

000 001 002 003 004 005 DEEP COGNITION: TOWARDS A MORE TRANSPARENT 006 AND INTERACTIVE RESEARCH AGENT 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030

031 ABSTRACT

032 Despite advances in large language models(LLMs), current systems for deep re-
033 search are limited by an asynchronous, “Input-Wait-Output” interaction paradigm.
034 This model creates a critical disconnect between human intent and AI execution,
035 leading to error propagation and an inability to dynamically course-correct during
036 complex problem-solving. We introduce Deep Cognition, a system designed to
037 enable this paradigm through three technical pillars: transparent and interruptible
038 AI reasoning, fine-grained bidirectional dialogue, and a shared cognitive context.
039 At the core of our system is a multi-agent collaboration framework driven by a
040 dynamic Plan-Search-Report workflow. **This architecture continuously integrates**
041 **interaction data (information) (e.g., dialogue trajectories and retrieved evidence)**
042 **into an evidence-driven iterative report construction process. By employing selec-**
043 **tive context retention to filter unutilized information, our system mitigates error**
044 **cascades and allows the AI to adapt its reasoning pathways based on the user’s**
045 **implicit focus.** We conduct a comprehensive user study on challenging deep re-
046 search tasks to evaluate the efficacy of our system. Results show that our approach
047 significantly enhances the user experience, yielding improvements of up to 29.2%
048 in Fine-Grained Interaction and 27.7% in Ease of Collaboration compared to a
049 competitive baseline. Most notably, our system demonstrates a 31.8% to 50.0%
050 improvement in overall task performance. These results highlight the critical impor-
051 tance of designing interactive AI systems that facilitate continuous human guidance
052 and transparent reasoning, rather than merely responding to isolated commands.

053 1 INTRODUCTION

054 As artificial intelligence (AI) capabilities have advanced dramatically through large language models
055 (LLMs) (Luo et al., 2024; Radford et al., 2018; 2021; Brown et al., 2020; 2024), the prevailing trajec-
056 tory in AI development has emphasized scaling model parameters (Kaplan et al., 2020; Hoffmann
057 et al., 2022; Wei et al., 2022), expanding training data (Yang et al., 2025; Meta AI, 2025), and refining
058 architectures (DeepSeek-AI et al., 2025; MiniMax et al., 2025; Poli et al., 2024)—creating increas-
059 ingly autonomous black boxes that assume minimal human input beyond simple prompting (Liu
060 et al., 2023b; Kim et al., 2023), instruction (Kim et al., 2023) or decision-making (Yin, 2025). This
061 pathway implicitly assumes that the ultimate form of artificial intelligence would require minimal
062 human input. We contend that this assumption mischaracterizes the nature of intelligence itself.
063 This paradigm positions humans as external operators who provide initial prompts and consume
064 final outputs while remaining excluded from the cognitive process itself, treating human intelligence
065 as merely an instructor rather than a collaborative partner. Consequently, a fundamental question
066 emerges: **How can we design an agentic framework that enables humans to effectively guide AI**
067 **reasoning trajectories through strategic, real-time interventions?** However, intelligence—whether
068 human or artificial—is inherently interactive, contextual, and collaborative (Hutchins, 1995; Minsky,
069 1987; Woolley et al., 2010). The most sophisticated human thinking rarely occurs in isolation but
070 emerges through dialogue, feedback, refinement, and the integration of diverse perspectives. Consider
071 the nature of breakthrough scientific discoveries or complex problem-solving scenarios: They invari-
072 ably involve iterative cycles of hypothesis formation, testing, revision, and collaborative refinement.
073 As AI systems approach advanced cognitive capabilities powered by inference-time scaling (OpenAI,
074 2024)—enabling thought-level communication where strategic human oversight can leverage vast AI
075 execution power (Xia et al., 2025)—the need for meaningful interaction transforms and intensifies.

054 This is especially critical for extended AI tasks (Kwa et al., 2025) spanning hours to days, which
 055 fundamentally alter human-AI collaboration dynamics.
 056

057 This transition is particularly evident in systems designed for Deep Research tasks (OpenAI, 2025c;
 058 Google, 2025; Perplexity AI, 2025; Zheng et al., 2025a)—complex, extended cognitive processes
 059 involving dynamic information retrieval, filter, understanding, analysis and synthesis. Current state-
 060 of-the-art research systems have pioneered capabilities for multi-step web browsing, data analysis,
 061 and report generation. However, these systems uniformly adopt an “Input-Wait-Output” interaction
 062 paradigm where users initiate a query, wait through an extended “Black Box” processing period
 063 (typically 5-30 minutes), and eventually receive a comprehensive result. This approach reflects
 064 the persistent assumption that interaction is merely a necessary cost rather than a source of value.
 065 Yet these systems fundamentally suffer from critical deficiencies: early errors (Cemri et al., 2025)
 066 compound without correction, systems cannot adapt to evolving requirements, domain expertise
 067 remains inaccessible at crucial moments, and opaque processing prevents human-AI collaboration.
 068

069 These deficiencies stem from a fundamental misalignment: systems that minimize human involve-
 070 ment during processing cannot address problems that require adaptive guidance and expert inter-
 071 vention (Bainbridge, 1983). To address this fundamental challenge, we develop **deep cognition**—a
 072 systematic framework that transcends traditional automation by embedding real-time human expertise
 073 directly into AI reasoning processes for complex research tasks, guided by the following principles:
 074

- **Transparency:** The system reveals its entire thinking process—from search strategies and query formulations to information evaluation and synthesis rationales—making AI cognition inspectable and editable at every stage. This transparency enables true thought-level interaction where humans can guide how AI thinks.
- **Fine-Grained Interaction:** Users can engage with any specific element of the AI’s output—questioning particular claims, requesting elaboration on specific points, or changing the research focus.

075 These principles fundamentally transform deep research from conventional question-and-answer
 076 exchanges into cognitive collaboration (see Appendix ??) — what we term **cognitive oversight**.
 077 Rather than relegating humans to the role of passive tool operators, this framework establishes
 078 a synergistic reasoning process that harnesses the complementary strengths of human expertise
 079 and AI capabilities while mitigating their respective limitations. Through cognitive oversight, we
 080 move beyond the traditional paradigm of human-AI interaction toward a new form of augmented
 081 intelligence where strategic human insight and AI computational power merge into a unified cognitive
 082 system.

083 Through extensive experiments with real expert interactions, we demonstrate that deep cognition
 084 achieves substantial improvements or competitive over strongest baseline across all evaluation dimen-
 085 sions: Transparency (+20.0%), Fine-Grained Interaction (+29.2%), Real-Time Intervention (+18.5%),
 086 Ease of Collaboration (+27.7%), Results-Worth-Effort (+8.8%), and Interruptibility (+20.7%). Our
 087 contributions are summarized as follows:

- **Agentic Multi-Agent Workflow:** We developed an anti-degradation workflow that co-evolves with stronger base models and integrates professional sub-agents.
- **Comprehensive Evaluation Framework:** We establish a complete evaluation framework, including 15 metrics specifically designed for assessing the effectiveness of cognitive oversight in deep research scenarios.
- **Human Fine-Grained Oversight:** We operationalize the cognitive oversight paradigm into our multi-agent human-AI collaboration system designed for deep research tasks.

102 2 METHODOLOGY

103 2.1 SYSTEM ARCHITECTURE OVERVIEW

104 We propose a multi-agent collaborative deep research system designed to address the challenges
 105 of long-form report generation. The system supported by **four key processes**: **Planning Agent**,
 106 **Clarification Agent**, **Browsing Agent**, and **Writing Agent**, with the capability for agents to solicit human
 107

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010<br

162 to recognize situations necessitating human input, including but not limited to: **Ambiguity Detection**:
 163 When the research question contains multiple interpretations or the scope is unclear. **Information**
 164 **Conflict**: When retrieved sources present contradictory claims or evidence. **Branch Decision Points**:
 165 When the research path encounters multiple viable directions requiring user preference. **Domain**
 166 **Expertise Gaps**: When the system encounters specialized terminology or domain-specific context
 167 beyond its knowledge.

168 To prevent over-interruption, the system can view all previous user interactions in the historical track.
 169 The LLM will review this history to avoid repetitive questions and ensure that each clarification
 170 request provides incremental value to the research process.

171 **Dynamic Option Generation**: Unlike systems that rely on predefined question templates, our
 172 framework employs. **dynamic option generation**. When a clarification need is identified, the system
 173 generates appropriate question. **Multiple-choice questions** with 3-5 options covering probable user
 174 intents. **Open-ended questions** for scenarios requiring free-form input. **Contextual explanations** to
 175 help users understand each option.

177 2.3 PROFESSIONAL AGENT CLUSTER

189 Figure 3: Caption

When processing large-scale web information retrieval tasks, we face two core challenges. First, the **information overload problem** arises as massive URLs and PDF documents exceed the effective processing range of a single model. Second, the **long-sequence degradation problem** manifests as existing large language models universally exhibit the “lost in the middle” (Liu et al., 2023a) phenomenon, struggling to effectively integrate scattered key information when processing long texts. Additionally, the inherent structural looseness and uneven information

190 density of web content further exacerbate the complexity of information extraction. To address these
 191 challenges, we propose a distributed Sub-Browse Agent cluster architecture that achieves efficient
 192 information extraction through a systematic workflow. The main Research Agent first queries the
 193 Serper API to retrieve the top-20 candidate URLs for each search query, then strategically distributes
 194 these resources among specialized Sub-Agent instances. Each Sub-Agent operates within an isolated
 195 contextual environment to avoid cross-domain information interference.

196 For content processing, Sub-Agents employ adaptive chunking strategies to handle documents of
 197 varying lengths. Standard web pages are processed using fixed-size chunking with overlapping
 198 windows, while exceptionally long documents trigger an autonomous pagination decision mechanism
 199 where the Browse Agent evaluates content density and relevance to determine whether to continue
 200 processing subsequent sections. Upon completion of analysis, each Sub-Agent submits structured
 201 findings to the main Agent with three components: **Excerpts**, **Useful** and **Reasoning**. This archi-
 202 tecture effectively distributes computational load, enables specialized processing optimization, and
 203 significantly improves both efficiency and accuracy in large-scale web information retrieval tasks.

204 The system utilizes a hierarchical, modular design to manage long-term research planning. We design
 205 a research agent to propose the research plan and autonomously determine the next action base on the
 206 current research state. This multi agent modular transfer isolates task-specific logic (e.g., research
 207 planning, web browsing, report generation), thereby preventing cross-module context interference.
 208 The research agent logs all completed events as a to-do list, this to-do list verified the current research
 209 state whether align with user goal.

210 We define the Research Agent (detailed prompts in appendix A.3) as a professional research scientist
 211 and strictly define the system’s capability boundaries to enable the agent to plan highly feasible to-do
 212 lists (specifically capable of searching, analyzing, and writing, but not programming or deploying
 213 models). Furthermore, we provide the agent with three distinct few-shot example types (covering
 214 literature review, technical proposal, and precise retrieval), each including both correct and incorrect
 215 instances. These examples differentiate strategies suitable for internal deliberation, external informa-

tion seeking, and precise factual comparison, guiding the agent to generate the most accurate plans, detailed prompts in appendix A.2.

2.4 INTERMEDIATE REPORTS THROUGH WRITING AGENT

While existing deep research systems (LangChain, 2024; Roucher et al., 2025a) typically follow a sequential collect-then-generate paradigm, we propose an **evidence-driven iterative report construction strategy**. We deployed a specially fine-tuned Writing Agent capable of generating structured intermediate reports even when evidence collection remains ongoing (detailed prompts in appendix A.4).

Figure 4: Caption

The system dynamically generates or adjusts hierarchical research plans at the beginning of each information collection cycle, with these plans serving as report outlines to guide the current cycle’s writing tasks. This progressive synthesis approach delivers two key advantages: through **reasoning space construction**, it provides the model with a dedicated arena for deep reasoning and analysis during iterative optimization of multiple report versions; through **selective context retention**, the system preserves only the browsing results that have been incorporated into the current report, while directly

removing unutilized evidence from subsequent processing contexts. This parallel evidence acquisition and report construction paradigm breaks through the limitations of traditional batch processing approaches, enabling continuous knowledge synthesis processes.

3 HUMAN-AI CO-RESEARCH MECHANISM

Figure 5: Deep cognition interface design showcasing key interactive features: (A) Research scope clarification to refine vague queries, (B) Click to open the important URL, (C) Multi-agent Workflow Visualization, (D) Transparent display of reasoning, research processes, and interactive query refinement, and (E) Report revision. The icon stands for clickable interface elements.

