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Frequency-Augmented Mixture-of-Heterogeneous-Experts
Framework for Sequential Recommendation

Anonymous Author(s)

ABSTRACT
Recently, many efforts have been devoted to building effective se-
quential recommenders. Despite their effectiveness, these methods
typically develop a single model to serve all users. However, our
empirical studies reveal that different sequential encoders have in-
trinsic architectural biases and tend to focus on specific behavioral
patterns, i.e., particular frequency range of user behavior sequences.
For example, the Self-Attention module is essentially a low-pass
filter, focusing on low-frequency information while neglecting the
high-frequency details. This evidently limits their ability to capture
diverse user patterns, leading to suboptimal recommendations.

To tackle this problem, we present FamouSRec, a Frequency-
Augmented Mixture-of-Heterogeneous-Experts Framework for
personalized Recommendations. Our approach builds an MoE-
based recommender system, integrating the strengths of various
experts to achieve diversified user modeling. For developing the
MoE framework, as the key to our approach, we instantiate experts
with various model architectures, aiming to leverage their inherent
architectural biases and capture diverse behavioral patterns. For
selecting appropriate experts to serve individuals, we introduce a
frequency-augmented router. It first identifies frequency compo-
nents in user behavior sequences that are suited for expert encoding,
and then conducts customized routing based on the informative-
ness of these components. Building on this framework, we further
propose two novel contrastive tasks to enhance expert specializa-
tion and alignment, thus improving modeling efficacy and enabling
robust recommendations. Extensive experiments on five real-world
datasets demonstrate the effectiveness of our approach. Code is
available at: https://anonymous.4open.science/r/FamouSRec/.
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1 INTRODUCTION
Recommender systems have become prevalent to enhance user
experience on various online platforms by predicting user potential
interests from extensive item pools [7, 8]. As user behaviors natu-
rally evolve over time, it is crucial to develop sequential recommen-
dation (SR) methods to capture these dynamic features [11, 28, 34].
Early work employed Markov chains [26] to predict the next items.
Recent advancements have largely improved recommendation per-
formance, by integrating advanced deep learning architectures like
RNNs [9], CNNs [31], and Transformers [11].

Though the adopted techniques are different, most existing meth-
ods follow the same paradigm: it builds a universal sequential model
by fitting the behavior sequences of all users, aiming to capture
the general relationships between user historical interactions and
target items [11, 37]. The learned model is then applied uniformly
to all users, predicting the most likely preferred item based on the
observed sequential context. Consequently, the capacity of the glob-
ally shared model to capture each individual’s behavior patterns is
crucial for making personalized recommendations [34].

Despite the progress, existing studies indicate the inherent biases
in model architectures [4, 21, 27]. For example, the self-attention
module employed in Transformer essentially functions as a low-
pass filter in the frequency domain, concentrating on low-frequency
signals while neglecting high-frequency ones1 [21, 24]. Therefore,
we suspect that when making sequential recommendations, differ-
ent sequential encoders may be limited to specific frequencies of user
behavior sequences, due to the architectural bias. To examine this
hypothesis, we conduct several empirical experiments in Section 2.
We find that different models tend to focus on particular frequency
components, lacking comprehensive modeling of diversified fre-
quencies. In contrast, we also find that users exhibit diverse behav-
ioral patterns2: some follow long-term preferences (low-frequency
signals), while others are driven by high-frequency signals, making
short-term interactions. These insights suggest that employing a
single biased model to capture the diverse behavioral patterns of
all users may not be optimal. Instead, it would be more effective to
develop a universal recommendation framework that can employ
the strengths of various sequential encoders personally.

Considering these issues, our solution is inspired by recent ad-
vances of Mixture-of-Experts (MoE). Typically, MoE is employed to
solve the multi-task problem, by assigning each task to a special-
ized module or “expert” [1, 18]. Instead of focusing on multi-task
solutions, we aim to employ MoE for fine-grained user modeling,
activating customized experts tailored to each individual. This could
allow specific experts to focus on particular user behavioral pat-
terns at certain frequencies, providing more personalized sequential

1When analyzing the sequence data in the frequency domain, “low-frequency” signals
typically capture an overall perspective of the sequence, whereas “high-frequency”
signals reflect frequent interactions within a short period.
2In this paper, we use the frequency components within user behavior sequences as
explicit representations of user behavioral patterns.
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modeling. Furthermore, to leverage the intrinsic biases of model
architectures, rather than using identical structures for all experts
as in traditional MoE frameworks [10, 29], we consider instanti-
ating distinct experts with heterogeneous architectures, thus
perceiving a wider range of frequency information. Overall, such
an MoE scheme can be denoted as “user behavior frequency ⇒
customized experts ⇒ captured behavioral patterns”. While this
approach is appealing, it presents several major challenges. First,
as mentioned earlier, user behaviors exhibit diverse patterns and
intertwined frequency components. It is unclear how to select ap-
propriate experts to serve each user. Second, to achieve effective
MoE modeling, it is crucial to improve expert specialization in
capturing specific frequency ranges. Moreover, with these hetero-
geneous experts, we should also consider their alignments to ensure
coherent recommendations and robust services.

To address these issues, in this paper, we propose the Frequency-
Augmented Mixture-of-Heterogeneous-Experts Framework for
Sequential Recommendations, named FamouSRec. Our approach
aims to (1) develop an MoE framework to capture diverse user be-
havioral patterns, (2) activate customized experts for serving each
individual. To achieve the first goal, our key innovation is designing
a novel heterogeneous MoE framework that employs various model
architectures, such as Self-Attention [33], GRU [9], Mamba [6], and
MLP modules, as experts. This allows us to leverage the inherent
biases of these models and capture a wider range of user behav-
ioral patterns. For achieving customized routing, we introduce a
frequency-augmented router. During recommendation serving, the
router first identifies expert-focused frequency components within
user behavior sequences and then activates the appropriate experts
based on the informativeness of these components. With the above
framework, we further propose expert specialization and alignment,
to enhance modeling efficacy. To create specialized experts, we in-
troduce an expert-frequency contrastive learning task that explicitly
differentiates experts in the frequency domain. To achieve expert
alignment for consistent recommendations, we design an expert
alignment contrastive method, aligning each expert with the more
powerful activated ones. Overall, our approach can activate tailored
experts for each user and provide personalized recommendations.

To evaluate the proposed approach FamouSRec, we conduct
extensive experiments on real-world datasets. The results demon-
strate that our proposed approach can effectively router appropriate
experts to infer user preferences and make personalized recommen-
dations. The main contributions of this work are as follows:

•We identify the inherent bias of existing sequential models, and
point out their inefficacy in capturing diverse behavior patterns.

