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Abstract—In this article, a command-filtered composite adap-
tive fuzzy tracking control problem is considered for intelligent
ship autopilot with full-state constraints. Fuzzy logic systems
(FLSs) are utilized to tackle the unknown nonlinear functions.
By the method of inverse mapping to a tan-type function, the
issue of full-state constraints for nonlinear systems is disposed.
Through the use of serial-parallel estimation model (SPEM), the
forecast bias and the track bias can change the weights of FLSs
and the approximate characteristics of FLSs will be improved.
Then, by constructing the command filter, the issue of complex
explosion will be effectively solved. The designed control strategy
can ensure the boundedness of all states in the considered system
satisfies the state constraints. The output also can track the
desire trajectory. Finally, the simulation example demonstrates
the validity of the proposed control scheme.

Index Terms—Command filter, fuzzy logic systems, composite
adaptive control, full-state constraints, backstepping

I. INTRODUCTION

Adaptive backstepping technique and Lyapunov analysis
method were broadly utilized to handle the control issue of
nonlinear systems. However, the aforesaid approaches can
not settle the problem of unknown nonlinear terms in the
considered system. Radial basis function neural networks or
FLSs were utilized to approximate the unknown nonlinear
function in the system. In the last decades, by using the
backstepping technique, a lot of fuzzy control strategies were
proposed, such as [1]- [3]. Subsequently, the SPEM in many
articles were proposed which were widely used to improve
the approximation of neural networks or FLSs, such as [4]-
[6]. However, in the process of controller design, it was found
that repeated derivation of virtual controller would cause a
complexity explosion problem. The command-filter approach
is developed in [7] to tackle the issue. It not only overcame the
computational complexity problem, but also compensated for
the filtering errors. In addition, due to physical environment,
security factors and other reasons, many practical systems
usually operate under full state constraints. Therefore, the issue
of the nonlinear systems control with full-states constrains
is a challenge and the tan-type nonlinear mapping approach
[8] can settle it. In this work, by utilizing the adaptive

backstepping control technique, a composite adaptive fuzzy
control strategy is designed for intelligent ship autopilot with
full-state constraints. The full-state constraints are handled
by introducing the tan-type nonlinear mapping approach. By
utilizing the command filter, the computational complexity
problem is tackled. By combining the Lyapunov stability
theorem, we can attest that all states in the considered system
satisfy the state constraints. The output signal also can track
the reference signals. This article can be developed according
to the following structure. In section II, the propaedeutics
and problem formulation are offered. Section III and section
IV show the design of controller and the result of analysis,
respectively. Simulation result verifies the validity of the
strategy we proposed in section V. The conclusions are given
in section VI.

II. PRELIMINARIES AND PROBLEM FORMULATIONS

Considered the following ship heading control mathematical
model:

ϕ̈+
1

T
H(ϕ̇) =

K

T
δ (1)

where ϕ and δ denote the ship heading angle and the rudder
angle, respectively. δ is the control input, K indicates the
rudder gain, T stands for the time constant. The unknown
nonlinear function H(ϕ̇) is a real-valued constants and is
expressed as follows: H(ϕ̇) = a1ϕ̇ + a2ϕ̇

3 + a3ϕ̇
5 + . . . , ai,

for i = 1, 2, 3, . . .
Defining x1 = ϕ, x2 = ϕ̇ and u = Kδ

T , we can transform
(1) into the following form: ẋ1 = x2

ẋ2 = f(x2) + u
y = x1

(2)

where x1, x2 are the states of (2), u denotes the control input,
y represents the output of the system. f(x2) = − 1

T H(x2)
represents an unknown smooth nonlinear function.

Assumption 1: [10] The desire ship heading signal yr and
its first-order derivative ẏr are known and bounded.