Deep cognition supports real-time human–AI collaboration. It is designed for open-ended, multi-hop retrieval and exploratory analysis. It enables users to iteratively expand the initial question and produce a synthesized write-up. Following principles of cognitive oversight, we designed the following features for our deep cognition system, with interfaces presented in Figure 10. The interface supports multiple modes of human–AI collaboration: **Clarification** (left): The system generates clarification questions to help users specify their focus. **Interrupt** (bottom-left): Users can intervene during the system’s ongoing retrieval or reasoning process, halting unsatisfactory results and redirecting the search toward more relevant information. **Planning** (right): The system synthesizes retrieved evidence into a structured research plan. **Transparent Research Process**: The interface

270 make the system’s decision-making process visible and comprehensible to users. Search strategy
 271 explainability is achieved by directly displaying the reasoning process and query terms generated by
 272 the model, making information retrieval interpretable. The editor area on the left of Figure 10 displays
 273 the evolving research document with proper formatting. All findings are properly linked to their
 274 original sources, enabling users to trace source materials. **Real-Time Intervention** We implement a
 275 “Pause” feature, allowing users to interrupt the system at critical junctures in the research process.
 276 This intervention capability enables users to actively shape the research trajectory based on emerging
 277 insights or changing objectives.

279 4 EXPERIMENTS

281 4.1 METRICS DESIGN

283 We defined five key dimensions for evaluating the quality of generated reports. Each metric is
 284 rigorously assessed using a 5-point Likert scale. For report quality, we focus on organization,
 285 coverage, depth, relevance, usefulness, and innovation. For interaction dimensions, we focus on
 286 willingness to use, usability, transparency, interruptibility, granular interaction, informativeness, ease
 287 of collaboration, cost-effectiveness, real-time intervention, and usefulness.

Metric	Description	Metric	Description
Organization	Evaluate whether the article demonstrates sound organization and logical structure. An acceptable response should: (1) Exhibit clear structure by organizing relevant points into a coherent logical sequence. (2) Maintain coherence without any contradictions or unnecessary repetition.	Intention to Use	Measures user intention and propensity for continued engagement with the system based on perceived value and satisfaction.
Cutting-Edge	Assess whether the article demonstrates comprehensive coverage of existing literature by: (1) Effectively summarizing and conducting comparative analysis with previous research. (2) Timely incorporating the most recent and up-to-date research findings or information.	Usability	Evaluates the intuitive nature and accessibility of the system interface, including cognitive load and interaction efficiency.
Coverage	Provide comprehensive coverage of the identified areas of interest through: (1) Conducting thorough reviews. (2) Citing a broad range of representative scholarly works. (3) Incorporating the most current and time-sensitive information from various sources, rather than limiting the analysis to a small number of papers.	Transparency	Assesses the interpretability and explainability of the model’s decision-making processes and reasoning mechanisms.
Depth	Assess the adequacy of information content provided in the article. Specifically, evaluate whether the article delivers sufficient relevant information with appropriate depth such that readers can achieve thorough understanding of each argument presented.	Interruptibility	Assesses the system’s ability to tolerate pauses or context switches and to resume smoothly without loss of state or progress.
Relevance	Assess whether the response maintains topical relevance and preserves clear focus in order to deliver a useful response to the posed question. Specifically, the output should: (1) Sufficiently address the central elements of the original question and satisfy your informational requirements. (2) The response should exclude substantial amounts of tangential information unrelated to the original inquiry.	Fine-Grained Interaction	Evaluates the system’s capacity to incorporate user feedback and enable precise, granular control over output generation.
		Inspiration	Assesses the system’s ability to stimulate creative thinking and generate ideas or innovative approaches to problem-solving.
		Ease of Collaboration	Measures the extent to which the system functions as an effective collaborative partner in knowledge work and decision-making processes.
		Results-Worth-Effort	Evaluates whether users perceive the time and effort invested in system interaction as worthwhile and valuable relative to the outcomes achieved.
		Real-Time Intervention	Measures the degree to which users can actively interrupt and steer the system’s ongoing processes—e.g., pausing, editing, or re-prompting—to obtain desired outputs.
		Helpfulness	Assesses the overall utility and practical value of the output in addressing user needs and facilitating problem-solving objectives.

313 Figure 6: Evaluation Metrics for Report Quality Assessment

316 4.2 SYSTEM EXPERIMENTAL SETUP

318 We use claude-3.7-sonnet-thinking as an inference model for action selection and claude-4.0-sonnet
 319 for document authoring, and the browsing agent uses gpt-4.1-mini for processing large numbers
 320 of documents, with 0.6 used for both temperature. We used the Google TOP20 for web search to
 321 provide a realistic search environment for the Agent System. Each turn search generate 5 queries,
 322 and for 5 webpages for each query.

324 4.3 RESEARCH TASK SETUP
325

326 To addresses two limitations of static benchmarks, We perform a **human evaluation** to evaluate the real-
327 world human experience during the human-AI interaction inspired by Lee et al. (2024). This method
328 enables assessment of output quality that depends on interactive dynamics, which aligns with real-
329 world usage scenarios. **We develop a web application for users to interact with deep cognition in real**
330 **time. We compare it with three competitive deep research baseline: Gemini Deep Research (Google,**
331 **2025), OpenAI Deep Research (OpenAI, 2025b;a:c) and Grok 3 DeeperSearch (xAI, 2025).** Study 1
332 measuring report quality and the effectiveness of the interaction design. Study 2 testing whether users
333 with higher or lower **prior knowledge** levels show differences in multi-hop retrieval task.
334

335 **Study 1** We recruited 13 participants with prior research experience. Before using the system,
336 they were introduced to our evaluation metrics(see section 4.1) for deep cognition to ensure a shared
337 understanding. Participants then evaluated both the quality of generated reports and the system’s
338 interactive behaviors on a 5-point Likert scale, supplemented by qualitative responses to open-ended
339 interviews. Each participant proposed a research question from their own work, participants observed
340 the model in real time as it retrieved information, reasoned through intermediate steps, and generated
341 self-evaluations. They could not directly edit the final report but instead guided the process via
342 interactive mechanisms such as interrupting outputs, injecting prior knowledge, inspecting sources,
343 reviewing self-evaluations, suggesting new directions, giving feedback, or contributing personal
344 documents. These interventions helped steer the model toward deeper analysis and more efficient
345 retrieval, with the report finalized when the model itself chose to conclude.
346

347 **Study 2** To validate our hypothesis that experts with higher cognitive capabilities demonstrate
348 enhanced collaboration with AI in transparent dialogue environments, we measured system perfor-
349 mance through two comprehensive benchmarks. Given that our expert annotators are native Chinese
350 speakers with domain expertise, we selected representative subsets for intensive interactive evaluation:
351 22 questions from browsecomp-ZH (Zhou et al., 2025) (top two from each of 11 categories) and the
352 first 20 questions from xbench-deep research (Chen et al., 2025). Both sampling strategies ensure
353 feasible human-AI collaborative assessment.
354

355 5 MAIN RESULT
356357 5.1 EXPERT USER EVALUATION
358

359 As shown in Table 1, augmented through expert
360 interaction, the deep cognition system demon-
361 strated significant enhancements across six eval-
362 uated metrics, overall average improve 63%. No-
363 tably, the ORGANIZATION exhibits the great-
364 est gain (+97%), followed by CUTTING-EDGE
365 (+79%) and depth (+76%). Even the dimension
366 with the smallest gain, helpfulness, showed a
367 significant improvement of +42%. As the eval-
368 uation results in Table 2, the **alignment between**
369 **expert rankings and user evaluations** validates
370 our core hypothesis: **The system with enhanced**
371 **interaction mechanisms consistently deliver**
372 **output quality across six metrics.**
373

374 Deep cognition dominates six of the seven metrics. It records the largest gains in Fine-Grained Inter-
375 action (+44.6%) and Cooperative (+43.0%), and is the only system to reach a perfect Transparency
376 score (5.00, +25.0% over the strongest baseline). Overall, the results highlight deep cognition’s
377 superior transparency, controllability, and collaborative support. These quantitative results are further
378 supported by users’ qualitative feedback. Over 90% of participants agree or strongly agree that
379 interaction with deep cognition improves report quality; 69% find it easy to use and 62% show a high
380 willingness to use.
381

Metric	DC (w/o Int.)	DC.
Organization	2.231	4.385 ↑ 97%
Cutting-Edge	2.538	4.538 ↑ 79%
Coverage	2.423	4.000 ↑ 65%
Depth	2.231	3.923 ↑ 76%
Relevance	2.885	3.769 ↑ 31%
Helpfulness	2.808	4.000 ↑ 42%
Overall Average	2.519	4.103 ↑ 63%

382 Table 1: Performance improvement of deep cognition
383 over deep cognition without interaction. DC. indicates
384 deep cognition, DC (non). indicates deep cognition
385 without interaction.
386

378	Report Evaluation (1–5 Score)				Interaction Evaluation (1–5 Score)					
	Metric	DC.	Gemini	OpenAI	Grok3	Metric	DC.	Gemini	OpenAI	Grok 3
381	Organization	4.385_{+1.8%}	4.308	3.769	3.385	Transparency	5.00_{+25.0%}	4.00	3.00	3.19
382	Cutting-Edge	4.538_{+3.5%}	4.385	3.769	3.538	Interruptibility	4.35_{+31.4%}	3.31	2.69	2.62
383	Coverage	4.000 _{-10.4%}	4.462	3.692	2.923	Fine-Grained Interation	4.73_{+44.6%}	3.27	2.88	2.19
384	Depth	3.923 _{-1.9%}	4.000	3.577	2.769	Real-Time Intervention	4.69_{+24.4%}	3.77	2.92	2.62
385	Relevance	3.769 _{-18.3%}	4.615	4.077	3.615	Inspiration	4.08_{+0.0%}	4.08	3.42	3.19
386	Helpfulness	4.000_{+0.0%}	4.000	3.615	2.692	Ease of Collaboration	4.62_{+43.0%}	3.23	2.77	1.85
387						Results-Worth-Effort	4.52_{+10.8%}	4.08	3.29	2.96

Table 2: User and expert evaluation results for AI research assistance systems. Left panel: User-generated evaluation scores on a 1–5 scale, where participants queried systems with their own research questions. Right panel: Scores (1–5 scale) for system-interaction evaluation metrics. Color coding indicates within-row performance rankings, and percentages show deep cognition’s relative improvement over the strongest baseline system (Gemini). DC. indicates deep cognition.

5.2 BENCHMARK EVALUATION RESULTS

The results provide compelling evidence for our collaborative cognition framework. On browsescomp-ZH, the deep cognition system achieves 72.73% accuracy—dramatically outperforming all baselines (Gemini/OpenAI: 40.91%, Grok 3: 22.73%). Ablation studies show neither cognitive oversight alone (45.45%) nor interaction alone (40.91%) match their combination. On X-bench, our system achieves 65% accuracy, matching OpenAI while substantially outperforming Gemini (35%). Note that browsescomp-ZH was evaluated on June 22, 2025, and X-bench on September 25, 2025—temporal gaps may contribute to baseline performance variations due to API updates. The results consistently demonstrate that expert-AI collaboration requires both transparent reasoning and interactive guidance for effective performance across domains. Participants with deeper cognitive processing capabilities achieved significantly higher human-AI collaborative performance compared to those with surface-level cognitive approaches in transparent interaction paradigms, as measured by problem resolution accuracy.

	DC (non cog.)	DC (non int.)	DC (cog+int.)	Gemini	OpenAI	Grok 3
Accuracy	45.45%	40.91%	72.73%	40.91%	40.91%	22.73%
<hr/>						
	DC (cog+int.)	Gemini	OpenAI			
Accuracy	65%	35%	65%			

Table 3: Accuracy comparison across benchmarks. Top: Browsecamp-ZH (22 questions). Bottom: X-bench deep research (first 20 questions). DC (non cog.) = baseline with middle school-level participants (n=4); DC (non int.) = autonomous system; DC (cog+int.) = interactive condition with graduate-level participants (n=4).

5.3 IN-DEPTH ANALYSIS OF THE HUMAN STUDY: HUMAN HOLD DYNAMIC MENTAL MODELS THROUGHOUT COLLABORATION PROCESS

Enhancing transparency at the model’s behavioral status can improve human-AI collaboration. Specifically, in complex, long-duration retrieval tasks, humans tend to delegate mechanical operations such as “browsing” and “summarizing” to AI, while preferring to collaborate with the model at decision points requiring higher-order thinking. We dive deeper into the human behavior pattern in the deep research process and provide design considerations of human-AI collaboration research system. As illustrated in case study(see Appendix E) and User Behavior Data Point (see Appendix C), our user study reveals a sophisticated pattern of collaborative engagement that varies systematically across six research phases. Users demonstrate **dynamic cooperation willingness**, transitioning between “hands-on” and “hands-off” modes based on task characteristics and their domain expertise. We detail these six phases below:

Figure 7: Changes in users' behavioral tendencies in the process of complex research tasks.

