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Abstract

Models which can actively seek out the best quality training data hold the promise1

of more accurate, adaptable, and efficient machine learning. State-of-the-art tech-2

niques tend to prefer examples which are the most difficult to classify. While3

this works well on homogeneous datasets, we find that it can lead to catastrophic4

failures when performing active learning on multiple distributions which have5

different degrees of label noise (heteroskedasticity). Most active learning algo-6

rithms strongly prefer to draw from the distribution with more noise, even if its7

examples have no informative structure (such as solid color images). We find that8

active learning which encourages diversity and model uncertainty in the selected9

examples can significantly mitigate these failures. We hope these observations10

are immediately useful to practitioners and can lead to the construction of more11

realistic and challenging active learning benchmarks.12

1 Introduction13

In an active learning setup, a model has access to a pool of labeled data and a pool of unlabeled data.14

After training on the available labeled data, some selection rule is applied to identify a batch of k15

unlabeled samples to be labeled and integrated into the training set before repeating the process.Under16

this paradigm, data are considered to be abundant but label acquisition is costly. The goal of an active17

learning algorithm is to identify unlabeled samples that, once labeled at used to fit model parameters,18

will elicit the most performant hypothesis possible given a fixed labeling budget.19

In an effort to fulfill this objective, high-quality selection criteria generally favor a diverse set of20

examples where the model has a high degree of uncertainty. That is, we want to favor the selection of21

items that might least to the most significant change from the model’s current state, but we need to22

ensure we do not waste our labeling budget by selecting items that are similar to each other.23

Preferring examples with high uncertainty often works well on homogeneous datasets, but can lead24

to catastrophic failure when training on a mixture of distinct distributions with different degrees of25

noise, as the active learning algorithm prefers the noisier distribution over the cleaner distribution.26

We refer to these as Heteroskedastic Distributions.27

In this paper, we demonstrate that modern active learning algorithms designed for use with deep28

neural networks are significantly damaged when subjected to training data that’s been corrupted by29

heteroskedastic noise. These approaches typically rely on notions of model improvement that are30

unable to disambiguate aleatoric from epistemic uncertainty, overselecting samples for which the31

model is unconfident but which are unlikely to best improve the current hypothesis. We show that this32

inefficiency can be partially reduced in two ways: by more heavily favor diversity and encouraging33

examples with high divergence between a conventionally trained model and an exponential moving34

average (EMA) of its iterates.35
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Figure 1: Overview of our setting and results. Left: We consider neural active learning settings with
high hetereoskedasticity; as as extreme example, the labels from one class are replaced with uniform
noise (incorrect labels in red). Active learning algorithms have a strong tendency to prefer this
random-label class over other classes. Right: Our proposed S-Badge algorithm, which encourages
both model uncertainty and diversity in sampled points, performs similarly to least-confidence
sampling on the original SVHN data, but greatly outperforms it on the heteroskedastic distributions.

Empirically, with this EMA divergence, which we measure on the penultimate layer representation,36

seems to capture information about the model’s sensitivity to that point. Importantly, we observe37

that this score is nearly zero on the noisy samples considered in this paper. When used to scale the38

representations used in for the Badge algorithm, we find we can significantly reduce the frequency39

with which noisy samples are selected, which we refer to as the S-Badge algorithm.40

1.1 Related work41

Neural active learning. Active learning is an extremely well-researched area, with the richest42

theory developed for the convex setting [1, 2]. More recently, however, there have been several43

attempts to tractably generalize active learning to the deep regime. Such approaches can be thought44

or as identifying batches of samples that cater more to either the model’s predictive uncertainty or to45

the diversity of the selection.46

In the former approach, a batch of points are selected in order of the model’s uncertainty about their47

label. Many of these methods query samples that are nearest the decision boundary, an approach48

that’s theoretically well understood in the linear regime when the batch size is 1 [3, 4, 5]. Some49

deep learning-specific approaches have also been developed, including using the variance of dropout50

samples to quantify uncertainty [6], and adversarial examples have been used to approximate the51

distance between an unlabeled sample and the decision boundary. In the deep setting however, where52

models are typically retrained from scratch after every round of selection, a larger batch size is usually53

necessary for efficiency purposes.54

For large batch sizes, algorithms that cater to diversity are usually more effective. In deep learning,55

several methods take the representation obtained at the penultimate layer of the network, and aim to56

identify a batch of samples that might summarize this space well [7, 8]. [9]. Other methods promote57

diversity by minimizing an upper bound on some notion of model’s loss on unseen data [10, 11, 12,58

