polymath on grok-3 and 03-mini due to time and resource constraints.

*https://github.com/WildEval/ZeroEval



Model Accuracy
Polymath claude-3-5-sonnet-20241022 81.28
Logic-LM |Pan et al.|[2023)]] 78.92
Logic-LM Han et al.|[2022] 78.1
Polymath gpt-40 57.64
Polymath Meta-Llama-3.1-70B-Instruct 56.65

Table 4: FOLIO Accuracy Results

We further evaluated our secondary Z3 back-end on the FOLIO benchmark using the same three
models. As illustratd in Tab. 4] Claude 3.5 benefited the most from polymath support, and again
compares favorably to prior approaches.

7 Threats to Validity

While we believe we made a convincing case in Sec. [6] that auxiliary tools can significantly boost the
performance of state-of-the-art LLMs on challenging tasks, we would like to address potential threats
to the validity of our results. Firstly, we evaluated our engine thus far only against logic grid and
first-order logic puzzles. Our technique may prove less impactful when applied to other search-based
problems formalised by an LLM. This may be due to the fact that our Logic.py prototype is currently
incomplete and does not yet support some common Python language and standard library features, or
more fundamentally, that the formalisation of other search-based problems may not prove as tractable
for state-of-the-art LLMs as logic grid puzzles.

Furthermore, while our approach of using a tailored DSL to allow the LLM to operate an auxil-
iary tool yielded promising results, further experiments will have to show whether this approach
can be generalised to other categories of auxiliary tools and problem domains, such as numerical
computational programming languages or algebraic modeling languages.

8 Conclusions and Future Work

In this paper, we presented a novel approach to solving search-based problems using large language
models. By introducing the domain-specific language Logic.py and implementing an agentic solver
engine polymath, we demonstrated significant improvements in performance on ZebraLogicBench
and FOLIO benchmarks. Our results show that combining the strengths of LLMs with those of
constraint solvers can lead to remarkable advancements in solving traditionally challenging tasks.

The success of this approach highlights the potential for further research in this area. Some potential
directions for future work include:

1. Fine-Tuning for Logic.py: So far, we only used off-the-shelf models to power our polymath
engine. We plan to fine-tune models to better use Logic.py and further increase accuracy.

2. Extending Logic.py: Developing a more comprehensive and expressive version of Logic.py
could enable the formalisation of a wider range of search-based problems.

3. Improving the Logic Agent: Enhancing the agentic solver engine to better handle complex
problem statements and iterate on its mistakes (e.g. syntax errors) could lead to further
performance gains.

4. Applying the approach to other domains: Exploring the application of our method to
other, such as optimisation or mathematical rasoning, could reveal new opportunities for
improvement.

5. Investigating the role of LLMs in problem formalisation: Further research into the
capabilities and limitations of LLLMs in formalising search-based problems could provide
valuable insights into the design of more effective problem-solving systems.

6. Teaching neural nets to search like solvers: Our translations leverage powerful aspects
of constraint solvers: proof checking and search. It would be possible to decompose these
strengths. Solvers like Z3 have evolved subtle heuristics for approaching computationally
intractable problems that are NP-hard and more, and if we can train nets in a way that learns



these heuristics they might provide benefit more broadly than as the targets of translation-
based work. In this context, work such as this could provide baselines or targets for what we
would want out of the training.

7. Reinforcement Learning using Logic.py constraints: During our experimental evaluation,
we noticed that interpreting even a single clue out of n incorrectly can lead to a result table
where zero columns match the expected value, e.g. because the row order shifted. He have
started a reinforcment learning project where we score model answers not using Logic.py
constraints in to give the model semantic feedback (e.g. number of clues respected), rather
than syntactic feedback (e.g. number of correct cells in result table). This already shows
promising improvements in the model’s reasoning and coding capabilities.

Building on this project, our broader research aims to further explore the potential of combining large
language models with specialized reasoning tools. By pursuing these avenues of research, we believe
that it is possible to develop even more powerful and efficient problem-solving systems.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims in the abstract are based on the experimental section. We since
added an additional benchmark, FOLIO, but this does not affect the claims in the abstract.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We address limitations in the section "Threats to Validity". We also discuss
experiment configurations we were not able to carry out due to budget and time constraints
in the section "Experimental Evaluation".