• We build a heterogeneous MoE framework for sequential rec-
ommendation, which can capture diverse behavior patterns and
provide customized recommendations.

• Extensive experiments have demonstrated the effectiveness of
our approach in providing personalized recommendations.

2 EMPIRICAL STUDIES ON USER BEHAVIOR
AND MODEL ARCHITECTURE

In this section, we employ signal processing methods to conduct
empirical studies that evaluate (1) the variety of user behavior
patterns in recommender systems, and (2) the capacities of distinct
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Figure 1: The distribution of users who are driven by spe-
cific frequencies. We extract various frequency components
on user behavior sequence, and calculate their relevance
with ground-truth item, considering that user behaviors are
driven by the most relevant components.
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Figure 2: Visualization of frequency attention by different
sequence encoder architectures.

model architectures to capture these patterns. The experiments are
conducted on the Amazon Instruments and Arts datasets [20].

The variety of user behavioral patterns.Herewe explorewhether
different users exhibit diverse behavioral patterns. Considering that
these patterns are typically intertwined in behavior sequences, it
is non-trivial to clarify them in the time domain. Therefore, we
shift our focus to the frequency domain and consider frequency
components in interaction sequences as explicit representations
of user behavior patterns. To achieve this, we first train a classical
sequential recommender (i.e., SASRec [11]), to obtain user behavior
sequences representations. We then apply several signal process-
ing algorithms, including low-pass filter (LPF, pass low-frequency
signals while reducing high-frequency), high-pass filter (HPF), band-
pass filter (BPF), band-stop filter (BSF), and all-pass filter (APF), to
extract specific frequency components from these representations.
Finally, we transform these frequency components back to the time
domain and evaluate their relevance to the ground-truth items, hy-
pothesizing that current user behaviors are primarily driven by the
most relevant frequency components. We count how many users
are driven by each frequency component. As illustrated in Figure 1,
users exhibit diverse behavioral patterns, each focusing on distinct
frequencies. This result highlights the importance of developing
advanced models to capture personalized user behavior patterns.

2
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The architecture bias of existing sequential encoders. In this
part, we evaluate the efficacy of different sequential model architec-
tures in capturing user diverse behavioral patterns. Especially, in
this paper, we focus on several well-known encoder architectures
in the literature of sequential recommendations, i.e., Self-Attention,
GRU, andMamba. To be specific, inspired by [38], we add a learnable
frequency filter layer between the item embedding layer and the
sequence encoder layer (more details are described in Section 3.2.2).
By training the hybrid model on user interaction data as usual,
the frequency filter module can learn to extract frequency compo-
nents best suitable for encoding by downstream sequence encoders.
Figure 2 shows the learned frequency and amplitude of the filter
model. As can be seen, different architectures have inherent biases
and demonstrate distinct frequency attentions. Specifically, (1) for
Self-Attention, the frequency filter learns to pass low-frequency
signals and attenuate high-frequency ones, essentially serving as
a low-pass filter. (2) GRU does not show a preference for specific
frequency components, indicating its all-pass nature. (3) Mamba
primarily focuses on low frequencies but also captures some high-
frequency components, acting as a band-stop filter.

The above analysis motivates us to integrate the strengths of dif-
ferent architectures and select suitable experts for serving distinct
users, thus providing customized recommendations. We further
explore the efficacy of frequency domain learning in Appendix A.4.

3 METHODOLOGY
In this section, we present the details of the proposed Frequency-
Augmented Mixture-of-Heterogeneous-Experts Framework for
Sequential Recommendations, named FamouSRec. Our approach
develops anMoE frameworkwith heterogeneous experts, capable of
routing suitable experts to encode diverse user behavior sequences.
This enables the framework to capture user preferred behavioral
patterns and provide personalized recommendations.

3.1 Approach Overview
The empirical findings in Section 2 have demonstrated that users
tend to exhibit diverse behavioral patterns, which a single sequence
encoder may struggle to capture due to its inherent architectural
biases. To solve this, we develop the sequential recommender using
an MoE framework as the backbone, activating specialized experts
tailored for different users. Unlike previous studies that use the
same network architecture for all experts, our key innovation is
to instantiate experts with heterogeneous architectures, to capture
distinct frequency components within user historical interactions.
Specifically, to serve an individual user, a frequency-augmented
router first analyzes the frequency components in user behavior
sequences. It then activates a selected subset of experts to encode
several informative components and provide personalized recom-
mendations (Section 3.2). To further improve the modeling efficacy
of the heterogeneous MoE framework and enable it to make coher-
ent recommendations, we introduce two training strategies, namely
expert-frequency contrastive learning (Section 3.3.1) and expert
alignment contrastive learning (Section 3.3.2). Based on the above
methods, the proposed framework can activate customized mod-
ules for each user, satisfying their personalized needs. The overall
framework of FamouSRec is depicted in Figure 3.
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Figure 3: The overall framework of our proposed FamouSRec.

3.2 Frequency-Augmented Mixture-of-
Heterogeneous-Experts Framework

To develop the MoE framework, we introduce the widely-used
shared-bottom structure. This consists of a shared item embedding
layer and 𝐿 MoE layers. Each MoE layer includes a frequency-
augmented router and several heterogeneous experts to encode
user diverse behavioral patterns. In what follows, we introduce
these methods in detail.

3.2.1 Embedding Layer. In the embedding layer, we transform
item identifiers into dense vectors using an item embedding ma-
trix 𝑽𝐼 ∈ R | I |×𝑑 . For user behavior sequence 𝑆𝑢 = {𝑖1, 𝑖2, · · · , 𝑖𝑛},
the look-up operation retrieves the corresponding embeddings,
forming an input sequence representation 𝑬 ∈ R𝑛×𝑑 . To incorpo-
rate positional information, a learnable positional encoding matrix
𝑷 ∈ R𝑛×𝑑 is added to the item embeddings. The embedding result
is then processed through dropout and layer normalization to im-
prove model stability and generalization. Thus, we can generate
the sequence representation 𝑬𝑢 ∈ R𝑛×𝑑 of 𝑆𝑢 by:

𝑬𝑢 = Dropout(LayerNorm(𝑬 + 𝑷 )). (1)

3.2.2 Frequency-Augmented Router. The most crucial step in build-
ing the MoE framework is to activate appropriate experts for pro-
cessing input data [1]. As our approach, considering that different
model architectures tend to focus on distinct frequencies, we pro-
pose first extracting these “expert-focused” frequency components
from user behavior sequences, and then deciding which experts to
activate based on the informativeness of these components.