13, 14]. This approach has also been taken to trade-off between diversity and uncertainty in deep59

active learning [15, 16].60

Data poisoning and distributional robustness. A related body of work seeks to obtain models61

and training procedures which are robust against worst-case perturbations to the data distribution.62

For recent treatments of this topic and further references, see [17, 18]. A few recent works have63

considered data poisoning in the active learning setting [19, 20], with defenses focusing on modifying64

the setting rather than the algorithm. Overall, though the settings are compatible, the aim of this work65

is to directly address the empirical performance of deep active learning with low-quality labels, rather66

than a more pessimistic min-max robustness formulation.67

Heteroskedasticity in deep learning. The issues of class imbalance and heteroskedasticity are of68

interest in the supervised learning setting [21, 22, 23], in which various methods have been proposed69
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to make training more robust to these distributions. Our work seeks to initiate the study of the70

orthogonal (but analogous) issue in sample selection.71

2 Heteroskedastic Benchmarks for Neural Active Learning72

We introduce three new benchmarks for active learning on heteroskedastic distributions. In all cases,73

we introduce an additional set of N examples with purely random labels, which the model is trained74

on with it shuffled into the original data. In all cases, whether an example is one of these special noisy75

samples is not given to the model, but it is always reasonably easily predictable from the example’s76

features. This distinguishes our benchmarks from IID label noise, which is not predictable based on77

the example’s features.78

• Noisy-Blank: We introduce N examples which are solid black (x = 0) with a random79

example y ∼ U(1, 10).80

• Noisy-Diverse: We increase the difficulty by introducing K = 100 different types of81

examples, where each type is a random solid color and has a label randomly drawn from82

three different choices (unique to that type). N of these examples are sampled. This83

benchmark is designed to make the heteroskedastic distribution more diverse while still84

keeping the noisy examples simple.85

• Noisy-Class: In our hardest setting, we take the examples in the dataset with a particular86

class y = 1 and assign these examples uniformly random labels y ∼ U(1, 10). We then87

randomly repeat these examples to give N examples. In this case, the randomly labeled88

examples are challenging but still possible to identify.89

3 Methods and Experiments90

Here we experiment with several active learning algorithms, noising strategies, and model architec-91

tures. In all experiments, we use the same experimental settings from [16], starting with 2000 points,92

and query samples in batches of 100 points, until we got to a total of 5000 labeled points. We avoid93

warm-starting and retrain from a fresh initialization after each round of selection [24]. We ran with94

both a small 1-layer MLP with 512 hidden units as well as a ResNet18. We also added the additional95

noisy-labeled examples in all cases to make 80% of the examples from the noisy distribution and96

20% from the original distribution.97

3.1 Baselines98

We consider four baseline algorithms commonly used in the literature. Confidence sampling [25] and99

Margin sampling [26] are uncertainty-based strategies: Confidence sampling selects the k unlabeled100

points for which the most likely label has the smallest amount of probability mass, and Margin101

sampling selects the k points for which the difference in probability mass in the two most likely102

labels is smallest. The Coreset algorithm is a diversity-based approach that aims to select a batch of103

representative points, as measured in penultimate layer space of the current state of the model [7].104

BADGE is a hybridized approach, meant to strike a balance between uncertainty and diversity.105