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

e The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: The paper does not make theoretical claims and does not introduce theorems.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

 All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: This project was open sourced and was forked by users already. To guarantee
anonimity, we provide a ZIP file of the repository. The paper contains instructions of how to
attach polymath to a new inference service, since ours is bespoke to our company resources.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The project was open sourced and we provide a ZIP file of the repository for
anonimity. The datasets are publicly available on HuggingFace, and the repository contains
a script to download them.

Guidelines:

e The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: We did not fine-tune or train a model in this project. We only used test data
sets to evaluate the approach.

Guidelines:

* The answer NA means that the paper does not include experiments.
» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.
* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: The evaluation suite in our experimental evaluation is provided by a third party,
and we only provide the data as yielded by this suite. We repeated this evaluation multiple

times before initial and camera-ready submission to confirm our results, but otherwise
reported the results as output by this third-party suite.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We documented the hardware we used to run our experiments, apart from GPU
resources used in external third party services.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: To the best of our knowledge, none of the concerns in the guidelines are
violated in our work.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: The research performed does not directly expose such societal impacts.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

15


https://neurips.cc/public/EthicsGuidelines

11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We did not release a model. The paper only concerns itself with improving the
performance of existing models on logic tasks.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All licenses are respected and all data is properly cited.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: All newly created artifacts are documented in detail.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No crowdsourcing or research with human subjects was involved.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The core method development in this research did not involve LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Zebra Puzzle examples

There are 4 houses, numbered 1 to 4 from left to right, as seen from across the street. Each house is occupied
by a different person. Each house has a unique attribute for each of the following characteristics:

* Each person has a unique name: Alice, Eric, Arnold, Peter
* Each person has an occupation: artist, engineer, teacher, doctor
* People have unique favorite book genres: fantasy, science fiction, mystery, romance
* People use unique phone models: google pixel 6, iphone 13, oneplus 9, samsung galaxy s21
Clues:
The person who is an engineer is directly left of the person who uses a Samsung Galaxy S21.
The person who loves fantasy books is in the second house.
Alice is not in the second house.
Eric is the person who is a teacher.
The person who uses a Samsung Galaxy S21 is the person who loves fantasy books.
The person who uses an iPhone 13 is the person who loves science fiction books.
The person who loves science fiction books is somewhere left of the person who uses a OnePlus 9.

The person who uses a OnePlus 9 is Arnold.

W XN AW

The person who is a doctor is the person who loves mystery books.

,_
e

The person who uses an iPhone 13 is the person who is a teacher.

Figure 6: Example Zebra logic puzzle

House | Name | Occupation | BookGenre | PhoneModel
1 Alice Engineer Romance Pixel 6
2 Peter Artist Fantasy Galaxy S21
3 Eric Teacher SciFi iPhone 13
4 Arnold Doctor Mystery OnePlus 9

Table 5: Zebra Puzzle Example Solution

B CBMC C constraint examples

In this section we provide ANSI-C constraint examples for our running example in the paper suitable

for consumption by the CBMC constraint solver.
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struct House {
int house_number;
const char * name;
const char * smoothie;
//

}s

static int House_house_number[] =
{1, 2, 3, 4, 5, 6};
static bool House_house_number_used[6];
static const char * House_namel[] =
{"Alice", "Eric", "Peter", ...};
static bool House_name_used[6];

//

#define __CPROVER_unique_domain( \
field, field_domain_array) \
{A\
size_t index; \
__CPROVER_assume (index < \
(sizeof (field_domain_array) / \
sizeof (field_domain_array[0]))); \
__CPROVER_assume ( \
!field_domain_array##_used[index]); \

field_domain_array##_used[index] = \
true; \
field = field_domain_array[index]; \
}
//

static void init_House(
struct House * instance) {

__CPROVER_unique_domain (
instance ->house_number,
House_house_number

);

__CPROVER_unique_domain (
instance ->name,
House_name

);

//

Figure 7: CBMC Data Structure Example
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static void validate(
struct PuzzleSolution solution) {

bob = __CPROVER_nondet_element (
solution.houses) ;
__CPROVER_assume (bob.name == "Bob");

__CPROVER_assume (bob.phone ==
"xiaomi mi 11");
//
}

//

int main(void) {
struct PuzzleSolution solution;
init_PuzzleSolution(&solution) ;
validate (solution) ;
__CPROVER_output ("solution",

solution);
__CPROVER_assert (false, "");

Figure 8: CBMC Search Constraint Example
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