Lemma 1 [11]: For x, y ∈ R, the inequality holds as follows:

xy ≤ ϵp

p
|x|p + 1

qϵq
|y|q (3)

where ϵ > 0, p > 1, q > 1 and (p− 1)(q − 1).
Lemma 2 [12]: For ∀σ > 0, and a continuous Ψ(x) defined

on a compact set Ω, there has a FLS WTϕ(x) to approximate
it, yields

sup
x∈Ω

|Ψ(x)−WTϕ(x)| ≤ σ (4)

where W = [ω1, ω2, · · · , ωm]T denotes the desired weight
vector. Ψ(x) = [l1(x),l2(x),··· ,lm(x)]T∑m

i=1 ~i(x)
represents the basis

function vector with m > 1 is the rule member, and
~i(x) = exp[−(x−ϑi)

T (x−ϑi)

ϱT
i ϱi

] is Gaussian function, in which
ϑi = [ϑi,1, ϑi,2,··· ,ϑi,n ] denotes the center vector, ϱi =
[ϱi,1, ϱi,2,··· ,ϱi,n ] represents the width of the Gaussian function.

Definition 4 [8]: A nonlinear mapping function Φi is de-
scribed as follows:

qi = Φi(xi) =
2ai
π

tan(
πxi

2ai
) i = 1, . . . , n (5)

where ai > 0 represents a differentiable constraint function of
xi. Φi denotes a continuous elementary function.

From (5), the inverse mapping of Φi is expressed as

xi = Φi
−1 =

2ai
π

arctan(
πqi
2ai

) (6)

The differential of xi (i = 1, 2) is expressed as

ẋi = pi(qi) +
q̇i

κi(qi)
(7)

where {
pi(qi) =

2ȧi

π arctan(πqi2ai
)− qiȧi

(1+(
πqi
2ai

)2)ai

κi(qi) = 1 + (πqi2ai
)2

(8)

Plugging (7) and (8) into (2), we get q̇1 = F1(q̄2) + q2
q̇2 = κ2(q2)u+ F2(q2)
y∗ = q1

(9)

where q̄2 = [q1, q2]
T and{

F1(q̄2) = (x2 − p1(q1))κ1(q1)− q2
F2(q2) = (f2(x2)− p2(q2))κ2(q2)

(10)

III. CONTROLLER DESIGN PROCESS

In this part, an adaptive fuzzy control scheme is designed
for the system (9). The coordinate transformations are given
as follows: {

z1 = q1 − y∗r
z2 = q2 − αf

2

(11)

where y∗r = 2a1

π tan(πyr

2a1
).

In order to deal with computational complexity problem
resulted in the repeated derivative of the indirect controller, a
first-order filter is designed as [9]

τ2α̇
f
2 + αf

2 = α1 αf
2 (0) = α1(0) (12)

where αf
2 is the filter input, τ2 is a constant. The filter error

is expressed as η2 = αf
2 − α1. If inequalities |α1| ≤ ρ and

|α̇1| ≤ ρ̄ hold with ρ > 0 and ρ̄ > 0 are constants, then for
∀η̄2 > 0 is a constant, there exists τ2 > 0 such that |αf

2−α1| =
|η2| ≤ η̄2.

Step 1. From (9) and (11), the differential of the tracking
error z1 is

ż1 = q̇1 − ẏ∗r

= F1(q̄2) + q2 − ẏ∗r

= F1(q̄2) + z2 + η2 + α1 − ẏ∗r (13)

The error compensation signal designed eliminates the in-
fluence of αf

2 − α1. The compensating signals ξ1 is defined
as

ξ̇1 = η2 + ξ2 − c1ξ1 (14)

where c1 stands for positive parameter.
The compensated tracking error is designed as ϖ1 = z1−ξ1

and the derivative of ϖ1 is expressed as

ϖ̇1 = ż1 − ξ̇1 = ϖ2 + α1 + F1(q̄2)− ẏ∗r + c1ξ1 (15)

where ϖ2 = z2 − ξ2.
Based on Lemma 1, the FLS is employed to approximate

uncertain function F1(q̄2). F1(q̄2) is expressed as the following
equality:

F1(q̄2) = WT
1 ϕ1(q̄2) + δ1(q̄2) (16)

where δ1(q̄2) is the bounded approximation error and satisfies
|δ1(q̄2)| ≤ δ̄1.

By plugging (16) into (15), one can obtain

ϖ̇1 = ϖ2 + α1 +WT
1 ϕ1(q̄2) + δ1(q̄2)− ẏ∗r + c1ξ1 (17)

Create the function V1 as

V1 =
1

2
ϖ2

1 +
1

2β1
W̃T

1 W̃1 (18)

where β1 > 0 represents the designed parameter and W̃1 =
W1−Ŵ1. Ŵ1 is the estimation of W1, and W̃1 is the estimation
error.