BADGE represents data in a hallucinated gradient space before performing diverse selection using106

k-means++ [16].107

3.2 S-Badge: Increasing Sampling where Representations Change Across Training108

Iterations109

We conjecture that while examples with noisy labels will have high loss and high predictive uncer-110

tainty, the model’s predictions will converge quickly and undergo little change later in training. By111

encouraging the selection process in active learning to not select these examples, we hope to improve112

performance in the heteroskedastic setting.113

In addition to the main (or online) model (Fθ), we introduce an EMA model (Fβ) into the example-114

selection pipeline. The EMA model has the same architecture as the online model but uses a different115

set of parameters β, which are exponentially moving averages of θ. That is,116

β = α · β + (1− α) · θ (1)
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Table 1: Classification accuracy on SVHN with 5000 actively queried examples, with different
heteroskedastic distribution corruptions. In parenthesis, we report the percentage of the examples
(over the course of training) which the active learning selected from the non-corrupted original
examples (100% being best, and 0% being worst).

ResNet Clean Noisy-Blank Noisy-Diverse Noisy-Class

Random 78.6% 64.0% (20.7%) 50.8% (19.6%) 25.3% (20.5%)
Confidence 68.5% 57.9% (0.00%) 55.9% (42.4%) 23.4% (14.2%)
Margin 73.6% 72.9% (82.6%) 60.8% (44.5%) 30.6% (15.9%)
Badge 76.3% 75.2% (99.0%) 57.0% (29.2%) 32.9% (30.1%)
S-Badge 76.0% 74.7% (99.0%) 67.1% (50.0%) 30.1% (36.9%)

MLP

Random 70.6% 49.5% (20.3%) 46.5% (20.2%) 41.5% (19.9%)
Confidence 73.1% 35.0% (0.67%) 36.2% (12.9%) 40.9% (14.5%)
Margin 75.0% 65.2% (83.8%) 60.5% (60.0%) 46.7% (19.4%)
Badge 74.7% 69.1% (99.0%) 48.7% (19.8%) 43.8% (24.1%)
S-Badge 70.3% 70.0% (99.0%) 52.7% (22.5%) 47.7% (28.2%)

where α is set to a high value of 0.999.117

We conjecture that the state difference between the EMA model and the online model can be a118

helpful signal for querying unlabelled examples. To this end, we re-weight the gradients in the Badge119

algorithm dL
dW by the average value of this hidden state difference before running K-means++ seeding.120

Where the hidden state difference is small, this reweighted gradient will be close to zero, and few of121

these examples are likely to be selected.122

3.3 Results123

The results in Table 1 show consistent deterioration in test accuracy when selecting from heteroskedas-124

tic distributions. We found that Badge and S-Badge, through their use of diversity in the selection125

process, were nearly perfect in solving the Noisy-Blank task. However on Noisy-Diverse, we found126

that S-Badge often significantly outperformed Badge. We also found that max-margin sampling was127

a surprisingly effective baseline compared to least-confidence sampling.128

3.4 Analysis129

One of our more striking experimental results (Table 1) is that selecting examples with the lowest130

prediction confidence can fail catastrophically on heteroskedastic distributions. In (Appendix A) we131

provide a theory explaining why training only on high loss examples (which would have low confi-132

dence given a well-calibrated model) can lead to poor performance on heteroskedastic distributions.133

4 Conclusion134

Neural Active Learning is an active area of research, with a plethora of new techniques competing135

to achieve better results. Our work seeks to throw this research program a curve ball, by showing136

that techniques which are competitive on homogeneous datasets with little label noise can fail137

catastrophically when presented with diverse heteroskedastic distributions. Active learning techniques138

which actively seek diversity fail less catastrophically, but still struggle when the noisy examples are139

themselves somewhat diverse. Despite some techniques failing less than others, our results suggest140

significant room for improvement and future research on this task.141
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A Generalization bound for biased query batches214

A.1 Notation215

Let D = ((xi, yi))
n
i=1 be a training dataset of n samples where xi ∈ X ⊆ Rdx is the input vector216

and yi ∈ Y ⊆ Rdy is the target output vector for the i-th sample. A standard objective function is217

L(θ;D) :=
1

n

n∑
i=1

Li(θ;D), (2)

where θ ∈ Rdθ is the parameter vector of the prediction model f( · ; θ) : Rdx → Rdy , andLi(θ;D) :=218