To implement our idea, given the user behavior sequence repre-
sentation 𝑯 𝑙 ∈ R𝑛×𝑑 of the 𝑙-th layer (we set 𝑯 0 = 𝑬𝑢 , and we will
omit the layer superscript for clarity), we first convert them into
the frequency domain by performing Fast Fourier Transform (FFT,
with details provided in Appendix A.1) along the item dimension:

𝑯 = F (𝑯 ) ∈ C𝑛×𝑑 , (2)
3
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where F (·) denotes the FFT operation and 𝑯 is the spectrum of 𝑯
in the complex space.

Then, for each expert, we capture their focused frequency com-
ponents from user behavior sequences. Especially, inspired by [38],
we build 𝐾 learnable frequency filters {𝑸1, . . . ,𝑸𝐾 }, where 𝐾 is
the total number of experts and 𝑸 𝑗 ∈ C𝑛×𝑑 is a complex tensor.
By multiplying these filters with the spectrum of the input repre-
sentations 𝑯 , we can modulate the spectrum and extract several
expert-focused frequency components as follows:

𝑯 ′
𝑗 = 𝑸 𝑗 ⊙ 𝑯 , (3)

where ⊙ is the element-wise multiplication, and 𝑯 ′
𝑗
represents the

extracted frequency components suitable for 𝑗-th expert. Since these
filters are learnable, we aim for them to be optimized to capture
frequencies best suited for each expert to encode during training.

Finally, we assess expert significance by evaluating the infor-
mativeness of the extracted expert-focused frequency components.
Specifically, we adopt the inverse FFT to transform these compo-
nents 𝑯 ′

𝑗
back to the time domain. By concatenating these trans-

formed results together and feeding them into a typicalMLPmodule,
we can obtain the gate-value for each expert 𝑔 𝑗 as follows:

𝒈 = 𝑿𝑾1 + 𝒃1, (4)
𝑿 = [𝒙1; . . . ; 𝒙𝐾 ], (5)

𝒙 𝑗 = F −1 (𝑯 ′
𝑗 ) . (6)

where F −1 (·) is the inverse FFT, 𝒙 𝑗 is the time-domain representa-
tion of frequency component suitable for the 𝑗-th expert (in sub-
sequent text, we abbreviate it as frequency components when the
context is clear),𝑾1 ∈ R𝑑×𝐾 and 𝒃1 ∈ R𝐾 are learnable parameters.

3.2.3 Sparsely-Gated MoE. To leverage the model architectural bi-
ases that focus on distinct frequencies, in this work, we instantiate
heterogeneous experts with several classic architectures, includ-
ing self-attention, GRU, MLP, and Mamba encoders. This could
naturally enhance the specialization of expert capabilities, thus
improving the efficacy of the MoE framework [10]. Especially, the
extracted 𝐾 expert-focused frequency components (see Eqn. (3)
and Eqn.(6)) are used as inputs for these experts to encode, with
each component uniquely corresponding to an expert. Addition-
ally, existing MoE-based recommender systems [17, 18] typically
aggregate results from all experts to make inferences. Despite the
efficacy, this method activates all experts during each forward pass,
resulting in high computational costs. To enhance inference effi-
ciency, our approach employs a sparsely-gated MoE framework
during serving [1]. Formally, given the gate-value for each expert
𝒈, we activate the most appropriate 𝑘 experts to encode their fo-
cused frequency components within user behavior sequences, and
combine their results to infer user potential interests as follows:

𝑭𝑢 =

𝐾∑︁
𝑗=1

𝑔′𝑗 ·𝑀𝑗 (𝒙 𝑗 ), (7)

𝒈′ = Softmax(Top-k(𝒈, 𝑘)), (8)

Top-k(𝒈, 𝑘) 𝑗 =
{
𝑔 𝑗 if 𝑔 𝑗 is in the top-𝑘 elements of 𝒈,
−∞ otherwise.

(9)

where𝑀𝑗 (·) represents the 𝑗-th expert encoder, and 𝒙 𝑗 is the time-
domain representation of the frequency components that the 𝑗-th
expert should focus on (as defined in Eqn. (6)), 𝑭𝑢 denotes the
encoded hidden representation of user 𝑢 behavior sequence. We
take the final hidden vector 𝒇𝑛 corresponding to the 𝑛-th (last)
position as the sequence representation.

3.2.4 Prediction Layer. Given the final representation of user be-
havior sequences 𝒇𝑛 (see Eqn. (7)), we can finally predict the next
potential item according to the following probability:

𝑃 (𝑖𝑛+1 |𝑠) = Softamx(𝒇𝑛 · 𝒆𝑖𝑡+1 ) . (10)

where we calculate the softmax probability over the candidate item
set, and 𝒆𝑖𝑡+1 is the embedding representation of item 𝑖𝑡+1 from
embedding matrix 𝑽𝐼 .

3.3 Expert Specialization and Alignment
By training the above frequency-augmented MoE framework to
fit user behavior data, we aim to achieve expert specialization,
where each expert focuses on non-overlapping and particular fre-
quency components. This could reduce knowledge redundancy and
enhance the modeling efficiency of the MoE framework in captur-
ing diverse user behavioral patterns [1, 10]. However, due to the
limited number of experts and the variety of frequency compo-
nents in user behavior sequences, simply relying on this implicit
training paradigm may not effectively distinguish the intertwined
frequencies [4]. As our solution, we introduce an expert-frequency
contrastive learning task, aiming to specialize the experts in the
frequency domain explicitly. Furthermore, while it is essential to
enhance the expert specialization, due to the heterogeneous nature
of these experts, we should also consider expert alignment to make
consistent recommendations. Therefore, we further propose an ex-
pert alignment contrastive task, aiming to improve the alignments
between different experts and the more powerful activated experts.
In the following sections, we introduce these methods in detail.

3.3.1 Expert-Frequency Contrastive Learning. In this task, we aim
is to explicitly guide each expert to focus on specific frequency
components within user behavior sequences, thus improving ex-
pert specialization. To achieve this goal, we propose contrasting
the prediction results of experts when encoding different frequency
components. This involves aligning each expert with its corre-
sponding frequency components while deliberately misaligning
them with frequencies that other experts should focus on.

