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ABSTRACT

Mathematical problem solving is an important skill for Large Language Models
(LLMs), both as an important capability and a proxy for a range of reasoning
abilities. Existing benchmarks probe a diverse set of skills, but they yield aggregate
accuracy metrics, obscuring specific abilities or weaknesses. Furthermore, they are
difficult to extend with new problems, risking data contamination over time. To
address these challenges, we propose MathCAMPS: a method to synthesize high-
quality mathematical problems at scale, grounded on 44 fine-grained “standards”
from the Mathematics Common Core (CC) Standard for K-8 grades. We encode
each standard in a formal grammar, allowing us to sample diverse symbolic prob-
lems and their answers. We then use LLMs to realize the symbolic problems into
word problems. We propose a cycle-consistency method for validating problem
faithfulness. Finally, we derive follow-up questions from symbolic structures and
convert them into follow-up word problems—a novel task of mathematical dia-
logue that probes for robustness in understanding. Experiments on 29 LLMs show
surprising failures even in the strongest models (in particular when asked simple
follow-up questions). Moreover, we evaluate training checkpoints of Pythia 12B on
MathCAMPS, allowing us to analyze when particular mathematical skills develop
during its training. Our framework enables the community to reproduce and extend
our pipeline for a fraction of the typical cost of building new high-quality datasets.

1 INTRODUCTION

As Large Language Models (LLMs) become increasingly capable, mathematical reasoning problems
have emerged as a key benchmark for evaluating their abilities. Mathematical reasoning is a critical
subproblem of many important tasks, such as scientific question answering and quantitative data
analysis, making it a prerequisite for a range of downstream applications. Moreover, mathematical
reasoning tests a broad spectrum of reasoning skills, serving as a valuable proxy for assessing
reasoning capabilities more generally. Consequently, several benchmarks, notably GSM8K (Cobbe
et al., 2021) and MATH (Hendrycks et al., 2021), became popular measures of the progress of LLMs,
with each new generation of models demonstrating rapid advancements.

However, the classical approach to benchmarking in Machine Learning, which involves evaluating
models on a fixed set of human-created problems, faces new fundamental challenges in the era of
LLMs. First, these models are trained on massive public datasets that may unintentionally include the
very benchmarks used for evaluation, raising concerns about data contamination (Zhang et al., 2024;
Bubeck et al., 2023; Balloccu et al., 2024). This problem is exacerbated by the lack of access to the
training data of most state-of-the-art LLMs, such as GPT-4 (Achiam et al., 2023), Claude (Anthropic,
2024), and even open-weight models, such as LLaMA (Touvron et al., 2023). Evaluating LLMs
on novel problems could mitigate the data contamination concerns. But creating new mathematical
problems is challenging. Crafting new high-quality problems requires expertise and is expensive;
sourcing problems from public sources does not address the question of whether LLMs might have
been trained on those problems.

Moreover, while existing benchmarks serve to track overall progress in the field, they do not inform
us about what mathematical abilities current language models do and do not have. A single aggregate
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Figure 1: Overview of the MathCAMPS generation pipeline. We start from a grammar (A) that
represents problems tied to a Common Core Standard - a specific mathematical ability drawn from a
human curriculum. We sample problems in a symbolic form (B), and use a language model to realize
it in natural language (C), applying a cycle-consistency where we back-translate the problem into
symbolic form and ensure the answer remains the same, validating truthfulness. We also synthesize
incremental and counterfactual follow-up problems

accuracy — in a topic as diverse as mathematics — does not provide insights into specific capabilities
or challenges for current language models, and how those have been changing over time. For instance,
GPT-4 (Achiam et al., 2023) improved by 35% on GSM8K when compared to GPT-3 (Brown et al.,
2020); yet, it is still challenging to understand which improved capabilities might have accounted for
this improvement (e.g., arithmetic with larger numbers, proficiency with fractions or decimals, or
understanding of longer problems). Such an analysis would help shed light on open questions about
language model learning, and how it relates to (or diverges from) human learning.

To address these challenges, we propose the Mathematics Common Core Assessment of Problem
Solving — MathCAMPS — a framework for synthesizing high-quality mathematical word problems at
scale. Our approach is grounded in the Mathematics Common Core (CC) Standards from Kindergarten
through 8th grade. The CC standardizes a mathematics curriculum adopted by thousands of schools,
describing specific abilities that students should learn by each grade. By constructing MathCAMPS in
direct relation to the CC, our benchmark enables a series of rich analyses of mathematical proficiency
in language models, allowing direct parallels to abilities that human students are also evaluated on.
We encode the skills described in the CC (namely the standards) in a grammar that allows us to
sample an arbitrary number of diverse problems targeting that skills (e.g., word problems involving
addition of decimals, or solving systems of equations with fractions), represented symbolically.

Our pipeline uses a symbolic solver (SymPy) to obtain answers to the symbolic problems, and
employs an LLM to realize those into word problems. We introduce a cycle-consistency method to
validate whether a word problem faithfully represents the original symbolic problem. Prompting the
LLM to back-translate the word problem into a symbolic structure and comparing the new answer to
the original enables us to eliminate most unfaithful generation errors and maintain high quality.