`(f(xi; θ), yi) with the function ` : Rdy × Y → R≥0 is the loss of the i-th sample.219

Similarly to the notation of order statistics, we first introduce the notation of ordered indexes: given220

a model parameter θ, let L(1)(θ;D) ≥ L(2)(θ;D) ≥ · · · ≥ L(n)(θ;D) be the decreasing values of221

the individual losses L1(θ;D), . . . , Ln(θ;D), where (j) ∈ {1, . . . , n} (for all j ∈ {1, . . . , n}). That222

is, {(1), . . . , (n)} as a perturbation of {1, . . . , n} defines the order of sample indexes by loss values.223

Whenever we encounter ties on the values, we employ an arbitrary fixed tie-breaking rule in order to224

ensure the uniqueness of such an order.225

Denote ri(θ;D) =
∑n
j=1 1{i = (j)}γj where (j) depends on (θ,D). Given an arbitrary set Θ ⊆

Rdθ , we define Rn(Θ) as the (standard) Rademacher complexity of the set {(x, y) 7→ `(f(x; θ), y) :
θ ∈ Θ}:

Rn(Θ) = ED̄,ξ

[
sup
θ∈Θ

1

n

n∑
i=1

ξi`(f(x̄i; θ), ȳi)

]
,

where D = ((x̄i, ȳi))
n
i=1, and ξ1, . . . , ξn are independent uniform random variables taking values226

in {−1, 1} (i.e., Rademacher variables). Given a tuple (`, f,Θ,X ,Y), define M as the least upper227

bound on the difference of individual loss values: |`(f(x; θ), y)− `(f(x′; θ), y′)| ≤M for all θ ∈ Θ228

and all (x, y), (x′, y′) ∈ X × Y . For example, M = 1 if ` is the 0-1 loss function.229

R̂n(Θ) = Eξ

[
sup
θ∈Θ

1

n

n∑
i=1

ξi`(f(xi; θ), yi)

]
,

A.2 Preliminaries230

The previous paper [27] proves the following theoretical result. The stochastic optimization method
that uses a gradient estimator that is purposely biased toward those samples with the current top-q
losses (i.e., ordered SGD) implicitly minimizes a new objective function of

Lq(θ;D) =
1

q

n∑
j=1

γjL(j)(θ;D),

for any D (including g(D)), in the sense that such a gradient estimator is an unbiased estimator of a231

(sub-) gradient of Lq(θ;D), instead of L(θ;D). Accordingly, the top-q-biased stochastic optimization232

method converges in terms of Lq instead of L.233

Building up on this result, we consider generalization properties of the top-q-biased stochastic
optimization with the presence of additional label noises in training data. We want to minimize the
expected loss,

E(x,y)∼P [`(f(x; θ), y)]

by minimizing the training loss
Lq(θ; g(D)),

where g(D) = ((gxi (xi), g
y
i (yi)))

n
i=1 is potentially corrupted by arbitrary noise and corruption effects

within arbitrary fixed functions gxi and gyi for i = 1 . . . , n, where (xi, yi) ∼ P . Thus, we want to
analyze the generalization gap:

E(x,y)∼P [`(f(x; θ), y)]− Lq(θ; g(D))

7



The previous paper [27] showed the benefit of the top-q-biased stochastic optimization method in234

terms of generalization when gxi and gyi are identity functions and thus when the distributions are the235

same for both expected loss and training loss. In contrast, in our setting, the distributions are different236

for expected loss and training loss with potential noise corruptions through gxi and gyi .237

A.3 Analysis238

Theorem 1 presents a generalization bound for the top-q-biased stochastic optimization:239

Theorem 1. Let Θ be a fixed subset of Rdθ . Then, for any δ > 0, with probability at least 1− δ over240

an iid draw of n examples D = ((xi, yi))
n
i=1, the following holds for all θ ∈ Θ:241

E(x,y)[`(f(x; θ), y)] ≤ Lq(θ; g(D)) + 2R̂n(Θ) +M

(
2 +

s

q

)√
ln(2/δ)