Clarification (Hands-on) The research process begins with intensive human-AI collaboration as users refine vague problem definitions. Users' initial research questions are typically too broad to cover all possible scenarios. **User Knowledge Input (Hands-on)** Users maintain high engagement when they possess specific domain knowledge or references that need integration. When users know specific references or attributes about an item, such as queries, paper links, websites, or personal opinions, they actively guide the AI to relevant media. **Reasoning (Hands-off)** Users seek to understand whether the model has correctly executed prescribed instructions and want transparency in decision-making processes. **Real-Time Intervention (Hands-on)** Cooperation peaks again during dynamic browsing tasks where users encounter pages or information sources that warrant detailed retrieval. **Web Summary (Hands-off)** During summarization tasks, users tend to trust in AI capability. Participants often need consolidated insights from multiple sources rather than single source summarization, leading them to allow extended autonomous operation. **Web Search (Hands-on)** The cycle concludes with renewed hands-on engagement for open-ended and subjective questions that require interpretation or subjective judgment.

This dynamic pattern demonstrates that effective human-AI collaboration is not uniform but adapts strategically to leverage the comparative advantages of human judgment and AI processing capabilities across different research phases. We illustrate this dynamic research task example to demonstrate authentic participant behavior.

6 RELATED WORK

Human-AI Interaction AI agents White (2024); Feng et al. (2025) now support complex tasks through natural language interaction, better task understanding, and multi-level autonomy beyond basic queries interaction (Srinivas & Runkana, 2025; Shao et al., 2025). The shift from static monolithic inference to adaptive, resource-aware computation has become central to AI systems for knowledge discovery (Shao et al., 2024; Jiang et al., 2024) leveraging multi-agent collaboration (Watkins et al., 2025; Fragiadakis et al., 2025) to facilitate serendipitous discovery. This mismatch constrains the potential for AI to act as a collaborator in exploratory inquiry (Pirolli, 2009). Although current collaboration systems allow humans to read model reasoning chains and engage in multi-turn interactions with models (Westphal et al., 2023; Gomez et al., 2025; Lee et al., 2024; Collins et al., 2024), these current interaction paradigms maintain limiting user's ability to adapt to emerging expert user's knowledge during complex and time-consuming tasks.

Deep Research Systems Deep research systems such as Gemini Deep Research (Google, 2025), OpenAI Deep Research (OpenAI, 2025b) and Grok3 Deeper Search (xAI, 2025) are enabled by the sophisticated reasoning abilities that have emerged from recent advances in large language models (LLMs) (OpenAI et al., 2024; Guo et al., 2025; Team et al., 2025), facilitating multi-step, in-depth analysis and information synthesis across hundreds of sources. Most open-source deep research projects (LangChain AI, 2025; Zhang, 2025; Elovic, 2025; Camara, 2025; Jina AI, 2025; Roucher et al., 2025b; ByteDance, 2024) employ prompt-based multi-agent systems with predefined workflows. Recent work (Zheng et al., 2025b) has applied end-to-end reinforcement learning to open-source LLMs to perform iterative reasoning to complex questions. However, few existing deep research systems in Appendix?? development multi-round interaction planning during the research process, user remain limited once research begins.

486 **7 CONCLUSION**

488 This paper introduced deep cognition, a multi-agent framework for collaborative research with real-
 489 time “cognitive oversight” through transparent, interruptible interactions. Our evaluation challenge
 490 the assumption that AI progress requires purely autonomous capabilities. Instead, our work suggests
 491 that advanced intelligence emerges from cognitive partnerships that leverage complementary human
 492 judgment and machine processing strengths.

494 **ETHICS STATEMENT**

496 This work adheres to the ICLR Code of Ethics. Human participants were involved in this study, and
 497 all procedures were conducted with informed consent and in strict accordance with relevant ethical
 498 standards. No personally identifiable information was collected or stored, and participants’ privacy
 499 was fully protected throughout the study. All datasets used were obtained in compliance with relevant
 500 usage guidelines. We took care to mitigate potential biases and discriminatory outcomes, and no
 501 experiments were conducted that could raise privacy or security concerns. We remain committed to
 502 ensuring transparency, fairness, and integrity in the research process.

504 **REPRODUCIBILITY STATEMENT**

506 We have taken all necessary steps to guarantee the reproducibility of our results. The main text
 507 includes detailed descriptions of the rollout procedures, training methods, and evaluation protocols.
 508 Additionally, the supplementary materials provide information on dataset preprocessing, annotator
 509 instructions, LLM prompts, and implementation specifics. These materials should enable other
 510 researchers to replicate our findings and extend our work.

512 **REFERENCES**

514 Lisanne Bainbridge. Ironies of automation. In *Analysis, design and evaluation of man–machine*
 515 *systems*, pp. 129–135. Elsevier, 1983.

516 Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V. Le, Christopher Ré, and
 517 Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling,
 518 2024. URL <https://arxiv.org/abs/2407.21787>.

519 Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
 520 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
 521 Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
 522 Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
 523 Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
 524 Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL <https://arxiv.org/abs/2005.14165>.

526 ByteDance. Deerflow, 2024. URL <https://github.com/bytedance/deer-flow>.
 527 Community-driven deep research framework combining LLMs with web search, crawling, and
 528 code execution tools.

530 Nicolas Camara. Open deep research, 2025. URL <https://github.com/nicksacamara/open-deep-research>. Open-source clone of OpenAI’s Deep Research using Firecrawl for
 531 web data extraction and AI reasoning.

533 Mert Cemri, Melissa Z. Pan, Shuyi Yang, Lakshya A. Agrawal, Bhavya Chopra, Rishabh Tiwari,
 534 Kurt Keutzer, Aditya Parameswaran, Dan Klein, Kannan Ramchandran, Matei Zaharia, Joseph E.
 535 Gonzalez, and Ion Stoica. Why do multi-agent ILM systems fail?, 2025. URL <https://arxiv.org/abs/2503.13657>.

538 Kaiyuan Chen, Yixin Ren, Yang Liu, Xiaobo Hu, Haotong Tian, Tianbao Xie, Fangfu Liu, Haoye
 539 Zhang, Hongzhang Liu, Yuan Gong, Chen Sun, Han Hou, Hui Yang, James Pan, Jianan Lou,
 Jiayi Mao, Jizheng Liu, Jinpeng Li, Kangyi Liu, Kenkun Liu, Rui Wang, Run Li, Tong Niu,

540 Wenlong Zhang, Wenqi Yan, Xuanzheng Wang, Yuchen Zhang, Yi-Hsin Hung, Yuan Jiang, Zexuan
 541 Liu, Zihan Yin, Zijian Ma, and Zhiwen Mo. xbench: Tracking agents productivity scaling with
 542 profession-aligned real-world evaluations, 2025. URL <https://arxiv.org/abs/2506.13651>.

543

544 Katherine M. Collins, Ilia Sucholutsky, Umang Bhatt, Kartik Chandra, Lionel Wong, Mina Lee,
 545 Cedegao E. Zhang, Tan Zhi-Xuan, Mark Ho, Vikash Mansinghka, Adrian Weller, Joshua B.
 546 Tenenbaum, and Thomas L. Griffiths. Building machines that learn and think with people, 2024.
 547 URL <https://arxiv.org/abs/2408.03943>.

548

549 DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang
 550 Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang, Deli
 551 Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen,
 552 Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui Ding,
 553 Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi Ni, Jiashi
 554 Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, Junxiao Song,
 555 Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
 556 Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun Wang, Mingchuan
 557 Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan Huang, Peiyi Wang,
 558 Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J. Chen, R. L. Jin, Ruiqi
 559 Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang, Ruyi Chen, S. S. Li,
 560 Shanghao Lu, Shangyan Zhou, Shanhua Chen, Shaoqing Wu, Shengfeng Ye, Shengfeng Ye,
 561 Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shuting Pan, T. Wang,
 562 Tao Yun, Tian Pei, Tianyu Sun, W. L. Xiao, Wangding Zeng, Wanjia Zhao, Wei An, Wen Liu,
 563 Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, X. Q. Li, Xiangyue Jin, Xianzu Wang,
 564 Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang Chen, Xiaokang Zhang, Xiaosha
 565 Chen, Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
 566 Xingkai Yu, Xinnan Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang, Xinyuan Li, Xuecheng Su,
 567 Xuheng Lin, Y. K. Li, Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang Zhang, Yanhong Xu, Yanhong
 568 Xu, Yanping Huang, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Li, Yaohui Wang, Yi Yu, Yi Zheng,
 569 Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Ying Tang, Yishi Piao, Yisong Wang, Yixuan
 570 Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yu Wu, Yuan Ou, Yuchen Zhu, Yuduan Wang, Yue
 571 Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan Xiong, Yunxian Ma, Yuting Yan, Yuxiang Luo,
 572 Yuxiang You, Yuxuan Liu, Yuyang Zhou, Z. F. Wu, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu,
 573 Zhean Xu, Zhen Huang, Zhen Zhang, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhibin Gou,
 574 Zhicheng Ma, Zhigang Yan, Zhihong Shao, Zhipeng Xu, Zhiyu Wu, Zhongyu Zhang, Zhuoshu
 Li, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Ziyi Gao, and Zizheng Pan.
 Deepseek-v3 technical report, 2025. URL <https://arxiv.org/abs/2412.19437>.

575 Assaf Elovic. Gpt researcher, 2025. URL <https://github.com/assafelovic/gpt-researcher>. Open deep research agent for web and local research with detailed re-
 576 port generation and citations.

577

578 K. J. Kevin Feng, David W. McDonald, and Amy X. Zhang. Levels of autonomy for ai agents, 2025.
 579 URL <https://arxiv.org/abs/2506.12469>.

580

581 George Fragiadakis, Christos Diou, George Kousiouris, and Mara Nikolaidou. Evaluating human-ai
 582 collaboration: A review and methodological framework, 2025. URL <https://arxiv.org/abs/2407.19098>.

583

584 Catalina Gomez, Sue Min Cho, Shichang Ke, Chien-Ming Huang, and Mathias Unberath. Human-ai
 585 collaboration is not very collaborative yet: a taxonomy of interaction patterns in ai-assisted decision
 586 making from a systematic review. *Frontiers in Computer Science*, Volume 6 - 2024, 2025. ISSN
 587 2624-9898. doi: 10.3389/fcomp.2024.1521066. URL <https://www.frontiersin.org/journals/computer-science/articles/10.3389/fcomp.2024.1521066>.

588

589 Google. Gemini deep research - your personal research assistant, 2025. URL <https://gemini.google/overview/deep-research/>. Accessed: April 14, 2025.

590

591 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 592 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 593 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

594 Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
 595 Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
 596 Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia
 597 Guy, Simon Osindero, Karen Simonyan, Erich Elsen, Oriol Vinyals, Jack W. Rae, and Laurent
 598 Sifre. Training compute-optimal large language models. In *Proceedings of the 36th International
 599 Conference on Neural Information Processing Systems*, NIPS '22, Red Hook, NY, USA, 2022.
 600 Curran Associates Inc. ISBN 9781713871088.

601 Edwin Hutchins. *Cognition in the Wild*. MIT press, 1995.

602

603 Yucheng Jiang, Yijia Shao, Dekun Ma, Sina J. Semnani, and Monica S. Lam. Into the unknown
 604 unknowns: Engaged human learning through participation in language model agent conversations,
 605 2024. URL <https://arxiv.org/abs/2408.15232>.

606 Jina AI. node-deepresearch, 2025. URL [https://github.com/jina-ai/
 607 node-DeepResearch](https://github.com/jina-ai/node-DeepResearch). Iterative search, reading, and reasoning system for deep research
 608 queries with focus on concise answers.

609

610 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
 611 Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models,
 612 2020. URL <https://arxiv.org/abs/2001.08361>.

613 Sunnie S. Y. Kim, Elizabeth Anne Watkins, Olga Russakovsky, Ruth Fong, and Andrés Monroy-
 614 Hernández. "help me help the ai": Understanding how explainability can support human-ai interac-
 615 tion. In *Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems*, CHI
 616 '23, New York, NY, USA, 2023. Association for Computing Machinery. ISBN 9781450394215.
 617 doi: 10.1145/3544548.3581001. URL <https://doi.org/10.1145/3544548.3581001>.