Subsequently, the differential of V1 is

V̇1 = ϖ1ϖ̇1 −
1

β1
W̃T

1
˙̂
W1 (19)

By plugging (17) into (19), it yields

V̇1 =ϖ1(ϖ2 + α1 +WT
1 ϕ1(q̄2) + δ1(q̄2)− ẏ∗r + c1ξ1

+WT
1 ϕ1(q1)−WT

1 ϕ1(q1))−
1

β1
W̃T

1
˙̂
W1 (20)

By applying Lemma 1, the following inequalities hold

ϖ1δ1(q̄2) ≤
1

2
ϖ2

1 +
1

2
δ̄21

ϖ1(W
T
1 ϕ1(q̄2)−WT

1 ϕ1(q1)) ≤ ϖ2
1 + ∥W1∥2 (21)

Then, we can obtain

V̇1 =ϖ1(
3

2
ϖ1 +ϖ2 + α1 − ẏ∗r + c1ξ1 + ŴT

1 ϕ1(q1))

− 1

β1
W̃T

1 (
˙̂
W1 − β1ϖ1ϕ1(q1)) +

1

2
δ̄21 + ∥W1∥2 (22)



Next, the virtual controller α1 is designed as follows:

α1 = −3

2
ϖ1 − b1ϖ1 − c1ξ1 − ŴT

1 ϕ1(q1) + ẏ∗r (23)

and the adaptive law ˙̂
W1 is constructed as

˙̂
W1 = β1ϖ1ϕ1(q1)− ζ1Ŵ1 (24)

where b1 and ζ1 are designed positive parameters.
By substituting (23) and (24) into (22), we get

V̇1 ≤−b1ϖ
2
1 +ϖ1ϖ2 +

ζ1
β1

W̃T
1 Ŵ1 +

1

2
δ̄21 + ∥W1∥2 (25)

Step 2. Based on system (9) and the coordinate transforma-
tions (11), the time derivative of z2 is

ż2 = q̇2 − α̇f
2 = κ2(q2)u+ F2(q2)− α̇f

2 (26)

Similar to step 1, the compensating signal ξ2 is constructed
as

ξ̇2 = −ξ1 − c2ξ2 (27)

where c2 is a positive constant.
Define the compensated tracking error as ϖ2 = z2− ξ2 and

its derivative is

ϖ̇2 = ż2 − ξ̇2 = κ2(q2)u+ F2(q2)− α̇f
2 + ξ1 + c2ξ2 (28)

The FLS is applied to approximate the unknown function
F2(q2) such that

F2(q2) = WT
2 ϕ2(q2) + δ2(q2) (29)

where δ2(q2) stands for the bounded approximation error and
satisfies δ2(q2) ≤ δ̄2.

By plugging (29) into (28), one has

ϖ̇2 = ż2 − ξ̇2

= κ2(q2)u+WT
2 ϕ2(q2) + δ2(q2)

−α̇f
2 + ξ1 + c2ξ2 (30)

where k2 is a designed parameter.
In order to improve the approximation of FLSs , a composite

adaptive update law is designed. Defining error e2 = q2 − q̂2
and q̂2 can be gotten from the following SPEM:

˙̂q2 = κ2(q2)u+ ŴT
2 ϕ2(q2) + k2e2 +

1

2
e2 (31)

where k2 represents the designed parameter.
By combining (30) with (31), one has

ė2 = W̃T
2 ϕ2(q2) + δ2(q2)− k2e2 −

1

2
e2 (32)

Construct the Lyapunov function as

V = V1 +
1

2
ϖ2

2 +
1

2β2
W̃T

2 W̃2 +
1

2
e22 (33)

where β2 is a positive constant and W̃2 = W2 − Ŵ2. Ŵ2 is
the estimation of W2, and W̃2 is the estimation error.