2n
−Qn,q(Θ, g), (3)

where Qn,q(Θ, g) := ED̄[infθ∈Θ
1
n

∑n
i=1( ri(θ;g(D̄))n

q `(f(gxi (x̄i); θ), g
y
i (ȳi))− `(f(x̄i; θ), ȳi))].242

The expected error E(x,y)[`(f(x; θ), y)] in the left-hand side of Equation (3) is a standard objective
for generalization, whereas the right-hand side contains the data corruption function g. Here, we
typically have Rn(Θ) = O(1/

√
n) in terms of n. For example, consider the standard feedforward

deep neural networks of the form f(x) = (ωT ◦ σT−1 ◦ ωT−1 ◦ σT−2 · · ·σ1 ◦ ω1)(x) where T is the
number of layers, ωl(a) = Wla with ‖Wl‖F ≤Ml, and σl is an element-wise nonlinear activation
function that is 1-Lipschitz and positive homogeneous (e.g., ReLU). Then, if ‖x‖ ≤ B for all x ∈ X ,
using Theorem 1 of [28], we have that

R̂n(Θ) ≤
B(
√

2 log(2)T + 1)(
∏T
l=1Ml)√

n
.

In Theorem 1, we can see that a label noise corruption g can lead to the failure of the top-q-biased243

stochastic optimization via increasing the training loss Lq(θ; g(D)) and decreasing the top-q-biased244

factor Qn,q(Θ, g). Here, if there is no corruption g (i.e., if gxi and gyi are identity functions), then245

we have that Qn,q(Θ, g) ≥ 0 because Qn,q(Θ, g) = ED̄[infθ∈Θ Lq(θ; D̄) − L(θ; D̄)] ≥ 0 due to246

Lq(θ; D̄)−L(θ; D̄) ≥ 0 for any θ and D̄ when gxi and gyi are identity functions. Thus, the top-q-biased247

factor Qn,q(Θ, g) can explain the improvement of the generalization of the top-q-biased stochastic248

optimization over the standard unbiased stochastic optimization. However, with the presence of249

the corruption g, ri(θ;g(D̄))n
q `(f(gxi (x̄i); θ), g

y
i (ȳi)) can be smaller than `(f(x̄i; θ), ȳi) by fitting the250

corrupted noise, resulting Qn,q(Θ, g) < 0. This leads to a significant failure in the following sense:251

the generalization gap (E(x,y)[`(f(x; θ), y)] − Lq(θ; g(D))) goes to zero as n approach infinity if252

Qn,q(Θ, g) ≥ 0 with no data corruption, but the generalization gap no longer goes to zero as as n253

approach infinity if Qn,q(Θ, g) < 0 with data corruption.254

To see this, let us look at the asymptotic case when n → ∞. Let Θ be constrained such that255

Rn(Θ)→ 0 as n→∞, which has been shown to be satisfied for various models and sets Θ, including256

the standard deep neural networks above [29, 30, 31, 32, 28]. The third term in the right-hand side257

of Equation (3) disappear as n→∞. Thus, if there is no corruption (i.e., if gxi and gyi are identity258

functions), it holds with high probability that E(x,y)[`(f(x; θ), y)] ≤ Lq(θ; g(D))−Qn,q(Θ, g) ≤259

Lq(θ; g(D)), where Lq(θ; g(D)) is minimized by the top-q-biased stochastic optimization. From this260

viewpoint, the top-q-biased stochastic optimization minimizes the expected error for generalization261

when n → ∞, if there is no corruption. However, if there is corruption, E(x,y)[`(f(x; θ), y)] ≤262

Lq(θ; g(D))−Qn,q(Θ, g) � Lq(θ; g(D)), and hence E(x,y)[`(f(x; θ), y)]−Lq(θ; g(D)) 9 0 even263

in the asymptotic case.264

A.4 Proof of Theorem 1265

We first notice that the following proposition from [27] still holds with the corrupted data with the266

same proof g(D):267

Proposition 1. For any j ∈ {1, . . . , n}, γj ≤ s
n .268

We use this proposition in the following proof of Theorem 1 to bound the effect of replacing one269

sample in a dataset.270

8



Proof of Theorem 1. We find an upper bound on supθ∈Θ E(x,y)[`(f(x; θ), y)]− Lq(θ; g(D)) based
on McDiarmid’s inequality. Define

Φ(D) = sup
θ∈Θ

E(x,y)[`(f(x; θ), y)]− Lq(θ; g(D)).