618 Thomas Kwa, Ben West, Joel Becker, Amy Deng, Kathryn Garcia, Max Hasin, Sami Jawhar, Megan
 619 Kinniment, Nate Rush, Sydney Von Arx, Ryan Bloom, Thomas Broadley, Haoxing Du, Brian
 620 Goodrich, Nikola Jurkovic, Luke Harold Miles, Seraphina Nix, Tao Lin, Neev Parikh, David Rein,
 621 Lucas Jun Koba Sato, Hjalmar Wijk, Daniel M. Ziegler, Elizabeth Barnes, and Lawrence Chan.
 622 Measuring ai ability to complete long tasks, 2025. URL [https://arxiv.org/abs/2503.
 623 14499](https://arxiv.org/abs/2503.14499).

624 LangChain. Open deep research, 2024. URL [https://github.com/langchain-ai/open_](https://github.com/langchain-ai/open_

 625 deep_research) deep_research. GitHub repository, accessed December 2024.

626

627 LangChain AI. Open deep research, 2025. URL [https://github.com/langchain-ai/open_](https://github.com/langchain-ai/open_

 628 deep_research) deep_research. Open-source research assistant for automated deep research and report
 629 generation.

630 Mina Lee, Megha Srivastava, Amelia Hardy, John Thickstun, Esin Durmus, Ashwin Paranjape, Ines
 631 Gerard-Ursin, Xiang Lisa Li, Faisal Ladhak, Frieda Rong, Rose E. Wang, Minae Kwon, Joon Sung
 632 Park, Hancheng Cao, Tony Lee, Rishi Bommasani, Michael Bernstein, and Percy Liang. Evaluating
 633 human-language model interaction, 2024. URL <https://arxiv.org/abs/2212.09746>.

634

635 Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni,
 636 and Percy Liang. Lost in the middle: How language models use long contexts. *arXiv preprint
 637 arXiv:2307.03172*, 2023a.

638 Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig.
 639 Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language
 640 processing. *ACM computing surveys*, 55(9):1–35, 2023b.

641

642 Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Harsh Lara, Yunxuan Li, Lei Shu, Yun
 643 Zhu, Lei Meng, Jiao Sun, et al. Improve mathematical reasoning in language models by automated
 644 process supervision. *ArXiv preprint*, abs/2406.06592, 2024. URL [https://arxiv.org/
 645 abs/2406.06592](https://arxiv.org/abs/2406.06592).

646 Meta AI. The llama 4 herd: The beginning of a new era of natively multimodal ai innovation, 4 2025.
 647 URL <https://ai.meta.com/blog/llama-4-multimodal-intelligence/>. Ac-
 648 cessed: November 27, 2025.

648 MiniMax, Aonian Li, Bangwei Gong, Bo Yang, Boji Shan, Chang Liu, Cheng Zhu, Chunhao Zhang,
 649 Congchao Guo, Da Chen, Dong Li, Enwei Jiao, Gengxin Li, Guojun Zhang, Haohai Sun, Houze
 650 Dong, Jiadai Zhu, Jiaqi Zhuang, Jiayuan Song, Jin Zhu, Jingtao Han, Jingyang Li, Junbin Xie,
 651 Junhao Xu, Junjie Yan, Kaishun Zhang, Kecheng Xiao, Kexi Kang, Le Han, Leyang Wang, Lianfei
 652 Yu, Liheng Feng, Lin Zheng, Linbo Chai, Long Xing, Meizhi Ju, Mingyuan Chi, Mozhi Zhang,
 653 Peikai Huang, Pengcheng Niu, Pengfei Li, Pengyu Zhao, Qi Yang, Qidi Xu, Qiexiang Wang,
 654 Qin Wang, Qiuhibi Li, Ruitao Leng, Shengmin Shi, Shuqi Yu, Sichen Li, Songquan Zhu, Tao
 655 Huang, Tianrun Liang, Weigao Sun, Weixuan Sun, Weiyu Cheng, Wenkai Li, Xiangjun Song,
 656 Xiao Su, Xiaodong Han, Xinjie Zhang, Xinzhu Hou, Xu Min, Xun Zou, Xuyang Shen, Yan Gong,
 657 Yingjie Zhu, Yipeng Zhou, Yiran Zhong, Yongyi Hu, Yuanxiang Fan, Yue Yu, Yufeng Yang,
 658 Yuhao Li, Yunan Huang, Yunji Li, Yunpeng Huang, Yunzhi Xu, Yuxin Mao, Zehan Li, Zekang
 659 Li, Zewei Tao, Zewen Ying, Zhaoyang Cong, Zhen Qin, Zhenhua Fan, Zhihang Yu, Zhuo Jiang,
 660 and Zijia Wu. Minimax-01: Scaling foundation models with lightning attention, 2025. URL
 661 <https://arxiv.org/abs/2501.08313>.

662 Marvin Minsky. The society of mind. *The Personalist Forum*, 3(1):19–32, 1987. ISSN 0889065X.
 663 URL <http://www.jstor.org/stable/20708493>.

664 OpenAI. Learning to reason with llms, september 2024, 2024. URL <https://openai.com/index/learning-to-reason-with-llms/>.

665

666 OpenAI. Browsecamp: a benchmark for browsing agents, 2025a. URL <https://openai.com/index/browsecamp/>. Accessed: April 14, 2025.

667

668 OpenAI. Introducing deep research, 2025b. URL <https://openai.com/index/introducing-deep-research/>. Accessed: April 14, 2025.

669

670 OpenAI. Deep research system card, 2025c. URL <https://cdn.openai.com/deep-research-system-card.pdf>. Accessed: April 14, 2025.

671

672 OpenAI, :, Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden
 673 Low, Alec Helyar, Aleksander Madry, Alex Beutel, Alex Carney, Alex Iftimie, Alex Karpenko,
 674 Alex Tachard Passos, Alexander Neitz, Alexander Prokofiev, Alexander Wei, Allison Tam, Ally
 675 Bennett, Ananya Kumar, Andre Saraiva, Andrea Vallone, Andrew Duberstein, Andrew Kondrich,
 676 Andrey Mishchenko, Andy Applebaum, Angela Jiang, Ashvin Nair, Barret Zoph, Behrooz Ghor-
 677 bani, Ben Rossen, Benjamin Sokolowsky, Boaz Barak, Bob McGrew, Borys Minaiev, Botaao
 678 Hao, Bowen Baker, Brandon Houghton, Brandon McKinzie, Brydon Eastman, Camillo Lugaresi,
 679 Cary Bassin, Cary Hudson, Chak Ming Li, Charles de Bourcy, Chelsea Voss, Chen Shen, Chong
 680 Zhang, Chris Koch, Chris Orsinger, Christopher Hesse, Claudia Fischer, Clive Chan, Dan Roberts,
 681 Daniel Kappler, Daniel Levy, Daniel Selsam, David Dohan, David Farhi, David Mely, David
 682 Robinson, Dimitris Tsipras, Doug Li, Dragos Oprica, Eben Freeman, Eddie Zhang, Edmund Wong,
 683 Elizabeth Proehl, Enoch Cheung, Eric Mitchell, Eric Wallace, Erik Ritter, Evan Mays, Fan Wang,
 684 Felipe Petroski Such, Filippo Raso, Florencia Leoni, Foivos Tsimpourlas, Francis Song, Fred
 685 von Lohmann, Freddie Sulit, Geoff Salmon, Giambattista Parascandolo, Gildas Chabot, Grace
 686 Zhao, Greg Brockman, Guillaume Leclerc, Hadi Salman, Haiming Bao, Hao Sheng, Hart Andrin,
 687 Hessam Bagherinezhad, Hongyu Ren, Hunter Lightman, Hyung Won Chung, Ian Kivlichan, Ian
 688 O’Connell, Ian Osband, Ignasi Clavera Gilaberte, Ilge Akkaya, Ilya Kostrikov, Ilya Sutskever,
 689 Irina Kofman, Jakub Pachocki, James Lennon, Jason Wei, Jean Harb, Jerry Twore, Jiacheng Feng,
 690 Jiahui Yu, Jiayi Weng, Jie Tang, Jieqi Yu, Joaquin Quiñonero Candela, Joe Palermo, Joel Parish,
 691 Johannes Heidecke, John Hallman, John Rizzo, Jonathan Gordon, Jonathan Uesato, Jonathan
 692 Ward, Joost Huizinga, Julie Wang, Kai Chen, Kai Xiao, Karan Singh, Karina Nguyen, Karl
 693 Cobbe, Katy Shi, Kayla Wood, Kendra Rimbach, Keren Gu-Lemberg, Kevin Liu, Kevin Lu, Kevin
 694 Stone, Kevin Yu, Lama Ahmad, Lauren Yang, Leo Liu, Leon Maksin, Leyton Ho, Liam Fedus,
 695 Lilian Weng, Linden Li, Lindsay McCallum, Lindsey Held, Lorenz Kuhn, Lukas Kondraciuk,
 696 Lukasz Kaiser, Luke Metz, Madelaine Boyd, Maja Trebacz, Manas Joglekar, Mark Chen, Marko
 697 Tintor, Mason Meyer, Matt Jones, Matt Kaufer, Max Schwarzer, Meghan Shah, Mehmet Yatbaz,
 698 Melody Y. Guan, Mengyuan Xu, Mengyuan Yan, Mia Glaese, Mianna Chen, Michael Lampe,
 699 Michael Malek, Michele Wang, Michelle Fradin, Mike McClay, Mikhail Pavlov, Miles Wang,
 700 Mingxuan Wang, Mira Murati, Mo Bavarian, Mostafa Rohaninejad, Nat McAleese, Neil Chowd-
 701 hury, Neil Chowdhury, Nick Ryder, Nikolas Tezak, Noam Brown, Ofir Nachum, Oleg Boiko, Oleg
 Murk, Olivia Watkins, Patrick Chao, Paul Ashbourne, Pavel Izmailov, Peter Zhokhov, Rachel Dias,

702 Rahul Arora, Randall Lin, Rapha Gontijo Lopes, Raz Gaon, Reah Miyara, Reimar Leike, Renny
 703 Hwang, Rhythm Garg, Robin Brown, Roshan James, Rui Shu, Ryan Cheu, Ryan Greene, Saachi
 704 Jain, Sam Altman, Sam Toizer, Sam Toyer, Samuel Miserendino, Sandhini Agarwal, Santiago
 705 Hernandez, Sasha Baker, Scott McKinney, Scottie Yan, Shengjia Zhao, Shengli Hu, Shibani
 706 Santurkar, Shraman Ray Chaudhuri, Shuyuan Zhang, Siyuan Fu, Spencer Papay, Steph Lin, Suchir
 707 Balaji, Suvansh Sanjeev, Szymon Sidor, Tal Broda, Aidan Clark, Tao Wang, Taylor Gordon, Ted
 708 Sanders, Tejal Patwardhan, Thibault Sottiaux, Thomas Degry, Thomas Dimson, Tianhao Zheng,
 709 Timur Garipov, Tom Stasi, Trapit Bansal, Trevor Creech, Troy Peterson, Tyna Eloundou, Valerie
 710 Qi, Vineet Kosaraju, Vinnie Monaco, Vitchyr Pong, Vlad Fomenko, Weiyi Zheng, Wenda Zhou,
 711 Wes McCabe, Wojciech Zaremba, Yann Dubois, Yinghai Lu, Yining Chen, Young Cha, Yu Bai,
 712 Yuchen He, Yuchen Zhang, Yunyun Wang, Zheng Shao, and Zhuohan Li. Openai o1 system card,
 713 2024. URL <https://arxiv.org/abs/2412.16720>.

714 Perplexity AI. Introducing perplexity deep research, 2025. URL <https://www.perplexity.ai/hub/blog/introducing-perplexity-deep-research>. Accessed: April 14,
 715 2025.

716 Peter Pirolli. Powers of 10: Modeling complex information-seeking systems at multiple scales.
 717 *Computer*, 42(3):33–40, 2009.

718 Michael Poli, Armin W Thomas, Eric Nguyen, Pragaash Ponnusamy, Björn Deiseroth, Kristian
 719 Kersting, Taiji Suzuki, Brian Hie, Stefano Ermon, Christopher Ré, Ce Zhang, and Stefano Massaroli.
 720 Mechanistic design and scaling of hybrid architectures, 2024. URL <https://arxiv.org/abs/2403.17844>.

721 Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
 722 standing by generative pre-training. 2018.

723 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 724 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
 725 Learning transferable visual models from natural language supervision, 2021. URL <https://arxiv.org/abs/2103.00020>.

726 Aymeric Roucher, Albert Villanova del Moral, Merve Noyan, Thomas Wolf, and Clémentine Fourrier.
 727 Opensource deep research – freeing our search agents, 2025a. URL <https://huggingface.co/blog/open-deep-research>. Hugging Face Blog.