To be specific, given the incorporated experts {𝑀1, . . . , 𝑀𝐾 }
and their corresponding expert-focused frequency components
{𝒙1, . . . , 𝒙𝐾 }, we first employ the experts to encode these differ-
ent frequency components, resulting in 𝐾 × 𝐾 pairs. Then we use
these encoded results to generate item prediction logits. For all pre-
diction logits from matched pairs (i.e.,𝑀𝑗 (𝒙 𝑗 )), we consider them
as positive samples and aim to minimize their Kullback-Leibler
divergence. Conversely, logits from mismatched pairs of experts
and frequency components (i.e.,𝑀𝑗 (𝒙 𝑗 ′, 𝑗 ′≠𝑗 )) are taken as negative
samples and pushed away. The expert-frequency contrastive loss
can be formalized as follows:

4
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LSpe =

∑𝐾
𝑗=1

∑𝐾
𝑘=1,𝑘≠𝑗 KL(𝑝 𝑗, 𝑗 ∥ 𝑝𝑘,𝑘 )∑

( 𝑗,𝑘 ) ∈P
∑

( 𝑗 ′,𝑘 ′ ) ∈P
( 𝑗,𝑘 )≠( 𝑗 ′,𝑘 ′ )

KL
(
𝑝 𝑗,𝑘 ∥ 𝑝 𝑗 ′,𝑘 ′

) , (11)

KL(𝑝 𝑗,𝑘 ∥ 𝑝 𝑗 ′,𝑘 ′ ) =
| I |∑︁
𝑖=1

𝑝 𝑗,𝑘 (𝑖) log
𝑝 𝑗,𝑘 (𝑖)
𝑝 𝑗 ′,𝑘 ′ (𝑖)

, (12)

𝑝 𝑗,𝑘 (𝑖) =
exp(𝑀𝑗 (𝒙𝑘 ) · 𝒗𝑖 )∑ | I |
𝑖′=1 exp(𝑀𝑗 (𝒙𝑘 ) · 𝒗′𝑖 )

, (13)

where P = {( 𝑗, 𝑘) |1 ≤ 𝑗 ≤ 𝐾, 1 ≤ 𝑘 ≤ 𝐾} denotes all pairs of
distinct experts and frequency components, and 𝑝 𝑗,𝑘 is the logits
predicted by 𝑘-th expert when encoding 𝑗-th frequency component.

3.3.2 Expert Alignment Contrastive Learning. In addition to con-
ducting expert specialization, we further consider expert alignment
to make coherent recommendations. To achieve this, we propose
the expert alignment contrastive task. Specifically, given the encod-
ing result of each expert, we employ the weighted output of the
MoE framework as positive samples and align them in the semantic
space, while taking in-batch data as negative samples. The expert
alignment contrastive loss can be formally presented as follows:

LAli = −
𝐵∑︁
𝑖=1

𝐾∑︁
𝑗=1

log
exp(𝑀𝑗 (𝒙 𝑗 ) · 𝑓𝑖/𝜏)∑𝐵

𝑖′=1 exp(𝑀𝑗 (𝒙 𝑗 ) · 𝑓𝑖′/𝜏)
, (14)

where 𝑓𝑖 is the weighted output of theMoE framework (see Eqn. (7)),
and 𝑓𝑖′ is the negative samples encoded from in-batch data.

3.4 Optimization and Inference
Given the encoded representation of user behavior sequences𝒇𝑛 (Eqn. (7)),
we adopt the widely-used cross-entropy loss to optimize the rec-
ommendation capacity as follows:

LRec = −log exp(𝒇𝑛 · 𝒆𝑖/𝜏)∑ |𝐼 |
𝑖′=1 (exp(𝒇𝑛 · 𝒆′

𝑖
/𝜏))

, (15)

where 𝜏 is the temperature parameter.
Notably, existing studies indicate that the sparsely-gated MoE

framework may suffer from load balancing issues, where some
experts are frequently activated while others are rarely used [1, 5].
This could reduce model efficiency. To address this problem, we
introduce an auxiliary load balancing loss to promote a more even
distribution of expert activations, as follows:

LBal =

(
1
𝐵

(
𝐵∑︁
𝑢=1

𝒈𝑢

)
− 1
𝐾

)2
, (16)

where 𝒈𝑢 is the gate value for serving the 𝑢-th user (Eqn. (4)), 𝐵 is
the batch size, and𝐾 is the total number of experts. The learned even
distribution can also improve the expert specialization implicitly.

Overall, to jointly optimize the framework, we combine the loss
functions from the recommendation task, the expert-frequency
contrastive task, the expert alignment contrastive task, and the load
balancing loss as follows:

L = LRec + 𝜆LSpe + 𝜇LAli + 𝛾LBal . (17)

where 𝜆, 𝜇, and 𝛾 are weight hyper-paratmers. Notably, we can
activate suitable experts to make inferences using Eqn. (10).

3.5 Discussion
In this section, we compare related methods to highlight the novelty
of our approach. We analyze the time complexity in Appendix A.2
and indicate the efficiency of sparsely-gated MoE framework.

General sequential methods such as GRU4Rec [9] and SAS-
Rec [11] adopts advanced architecture to encode user behavior
sequences. However, as illustrated in Section 2, thesemodels demon-
strate inherent biases and tend to focus on particular frequencies.
Therefore, this limits the efficacy of these single model based meth-
ods in capturing user diverse behavioral patterns, leading to sub-
optimal results. As a comparison, our approach develops an MoE
framework that can leverage strengths from various experts to
achieve diverse encoding and provide customized service.

Frequency augmented methods such as FMLP-Rec [38] and
FEARec [4] propose to enhance sequential modeling by incorporat-
ing frequency domain features. FMLP-Rec introduces a global filter
to extract signals, focusing on a limited frequency range. FEARec
alleviates this by introducing a frequency ramp structure that cap-
tures a wider range of frequencies. Nevertheless, these methods
neglect to explore the relations between frequency components and
encoders. For our approach, we extract specific frequencies tailored
for different experts and specialize the experts to focus on these
particular frequencies, thereby enhancing the modeling efficacy.

Aggregation sequential methods [15, 18] typically use tech-
niques like MoE or model ensemble to integrate the strengths of
various modules. However, most existing methods focus on multi-
task or cross-domain problems. Notably, we focus on fine-grained
user modeling and employ the MoE framework to provide cus-
tomized recommendations, activating distinct experts tailored to
each individual. Furthermore, most existing methods overlook the
benefits of combining heterogeneous modules. Although a recent
study M3 [30] develops the MoE framework with distinct expert
architectures, it lacks explicit analysis of model inherent capacities
and simply trains the model in an implicit way, leading to potential
expert conflicts and redundancy. In contrast, our approach explicitly
analyzes the expert architecture bias and develops a novel heteroge-
neous MoE, leveraging their inherent biases to capture diverse user
behavioral patterns. Two contrastive tasks on expert specialization
and alignment are proposed to enhance modeling efficiency and
enable coherent recommendations.