Our proof plan is to provide the upper bound on Φ(D) by using McDiarmid’s inequality. To apply271

McDiarmid’s inequality to Φ(D), we first show that Φ(D) satisfies the remaining condition of272

McDiarmid’s inequality on the effect of changing one sample. Let D and D′ be two datasets differing273

by exactly one point of an arbitrary index i0; i.e., Di = D′i for all i 6= i0 and Di0 6= D′i0 . Since (j)274

depends on g(D), we sometimes write (j;D) = (j) to stress the dependence on D under g. Then,275

we provide an upper bound on Φ(D′)− Φ(D) as follows:276

Φ(D′)− Φ(D) ≤ sup
θ∈Θ

Lq(θ; g(D))− Lq(θ; g(D′)).

= sup
θ∈Θ

1

q

n∑
j=1

γj(L(j;D)(θ; g(D))− L(j;D′)(θ; g(D′)))

≤ sup
θ∈Θ

1

q

n∑
j=1

|γj ||L(j;D)(θ; g(D))− L(j;D′)(θ; g(D′))|

≤ sup
θ∈Θ

1

q

s

n

n∑
j=1

|L(j;D)(θ; g(D))− L(j;D′)(θ; g(D′))|

where the first line follows the property of the supremum, sup(a)− sup(b) ≤ sup(a− b), the second277

line follows the definition of Lq where (j;D) 6= (j;D′), and the last line follows Proposition 1278

(|γj | ≤ s
n ).279

We now bound the last term
∑n
j=1 |L(j;D)(θ; g(D)) − L(j;D′)(θ; g(D′))|. This requires a careful280

examination because |L(j;D)(θ; g(D))− L(j;D′)(θ; g(D′))| 6= 0 for more than one index j (although281

D and D′ differ only by exactly one point). This is because it is possible to have (j;D) 6= (j;D′)282

for many indexes j where (j;D) in L(j;D)(θ; g(D)) and (j;D′) in L(j;D′)(θ; g(D′)). To analyze283

this effect, we now conduct case analysis. Define l(i;D) such that (j) = i where j = l(i;D); i.e.,284

Li(θ; g(D)) = L(l(i;D))(θ; g(D)).285

Consider the case where l(i0;D′) ≥ l(i0;D). Let j1 = l(i0;D) and j2 = l(i0;D′). Then,286

n∑
j=1

|L(j)(θ; g(D))− L(j)(θ; g(D′))|

=

j2−1∑
j=j1

|L(j)(θ; g(D))− L(j)(θ; g(D′))|+ |L(j2)(θ; g(D))− L(j2)(θ; g(D′))|

=

j2−1∑
j=j1

|L(j)(θ; g(D))− L(j+1)(θ; g(D))|+ |L(j2)(θ; g(D))− L(j2)(θ; g(D′))|

=

j2−1∑
j=j1

(L(j)(θ; g(D))− L(j+1)(θ; g(D))) + L(j2)(θ; g(D))− L(j2)(θ; g(D′))

= L(j1)(θ; g(D))− L(j2)(θ; g(D′))
≤M,

where the first line uses the fact that j2 = l(i0;D′) ≥ l(i0;D) = j1 where i0 is the index of samples287

differing in D and D′. The second line follows the equality (j;D′) = (j + 1;D) from j1 to j2 − 1 in288

this case. The third line follows the definition of the ordering of the indexes. The fourth line follows289

the cancellations of the terms from the third line.290

Consider the case where l(i0;D′) < l(i0;D). Let j1 = l(i0;D′) and j2 = l(i0;D). Then,291

n∑
j=1

|L(j)(θ; g(D))− L(j)(θ; g(D′))|
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= |L(j1)(θ; g(D))− L(j1)(θ; g(D′))|+
j2∑

j=j1+1

|L(j)(θ; g(D))− L(j)(θ; g(D′))|

= |L(j1)(θ; g(D))− L(j1)(θ; g(D′))|+
j2∑

j=j1+1

|L(j)(θ; g(D))− L(j−1)(θ; g(D))|

= L(j1)(θ; g(D))− L(j1)(θ; g(D′)) +

j2∑
j=j1+1

(L(j)(θ; g(D))− L(j−1)(θ; g(D)))