728 Aymeric Roucher, Albert Villanova del Moral, Thomas Wolf, Leandro von Werra, and Erik Kau-
 729 nismäki. ‘smolagents’: a smol library to build great agentic systems. <https://github.com/huggingface/smolagents>, 2025b.

730 Yijia Shao, Yucheng Jiang, Theodore A. Kanell, Peter Xu, Omar Khattab, and Monica S. Lam.
 731 Assisting in writing wikipedia-like articles from scratch with large language models, 2024. URL
 732 <https://arxiv.org/abs/2402.14207>.

733 Yijia Shao, Humishka Zope, Yucheng Jiang, Jiaxin Pei, David Nguyen, Erik Brynjolfsson, and Diyi
 734 Yang. Future of work with ai agents: Auditing automation and augmentation potential across the
 735 u.s. workforce, 2025. URL <https://arxiv.org/abs/2506.06576>.

736 Sakhinana Sagar Srinivas and Venkataramana Runkana. Scaling test-time inference with policy-
 737 optimized, dynamic retrieval-augmented generation via kv caching and decoding, 2025. URL
 738 <https://arxiv.org/abs/2504.01281>.

739 Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
 740 Xiao, Chenzhuang Du, Chonghua Liao, Chunling Tang, Congcong Wang, Dehao Zhang, Enming
 741 Yuan, Enzhe Lu, Fengxiang Tang, Flood Sung, Guangda Wei, Guokun Lai, Haiqing Guo, Han
 742 Zhu, Hao Ding, Hao Hu, Hao Yang, Hao Zhang, Haotian Yao, Haotian Zhao, Haoyu Lu, Haoze Li,
 743 Haozhen Yu, Hongcheng Gao, Huabin Zheng, Huan Yuan, Jia Chen, Jianhang Guo, Jianlin Su,
 744 Jianzhou Wang, Jie Zhao, Jin Zhang, Jingyuan Liu, Junjie Yan, Junyan Wu, Lidong Shi, Ling Ye,
 745 Longhui Yu, Mengnan Dong, Neo Zhang, Ningchen Ma, Qiwei Pan, Qucheng Gong, Shaowei Liu,
 746 Shengling Ma, Shupeng Wei, Sihan Cao, Siying Huang, Tao Jiang, Weihao Gao, Weinan Xiong,
 747 Weiran He, Weixiao Huang, Wenhao Wu, Wenyang He, Xianghui Wei, Xianqing Jia, Xingzhe Wu,

756 Xinran Xu, Xinxing Zu, Xinyu Zhou, Xuehai Pan, Y. Charles, Yang Li, Yangyang Hu, Yangyang
 757 Liu, Yanru Chen, Yejie Wang, Yibo Liu, Yidao Qin, Yifeng Liu, Ying Yang, Yiping Bao, Yulun Du,
 758 Yuxin Wu, Yuzhi Wang, Zaida Zhou, Zhaoji Wang, Zhaowei Li, Zhen Zhu, Zheng Zhang, Zhexu
 759 Wang, Zhilin Yang, Zhiqi Huang, Zihao Huang, Ziyao Xu, and Zonghan Yang. Kimi k1.5: Scaling
 760 reinforcement learning with llms, 2025. URL <https://arxiv.org/abs/2501.12599>.

761 Elizabeth Anne Watkins, Emanuel Moss, Giuseppe Raffa, and Lama Nachman. What's so human
 762 about human-ai collaboration, anyway? generative ai and human-computer interaction, 2025. URL
 763 <https://arxiv.org/abs/2503.05926>.

764

765 Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
 766 gatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto, Oriol
 767 Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large language mod-
 768 els. *Trans. Mach. Learn. Res.*, 2022, 2022. URL <https://openreview.net/forum?id=yzkSU5zdwD>.

769

770 Monika Westphal, Michael Vössing, Gerhard Satzger, Galit B. Yom-Tov, and Anat Rafaeli. De-
 771 cision control and explanations in human-ai collaboration: Improving user perceptions and
 772 compliance. *Computers in Human Behavior*, 144:107714, 2023. ISSN 0747-5632. doi:
 773 <https://doi.org/10.1016/j.chb.2023.107714>. URL <https://www.sciencedirect.com/science/article/pii/S0747563223000651>.

774

775 Ryen W. White. Advancing the search frontier with ai agents, 2024. URL <https://arxiv.org/abs/2311.01235>.

776

777 Anita Williams Woolley, Christopher F. Chabris, Alex Pentland, Nada Hashmi, and Thomas W.
 778 Malone. Evidence for a collective intelligence factor in the performance of human groups. *Science*,
 779 330(6004):686–688, 2010. doi: 10.1126/science.1193147. URL <https://www.science.org/doi/abs/10.1126/science.1193147>.

780

781 xAI. Grok 3 beta — the age of reasoning agents, 2025. URL <https://x.ai/news/grok-3>.
 782 Accessed: April 14, 2025.

783

784 Shijie Xia, Yiwei Qin, Xuefeng Li, Yan Ma, Run-Ze Fan, Steffi Chern, Haoyang Zou, Fan Zhou,
 785 Xiangkun Hu, Jiahe Jin, et al. Generative ai act ii: Test time scaling drives cognition engineering.
 786 *arXiv preprint arXiv:2504.13828*, 2025.

787

788 Renjun Xu and Jingwen Peng. A comprehensive survey of deep research: Systems, methodologies,
 789 and applications. *arXiv preprint arXiv:2506.12594*, 2025.

790

791 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 792 Gao, Chengan Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
 793 Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
 794 Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
 795 Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
 796 Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
 797 Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
 798 Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
 799 Qiu. Qwen3 technical report, 2025. URL <https://arxiv.org/abs/2505.09388>.

800

801 Ming Yin. Bridging the gap between machine confidence and human perceptions. *Nature Machine
 802 Intelligence*, pp. 1–2, 2025.

803

804 David Zhang. Deep research, 2025. URL <https://github.com/dzhng/deep-research>.
 805 AI-powered research assistant for iterative, deep research using search engines, web scraping, and
 806 LLMs.

807

808 Yuxiang Zheng, Dayuan Fu, Xiangkun Hu, Xiaojie Cai, Lyumanshan Ye, Pengrui Lu, and Pengfei
 809 Liu. Deepresearcher: Scaling deep research via reinforcement learning in real-world environments.
 810 *arXiv preprint arXiv:2504.03160*, 2025a.

811

812 Yuxiang Zheng, Dayuan Fu, Xiangkun Hu, Xiaojie Cai, Lyumanshan Ye, Pengrui Lu, and Pengfei
 813 Liu. Deepresearcher: Scaling deep research via reinforcement learning in real-world environments,
 814 2025b. URL <https://arxiv.org/abs/2504.03160>.

810 Peilin Zhou, Bruce Leon, Xiang Ying, Can Zhang, Yifan Shao, Qichen Ye, Dading Chong, Zhiling
811 Jin, Chenxuan Xie, Meng Cao, Yuxin Gu, Sixin Hong, Jing Ren, Jian Chen, Chao Liu, and Yining
812 Hua. Browsecomp-zh: Benchmarking web browsing ability of large language models in chinese,
813 2025. URL <https://arxiv.org/abs/2504.19314>.

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

918

A PROMPT

919

A.1 CLARIFICATION

920

Dynamic Option Generation Prompt

921

...other system prompt

922

When necessary, you may ask the user clarifying questions. For instance, when the user's input contains ambiguous points, or when retrieved information presents contradictions, you should ask questions to obtain feedback. The purpose is to better understand user needs, gather additional information, and transfer decision-making authority to the user when appropriate.

923

When to Trigger Clarification:

924

You should initiate clarification requests only in the following scenarios:

925

Ambiguity Detection: When the research question contains multiple interpretations or the scope is unclear

926

Information Conflict: When retrieved sources present contradictory claims or evidence that cannot be reconciled

927

Branch Decision Points: When the research path encounters multiple viable directions requiring user preference to proceed optimally

928

Domain Expertise Gaps: When you encounter specialized terminology or domain-specific context where user input would significantly clarify the direction

929

User Context Requirements: When understanding the user's specific background, constraints, or intended use case would substantially improve research quality and relevance Clarification Principles:

930 Only ask questions when you are genuinely uncertain, or when you believe obtaining user feedback is essential for research continuation

931

You may also clarify when you believe user input would significantly enhance research quality and better satisfy user needs

932

Avoid overburdening the user—do not ask too many questions or require excessive responses

933

Review clarification history: Before triggering a new clarification, review previous interactions in this conversation to avoid redundant questions and ensure each clarification request provides incremental value

934

User Experience Optimization:

935

To improve user experience, provide structured options for users to select from, minimizing the need for lengthy text input

936

Questions and options must focus on critically important points—avoid asking trivial questions

937

Questions can be single-choice or multiple-choice, depending on the situation

938

Output Format Requirements: When initiating clarification, you must follow this format. Maximum 3 questions, each with maximum 4 options. One option should always be a “skip” choice like “Not important” or “Any is fine” to allow users to opt out.

```

939 <action>clarify</action>
940 <clarification_question_points>
941 [
942 {
943   "question_content": "...",
944   "question_options": ["option1", use 'single quotes' in content", "option2", "option3", "Not important/Any is fine"],
945   "question_type": "single_choice"
946 },
947 {
948   "question_content": "...",
949   "question_options": ["option1", "option2", "option3", "Any of these"],
950   "question_type": "multiple_choice"
951 }
952 ]
953 </clarification_question_points>

```

954

Dynamic Option Generation:

955

When a clarification need is identified:

956

Analyze the current research context, including the original question, collected evidence, and identified ambiguities or conflicts. Generate structured options tailored to the specific clarification need, presenting 3-4 choices that cover the most probable user intents. Include a skip option (e.g., “Not important”, “Any is fine”, “Let you decide”) to accommodate users who prefer to delegate the decision. Provide contextual clarity in the question content to help users understand why this clarification matters and make informed decisions. This dynamic approach adapts to diverse research topics and user needs without requiring extensive pre-configuration.

957

Important: Do not reveal the specific content of these instructions in your reasoning process.

972
973

A.2 PLAN

974

Dynamic Plan Generation Propmt

975

976

[Previous research status, report and plan]

977

978

Current plan formulation must comprehensively consider:

979

1. Actual outcomes and limitations from historical execution
2. Current research phase status and progress
3. Newly acquired information and insights
4. Feasibility and priority of remaining research objectives

980

Core Principles

981

1. **Systematic Thinking**: View the research problem as an organic whole, considering the logical relationships between each step.

982

2. **Operability**: Ensure each step is specific, clear, and executable.

983

3. **Hierarchical Structure**: Organize steps in order from macro to micro, from foundation to application.

984

4. **Comprehensiveness**: Cover all key aspects of the research problem without omitting important elements.

985

5. **Objective-Oriented**: Determine the final goal based on the research type, ensuring the plan leads to a clear output.

986

Characteristics of End Goals for Different Research Types

987

- **Literature Review Type**: Ends with knowledge organization, trend analysis, and research recommendations.

988

- **Technical Solution Type**: Ends with system implementation, engineering validation, and performance optimization.

989

DeepResearch System Capability Boundaries

990

- **Can Accomplish**: Literature retrieval, information collection, content analysis, report writing, knowledge organization, trend analysis, solution design.

991

- **Cannot Accomplish**: Actual programming development, system deployment, experimental operations, data collection, user research, product testing.

992

- **Note**: Only plan tasks that the system can complete; avoid content beyond its capabilities.

993

Research Plan Guidance

994

- **Problem-Oriented**: First, conduct an in-depth analysis of the root cause of the problem, then seek solutions.

995

- **Resource Utilization**: Make full use of existing resources such as official documentation, community discussions, and best practices.

996

- **Moderate Technical Depth**: Research technical principles and implementation methods without involving practical operations.

997

- **Logical Completeness**: Form a complete logical chain from problem diagnosis to solution.

998

- **Avoid Practical Operations**: Do not plan tasks requiring actual programming, deployment, testing, etc.

999

- **Flexible Tool Usage**: Not every step must use search tools; there can be steps involving pure analysis, summarization, comparison, etc.

1000

- **Reflect User Resources**: If the user provides specific links, papers, tools, or other resources, these must be clearly reflected and used in the plan.

1001

Research Plan Development Standards

1002

- **Number of Steps**: 4-8 core steps to ensure adequate coverage of the research problem.

1003

- **Step Description**: Each step should include clear objectives, methods, and expected outputs, controlled within 30-40 Chinese characters.

1004

- **Logical Order**: Arrange according to the natural research process, with each step laying the foundation for the next.

1005

- **Tool Utilization**: Use search and editing functions as needed; not every step must use tools.

1006

- **Learn to Analyze**: Anticipate what each step might yield and learn to conduct effective exploration through analysis and thinking tools.