Then, the V̇ is expressed as

V̇ = V̇1 +ϖ2ϖ̇2 −
1

β2
W̃T

2
˙̂
W2 + e2ė2

≤ −b1ϖ
2
1 +ϖ2(ϖ1 + κ2(q2)u+ ŴT

2 ϕ2(q2)

+ξ1 + c2ξ2 + δ2(q2)− α̇f
2 ) +

ζ1
β1

W̃T
1 Ŵ1

− 1

β2
W̃T

2 (
˙̂
W2 − β2(ϖ2ϕ2(q2) + e2ϕ2(q2)))

+e2(δ2(q2)− k2e2 −
1

2
e2) +

1

2
δ̄21 + ∥W1∥2 (34)

Based on Lemma 1, it yields

ϖ2δ2(q2) ≤
1

2
ϖ2

2 +
1

2
δ̄22

e2δ2(q2) ≤
1

2
e22 +

1

2
δ̄22 (35)

Combining (35) with (34), we get

V̇ = V̇1 +ϖ2ϖ̇2 −
1

β2
W̃T

2
˙̂
W2 + e2ė2

≤ −b1ϖ
2
1 +ϖ2(ϖ1 +

1

2
ϖ2 + κ2(q2)u+ ŴT

2 ϕ2(q2)

+ξ1 + c2ξ2 − α̇f
2 ) +

ζ1
β1

W̃T
1 Ŵ1

− 1

β2
W̃T

2 (
˙̂
W2 − β2(ϖ2ϕ2(q2) + e2ϕ2(q2)))

−k2e
2
2 +

1

2
δ̄21 + ∥W1∥2 + δ̄22 (36)

Then, create actual controller as

u = − 1

κ2(q2)
(b2ϖ2 +ϖ1 +

1

2
ϖ2 + ŴT

2 ϕ2(q2) + ξ1

+c2ξ2 − α̇f
2 ) (37)

and the adaptive law is constructed as

˙̂
W2 = β2(ϖ2ϕ2(q2) + e2ϕ2(q2))− ζ2Ŵ2 (38)

where b2 and ζ2 are positive parameters.
Plugging (37) and (38) into (36), it leads to

V̇ ≤−
2∑

i=1

biϖ
2
i +

2∑
i=1

ζi
βi

W̃T
i Ŵi − k2e

2
2

+
1

2
δ̄21 + ∥W1∥2 + δ̄22 (39)

IV. STABILITY ANALYSIS

Theorem 1: For the considered system (9) with the virtual
controller (23), the actual controller (37), the adaptive laws
(24), (38), the SPEM (31), and the command filter (12) under
Assumption 1, all the internal states maintain boundness and
the tracking error z1 can reach an arbitrarily small set of zero.
In addition, all states are constrained within the pre-designed
set.

Proof: Based on Lemma 1, one has

ζi
βi

W̃T
i Ŵi ≤

ζi
2βi

WT
i Wi −

ζi
2βi

W̃T
i W̃i (40)



By plugging (40) into (39), one can obtain

V̇ ≤−
2∑

i=1

biϖ
2
i −

2∑
i=1

ζi
2βi

W̃T
i W̃i − k2e

2
2

+
1

2
δ̄21 + ∥W1∥2 +

2∑
i=1

ζi
2βi

WT
i Wi + δ̄22

= −ĆV + D́ (41)

where Ć = min{2b1, 2b2, ζ1, ζ2, 2k2}, D́ = 1
2 δ̄

2
1 + ∥W1∥2 +∑2

i=1
ζi
2βi

WT
i Wi + δ̄22 .

Next, we consider the convergence of the compensation
signal, construct the following Lyapunov function:

Vξ =
2∑

i=1

1

2
ξ2i (42)

The time derivative of Vξ is

V̇ξ =

2∑
i=1

ξiξ̇i

= −
2∑

i=1

ciξ
2
i + ξ1η2 (43)

According to Lemma 1, we get

ξ1η2 ≤ 1

2
ξ21 +

1

2
η̄22 |η2| ≤ η̄2 (44)

where |η2| ≤ η̄2, then, substituting (44) into (43), one has

V̇ξ ≤ −(c1 −
1

2
)ξ21 − c2ξ

2
2 +

1

2
η̄22

≤ −CVξ +D (45)

where C = min{2c1 − 1, 2c2}, D = 1
2 η̄

2
2

According to (41) and (45), the errors ϖi, W̃i, e2 and the
compensation signal ξi (i = 1, 2) in the considered system
are bounded. Thus, the virtual signal α1, the input signal
u and adaptive law ˙̂