Furthermore, building on our symbolic representation of problem structures, we introduce a novel
task of “mathematical dialogue”. In this task, once the LLM answers a problem correctly, we
ask a follow-up question to further probe understanding. We introduce two types of follow-up
problems: counterfactual, where we modify an aspect of the original problem and request an updated
answer, and incremental, where we provide additional information and ask for a new answer. These
questions require simultaneously understanding the original problem and the LLM’s own solution —
an additional challenge that several models struggle with.
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Using our framework, we synthesize problems for each of 44 CC standards, resulting in a dataset
of 4,900 initial problems. We also generate follow-up questions (incremental and conterfactual)
in standards where those apply, yielding 9607 total problems. We evaluate a suite of 29 language
models, both proprietary and open. Our analysis uncovers surprising failures, particularly in response
to simple follow-up questions, revealing notable gaps even in strong models. Moreover, to the best of
our knowledge, we perform the first analysis of the learning dynamics of mathematical skills during
LLM training, leveraging checkpoints of Pythia 12B (Biderman et al., 2023). Our contributions are:

• We present MathCAMPS, a framework for synthesizing high-quality mathematical word
problems at scale, stratified into fine-grained capabilities defined by the Mathematics Com-
mon Core Standards for K-8 grades. We release 9607 problems and our extensible pipeline
to generate arbitrarily many more.

• We introduce a cycle-consistency method to validate the faithfulness of the generated word
problems to their underlying symbolic structures.

• We propose a novel task of “mathematical dialogue,” featuring counterfactual and incremen-
tal follow-up questions that probe the models’ understanding more deeply.

• We evaluate a diverse set of 29 language models on our dataset, revealing surprising failures
and gaps in performance, even in strong models.

2 RELATED WORK

Our work closely relates to (i) current benchmarks of mathematical reasoning in LLMs, (ii) bench-
marks constructed using LLMs, and (iii) behavioral testing and applications in NLP.

Benchmarks of mathematical reasoning MATH (Hendrycks et al., 2021) and GSM8K (Cobbe
et al., 2021) have been two leading benchmarks for the evaluation of mathematical reasoning in
LLMs. Both datasets consist entirely of human-authored problems — a process that is expensive
to reproduce, and as a result, neither benchmarks were updated since their initial releases. Given
that LLMs are trained on Web data, it is unclear whether they might have been trained on the test
problems of these benchmarks (Bubeck et al., 2023) – either directly or from other sources (e.g., all
problems in MATH come from past public competitions). In fact, GSM1K (Zhang et al., 2024), a
new dataset that independently attempted to reproduce the data distribution of GSM8K, has found
reduced performance on several models, suggesting test set contamination.

LLM-generated synthetic datasets for LLMs As collecting data from human annotaotors at
scale is expensive (especially in domains requiring expertise, such as mathematics), prior work has
relied on LLMs to aid the generation of large-scale benchmarks (Hartvigsen et al., 2022). BigToM
(Gandhi et al., 2023), a benchmark of social reasoning in LLMs, applied the idea of symbolically
scaffolding questions for the LLM to realize in natural language, an approach that we transport to
mathematics. Dyval (Zhu et al., 2024) proposed a method for generating reasoning problems for
LLMs based on a DAG representing the computation. While Dyval contains two mathematical tasks
(arithmetic and solving linear equations), MathCAMPS takes this idea further for mathematical
reasoning, spanning 44 skills directly grounded on a human curriculum. Other synthetic evaluations
focused on mathematical skills include GSMore (Hong et al., 2024) and the concurrent work on
GSM-Symbolic (Mirzadeh et al., 2024). Both these works focus on evaluating the robustness of
LLMs by perturbing existing problems from an existing dataset, GSM8k, whereas in MathCAMPS
we synthesize problems from scratch, grounded on a human curriculum (Hong et al. (2024) also
proposes perturbations to coding problems, which we do not focus on here).

Behavioral testing in NLP Our goal to provide a fine-grained evaluation of mathematical reasoning
has parallels with behavioral testing — the idea of testing software systems on specific features, as
opposed to just their overall adequacy (Ribeiro et al., 2020). In particular, CheckList (Ribeiro et al.,
2020) allowed testing machine translation models for fine-grained failure modes. Dynaboard (Ma
et al., 2021) proposed an NLP leaderboard where users can adapt to their own needs by choosing
the utility of different metrics; our dataset enables a similar user-customizable comparison between
models for mathematical reasoning.
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3 MATHCAMPS

We now describe our pipeline for automatically generating mathematical problems and follow-up
questions that are grounded in a human curriculum – the Mathematics Common Core (https:
//www.thecorestandards.org). Figure 1 overviews our pipeline. We describe the Common
Core, how we represent its standards in a grammar, sample symbolic problems, generate follow-ups,
realize those in natural language, and finally improve quality by checking for cycle consistency.

3.1 THE MATHEMATICS COMMON CORE

To ground problems in a human curriculum, we turn to the Common Core State Standards for
Mathematics. 41 states in the United States adopt the CC as their curriculum. The CC details the
mathematical content that students should master from Kindergarten up to 12th grade. Within each
grade, the CC elaborates a series of individual standards, which detail a particular mathematical
skill that students should learn at that grade. Each standard has an identifier, such as K.CC.C.7,
and a summary description — for K.CC.C.7, this is “Compare two numbers between 1 and 10
presented as written numerals”. Here, K indicates that this is a standard for the Kindergarten grade
level, whereas 8.EE.C.8 — “Analyze and solve pairs of simultaneous linear equations” — is an
8th grade standard.