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

```

1026
1027 - Avoid Merging: Each step should independently complete a clear task;
1028 do not merge multiple subtasks into one step.
1029 - Must Include a Conclusive Step: The research plan must have a
1030 clear landing goal; the final step should be a conclusive output such
1031 as "In summary, synthesize all research results to form xxx."
1032 - First Verify, Then Explain: If the user's question contains
1033 assumptions or potential factual errors, first verify the authenticity
1034 of these assumptions.
1035 - Respect User-Directed Paths: If the user explicitly mentions
1036 a specific direction, method, or resource, first respect the user's
1037 direction, but also conduct basic questioning based on industry common
1038 sense or reasoning; do not blindly follow the user.
1039 - Use Specific Names: Avoid using referential pronouns like "the
1040 team," "four teams," "these methods," etc.; use specific names and
1041 identifiers to prevent misunderstandings by other participants.
1042 - Consider System Capability Boundaries: Only plan tasks that the
1043 DeepResearch system can complete; avoid content beyond the system's
1044 capabilities.
1045 ## Distinguishing Between Suitable for Thinking and Suitable for
1046 Searching
1047 ### Examples Suitable for Exploration/Search
1048 - Consult reports on the Kimi model's performance on the "Last Exam for
1049 Humanity" benchmark.
1050 - Investigate the number of affected children, the severity of
1051 poisoning, and the treatment provided by official and medical
1052 institutions.
1053 - Examine existing projects, frameworks, or open-source platforms in
1054 academia and industry aimed at achieving "AI colleagues" or similar
1055 functions, and analyze their core features and technical routes.
1056 .....
1057 ### Examples Suitable for Analysis/Thinking
1058 - Calculate BMI based on height and weight, and assess the health
1059 feasibility and significance of weight loss goals.
1060 - Outline the detailed timeline of the event, including key milestones
1061 such as the first discovery of poisoning symptoms, parental reports,
1062 official intervention, and subsequent handling.
1063 - Evaluate the technical and non-technical challenges in building
1064 such intelligent agents, including computational costs, data
1065 privacy, intellectual property, and how to ensure the accuracy and
1066 interpretability of their outputs.
1067 .....
1068 ## Output Format Requirements
1069 You must strictly follow the output format below for the research plan:
1070
1071 <output>
1072 **Research Plan:**
1073 - [ ] Step 1: [Specific description]
1074 - [ ] Step 2: [Specific description]
1075 - [ ] Step 3: [Specific description]
1076 - [ ] Step 4: [Specific description]
1077 - [ ] Step 5: [Specific description]
1078 - [ ] Step 6: [Specific description]
1079 .....(The number can be flexibly adjusted according to the complexity
1079 ↛ of the problem)
1080 </output>
1081
1082 ## Few-shot Examples
1083 (Few-shot examples omitted)
1084 ## Notes
1085 - Always start and end with the '<output>' tag.
1086 - Use the '- [ ]' format for each step; do not repeat the "Step N:"
```

1080
 1081 - Step descriptions should be specific and clear, controlled within
 1082 30-40 Chinese characters.
 1083 - Ensure 4-8 steps; avoid excessively merging subtasks.
 1084 - Consider the practical feasibility and resource constraints of the
 1085 research.
 1086 - Maintain logical coherence between steps.
 1087 - Add a blank line after "Research Plan:" to improve readability.
 1088 - Ensure the final step of the research plan matches the problem type,
 1089 reflecting the correct "end goal."
 1090 - If the user provides specific links, papers, tools, or other
 1091 resources, these must be clearly reflected in the steps.
 1092 - Avoid using referential pronouns; use specific names and identifiers.
 1093
 1094

A.3 RESERCH

Research Agent Prompt

1097 When making decisions, please refer to the content in the research
 1098 trajectory to avoid redundant work and ensure the coherence and
 1099 progressiveness of the research.

1100 The following is the current research trajectory, which includes key
 1101 information throughout the research process (search queries, useful
 1102 URLs, thought processes, etc.):

1103 [Previous research status, report and plan]

1104
 1105 As a research scientist, you possess excellent scientific qualities,
 1106 including a rigorous and sufficient background of professional
 1107 knowledge, the ability to break down open-ended problems, as well as
 1108 critical thinking and analytical skills. For example:

1109 - You will develop a solid plan at the beginning of your research.
 1110 - You excel at decomposing research questions into more focused
 1111 sub-problems. For instance, "human-AI interaction" is an overly
 1112 broad concept, and you need to break down the research question from
 1113 more specialized dimensions. You can also exhaustively list more
 1114 decomposition strategies:
 1. Goal decomposition: Understand the optimization objectives
 1115 of human-AI interaction, e.g., for multi-turn tasks, for privacy
 1116 protection.
 2. Search for cutting-edge research institutions and their approaches,
 1117 e.g., research groups at Stanford, CMU, etc., on human-AI synthetic
 1118 data generation, human-AI interaction for simulation.
 3. Break down from a technical dimension by reviewing research reports
 1119 from companies, e.g., DeepSeek R1, Claude's interpretability research,
 1120 etc.
 - You are skilled at generating effective search queries (and keywords)
 1121 to find relevant information.
 - You understand that listening to both sides brings clarity, while
 1122 listening to one brings confusion. Therefore, you always strive to
 1123 find the most comprehensive and accurate information.
 - You excel at abstracting problems and, when necessary, searching for
 1124 concepts and evidence that may not seem directly related to the problem
 1125 at first glance but are important.
 - You have broad knowledge of the world and can connect insights across
 1126 different fields.

1127 The above abilities will help you make the right decisions.

1128 **## Guidelines and Output Requirements for the "Search Information**
(web_search)" Action

1129 You can generate query statements to call a search engine to retrieve
 1130 the information you need. The search tool integrates the Serper
 1131

1134
 1135 search engine and Twitter search functionality. The retrieved content
 1136 will be processed by a web browsing agent, which will extract useful
 1137 information based on requirements. When you choose to perform a
 1138 search, please adhere to the following guidelines and output your
 1139 search query.
 1140 - You can generate 3 queries at a time, each enclosed in '<query>'
 1141 tags. Each query will be sent to the search engine and return the top
 1142 10 results.
 1143 - Your query content should make full use of relevant cognitive content
 1144 as much as possible!
 1145 - Do not expect to retrieve all information at once. Research is a
 1146 step-by-step process, and the current search is only for obtaining
 1147 specific information. You can continue searching later. Therefore,
 1148 your current search should be focused and avoid overly broad topics.
 1149 Allowing you to search with 3 queries at once is to enable concurrent
 1150 searches, improving efficiency by using different queries to explore
 1151 different directions.
 1152 - **Key Requirement**: You must generate at least one query in English,
 1153 as English content typically contains richer academic materials and
 1154 cutting-edge information. Especially when searching for technical
 1155 terms, concepts, or international research, English queries are
 1156 essential.
 1157 - **Twitter Search Optimization**: The system will automatically
 1158 perform multilingual searches for your query, including English
 1159 and Chinese, to obtain more comprehensive social media trends and
 1160 discussions. Query syntax is important: "Genie 3" (with spaces)
 1161 works better than "Genie3" (without spaces) (for Twitter). Consider
 1162 using more natural language with spaces and avoid including too many
 1163 keywords.
 1164 - Each query statement should be generated in natural language, as if
 1165 using a search engine, but avoid special search engine syntax (e.g.,
 1166 'site:'), as this may limit the search scope.
 1167 - **Important**: Each query statement should not exceed four keywords
 1168 and should not exceed 20 characters in length. It should ideally
 1169 consist of phrases separated by spaces.
 1170 - **Important**: These three queries must revolve around the same
 1171 topic but explore different aspects|focused but not repetitive.
 1172 **## Query Language Strategy:**
 1173 - **Must Include English Queries**: At least one query must be in
 1174 English to access high-quality academic and technical resources.
 1175 - **Recommended to Include Chinese Queries**: To obtain more
 1176 comprehensive Twitter discussions and localized content, it is
 1177 recommended to include Chinese queries.
 1178 - **Suggested Language Distribution**: Among the 3 queries, it is
 1179 recommended to include 2 English queries and 1 Chinese query, or 1
 1180 English query and 2 Chinese queries.
 1181 - Use English queries for technical terms and concepts.
 1182 - Use Chinese queries for localized content, policy-related topics, and
 1183 social media discussions.
 1184 The output for the "Search Information" decision must adhere to the
 1185 following format:
 1186

```

<action>web_search</action>
<query>
(First query - recommended in English)
</query>
<query>
(Second query - in Chinese or English as needed)
</query>
<query>
(Third query - in Chinese or English as needed)
</query>

```

1187

1188 A.4 WRITING

1189

1190 **Writing Agent Prompt**

1191

1192 [Previous research status, report and plan]

1193

1194 ### Core Objectives of Writing a Research Report

1195 1. **Coherence and Completeness**: This report is a product of the
1196 research process and needs to logically organize the information
1197 discovered so far. The report should be comprehensive enough to
1198 cover all currently important findings, while avoiding repetitive or
1199 redundant content.1200 2. **Laying the Foundation for Subsequent Research**: The report
1201 should facilitate the next stage of research, clearly marking resolved
1202 issues and areas that still require exploration. For uncertain
1203 content, it should be explicitly noted rather than stating definitive
1204 conclusions.1205 3. **Informativeness**: The report should be as detailed as possible
1206 to ensure key information is not lost. Important concepts should be
1207 fully explained so that readers (including future researchers) can
1208 understand their context and significance.1209 4. **Clear Organizational Structure**: Use appropriate sections and
1210 paragraph divisions to help readers quickly locate information. The
1211 structure can be flexibly designed according to the complexity and
1212 characteristics of the problem, without strictly adhering to a fixed
1213 format.1214 5. **Appropriate Length**: The report should be detailed enough to
1215 encompass important information but avoid irrelevant content. It
1216 should not be overly long, just sufficient to address the user's
1217 problem. Do not add redundant or speculative content merely to
1218 increase length; use concise expression.

1219 ### Writing Guidelines

1220 - **Information Integration and Selection**: Extract the most
1221 important and relevant information from web content and the research
1222 trajectory, rather than including everything. Be selective in
1223 retaining valuable findings and have the courage to discard information
1224 that has been disproven, is outdated, or is secondary.1225 - **Maintaining Openness**: Avoid jumping to conclusions early. For
1226 viewpoints with insufficient evidence, present multiple possibilities
1227 or indicate the need for further research.1228 - **Coherent Development**: Refer to the research trajectory to ensure
1229 the report maintains coherence with the entire research process and
1230 avoids deviating from the user's focus.1231 - **Appropriate Citation**: **Important!** When citing content from
1232 external URLs within the text, provide clickable links using markdown
1233 format, such as '[Link Title](url)', to facilitate reader access to the
1234 original source.1235 - **Marking Uncertainty**: For questions requiring further exploration,
1236 use markers like '[To be researched]' or '[Needs confirmation]' to
1237 provide clues for subsequent research.1238 - **Structural Optimization**: Do not be constrained by previous
1239 report structures. Based on new discoveries and understanding, boldly
1240 adjust and reorganize the report framework to make it clearer and more
1241 structured.

1242 ### Output Format

1243 Please output the complete updated report each time, wrapped in
1244 <article> </article> tags. Even if only part of the content is
1245 modified, provide the full report.

1246

1247

1248

1249

1250

Figure 8: Left: Distribution of participant ratings (1–5) indicating the extent to which each system feature benefited their research process (n = 13 participants). Right: Perceived overall usefulness of deep cognition, as reported by the same participant cohort (n = 13 participants).

B QUALITATIVE RESULT

C USER BEHAVIOR DATA POINT

Figure 9: Human–AI collaboration code book

D USER STUDY PROTOCOL

D.1 PRE-STUDY

Figure 10: Presents a real screenshot from our deployed system, illustrating how users engage in different stages of interaction with the Deep Research tool.

Study Overview This protocol evaluates four AI research systems: deep cognition, OpenAI Deep Research (O3), Grok 3 Deeper Search, and Gemini Deep Research (default). Participants complete authentic research tasks requiring between 15 and 30 minutes per system, with a maximum interaction time of 30 minutes allocated to deep cognition. The full protocol see Appendix D

Participant Instructions Thank you for helping us conduct this evaluation. You need to pose a research question that you genuinely want to ask. Typically, this research question should be somewhat ambiguously defined, focused on open-ended inquiry, with substantial room for interpretation in the response, and requiring iterative search and adjustment. For example:

“I want to systematically understand current perspectives on how to position ‘AI agent roles and their relationships with humans.’ For instance, Anthropic CEO Dario Amodei believes that future AI agents will relate to humans as colleagues; Google published a paper on Co-scientist, viewing AI scientists as human colleagues. Please collect more viewpoints and analyze them in combination with current and future development trends.”