4 EXPERIMENT
4.1 Experiment Setup
4.1.1 Dataset. To evaluate the performance of the proposed ap-
proach, we conduct experiments on five open public benchmark
datasets: (1) Instruments, Arts, and Office: these three datasets
are from Amazon review datasets in [20]. We select three sub-
categories: “Musical Instruments”, “Arts, Crafts and Sewing”, and
“Office Products”. (2) Online retail (OR) [2] contains transaction
records from an e-commerce platform in the UK. (3) Tmall [32] is
from the IJCAI-15 competition, and contains user shopping logs
on Tmall online platform. Following previous work [37], we keep
the five-core datasets and filter users and items with fewer than
five interactions. Then we group the interactions by users and sort
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Table 1: Statistics of the preprocessed datasets. “Avg.𝑛” is the
average length of behavioral sequences.

Datasets #Sequences #Items #Actions Avg.𝑛 Sparsity

Instrument 24,962 9,964 183,964 7.37 99.93%
Arts 45,486 21,019 349,664 7.68 99.96%
Office 87,346 25,986 597,491 6.84 99.97%
OR 16,520 3,469 503,386 30.47 99.12%
Tmall 66,909 37,367 427,797 6.39 99.98%

them by timestamp ascendingly. The maximum sequence length is
set to 50. The statistics of datasets are summarized in Table 2.

4.1.2 Baseline Models. We compare our proposed approach with
several representative types of sequential recommendation models:

• General sequential methods employs advanced sequen-
tial models to encode user historical interactions. We consider
the following methods as baselines: (1) SASRec [11] is a clas-
sic transformer-encoder based sequential recommendation model,
which employs a multi-head self-attention mechanism to capture
sequential patterns. (2) BERT4Rec [28] is a bidirectional self-
attention recommender that employs a cloze prediction task to
enhance the sequence encoding. (3) GRU4Rec [9] applies the clas-
sic GRU module to encode user behaviors. (4) Mamba4Rec [16]
employs selective SSMs to achieve efficient sequential modeling.

• Contrastive learning sequential methods are built upon
general models and aim to enhance sequential encoding by apply-
ing data augmentation for contrastive learning: (5) CL4SRec [35]
proposes three data augmentation approaches to construct self-
supervision signals. (6) DuoRec [23] introduces both unsupervised
and supervised sampling strategies for contrastive learning.

• Frequency augmented sequential methods analyze user
behavioral patterns in the frequency domain, further enhancing
time-domain modeling. We consider the following methods as base-
lines: (7) FMLP-Rec [38] uses learnable frequency filters to de-
noise user behavioral sequences and extract valuable features. (8)
FEARec [4] enhances time domain attention and learns both low-
high frequency information with a ramp structure.

• Aggregation sequential methods enhance recommendation
performance by integrating the strengths of various sub-modules:
(9) Crocodile [15] introduces a mixture-of-embedding-experts
framework, and employs a covariance loss to disentangle different
experts, thereby capturing user diverse interests. Notably, Crocodile
is initially designed for cross-domain settings. But for a fair compar-
ison, we reimplement it by instantiating multiple item embeddings
within a single domain and inputting them for sequential encoders.
(10) EMKD [3] predicts next items by averaging the encoding re-
sults of multiple encoders, and employs knowledge distillation to
facilitate knowledge transfer between these encoders.

4.1.3 Evaluation Settings. To evaluate the performance of the next
item prediction task, we adopt two widely used metrics, i.e.,HR@𝑁
and NDCG@𝑁 , where𝑁 is set to 5 and 10. Consistent with previous
works [37], we apply the leave-one-out strategy for evaluation. For
each user/session interaction sequence, the last item serves as the
test data, the second-to-last item is used for validation, and the
remaining interaction records are used for training. For evaluation,

we rank the target item of each sequence against all other items in
the test set, and report the average score across all test samples.

4.1.4 Implementation Details. We implement the proposed Fa-
mouSRec model and all the compared baseline methods in PyTorch.
To ensure a fair comparison, we optimize our model and the base-
line methods with Adam optimizer and conduct a thorough hyper-
parameter search. We examine the effects of key hyper-parameters
in Appendix A.3. We tune the number of experts in {3, 4} and
adjust the combination of different expert architectures. During
training, we activate all the expert to optimize the proposed con-
trastive tasks. Notably, when making inferences, we adopt the top-𝑘
sparsely-gated MoE framework, and set 𝑘 = 1 to activate the best
appropriate expert for serving. This further enhances the inference
efficiency. The batch size is set to 4,096. All the experiments are
conducted on a NVIDIA A100 GPU. We use the early stopping
strategy with a patience of 10 epochs to prevent overfitting, and
NDCG@10 is used as the indicator metric.

4.2 Overall Performance
We compare the proposed approach FamouSRec with baseline meth-
ods on the five target datasets. The results are reported in Table 2. .
In general, FamouSRec outperforms baselines on nearly all datasets,
leading to an average improvement ratio of 8%.

First, traditional general sequential recommendation methods
such as SASRec, BERT4Rec, and GRU4Rec do not perform well,
possibly because their architectural biases limit them to focusing
on specific frequencies of user behavior sequences, making them
challenging to capture diverse user behavior patterns. Notably,
Mamba4Rec achieves impressive results, highlighting the effective-
ness of state space models in modeling sequential dependencies [6].
Furthermore, as discussed in Section 2, the Mamaba module can
function as a band-stop filter, which aligns with the behavioral
patterns of most users. Additionally, contrastive learning methods
such as CL4SRec and DuoRec outperform general methods. This
suggests the effectiveness of contrastive learning in capturing latent
semantic relations. Frequency augmented sequential methods (i.e.,
FMLP-Rec and FEARec) demonstrate remarkable recommendation
performance, highlighting the significance of frequency domain
modeling. However, they neglect to extract particular frequencies
suited for encoding by downstreammodules, leading to sub-optimal
results. Additionally, aggregation sequential methods Crocodile and
EMKD do not yield satisfactory results, as they mainly combine
models with the same architecture, leading to homogeneous capac-
ity and diminishing the benefits of model aggregations.