We take 44 standards spanning grades K through 8 to compose MathCAMPS, focusing on standards
that are amenable to automatic problem generation with a final answer in text form. The complete
CC curriculum has 229 standards across grades K through 8, bring our coverage to 19.2% of the
curriculum for these grades. Notably, we currently do not cover standards focusing on conceptual
understanding (e.g., 3.OA.D.9 – “Identify arithmetic patterns [...], and explain them using properties
of operations.”), or standards that emphasize visual reasoning (e.g., 6.G.A.4 – “Represent three-
dimensional figures using nets made up of rectangles and triangles, and use the nets to find the surface
area of these figures.”). All 44 standards covered in MathCAMPS are listed in Appendix A.

Representing Common Core standards We represent CC standards as non-terminals in an
attribute grammar (Heine & Kuteva, 2007) — a rich formalism that can encode semantic, context-
sensitive rules. Attribute grammars can encode syntax much like a context-free grammar, but also
allow us to embed information processing (e.g., setting and testing conditions on attributes, such as
bounds on constants) in the production rules. We map each standard s to a non-terminal Ps, such that
all strings produced by expanding Ps using production rules are valid symbolic representations of a
problem pertaining to standard i. Figure 1 shows a (simplified) grammar for the standard 1.OA.A.1
– “Use addition and subtraction within 20 to solve word problems involving situations of adding to,
taking from, putting together”. Here, a word problem, generated by the Problem non-terminal,
consists of a sequence of declarative statements expressing equations between expressions. For
this standard, an expression consists of addition, subtraction, variables, and constants. After these
declarations, the problem ends with a question — an expression representing the value that the
problem asks for. Concretely, our grammar is implemented in Python: each non-terminal becomes a
stochastic function that samples and applies a production rule, recursively expanding non-terminals
that it produces. In the grammar in Figure 1 (A), sampling a Problem generates a structure such as
the one shown in Figure 1 (B).

Enforcing problem constraints When sampling problems, there is no a priori guarantee that all
generated statements are necessary to answer the question. To avoid such statements, we remove
them by applying a simple graph reachability algorithm on a dependency graph between statements,
removing statements that the answer does not depend on. This enforces the constraint of only having
useful statements in problems. Besides this constraint, which we always enforce, each standard can
apply specific constraints. The standard 1.OA.A.1 has an example of such constraint: it requires
that students only be asked to use “addition and subtraction within 20.” To be faithful to this standard,
we must validate that no intermediate values used in the solution exceed 20. To encode this and
other constraints across the curriculum, we implement a suite of 6 parameterized filters (detailed
in Appendix C) that are selectively applied depending on the standard’s specification. Applying
rejection sampling from the grammar using the standard’s filters gives a procedure for generating
valid symbolic problems. For all standards that can be formulated as solving a system of linear
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equations, we use SymPy (Meurer et al., 2017) to obtain final answers. For other cases, we use two
simple custom procedures (to list the factors of numbers and to compare values).

3.2 FROM SYMBOLIC TO WORD PROBLEMS

To realize the symbolic problems into natural language, we use few-shot prompting with GPT-4
(Figure 1 (C)). For each standard, we sampled two valid symbolic problems and manually wrote a
problem in natural language that faithfully represents the symbolic structure. For standards involving
word problems, which typically contain a simple cover story, we also sampled a random theme out of
188 that we crafted (e.g., “Book”, “Pirate ship”, “Money”). These examples are then given to GPT-4
in-context, along with a new symbolic structure (and a random theme, for standards where that is
relevant), requesting it to generate a faithful natural language problem for that structure.

Unlike generating problem stories from a fixed set of templates, using a language model for generating
natural language problems gives us fluid, diverse language. Unfortunately, we also lose any guarantee
that the generated word problem represents the original symbolic structure faithfully. To mitigate
this issue, we also introduce a cycle consistency method that we have found to drastically improve
problem quality. Precisely, we use the same few-shot examples we crafted for each standard in
reverse (i.e., with the natural language problem coming first, followed by the symbolic structure) to
have GPT-4 translate the word problem it wrote into a symbolic structure. In this step, the model
is not given the original structure. We then parse and apply the appropriate solver to the generated
symbolic problem; we consider the generation cycle-consistent if the answers to the original and
recovered problems are the same (illustrated in Figure 1). We then discard problems that fail this test.

This cycle consistency test significantly improves the reliability of our pipeline. We manually
evaluated 245 random problems generated by sampling a symbolic structure and then a word problem
from GPT-4. Out of those, we identified 30 word problems (12.2%) that were not faithful to the
original symbolic structure — for those, the answer that we compute to the symbolic problem does
not match our manual solution to the word problem. Cycle consistency discarded 25 of those (and 7
problems that were indeed faithful). Out of the remaining 215 problems, 210 (97.7%) were judged
as faithful in our manual check. A more in-depth analysis of cycle-consistency can be found in
Appendix D.