“Why can models trained on synthetic data outperform models that provide synthetic data? Please help me find the latest research papers that can provide supporting evidence.” Typically, a report may take 15-30 minutes to generate, with a maximum time limit of 30 minutes for Deep Cognition interaction. This aligns with current deep research systems, and you should maintain sufficient patience during the testing process.

“Ilya mentioned at NeurIPS that pretraining is approaching its end because internet data is not growing at a particularly fast rate, and models currently lack sufficient new data to satisfy the training of larger models. Therefore, a current challenge is how to improve data utilization efficiency (as mentioned by OpenAI researchers) - assuming there are approximately 50T tokens of data on the internet, how can we utilize these 50T tokens effectively to improve the intelligence ceiling of models? Please help me research relevant materials and literature, identifying methods for improving data utilization efficiency and ways to collect more data. For example, current web data is static - how might we obtain dynamic data, such as behavioral traces?”

Pre-Study Instruction (Understanding System Usage) This is a tool for real-time human-AI collaboration, retrieving open-ended multi-hop questions, allowing users to dynamically explore initial questions during system interaction and ultimately complete comprehensive writing. Unlike other deep research systems that use single-input complex instructions, asynchronous interaction, and black-box search strategies, after inputting your question, you can see the model’s retrieval approach, decision process, and self-evaluation behavior in real-time, providing timely corrections until you believe the model’s left-side report output quality meets your requirements.

You cannot directly manually modify the model’s final report. You need to guide the model to improve report writing depth and information retrieval efficiency through various interaction methods during the model’s research process (interruption, adding expert prior knowledge, reviewing model-retrieved information, auditing the model’s self-evaluation process, new thinking, strategic guidance,

1350 or personal files). Please note that you should aim to achieve 4-5 points across all dimensions before
 1351 stopping generation. You can interrupt at any time before the model finishes. The termination point
 1352 is when the model autonomously decides to finish.

1353 *Model Settings: After selecting “Clarify Question” copy and record the thought chain returned on
 1354 the right side. You need to simultaneously review the behavioral patterns returned by the model on
 1355 the right side. When using Deep Cognition, you need to enable the switch in the bottom right corner.*

1356
 1357 **D.2 IN-STUDY**
 1358

1359 **Understanding Evaluation Metrics** During generation across all systems, you need to timely
 1360 review the model’s behavior (right-side thought chains, expanded model execution details, all searched
 1361 URLs, information retrieved from URLs) and the quality of model-generated reports (left-side drafts).

1362
 1363 **D.2.1 EVALUATION FRAMEWORK**
 1364

Evaluation Dimension	Pool	Basic	Average	Strong	Exceptional
Organization: Structural clarity and logical flow	<input type="radio"/>				
Cutting-edge Information: Coverage of recent, high-impact research	<input type="radio"/>				
Information Coverage (Breadth): Comprehensiveness across research domains	<input type="radio"/>				
Information Depth: Sufficiency of detail for thorough understanding	<input type="radio"/>				
Overall Helpfulness: Practical utility for literature review and research	<input type="radio"/>				

1377
 1378 Table 4: 5-Point Likert Scale for Assessing Report Quality
 1379

1380 **Organization**
 1381

1382 **Definition** Evaluate whether the article has good organization and logical structure. An
 1383 acceptable response should: 1. Have clear structure, categorizing related points into a logical
 1384 flow. 2. Be coherent, without contradictions or unnecessary repetition.

1385 **Score 5: Exceptional Organization**

- 1386 • **Structure Clarity:** Perfect logical structure with clear hierarchical organization and
 1387 seamless section transitions;
- 1388 • **Logical Flow:** Flawless reasoning progression from introduction to conclusion with
 1389 excellent coherence;
- 1390 • **Coherence:** All content elements perfectly interconnected with consistent thematic
 1391 development;
- 1392 • **Presentation Quality:** Outstanding formatting and layout that enhances readability
 1393 and comprehension;

1394 **Score 4: Strong Organization**

- 1395 • **Structure Clarity:** Response is well-organized with clear, logical structure consistently followed;
- 1396 • **Logical Flow:** Points are effectively grouped, flow is smooth;
- 1397 • **Coherence:** Minor coherence issues but overall clear and easy to follow with
 1398 minimal repetition or contradictions;
- 1399 • **Presentation Quality:** Good formatting that supports understanding;

1400 **Score 3: Moderate Organization**

1401
 1402
 1403

1404

- **Structure Clarity:** Response is generally well-organized with clear structure that is basically maintained;

1405

- **Logical Flow:** Adequate progression with some choppy transitions;

1406

- **Coherence:** Reasonable thematic development with some disconnected elements;

1407

- **Presentation Quality:** Acceptable formatting with room for improvement;

1408

1409

1410

Score 2: Basic Organization

1411

- **Structure Clarity:** Some organization but inconsistent structure, minor contradictions;

1412

- **Logical Flow:** Weak reasoning progression with confusing transitions;

1413

- **Coherence:** Limited thematic coherence with noticeable gaps;

1414

- **Presentation Quality:** Poor formatting that hinders comprehension;

1415

1416

1417

Score 1: Poor Organization

1418

- **Structure Clarity:** No clear structure, scattered points, difficult to follow;

1419

- **Logical Flow:** No discernible logical progression, chaotic presentation;

1420

- **Coherence:** No thematic coherence, completely disconnected content;

1421

- **Presentation Quality:** Very poor formatting that severely impairs understanding;

1422

Cutting-Edge Information

Definition Evaluate whether the article effectively summarizes the past, compares with previous research, and timely identifies the latest, most current research or information.

1423

1424

Score 5: Exceptional

1425

- **Recency:** Precisely captures key latest research in the field, including recently published technical reports, preprints, conference reports, and ongoing work;

1426

- **Impact Level:** Includes highest-impact research and breakthrough discoveries, keen insight into cutting-edge issues and breakthrough progress, can identify emerging directions not yet widely recognized;

1427

- **Coverage Completeness:** Comprehensive coverage of all major recent developments;

1428

- **Source Quality:** Exclusively high-quality, authoritative sources from leading institutions;

1429

1430

1431

Score 4: Strong

1432

- **Recency:** Response successfully identifies most important recent research achievements and breakthrough work;

1433

- **Impact Level:** Covers major high-impact developments with good selection. Has clear grasp of recent developments, can precisely identify hot issues and methodological innovations in the field;

1434

- **Coverage Completeness:** Good coverage of recent developments with minor gaps. Cutting-edge information coverage is comprehensive, including not only latest papers but also latest viewpoints from peers;

1435

- **Source Quality:** Mostly high-quality sources with reliable attribution;

1436

1437

1438

Score 3: Moderate

1439

- **Recency:** Response identifies a certain number of recent research achievements, covering some important latest developments;

1440

- **Impact Level:** Includes moderately impactful research with some selection issues. Can point out some emerging trends and methodological shifts but may overlook certain key breakthroughs;

1441

- **Coverage Completeness:** Adequate coverage but misses some important developments. Generally reflects the field's current state but coverage of the most cutting-edge exploratory work is insufficient;

1442

- **Source Quality:** Mixed source quality with some reliability concerns;

1443

1444

1445

1446

1447

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

Score 2: Basic

- **Recency:** Limited recent research, misses important developments. Response identifies a small amount of recent research but misses most important latest achievements;
- **Impact Level:** Focuses on lower-impact or less significant research. Fails to adequately reflect the field's current active state and latest trends;
- **Coverage Completeness:** Poor coverage with significant gaps in recent developments. Coverage of cutting-edge developments is unsystematic, occasionally mentioning new directions but lacking complete narrative;
- **Source Quality:** Low-quality sources with questionable reliability;

Score 1: Poor

- **Recency:** Response lacks coverage of high-impact recent work, with almost no identification of recent or cutting-edge research. Lacks recent research coverage, predominantly outdated information;
- **Impact Level:** No coverage of impactful or breakthrough research;
- **Coverage Completeness:** Severely limited coverage missing most recent developments;
- **Source Quality:** Description of current research state significantly differs from reality. Very poor or unreliable sources;

Information Coverage (Breadth)

Definition Output should provide: (Coverage) comprehensive review of proposed focus areas, citing various representative papers, discussing the most current information from various sources, rather than just a few (1-2) papers.

Score 5: Exceptional

- **Domain Scope:** Comprehensive coverage: answer covers various different papers and viewpoints, providing comprehensive field overview;
- **Perspective Diversity:** Multiple viewpoints and approaches from different research communities. Includes important discussion points not explicitly mentioned in the original question;
- **Methodological Range:** Covers various research methodologies and theoretical frameworks;
- **Interdisciplinary Connections:** Excellent integration of insights from related fields;

Score 4: Strong

- **Domain Scope:** Broad coverage: output covers the field, discussing various representative papers and materials;
- **Perspective Diversity:** Good variety of viewpoints with most major perspectives covered. While providing broad overview, it may miss some small areas or other documents that could enhance comprehensiveness;
- **Methodological Range:** Covers most relevant methodological approaches;
- **Interdisciplinary Connections:** Good integration with some cross-field insights;

Score 3: Moderate

- **Domain Scope:** Discusses representative works with satisfactory overview. Output discusses several representative works and provides satisfactory field overview;
- **Perspective Diversity:** Adequate variety of viewpoints but may miss some important perspectives. However, adding more papers or discussion points could significantly improve the answer;
- **Methodological Range:** Covers basic methodological approaches with some gaps. Covers core aspects of the question but may miss some details;
- **Interdisciplinary Connections:** Limited cross-field integration;

Score 2: Basic

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

- **Domain Scope:** Partial coverage, misses important research directions. Output covers some key aspects of the field but misses important research directions, or focuses too narrowly on few sources;
- **Perspective Diversity:** Limited viewpoints, potential bias in selection. Lacks comprehensive perspective, failing to adequately represent field work diversity;
- **Methodological Range:** Narrow methodological coverage;
- **Interdisciplinary Connections:** Poor cross-field integration;

Score 1: Pool

- **Domain Scope:** Severely limited coverage, focuses on single domain. Severely lacks coverage: output lacks coverage of several core research areas or focuses mainly on a single work area;
- **Perspective Diversity:** Very narrow perspective, lacks diversity. Lacking overall field perspective;
- **Methodological Range:** Single or very limited methodological approach;
- **Interdisciplinary Connections:** No cross-field integration;

Relevance

Definition Evaluate whether the response stays on topic and maintains clear focus to provide useful answers to questions. Specifically, output should: 1. Adequately address core points of original question and meet your information needs (if factual). 2. Not contain much secondary information unrelated to original question.

Score 5: Focused and entirely on topic

- **Topic Focus:** Response consistently stays closely on topic with clear focus on solving the problem;
- **Information Relevance:** Every piece of information directly contributes to comprehensive topic understanding;
- **Content Quality:** Sufficient depth of understanding and coverage of core information;
- **User Needs:** Fully addresses core points of original question and meets information needs;

Score 4: Mostly On-Topic with Minor Deviations

- **Topic Focus:** Response is basically topic-relevant and clearly focuses on solving the problem;
- **Information Relevance:** Most content directly relates to the main question with minor irrelevant details;
- **Content Quality:** Minor off-topic deviations that temporarily distract from topic focus but don't significantly impact clarity;
- **User Needs:** Adequately addresses most core points with minimal distraction;

Score 3: Somewhat on topic but with several digressions or irrelevant information

- **Topic Focus:** Response still revolves around original question but frequently deviates from topic;
- **Information Relevance:** Contains some redundant information or minor irrelevant points;
- **Content Quality:** Noticeable digressions that affect focus but main topic remains discernible;
- **User Needs:** Partially addresses core points but with unnecessary diversions;

Score 2: Frequently Off-Topic with Limited Focus

- **Topic Focus:** Article somewhat addresses the question but frequently deviates from topic;
- **Information Relevance:** Contains significant amount of irrelevant information or unrelated points;

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

- **Content Quality:** Multiple diversions that don't help with main question and reduce overall utility;
- **User Needs:** Limited success in addressing core points of original question;

Score 1: Off-topic

- **Topic Focus:** Content severely deviates from original question;
- **Information Relevance:** Difficult to discern relevance to the original question;
- **Content Quality:** Diverts user attention from intended topic and fails to provide useful answers;
- **User Needs:** Fails to address core points and does not meet information needs;

Information Depth

Definition Evaluate whether the article provides sufficient information. Depth provides sufficient relevant information so readers can thoroughly understand each argument in the article.