Finally, our proposed model, FamouSRec, consistently outper-
forms all baseline methods across nearly all scenarios. Different
from these baselines, we develop a mixture-of-hetergenous-experts
framework to encode diverse user behavioral patterns. Leveraging a
sparsely-gated architecture, our approach achieves superior perfor-
mance while activating a comparable number of parameters.
Notably, our method allows specific experts to focus on user behav-
ior patterns at certain frequencies. By combining the strengths of
these experts, our approach captures a broader range of user behav-
iors and offers personalized services. This remarkable result aligns
with the success of the MoE framework in the field of NLP [5, 10].
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Table 2: Overall performance of different recommendation methods. The best and the second-best performance methods are
denoted in bold and underlined fonts, respectively. “Improv.” denotes the relative improvement ratios of the proposed approach
over the best performance baselines.

Dataset Metric SASRec BERT4Rec GRU4Rec Mamba4Rec CL4SRec DuoRec FMLP-Rec FEARec Crocodile EMKD FamouSRec Improv.

Instruments

HR@5 0.0851 0.0680 0.0728 0.0778 0.0791 0.0879 0.0834 0.0861 0.0839 0.0758 0.0946 +7.62%
NDCG@5 0.0571 0.0523 0.0590 0.0649 0.0530 0.0614 0.0564 0.0576 0.0597 0.0575 0.0794 +22.34%
HR@10 0.1102 0.0853 0.0915 0.0963 0.1045 0.1146 0.1081 0.1106 0.1082 0.0986 0.1180 +2.97%
NDCG@10 0.0652 0.0578 0.0650 0.0708 0.0612 0.0712 0.0644 0.0655 0.0674 0.0648 0.0869 +22.05%

Arts

HR@5 0.0804 0.0510 0.0570 0.0714 0.0701 0.0803 0.0810 0.0802 0.0784 0.0727 0.0846 +4.44%
NDCG@5 0.0533 0.0376 0.0439 0.0582 0.0487 0.0557 0.0529 0.0536 0.0529 0.0567 0.0670 +15.12%
HR@10 0.1053 0.0671 0.0734 0.0896 0.0945 0.1048 0.1073 0.1059 0.1042 0.0949 0.1103 + 2.79%
NDCG@10 0.0613 0.0428 0.0492 0.0641 0.0566 0.0636 0.0613 0.0618 0.0604 0.0639 0.0751 +17.16%

Office

HR@5 0.0913 0.0680 0.0774 0.0919 0.0826 0.0929 0.0926 0.0964 0.0924 0.0774 0.1020 +5.81%
NDCG@5 0.0674 0.0560 0.0658 0.0791 0.0609 0.0726 0.0683 0.0699 0.0688 0.0649 0.0855 +8.09%
HR@10 0.1109 0.0806 0.0908 0.1067 0.1007 0.1124 0.1136 0.1188 0.1118 0.0922 0.1217 +2.44%
NDCG@10 0.0738 0.0600 0.0701 0.0838 0.0667 0.0789 0.0751 0.0771 0.0756 0.0697 0.0916 +9.31%

OR

HR@5 0.0815 0.0798 0.0822 0.0825 0.0546 0.0784 0.0798 0.0794 0.0782 0.0444 0.0852 +3.27%
NDCG@5 0.0492 0.0486 0.0496 0.0508 0.0342 0.0470 0.0479 0.0479 0.0474 0.0279 0.0524 +3.15%
HR@10 0.1402 0.1390 0.1418 0.1421 0.0955 0.1380 0.1391 0.1364 0.1384 0.0760 0.1493 +5.07%
NDCG@10 0.0680 0.0676 0.0696 0.0701 0.0473 0.0661 0.0670 0.0663 0.0662 0.0381 0.0730 +4.14%

Tmall

HR@5 0.2721 0.1599 0.1917 0.2887 0.2274 0.2783 0.2906 0.2918 0.2784 0.2234 0.3011 +3.19%
NDCG@5 0.2425 0.1381 0.1671 0.2500 0.2017 0.2492 0.2505 0.2513 0.2516 0.1934 0.2591 +2.98%
HR@10 0.3013 0.1781 0.2135 0.3204 0.2496 0.3084 0.3197 0.3219 0.3089 0.2513 0.3395 +5.47%
NDCG@10 0.2519 0.1440 0.1741 0.2606 0.2134 0.2558 0.2604 0.2622 0.2583 0.2025 0.2705 +3.17%

Table 3: Ablation analysis on two datasets. The best perfor-
mance is denoted in bold.

Variants
Instruments Arts

HR@10 NDCG@10 HR@10 NDCG@10

FamouSRec 0.1180 0.0869 0.1103 0.0751

𝑤/𝑜 Router 0.1128 0.0804 0.1028 0.0714
𝑤/𝑜 Frequency Domain Learning 0.1025 0.0759 0.0941 0.0637
𝑤/𝑜 Load Balance 0.1074 0.0788 0.1075 0.0735
𝑤/𝑜 Expert Specialization 0.1112 0.0813 0.1012 0.0703
𝑤/𝑜 Expert Alignment 0.1119 0.0816 0.1038 0.0690

4.3 Further Analysis
4.3.1 Ablation Study. In this part, we analyze how each of the
proposed components affects final recommendation performance.
Table 3 shows the performance of our default method and its five
variants on two datasets. Overall, removing any component de-
grades performance:

(1)𝑤/𝑜 Router: In this variant, we simply average the output of
different experts. The performance drop indicates that the router
is effective at activating the most appropriate experts to encode
sequential context, thus enabling customized inference.

(2)𝑤/𝑜 Frequency Domain Learning: Instead of extracting spe-
cific frequency components for the router and experts to model,
here we replace Eqn. (2) and Eqn. (3) with an MLP module and
directly conduct time-domain modeling. The performance gap high-
lights the significance of frequency domain learning, which enables
experts to focus on their suited frequency information for encoding.

(3)𝑤/𝑜 Load Balance: Here, we exclude the load balancing loss,
i.e., Eqn. (16). This omission not only leads to a drop in performance
but also makes the training process highly unstable, with some
experts never being activated and trained. This highlights the effects
of evenly distributing expert activations.

Instruments Arts
Dataset

0.09

0.10

0.11

0.12
HR

@
10

Heterogeneous
Self-attention
GRU

MLP
Mamba

Figure 4: Performance Comparison w.r.t. using experts with
different architectures. “Heterogeneous” refers to our ap-
proach of using distinct architectures, whereas other vari-
ants use homogeneous experts to build the MoE framework.

(4) 𝑤/𝑜 Expert Specialization: The performance drops sharply
without the expert-frequency contrastive task (Eqn. (11)). This in-
dicates that simply fitting user behavior could not effectively spe-
cialize heterogeneous experts in encoding specific frequencies.

(5) 𝑤/𝑜 Expert Alignment: In this variant, we omit the expert
alignment contrastive loss, i.e., Eqn. (14). The performance drop
indicates that it is necessary to align heterogeneous experts for
providing coherent recommendations.