= L(j1)(θ; g(D′))− L(j2)(θ; g(D))

≤M.

where the first line uses the fact that j1 = l(i0;D′) < l(i0;D) = j2 where i0 is the index of samples292

differing in D and D′. The second line follows the equality (j;D′) = (j − 1;D) from j1 + 1 to j2 in293

this case. The third line follows the definition of the ordering of the indexes. The fourth line follows294

the cancellations of the terms from the third line.295

Therefore, in both cases of l(i0;D′) ≥ l(i0;D) and l(i0;D′) < l(i0;D), we have that

Φ(D′)− Φ(D) ≤ s

q

M

n
.

Similarly, Φ(D) − Φ(D′) ≤ s
q
M
n , and hence |Φ(D) − Φ(D′)| ≤ s

q
M
n . Thus, by McDiarmid’s

inequality, for any δ > 0, with probability at least 1− δ,

Φ(D) ≤ ED̄[Φ(D̄)] +
Ms

q

√
ln(1/δ)

2n
.

Moreover, since296

n∑
i=1

ri(θ; g(D))Li(θ; g(D)) =

n∑
j=1

γj

n∑
i=1

1{i = (j;D)}Li(θ; g(D)) =

n∑
j=1

γjL(j)(θ; g(D)),

we have that

Lq(θ; g(D)) =
1

q

n∑
i=1

ri(θ; g(D))Li(θ; g(D)).

Therefore,297

ED̄[Φ(D̄)]

= ED̄
[
sup
θ∈Θ

E(x̄′,ȳ′)[`(f(x̄′; θ), ȳ′)]− L(θ; D̄) + L(θ; D̄)− Lq(θ; g(D̄))

]
≤ ED̄

[
sup
θ∈Θ

E(x̄′,ȳ′)[`(f(x̄′; θ), ȳ′)]− L(θ; D̄)

]
−Qn,q(Θ, g)

≤ ED̄,D̄′

[
sup
θ∈Θ

1

n

n∑
i=1

(`(f(x̄′i; θ), ȳ
′
i)− `(f(x̄i; θ), ȳi))

]
−Qn,q(Θ, g)

≤ Eξ,D̄,D̄′

[
sup
θ∈Θ

1

n

n∑
i=1

ξi(`(f(x̄′i; θ), ȳ
′
i)− `(f(x̄i; θ), ȳi))

]
−Qn,q(Θ, g)

≤ 2Rn(Θ)−Qn,q(Θ, g).

where the third line and the last line follow the subadditivity of supremum, the forth line follows298

the Jensen’s inequality and the convexity of the supremum, the fifth line follows that for each299

ξi ∈ {−1,+1}, the distribution of each term ξi(`(f(x̄′i; θ), ȳ
′
i)− `(f(x̄i; θ), ȳi)) is the distribution of300

(`(f(x̄′i; θ), ȳ
′
i)− `(f(x̄i; θ), ȳi)) since D̄ and D̄′ are drawn iid with the same distribution. Therefore,301

for any δ > 0, with probability at least 1− δ,302

Φ(D) ≤ 2Rn(Θ)−Qn,q(Θ, g) +
Ms

q

√
ln(1/δ)

2n
.
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Finally, since changing one data point inD changes R̂n(Θ) by at mostM/m, McDiarmid’s inequality
implies that for any δ > 0, with probability at least 1− δ,

Rn(Θ) ≤ R̂n(Θ) +M

√
ln(1/δ)

2n
.

By taking union bound, we obtain the statement of this theorem.303

304

11
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