Wi (i = 1, 2) are also bounded. αf
2

is bounded because of the boundness of the filtering error
η2. From ϖi = zi − ξi (i = 1, 2) and the boundness of
ϖi and ξi, the boundness of zi is derived. Meanwhile, the
tracking error z1 will incline to an arbitrarily small set of
zero when the time tends to infinity. Since z1 is bounded,
we get that q1 tracks up y∗r . Then, it can be derived that y
follows yr based on the inverse mapping. Combining (11)
with the boundness of y∗r and αf

2 , qi (i = 1, 2) is bounded. In
addition, according to the one-to-one mapping, we can obtain
the inequality −ai < xi =

2ai

π arctan(πqi2ai
) < ai. Therefore,

the full-state constraints are implemented.

V. SIMULATION

In this part, the simulation consequences are conducted to
illustrate the effectiveness of the constructed control scheme.
We introduce the ship autopilot parameters in [13]. The ship
particulars are chosen as follows: draft 8.0m, length between
perpendiculars Lpp = 126m, block coefficient 0.681, breath
molded B = 20.8m, forward speed 7.72m/s. Based on the

ship particulars, the autopilot mode parameters are selected
as a1 = 1, a2 = 0.6, T = 216, K = 0.478. The reference
heading trajectory is offered as yr = sin(t).

For the convenience of simulation, the initial value of
[x1(0), x2(0), ξ1(0), ξ2(0)]

T are selected as [0, 0, 0, 0]T . The
value of the design parameters are selected as follows: τ2 =
0.01, b1 = 10, b2 = 0.009, c1 = 100, c2 = 20, k1 = 15,
k2 = 20, β1 = 100000, β2 = 800000, ζ1 = 10, ζ2 = 50 and
all the initial values of weights for the FLSs are zero. The
state constraints are constructed as a1 = 4.5 + 0.21 sin(t),
a2 = 4.5 + 0.21 sin(t).

The simulation curves are shown in Figs. 1-7. Specifically,
Fig. 1 displays the system output trajectory y and desire signal
trajectory yr, and the constraint functions ±a1. Fig. 2 are the
trajectories of the system state x2 and the constraint functions
±a2. According to Fig. 1-2, we can obtain that system output
x1 follows the desired signal yr well and states x1,x2 are
constrained in specific sets, respectively. Fig. 3 displays the
trajectories of the compensating signals ξ1 and ξ2. Fig. 4 plots
the curve of system input u. The trajectories of ∥Ŵ1∥ and
∥Ŵ2∥ are shown in Fig. 5-6. The outcome of the composite
adaptive fuzzy control is displayed in the Fig. 7. Based on
Fig. 7, we can get that ŴT

2 ϕ2(q2) can approximate function
F2(q2) well. Thus, it is not difficult to figure out that f̂2(x2) =
F̂2(q2)
κ2(q2)

+p2(q2) can estimate the f2(x2) well. In addition, from
Fig. 1-6, it is easy to obtain that all the states in the considered
system maintain boundness. Based on the above results, the
effectiveness of the proposed control strategy is proved.
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Fig. 1. Trajectories of x1, yr and ±a1.

VI. CONCLUSION

In this work, a composite adaptive fuzzy control scheme
is set up for intelligent ship autopilot with full-state con-
straints by utilizing the command-filter approach which is
applied to dispose the complexity explosion problem. During
the process of the controller design, FLSs are applied to
dispose the unknown nonlinear terms. To tackle the issue of
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Fig. 2. Trajectories of x2 and ±a2.
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Fig. 3. Trajectories of ξ1 and ξ2.
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Fig. 4. The signal u.
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Fig. 5. Trajectory of ∥Ŵ1∥.
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Fig. 6. Trajectory of ∥Ŵ2∥.

0 5 10 15 20 25 30

Time (sec)

-25

-20

-15

-10

-5

0

5

10

15

20

25

Fig. 7. Trajectories of ŴT
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nonlinear systems with full-state constraints, we introduce a
tan-type nonlinear mapping approach. The SPEM can change
the weights of FLSs and improve the approximate ability.
The constructed control strategy can ensure all states in the
considered system are bounded, and all signals satisfy the state
constraints. Moreover, the output signal can track the desired
signal. Finally, based on the simulation consequences, we can
conclude the validity of the designed control strategy.
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