4.3.2 Effects of Expert Heterogeneity. To evaluate whether incorpo-
rating heterogeneous experts can model a wider range of frequen-
cies and capture diverse user behavioral patterns, we compare the
results of instantiating experts with different architectures. Figure 4
shows that building the MoE framework by using experts with the
same architectures results in lower performance than our heteroge-
neous MoE framework. Although these variants can learn to encode
specific patterns for distinct experts implicitly, they neglect the ef-
fect of inherent architectural biases, restricting these experts to
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Figure 5: Performance Comparison w.r.t. activating different
experts. “Customized Routing” employs the proposed router
to dynamically select the most appropriate expert for each
individual, while other variants activate fixed experts.

specific patterns. In contrast, our heterogeneous expert-based MoE
framework effectively captures a wider range of user behavioral
patterns, enhancing personalized user modeling.

4.3.3 Effects of Customized Routing. In this part, we evaluatewhether
the proposed MoE framework can select the most suitable experts
to provide customized recommendations, given varying user se-
quential contexts. To verify this, we compare the recommendation
performance when the router activates a tailored expert against
when it consistently activates a fixed expert (we train the MoE
framework as usual). As illustrated in Table 5, regardless of which
expert is consistently activated, the performance significantly lags
behind that of customized activation with the learned router. This
result indicates that our method can build highly specialized ex-
perts for different patterns and can effectively route appropriate
experts for each user, encoding their preferred patterns.

5 RELATEDWORK

Sequential recommendation. Due to the dynamic nature of user
preference, researchers propose developing sequential recommen-
dation methods to predict future items by analyzing hidden pat-
terns in user behavior sequences. Early works relied on the Markov
Chain assumption [19, 26], estimating item-item transition prob-
ability matrices to predict the next item. With advances in deep
learning, deep neural networks have become popular for sequential
recommendation [9, 11, 37]. Numerous works based on Recurrent
Neural Networks (RNNs) [13, 25], Convolutional Neural Networks
(CNNs) [31, 36], and Transformers [11, 28] have been proposed to
perform sequential recommendations. Recently, some advanced
architectures, such as RWKV [22] and Mamba [6], have been pro-
posed to enhance the efficiency of sequence modeling. There is
also an increased emphasis on incorporating frequency domain
features [27, 38]. Specifically, FMLP-Rec [38] introduces a learnable
frequency filter to capture frequency components in user behavior
sequences, building a filter-enhanced MLP architecture. FEARec [4]
improves on this by using a frequency ramp structure to capture
diverse frequency components for better modeling. Despite the
efficacy, most of them overlook the relationship between model
architectures and their encoded frequencies. In contrast, our work
highlights the inherent biases of different models, showing that

various architectures tend to emphasize distinct frequency infor-
mation. Based on this finding, we develop a heterogenous MoE
framework, employing inherent biases of various architectures to
capture diverse user behavioral patterns.

Mixture-of-Experts for recommendation.Mixture-of-Experts
(MoE) has emerged as a powerful paradigm in deep learning, im-
proving supervised learning through a specialized architecture of
experts focused on specific tasks [1, 12, 14]. In the realm of recom-
mender systems, MMOE [18] first employs multiple gating mecha-
nisms to dynamically determine the contribution of each expert for
various tasks. Based on this framework, various efforts have been
made to improve the performance of MoE in recommender systems.
For example, SNR [17] enhances the flexibility of parameter shar-
ing with sub-network routing. PLE [29] analyzes the seesaw phe-
nomenon in the multi-task learning scenario, and further designs
the progressive layered extraction module to alleviate this. Never-
theless, most existing MoE-based studies use MoE primarily as a
multi-task solver. In contrast, our work leverages MoE to achieve
fine-grained, customized user modeling by assigning specific ex-
perts to focus on particular user behavior patterns. Additionally,
current approaches often use the same architecture for all experts
(e.g., an MLP module)[15, 29]. Although M3[30] recently introduced
a mixture of heterogeneous models to capture diverse temporal
ranges, it lacks experimental validation and merely assumes that
different encoders naturally attend to different temporal patterns. In
contrast, our work conducts in-depth experiments, demonstrating
that distinct architectures can capture unique frequency compo-
nents. Based on this, we propose a heterogeneous MoE framework,
activating tailored experts for individual users and providing per-
sonalized recommendations. Moreover, existing studies often train
the model implicitly, leading to expert conflicts and load imbalances.
To tackle these issues, we introduce two contrastive learning tasks
and a load-balancing auxiliary task, enhancing expert specialization
and alignment, and improving training stability.

6 CONCLUSION
In this paper, we found that existing sequential encoders have in-
trinsic architectural biases and tend to focus on specific frequency
ranges of user behavior sequences, limiting their ability to capture
user diverse behavioral patterns. To overcome this, we proposed
FamouSRec, a frequency-augmented mixture-of-heterogeneous-
experts framework for personalized recommendations. The MoE
framework enables our approach to integrate the strengths of vari-
ous experts, thus achieving diversified user modeling. Specifically,
different from existing methods that employ experts with the same
architecture, our framework uses heterogeneous experts, leverag-
ing their inherent biases to encode a wider range of frequency
information. We further introduce a frequency-augmented router
to select the most appropriate experts for serving each individual.
Additionally, two novel contrastive tasks are designed to enhance
expert specialization and alignment. Based on these methods, our
framework can activate customized experts to encode user preferred
behavioral patterns, thus providing personalized recommendations.

For future work, wewill consider developing theMoE framework
with more types of experts and leveraging their architectural biases
to improve frequency domain learning.
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A APPENDIX
A.1 Fourier Transform
A.1.1 Discrete Fourier Transform. The Discrete Fourier Transform
(DFT) is a widely used computational method in signal process-
ing. Since the input data for sequential recommendation are one-
dimensional sequences, we only consider the 1D DFT. Specifically,
for a sequence of {𝑥𝑛}𝑁𝑛=1, the 1D DFT transforms the original
sequence into a sequence of complex numbers in the frequency
domain using the formula:

𝑋𝑘 =

𝑁∑︁
𝑛=1

𝑥𝑛𝑊
𝑛𝑘
𝑁 , 1 ≤ 𝑘 ≤ 𝑁 (18)

where 𝑁 is the length of the sequence,𝑊 𝑛𝑘
𝑁

is the twiddle fac-
tor, and 𝑋𝑘 is a complex number representing the signal with fre-
quency 𝜔𝑘 = 2𝜋𝑘

𝑁
. Through this equation, the DFT decomposes a

sequence of values into components of different frequencies. The
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Figure 6: Performance comparison w.r.t. different hyper-
parameters on the Instruments dataset.