3.3 GENERATING FOLLOW-UP QUESTIONS

As human instructors know, follow-up questions are often the best way to probe a student’s under-
standing. In MathCAMPS, we leverage our symbolic representation of problems to derive follow-up
questions. We propose two kinds of questions: counterfactual questions, where we change a constant
in the original problem, and incremental questions, where we add a new piece of information. For
each CC standard, we mark which (if any) of these two categories of follow-ups are applicable. Sym-
bolically, follow-up questions are represented as a difference to be applied to the original question —
when we apply the difference, we obtain a new problem. We then use the same solver as the original
problem to obtain the ground-truth answer to the follow-up question. We employ the same few-shot
structure to translate this difference into a natural language question, and parse it back into a symbolic
structure to test for cycle consistency.

4 EXPERIMENTS

We now evaluate a suite of 29 LLMs from 11 different vendors on MathCAMPS. We evaluate all
models by sampling with temperature 0, using a fixed 1-shot prompt with the first example from
GSM8K, mostly to demonstrate the format. For all models (most of them instruction-tuned), a
single example was enough for to adhere to the task and the format we specify. The rich structure
in MathCAMPS allows us to perform a number of unique analyses on LLMs relating to specific
mathematical abilities and their corresponding grade levels for human students. Precisely, we
investigate:

1. How do LLMs perform overall on MathCAMPS? How does their performance correlate
with GSM8k?

5
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Table 1: Final answer accuracy of LLMs on MathCAMPS, both over all problems (All) and consider-
ing only standards in each grade we cover (K to 8). Highlights compare to gradewise avg.

Vendor Model All K 1 2 3 4 5 6 7 8

OpenAI GPT-4o 0.92 0.98 0.98 0.98 0.98 0.92 0.88 0.95 0.89 0.64
Anthropic Claude-3 Opus 0.89 0.97 0.99 0.96 0.98 0.89 0.83 0.96 0.73 0.56

Google Gemini-1.5 Pro 0.89 0.95 0.98 0.97 0.97 0.89 0.83 0.93 0.78 0.54
Google Gemini-1.5 Flash 0.87 0.98 0.98 0.97 0.98 0.80 0.80 0.90 0.84 0.56
OpenAI GPT-3.5 Turbo 0.87 0.96 0.98 0.98 0.97 0.86 0.77 0.90 0.77 0.56

Anthropic Claude-3 Sonnet 0.86 0.96 0.98 0.97 0.98 0.88 0.74 0.94 0.66 0.49
Anthropic Claude-3 Haiku 0.84 0.97 0.98 0.97 0.98 0.87 0.69 0.92 0.59 0.51

Qwen Qwen2-Math 72B 0.89 0.98 0.99 0.98 0.97 0.90 0.80 0.91 0.77 0.59
Meta Llama 3 70B 0.85 0.96 0.97 0.97 0.97 0.85 0.71 0.87 0.73 0.50

Mistral Mixtral 8x22B 0.84 0.96 0.99 0.98 0.96 0.79 0.69 0.88 0.73 0.61
Qwen Qwen2-Math 7B 0.83 0.96 0.99 0.97 0.93 0.85 0.66 0.91 0.58 0.62

DeepSeek DeepSeek 67B 0.80 0.95 0.99 0.96 0.93 0.82 0.60 0.84 0.61 0.47
DeepSeek DeepSeek Math 7B Base 0.78 0.94 0.97 0.93 0.89 0.75 0.63 0.86 0.53 0.55
Numina NuminaMath 7B TIR 0.78 0.89 0.97 0.95 0.90 0.72 0.63 0.84 0.59 0.53

Meta Llama 3 8B 0.77 0.94 0.97 0.96 0.94 0.78 0.55 0.79 0.53 0.43
Mistral Mixtral 8x7B 0.76 0.94 0.96 0.93 0.91 0.75 0.52 0.80 0.53 0.45

InternLM InternLM-Math Base 20B 0.74 0.95 0.96 0.95 0.86 0.68 0.55 0.79 0.52 0.47
EleutherAI Llemma 34B 0.71 0.95 0.96 0.93 0.87 0.61 0.47 0.77 0.46 0.44

Mistral Mistral 7B 0.68 0.89 0.94 0.91 0.84 0.61 0.42 0.66 0.45 0.42
DeepSeek DeepSeek Coder 33B 0.65 0.88 0.93 0.92 0.83 0.54 0.36 0.66 0.44 0.38

Meta CodeLlama 34B 0.64 0.90 0.94 0.92 0.85 0.51 0.38 0.70 0.37 0.30
Microsoft phi-2 0.63 0.95 0.96 0.89 0.78 0.46 0.38 0.61 0.37 0.41
EleutherAI Llemma 7B 0.62 0.78 0.90 0.85 0.79 0.48 0.41 0.67 0.41 0.36

Google Gemma 7B 0.62 0.83 0.92 0.90 0.82 0.47 0.36 0.65 0.36 0.30
Meta CodeLlama 13B 0.58 0.87 0.92 0.87 0.75 0.41 0.30 0.61 0.32 0.34

InternLM InternLM-Math Base 7B 0.58 0.71 0.73 0.73 0.72 0.54 0.38 0.61 0.37 0.39
Meta CodeLlama 7B 0.52 0.85 0.92 0.84 0.69 0.37 0.25 0.57 0.25 0.16