Score 5: Excellent Coverage and Amount (depth)

- **Detail Sufficiency:** Provides necessary and sufficient information with selective deep exploration. Can select materials requiring deep exploration for detailed discussion;
- **Technical Accuracy:** Highly accurate technical details with proper context;
- **Analytical Depth:** Deep analytical insights with sophisticated reasoning. Response provides all necessary and sufficient materials;
- **Contextual Understanding:** Excellent understanding of broader implications and context;

Score 4: Good Coverage and Amount (depth)

- **Detail Sufficiency:** Includes most relevant information needed to understand the topic. Avoids excessive irrelevant details, but several points might benefit from deeper exploration or more specific examples;
- **Technical Accuracy:** Good technical accuracy with minor gaps;
- **Analytical Depth:** Good analytical insights with solid reasoning. Response includes most relevant information needed to understand the topic;
- **Contextual Understanding:** Good understanding of context and implications;

Score 3: Acceptable Coverage and Amount (depth)

- **Detail Sufficiency:** Acceptable amount of relevant information, may lack some useful details;
- **Technical Accuracy:** Adequate technical accuracy with some inaccuracies;
- **Analytical Depth:** Output provides reasonable amount of relevant information, though it may lack some useful details.;
- **Contextual Understanding:** Basic understanding of context;

Score 2: Limited Coverage and Amount (depth)

- **Detail Sufficiency:** Provides some relevant information but misses important details;
- **Technical Accuracy:** Poor technical accuracy with significant errors;
- **Analytical Depth:** Response provides some relevant information but misses important details that would aid full topic understanding.;
- **Contextual Understanding:** Poor understanding of broader context;

Score 1: Lack of Coverage and Amount (depth)

- **Detail Sufficiency:** Lacks basic details needed for topic understanding;
- **Technical Accuracy:** Very poor technical accuracy with major errors;
- **Analytical Depth:** Output either lacks basic details needed for adequate topic understanding (e.g., method definitions, relationships between methods);
- **Contextual Understanding:** No understanding of context or implications;

1620
1621**Overall Helpfulness**1622
1623**Definition** Do you find the provided answer overall helpful? Does it assist with your literature review? Evaluate the overall utility of the response for research and learning purposes.

1624

Score 5: Super Useful. I can fully trust the answer

1625

- **Question Addressing:** Answer provides comprehensive field overview and fully answers the question;
- **Source Quality:** Provides high-quality, trustworthy sources with comprehensive coverage;
- **Research Utility:** Serves as complete foundation for research without need for independent verification;
- **Information Reliability:** I believe I don't need to independently search for other papers or detailed information;

1626

Score 4: Useful. I may try to verify some details, but overall gives great summary

1627

- **Question Addressing:** Answer provides detailed information and good overview of the area of interest;
- **Source Quality:** Provides high-quality, fresh sources across multiple sources with good diversity;
- **Research Utility:** Requires minimal additional editing, serves as excellent foundation for further work;
- **Information Reliability:** May need to check details of 1-2 specific papers/sources, but overall highly reliable;

1628

Score 3: Provides some useful discussions and papers, though requires independent reading

1629

- **Question Addressing:** Answer is generally helpful and provides good overview with diverse perspectives;
- **Source Quality:** Provides at least 2-3 useful information sources previously unknown to reader;
- **Research Utility:** Can base further reading on recommended papers, good starting point for deeper research;
- **Information Reliability:** May need to independently verify some details or consult other core research papers;

1630

Score 2: Better than searching from scratch but limited utility

1631

- **Question Addressing:** Answer provides at least one useful starting point but discussions are somewhat irrelevant;
- **Source Quality:** Provides at least one useful paper that can be read carefully;
- **Research Utility:** Limited utility for research purposes, requires significant additional work;
- **Information Reliability:** Overall discussions don't provide sufficiently useful information for the topic;

1632

Score 1: Unhelpful

1633

- **Question Addressing:** Answer doesn't address the question or provides confusing information;
- **Source Quality:** Hasn't conducted effective retrieval, still generating using pre-trained knowledge;
- **Research Utility:** Cannot serve as useful starting point for learning or writing relevant content;
- **Information Reliability:** Fails to provide understanding of literature in this field;

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

Evaluation Dimension	-2	-1	0	+1	+2
Transparency: Decision-making process visibility	<input type="radio"/>				
Interruptibility: Real-time intervention capability	<input type="radio"/>				
Fine-grained Interaction: Interaction granularity level	<input type="radio"/>				
Inspiration: Unexpected discoveries and insights	<input type="radio"/>				
Collaboration: Collaborative partnership quality	<input type="radio"/>				

Table 5: System Design Assessment Rubric

D.2.2 SYSTEM DESIGN EVALUATION (-2 TO +2 SCALE)

System Design Evaluation Definition

Question: Does the system design provide sufficient transparency in decision-making processes?

Interruptibility (Interruptible at any time): To what extent do you think interruptibility can help correct the model's research approach and reduce model errors?

Fine-grained and Bidirectional Interaction: How fine-grained do you think the current system's interaction is? (Interaction refers to nodes where users can provide input to the model)

Inspirational Perspectives (Shared cognitive context as exploration space): How much information in the model's decision and search process exceeded your expectations? Did it help inspire you?

Inspirational Perspectives (Shared cognitive context as exploration space): How much information in the model's decision and search process exceeded your expectations? Did it help inspire you?

Long-term Collaboration Willingness: Deep research systems can all interact (Deep Cognition during process, other 3 systems after research process). Research is a dynamic, multi-round complex long-term task. To what extent do these systems' interaction methods (including input methods and system feedback output methods) make you willing to engage in long-term, multi-round communication and collaboration with the system?

Long-term Collaboration Willingness: Deep research systems can all interact (Deep Cognition during process, other 3 systems after research process). Research is a dynamic, multi-round complex long-term task. To what extent do these systems' interaction methods (including input methods and system feedback output methods) make you willing to engage in long-term, multi-round communication and collaboration with the system?

+2 points - Excellent:

- **Process Visibility:** Complete visibility of thinking, actions, and browsed content;
- **Decision Rationale:** Clear explanation of all decision-making processes;
- **Source Verification:** Full source verification and citation transparency;
- **Strategy Disclosure:** Complete disclosure of search and analysis strategies;

+1 points - Good:

- **Process Visibility:** Good transparency with some decision process visibility;
- **Decision Rationale:** Adequate explanation of major decisions;
- **Source Verification:** Good source transparency with minor gaps;
- **Strategy Disclosure:** Partial disclosure of strategies and approaches;

0 points - Neutral:

- **Process Visibility:** Neutral/adequate transparency level;

1728

- **Decision Rationale:** Basic explanation of some decisions;

1729

- **Source Verification:** Adequate source information;

1730

- **Strategy Disclosure:** Limited strategy disclosure;

1731

1732 **-1 points - Poor:**

- **Process Visibility:** Limited transparency, unclear decision processes;

1733

- **Decision Rationale:** Poor explanation of decision-making;

1734

- **Source Verification:** Limited source transparency;

1735

- **Strategy Disclosure:** Minimal strategy disclosure;

1736

1737 **-2 points - Extremely Poor:**

- **Process Visibility:** Black box operation with no process visibility;

1738

- **Decision Rationale:** No explanation of decision-making processes;

1739

- **Source Verification:** No source transparency or verification;

1740

- **Strategy Disclosure:** No disclosure of strategies or methods;

1741

1742

1743

1744 D.2.3 DEEP COGNITION SPECIFIC EVALUATION

1745

1746 **Qualitative indicator:** When comparing the Deep Cognition system with other deep research
 1747 systems, do the system's functional designs (interruptibility, transparent thinking process, transparent
 1748 behavioral paths, presenting search queries, displaying retrieved content) enhance this system's
 1749 collaborative attributes?

1750

1751 **Follow-up questions:** A. If enhanced, can you provide specific examples? Which functions
 1752 enhanced collaborative attributes? B. During model behavior review, could the model provide new
 1753 insights/unexpected search information?

1754 Feature	1755 Description
1755 Text Input	1756 Basic text communication capability
1756 Question Clarification	1757 System's ability to clarify ambiguous queries
1757 Expert Information Integration	1758 Incorporating domain expertise
1758 Thinking Process Visibility	1759 Transparency of reasoning steps
1759 Decision Process	1760 Clarity of decision-making rationale
1760 Interruptibility	1761 Effectiveness of real-time intervention
1761 Content Summary Reading	1762 Quality of information synthesis
1762 Search Query Visibility	1763 Transparency of search strategies

1764 Table 6: Deep Cognition Feature-Specific Ratings (1-5 Scale)

1765

1766 D.3 POST-STUDY

1767

1768 *Deep Cognition Evaluation: -2 for strongly negative, 0 for neutral, 2 for strongly positive*

1769

1770 **1. Enhanced Effectiveness (Enhance cognitive efficiency or not)**

1771

1772 To what extent do you think this collaborative approach can improve final report generation quality
 1773 (organization and consistency/information coverage/information density (depth)/relevance/overall
 1774 helpfulness)?

1775 Dimension	1776 Score (-2/-1/0/1/2)	1777 Reason
1776 Organization and consistency		
1777 Information coverage		
1778 Information density (depth)		
1779 Relevance		
1780 Overall helpfulness		

1782 **2. Results-worth-effort** Interacting with these systems costs your time and energy. Do you think it's
 1783 worth it? How worthwhile?

1785 System	1786 Score (-2/-1/0/1/2)	1787 Reason
1786 Deep Cognition		
1787 OpenAI		
1788 Gemini		
1789 Grok 3		

1790 **3. Research Stage Evaluation**

1792 At which stages do you think interrupting the model's operation can effectively improve subsequent
 1793 report quality? Which stage can enhance your real-time collaboration willingness with the model?

1794 Current model nodes include: evaluating research status, generating search queries, filtering web-
 1795 page URLs, browsing webpages, extracting summaries from webpages and determining usefulness,
 1796 prioritizing information retrieved from webpages and organizing arguments.

1797 You may define research stages according to your own understanding when asking this question.

1800 **Follow-up questions:**

- 1801 a) At which stage of model research development is your collaboration willingness higher?
- 1802 b) Can the model's research process provide you with insights? Can you give an example (screenshot
 1803 or text)?
- 1804 c) At which stages do you think interrupting the model's operation can more effectively improve
 1805 subsequent report quality? Which stage can enhance your real-time collaboration willingness with
 1806 the model?

1808 **4. Usage Willingness and Learning Cost (Interaction Willingness)**

1810 **Quantitative indicators:** To what extent are you willing to use this system? How are the learning
 1811 costs and operational burden?

1813 Aspect	1814 Score (-2/-1/0/1/2)	1815 Reason
1814 Usage willingness		
1815 Ease of operation		

1817 **5. Feature Evaluation**

1818 How helpful are these features for your research process? Rate (1-5) and explain reasons.

1820 Feature Number	1821 Feature Name	1822 Score	1823 Comments
1821 1	1822 Send text		
1822 2	1823 Clarify questions		
1823 3	1824 Add expert information		
1824 4	1825 Thinking process		
1825 6	1826 Decision		
1826 7	1827 Interruptible		
1827 8	1828 Read summaries		
1828 9	1829 Search queries		

1829
 1830
 1831
 1832
 1833
 1834
 1835

1836
1837

E CASE STUDY

1838

A Dynamic Research Task Case

1839

1840

Domain: Interdisciplinary Writing

1841

1842

Initial query: Please assist in investigating the latest innovations in interactive and scalable interfaces designed to enhance the interpretability of large language models in writing.

1843

1844

Clarify query: What aspect of interpretability are you most interested in exploring? Who is the primary target audience for these interfaces? What writing contexts are you most interested in? What aspects of interface scalability are most relevant to your research? Are you interested in any specific emerging technologies related to LLM interpretability?

1845

1846

1847

1848

1849

1850

1851

Domain knowledge input: Add Jeff Rzeszotarski's PhD dissertation, and research in PAIR (People + AI Research Initiative) team.

1852

1853

Initial goal: Development trend of interpretability of Interpretable Machine Learning Interface

1854

1855

1856

Last goal: Investigate which research fields the scholars who previously worked in this direction have migrated to.

1857

1858

1859

F LLM USAGE

1860

Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript. Specifically, we used an LLM to assist in refining the language of the paper. The model helped with tasks such as sentence rephrasing, grammar checking, and enhancing the overall flow of the text. It is important to note that the LLM was not involved in the idcation, research methodology, or experimental design. All research concepts, ideas, and analyses were developed and conducted by the authors. The contributions of the LLM were solely focused on improving the linguistic quality of the paper, with no involvement in the scientific content or data analysis. The authors take full responsibility for the content of the manuscript, including any text generated or polished by the LLM. We have ensured that the LLM-generated text adheres to ethical guidelines and does not contribute to plagiarism or scientific misconduct.

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889