DFT provides a unique, one-to-one mapping between the time and
frequency domains. The frequency representation {𝑋𝑘 }𝑁𝑘=1 can be
transformed back to the original feature domain using the inverse
DFT (IDFT), which is given by:

𝑥𝑛 =
1
𝑁

𝑁∑︁
𝑘=1

𝑋𝑘𝑊
−𝑛𝑘
𝑁 (19)

A.1.2 Fast Fourier Transform. To compute the DFT, the Fast Fourier
Transform (FFT) algorithm is commonly employed, which breaks
down the DFT of a sequence of length 𝑛 recursively, reducing the
time complexity to O(𝑛 log𝑛). The inverse DFT, shown in Equa-
tion (19) and structurally similar to the DFT, can also be efficiently
calculated using the inverse FFT. In this paper, we employ F and
F −1 to denote FFT and IFFT, respectively.

A.2 Complexity Analysis
In this part, we analyze the complexity of our proposed FamouS-
Rec. Overall, the time complexity of our approach during training
primarily arises from four components: frequency domain learn-
ing, mixture-of-experts, expert-frequency contrastive learning, and
expert alignment contrastive learning. Specifically, for frequency
domain learning, we perform FFT and IFFT operations and re-
quire a cost of O(𝑛𝑑 log𝑛), where 𝑛 is the sequence length and
𝑑 is the hidden size. To use the mixture-of-experts framework
for encoding user behavioral sequences, the time complexity is
O(𝐾𝑀 (𝑛,𝑑)), where 𝐾 is the number of experts and 𝑀 (𝑛,𝑑) rep-
resents the complexity of different model architectures (with Self-
Attention at O(𝑛2𝑑), GRU at O(𝑛𝑑2), MLP at O(𝑛𝑑2), and Mamba
at O(𝑛𝑑 + 𝑛𝑑 log𝑛)). In expert-frequency contrastive learning, we
employ different experts to encode distinct frequency components,
resulting in 𝐾 ×𝐾 encoding operations and a cost of O(𝐾2𝑀 (𝑛,𝑑)).
For expert alignment contrastive learning, contrastive learning is
conducted for each expert using the output of activated experts as
positive samples and other in-batch data as negatives, incurring
a cost of O(𝐵2𝑛𝑑 + 𝐵𝐾𝑀 (𝑛,𝑑)), where 𝐵 is the batch size. During
inference, since we use a sparsely-gated MoE framework that acti-
vates only the top-𝑘 experts for processing, the time complexity is
O(𝑛𝑑 log𝑛 + 𝑘𝑀 (𝑛,𝑑))𝑘 .

A.3 Hyper-parameter Analysis
In this section, we examine the effects of key hyperparameters,
including the weight hyperparameters 𝜆, 𝜇, and 𝛾 . To isolate their
impact, we adjust one hyperparameter at a time while keeping the
others at their optimal values.

Table 4: Further analysis of the effectiveness of frequency
domain modeling. “low-frequency” refers to recommenda-
tion results for users with low-frequency behavior patterns.

Variants
Instruments Arts

HR@10 NDCG@10 HR@10 NDCG@10

SASRecaverage 0.1102 0.0652 0.1053 0.0613
FamouSRecaverage 0.1180 0.0869 0.1103 0.0751

SASReclow-frequency 0.1146 0.0679 0.1081 0.0630
FamouSReclow-frequency 0.1191 0.0786 0.1144 0.0726

Overall, as shown in Figure 6, our approach can outperform the
baseline by a significant margin in almost all settings, demonstrat-
ing its robustness. In particular, 𝜆 and 𝜇 are two hyperparameters
that control the weight of two contrastive learning tasks, i.e., expert-
frequency contrastive learning and expert alignment contrastive
learning. By adjusting these values, we observe that selecting ap-
propriate hyperparameter values greatly enhances performance,
while values that are either too high or too low can negatively
impact it. Furthermore, tuning the load balancing weight 𝛾 results
in noticeable performance shifts, underscoring the importance of
this task in ensuring all experts are activated evenly. This task can
further help maintain training stability.

A.4 Analysis of Frequency Domain Learning
Based on the findings proposed in Section 2, we propose the hetero-
geneous MoE framework. In this part, we delve into its effectiveness
in frequency domain learning. Specifically, we take users with low-
frequency behavior patterns (referred to as “low-frequency users”
for brevity) and SASRec (which is good at capturing low-frequency
signals) as an example to analyze the following three questions:
1. Does SASRec perform better for users with low-frequency be-
havior patterns? 2. Can most users with low-frequency behavior
be routed to the self-attention module in our framework? and 3.
Can our model provide better recommendations for users with low-
frequency behavior compared to SASRec? We conduct experiments
in the Instruments and Arts datasets, with the results summarized
in Table 4.

For the first question, we compare the average recommendation
results of SASRec for all users with those for the low-frequency
users. The results show that SASRec provides better recommenda-
tions for users with low-frequency patterns, supporting the conclu-
sion that SASRec functions as an effective low-pass filter.

For the second question, we find that 73% of users with low-
frequency patterns in the Instruments dataset and 61% in the Arts
dataset are routed to the self-attention module during inference.
This indicates that our router can effectively identify user behavior
patterns and activate the appropriate experts to provide customized
recommendations.

Finally, regarding the third question, our model demonstrates
superior performance compared to SASRec for these specific users.
This is likely because our experts, trained using two contrastive
learning tasks, are better able to capture user behavior patterns and
focus on specific frequency components, thereby providing more
personalized recommendations.

10



1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Frequency-Augmented Mixture-of-Heterogeneous-Experts Framework for Sequential Recommendation Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

A.5 Limitations
In this section, we discuss the limitations of our approach and
explore potential directions for future work. Our work builds an
MoE recommender with heterogeneous experts, activating suit-
able experts for serving each individual. Especially, the proposed
frequency-augmented router first analyzes frequency components
contained in user behavioral sequences and then conducts cus-
tomized routing based on the informativeness of these components,
implementing a user-level routing strategy. In contrast, recent stud-
ies in NLP have adopted a token-level routing strategy and achieved
impressive results [5, 10]. In future work, we plan to expand our
routing strategy to include item or session-level routing, for fine-
grained modeling.

Furthermore, these recent NLP studies suggest that using anMoE
framework can achieve better scaling laws [1]. However, given the
sparse nature of interaction data, it is non-trivial to explore this in
recommender systems. We aim to address this in our future work.
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