Google Gemma 2B 0.51 0.66 0.76 0.74 0.67 0.42 0.28 0.55 0.30 0.27
- Avg. Performance 0.75 0.91 0.95 0.92 0.88 0.70 0.57 0.79 0.56 0.46

2. Do individual models have relative strengths and weaknesses, or does performance improve
uniformly across skills?

3. How well do LLMs respond to follow-up questions? How is their accuracy affected when
also considering follow-ups?

4. How do mathematical skills develop during pre-training?

4.1 OVERALL PERFORMANCE

Table 1 shows both aggregate accuracy on MathCAMPS, as well as accuracy across standards
partitioned by grade, whereas Figure 3 compares the aggregate accuracies on MathCAMPS and
GSM8K. Closed-weights models are shown above the line, with open-weights models below. GPT-4o
ranks at the top in overall accuracy. Since we used GPT-4 to generate the problems, we must rule out
familiarity bias (Stureborg et al., 2024) in this result. We thus generated a 10%-scale dataset with
the same pipeline but using Claude-3 Opus. We found that GPT-4o still outperforms Claude-3 Opus
on this dataset (see Appendix B), suggesting that its advantage on MathCAMPS was not due to a
familiarity bias. We make the following observations:

Models of similar overall performance can have large disparities in specific abilities or grades.
Several models that have comparable overall accuracies show large differences when compared
on specific mathematical skills. As an example, Claude-3 Opus and Claude-3 Sonnet have similar
overall accuracy both in MathCAMPS (.89 vs .86) and in GSM8K (.95 vs .923). However, we
find that Claude-3 Opus is significantly better at manipulating fractions. For instance, in the CC
standard 5.NF.A.2, described as “Solve word problems involving addition and subtraction of
fractions referring to the same whole, including cases of unlike denominators”, Opus has a 36%
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Table 2: Largest model rank changes when focusing on one CC standard. Here, A B indicates that
the model ranks Ath on MathCAMPS overall, but ranks Bth when only evaluating on problems from
the indicated CC standard. Conversely, marks notable cases where a model’s performance on the
indicated CC standard is lower than its overall performance on MathCAMPS. We show selected rows
here, the complete table can be found in the Appendix.

Model Top outlier skill Rank change

GPT-4o 8.EE.C.8 - Solve two-variable systems (1st 22th)
Claude-3 Opus 2.MD.B.5 - Add/sub within 100 (2nd 18th)
Gemini-1.5 Pro K.OA.A.4 - Adding to equal 10 (4th 23th)
Claude-3 Haiku 6.EE.A.1 - Evaluate exponents (10th 20th)

Llama 3 70B 3.OA.A.3 - Mul/div within 100 (8th 21th)
Mixtral 8x22B 8.EE.C.8 - Solve two-variable systems (9th 21th)

Qwen2-Math 7B 8.EE.C.8 - Solve two-variable systems (11th 25th)
DeepSeek 67B K.NBT.A.1 - Decompose into 10s (12th 1st)

Llama 3 8B K.OA.A.4 - Adding to equal 10 (15th 3rd)
Mixtral 8x7B 6.EE.A.1 - Evaluate exponents (16th 26th)

InternLM-Math Base 20B 2.NBT.B.5 - Add/sub within 100 (17th 2nd)
Llemma 34B 3.OA.A.3 - Mul/div within 100 (18th 1st)
Mistral 7B 1.OA.A.1 - Add/sub within 20 (19th 26th)

DeepSeek Coder 33B 6.EE.A.1 - Evaluate exponents (20th 3rd)
phi-2 K.OA.A.4 - Adding to equal 10 (22th 4th)

Llemma 7B 6.EE.A.1 - Evaluate exponents (23th 5th)
Gemma 7B K.OA.A.5 - Add/sub within 5 (24th 6th)

InternLM-Math Base 7B 4.OA.B.4 - Factor pairs within 100 (26th 15th)
CodeLlama 7B 8.EE.C.8 - Solve two-variable systems (27th 15th)

Gemma 2B 8.EE.C.8 - Solve two-variable systems (28th 11th)

advantage over Sonnet, scoring a 70% accuracy for this standard, whereas Sonnet only achieves 34%.
Similarly, while Gemma 7B and phi-2 have comparable overall performance (.62 vs .63 accuracy
on MathCAMPS), some capabilities in each model seem nearly absent from the other. Gemma
7B is highly accurate when performing multi-digit multiplication — an ability stressed in standard
4.NBT.B.4, where Gemma 7B achieves 94% accuracy. In stark contrast, phi-2 only solves 22% of
those problems. On the other direction, phi-2 is one of the highest performing models on 4.NF.A.2
(“Compare two fractions with different numerators and different denominators”), with 90% accuracy.
In this same standard, Gemma 7B only scores 19%. Such stark differences are obscured when only
analyzing aggregate metrics, whereas MathCAMPS allows for a much more nuanced understanding
of mathematical reasoning capabilities.

Overall ranking between models is largely a function of which skills we choose to evaluate.
Overall accuracies in any dataset induce a single performance ranking of models. However, when
we look at individual CC standards in MathCAMPS, rankings are largely a function of which skills
we choose to evaluate. Comparing pairs of models across all standards, rarely we find cases where
one model Pareto-dominates another (i.e. is better on all standards): only 23.08% of all pairs of
models have a Pareto winner. Table 2 shows how the ranking of a model in individual skills can
often deviate strongly from its overall ranking. Here, the first ordinal in each cell shows the model’s
global ranking when comparing overall performance in MathCAMPS, whereas the second shows
the model’s ranking on that particular CC standard. We find many cases of large discrepancies. For
instance, on systems of equations, GPT-4o tends to excessively rely on decimal approximations when
operating with fractions, resulting in poor performance. Llemma 34B, which places 13th overall, is
the best performing model on a simple kindergarten-level word problems on adding to complete 10.

Aggregate accuracies are strongly correlated between GSM8k and MathCAMPS When con-
sidering overall performance, the trends in GSM8k hold on the novel problems from MathCAMPS,
which cover overlapping topics (Pearson correlation of 0.865, p < 10−5; we show this correlation
in Figure 3). This correlation corroborates the progress that public benchmarks have witnessed,
suggesting that data contamination does not play a major role in explaining observed improvements
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Table 3: Standards with strict winners, i.e., models who strictly outperform all other models on that
standard.

Model Standards Won
GPT-4o 4.NBT.B.6, 7.NS.A.2, 8.EE.C.7, 7.NS.A.1-fraction, 5.NF.A.1, 7.NS.A.3-fraction

Qwen2-Math 72B 1.OA.A.1, 3.OA.D.8, 5.NF.B.4, 4.OA.A.3, 4.MD.A.2-fraction
GPT-3.5 Turbo 2.NBT.B.6, 5.OA.A.1, 8.EE.C.8
Claude-3 Opus 6.NS.B.2, 5.NBT.B.7

Gemini-1.5 Flash 7.NS.A.3-decimal, 5.NF.A.2
Claude-3 Sonnet 3.MD.D.8-polygon

in recent LLMs. We note that prior work attempting to replicate the distribution of GSM8k, such
as the independent effort to collect GSM1k (Zhang et al., 2024), has observed a smaller correlation,
including substantial drops in performance for some models. This is entirely compatible with our
findings here, due to the difficulty of exactly replicating the distribution over skills in any given
human-created benchmark. As the sharp differences in Table 2 indicate, an (unintended) shift in this
distibution can drastically — and unevenly — affect accuracy, even if no data contamination occurs.
These shifts are easily avoided in an automated pipeline as in MathCAMPS, allowing us to draw new
problems from the exact same distribution in the future.

4.2 STANDARD-SPECIFIC ANALYSIS

Despite decently high performance across the board, GPT-4o’s performance fell at or below 90%
on the following skills: 4.MD.A.2-fraction, 4.OA.A.3, 5.NF.A.1, 7.NS.A.3-fraction, and 8.EE.C.8.
At their core, all these abilities require fraction addition or subtraction, a skill we noted that GPT-
4o struggles with. Specifically, the model starts approximating fractions using decimals, and the
error introduced by this compounds throughout the problem, resulting in an incorrect final answer.
Surprisingly, GPT-4o achieves an 86% on 5.NF.B.4, which requires fraction multiplication, indicating
that it is likely the multi-step process of finding common denominators in adding/subtracting fractions
that challenges GPT-4o. Additionally, GPT-4o achieves performances above 90% on 4.MD.A.2-
decimal and 7.NS.A.3-decimal, which are the CC standards equivalent to 4.MD.A.2-fraction and
7.NS.A.3-fraction, using decimals instead of fractions in the problems. This trend isn’t isolated to the
GPT models, though, as most models tended to struggle more with standards involving fractions.

Work from Lucy et al. (2024) showed that over 50% of problems from GSM8K originated from three
CC standards, namely, 4.OA.A.3 (20.73%), 2.OA.A.1 (16.58%), and 3.OA.D.8 (15.75%). These
standards ask students to solve multistep word problems involving the four operations, use addition
and subtraction to solve two-step word problems within 100, and solve two-step word problems using
the four operations, respectively. While most models we experimented with performed relatively
well on 2.OA.A.1 and 3.OA.D.8, CC standard 4.OA.A.3 did prove to be challenging, with the most
performant model, Qwen2-Math 72B, achieving an 86% on the standard.

Out of the 49 total skills we evaluated (44 standards, some of which we split into sub-standards),
19 skills had an absolute winner: a model which outperforms all other models on that skill. The
distribution of these skills is given in Table 3. This analysis shows that even generally weaker models,
such as GPT-3.5 Turbo, have particular skills that they excel on. This fact is hidden when looking at
aggregate accuracies, but is revealed in our finer-grained analysis.

4.3 FOLLOW-UP TASKS

We now evaluate the performance of language models when asked follow-up questions. Here, we
first give the initial problem, and in case the model answers correctly we ask either an incremental
follow-up, a counterfactual follow-up, or both (in separate contexts), depending on the standard
(some standards don’t have follow-ups, and for some problems we failed to find a cycle-consistent
follow-up within the max attempts). Here, we’re interested in analyzing the (lack of) robustness
that LMs might have when probed with extra questions — our follow-ups are generally answerable
using the same core mathematical knowledge involved in the initial problem but require longer range
attention and dialog understanding.
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Table 4: Model performance on our mathematical dialogue task, where the model must answer
follow-up questions besides the initial problem. The second column, Accuracy with follow-ups,
shows overall success rate across standards that contain follow-up questions, considering a model
successful only when it answers a problem and its follow-up questions correctly. The third and fourth
columns show the hardest standard for each model when it comes to follow-up questions, showing
a standard’s code and abbreviated description, the model’s accuracy ignoring follow-ups, and after
follow-ups. We show selected rows here, the complete table can be found in the Appendix.

Model Acc. with follow-ups Largest accuracy drop w/ follow-ups

GPT-4o 0.82 5.NF.A.1 - Add/sub fractions 0.86 0.58)
Claude-3 Opus 0.76 7.NS.A.1-fraction - Add/sub with fractions 0.54 0.23)
Gemini-1.5 Pro 0.77 5.OA.A.1 - Evaluating with parentheses 0.95 0.69)
Claude-3 Haiku 0.70 7.NS.A.2 - Mult/div with fractions 0.55 0.26)

Qwen2-Math 72B 0.78 5.NF.A.1 - Add/sub fractions 0.49 0.23)
Llama 3 70B 0.69 4.NF.A.2 - Compare two fractions 0.99 0.66)

Mixtral 8x22B 0.69 7.NS.A.1-fraction - Add/sub with fractions 0.69 0.17)
Qwen2-Math 7B 0.71 5.NF.A.2 - Add/sub fraction word problems 0.41 0.17)

DeepSeek Math 7B Base 0.65 5.NF.B.4 - Mult fractions 0.81 0.57)
NuminaMath 7B TIR 0.62 5.NF.A.2 - Add/sub fraction word problems 0.44 0.18)

Llama 3 8B 0.58 4.NF.A.2 - Compare two fractions 0.90 0.52)
Mixtral 8x7B 0.58 7.NS.A.2 - Mult/div with fractions 0.60 0.28)
Llemma 34B 0.55 5.NF.B.4 - Mult fractions 0.68 0.31)
Mistral 7B 0.48 7.NS.A.1-decimal - Add/sub with decimals 0.91 0.50)

DeepSeek Coder 33B 0.60 3.OA.A.3 - Mul/div within 100 0.95 0.81)
phi-2 0.39 3.NBT.A.2 - Add/sub within 1000 0.71 0.23)

Llemma 7B 0.42 5.NF.B.4 - Mult fractions 0.58 0.21)
Gemma 7B 0.33 7.NS.A.1-decimal - Add/sub with decimals 0.91 0.32)

InternLM-Math Base 7B 0.42 7.NS.A.1-decimal - Add/sub with decimals 0.82 0.47)
CodeLlama 7B 0.49 2.NBT.B.7 - Add/sub within 100 0.80 0.67)

Gemma 2B 0.24 3.NBT.A.2 - Add/sub within 1000 0.93 0.26)

Table 4 shows overall accuracies when we only consider a model successful on a problem when it
also answers its follow-up questions correctly (the full table, with results for all models, is given in
the Appendix; see Table18). We also show the major accuracy drops across CC standards for each
model (last two columns). We find many notable cases, in both stronger and weaker models. GPT-4o,
for instance, is 90% accurate in evaluating expressions of addition of fractions with multi-digit
numerators and denominators (5.NF.A.1 — notably, this requires putting fractions in the same
denominator). When asked to add another fraction to the result, or change one of the original fractions
to a new one and re-do the computation, its success rate when evaluated at correctly answering
both follow-ups drops to 61%, or a 29% decrease. Other models drop even more dramatically. For
instance, phi-2 solves 57% of the problems in 7.NS.A.2, which are about multiplying two fractions
(only requires two multi-digit multiplications — we do not require the result to be in lowest terms).
However, when asked to multiply the result by a further third fraction, phi-2 tends to not reuse its
previous (correct) result, and instead proceeds by writing down the product of the three numerators
(and denominators), and attempt to directly evaluate this product. This strategy is rarely successful,
and it only achieves 8% accuracy when accounting for the follow-ups (an absolute 49% drop). Overall,
we find many cases where models are not robust to simple follow-up questions. We hypothesize that
this setup of mathematical dialogue is much less frequent in pre-training data, and that follow-up
problems in MathCAMPS can be a rich source of further analyses for future work.

4.4 LEARNING DYNAMICS

Finally, we use Pythia (Biderman et al., 2023) to showcase another analysis that MathCAMPS
enables: understanding the learning dynamics of mathematical skills during LM training. We
evaluate checkpoints of Pythia 12B on all standards, and track the performance change as the
model was trained. Figure 2 shows Pythia’s performance evolving during training on all 7 CC
standards where the last checkpoint achieves at least 30% accuracy. Early in training, after 28k
steps, Pythia performs best in a Kindergarten standard, K.OA.A.5 — “Fluently add and subtract
within 5.”. At 57k steps, its performance is best in both K.OA.A.5 (37% accuracy) and two first-
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Figure 2: Performance of Pythia 12B checkpoints on MathCAMPS standards as it evolves during
training. We show all 7 standards where the last checkpoint has at least 30% accuracy.

grade standards, 1.OA.A.1 and 1.OA.A.2 — both standards involve simple word problems with
addition and subtraction within 20. Pythia starts to become proficient at a sixth-grade standard around
midway during training: 6.EE.A.1, which involves evaluating simple expressions using whole-number
exponents (e.g, computing squares and cubes). These skills develop in tandem with its linguistic
competence – at first, Pythia repeats questions verbatim often, but at 57k steps it already often
produces responses. Overall, the high-resolution of MathCAMPS as a reasoning benchmark can
support future work to deepen our understanding of how language models acquire capabilities during
training, and how specific factors (such as data, or scale) contribute to their learning.

5 CONCLUSION

We introduce MathCAMPS, a fine-grained synthetic benchmark of mathematical reasoning in LLMs.
MathCAMPS is directly grounded on the Common Core Standards, a widely used curriculum in
human education. By tying our problems to a human curriculum, we enable a much wider range
of analyses to understand mathematical reasoning capabilities and weaknesses of LLMs. We show
analyses of performance by grade level and identify particularly challenging skills for a range of
models, though we believe these are only a few examples of analyses that MathCAMPS permits.

We note that MathCAMPS might also find applications in educational tools for human students, due
to its correspondence to the Common Core. Future work in that direction will require psychometric
analyses, to ensure that problem difficulty (aside from the abilities involved) is grade appropriate.

While we currently cover 44 CC standards, our pipeline can be easily extended to cover additional
standards where problems have a computational nature, and where answers can be obtained using a
computer solver. These can include topics beyond high-school, including calculus and linear algebra.
This framework, however, is difficult to extend to more conceptual problems, including mathematical
proofs, or problems that require explanations, as opposed to a final computational answer. Judging
natural language reasoning reliably, in the absence of an exact answer to compare to, remains an open
problem — an important challenge to allow us to extend the scope of evaluation of mathematical
reasoning in LLMs.

Reproducibility Statement MathCAMPS is a fully synthetic dataset, and we have made available
both the code to run our full dataset generation pipeline (available in the supplementary materials)
as well as our analyses with the existing problems and collected LLM responses (analysis.py,
available in the supplementary materials, along with the JSON data files under model-responses,
containing all LLM-generated solutions to the problems). The problems we generated for this paper
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came from GPT-4, a closed model, and its availability is subject to change. However, our pipeline
still works with other models: our analysis in Appendix B shows that using Claude leads to a dataset
with similar results. We thus expect our pipeline to be reproducible with other strong models that are
available, including open ones.
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Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, Harsha Nori, Hamid Palangi, Marco Tulio
Ribeiro, and Yi Zhang. Sparks of artificial general intelligence: Early experiments with gpt-4,
2023.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021.

Yann Fleureau, Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi,
Shengyi Costa Huang, and Kashif Rasul. How NuminaMath won the 1st AIMO progress prize,
2024. URL https://huggingface.co/blog/winning-aimo-progress-prize.
Accessed on October 1, 2024.

Kanishk Gandhi, Jan-Philipp Fränken, Tobias Gerstenberg, and Noah D. Goodman. Understanding
social reasoning in language models with language models, 2023.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Y Wu, YK Li, et al. Deepseek-coder: When the large language model meets programming–the
rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

Thomas Hartvigsen, Saadia Gabriel, Hamid Palangi, Maarten Sap, Dipankar Ray, and Ece Kamar.
Toxigen: A large-scale machine-generated dataset for adversarial and implicit hate speech detection,
2022.

Bernd Heine and Tania Kuteva. The genesis of grammar: A reconstruction, volume 9. Oxford
University Press, USA, 2007.

11

https://huggingface.co/blog/winning-aimo-progress-prize


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset, 2021.

Pengfei Hong, Navonil Majumder, Deepanway Ghosal, Somak Aditya, Rada Mihalcea, and Soujanya
Poria. Evaluating llms’ mathematical and coding competency through ontology-guided interven-
tions. 2024. URL https://api.semanticscholar.org/CorpusID:267028311.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.
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Standard ID Description
K.CC.C.7 Compare two numbers between 1 and 10 presented as written numerals.
K.OA.A.4 For any number from 1 to 9, find the number that makes 10 when added

to the given number, e.g., by using objects or drawings, and record the
answer with a drawing or equation.

K.OA.A.5 Fluently add and subtract within 5.
K.NBT.A.1 Compose and decompose numbers from 11 to 19 Into ten ones and

some further ones, e.g., by using objects or drawings, and record each
composition or decomposition by a drawing or equation (e.g., 18 = 10
+ 8); understand that these numbers are composed of ten ones and one,
two, three, four, five, six, seven, eight, or nine ones.

Table 5: CC Standards for Grade K

Standard ID Description
1.OA.A.1 Use addition and subtraction within 20 to solve word problems involving

situations of adding to, taking from, putting together, taking apart, and
comparing, with unknowns in all positions, e.g., by using objects, draw-
ings, and equations with a symbol for the unknown number to represent
the problem.

1.OA.A.2 Solve word problems that call for addition of three whole numbers
whose sum is less than or equal to 20, e.g., by using objects, drawings,
and equations with a symbol for the unknown number to represent the
problem.

1.OA.D.8 Determine the unknown whole number in an addition or subtraction
equation relating three whole numbers.

Table 6: CC Standards for Grade 1

A COMMON CORE STANDARDS IN MATHCAMPS

MathCAMPS is available on Github at https://github.com/<<redacted>>/
mathcamps. All of the Common Core standards we implement are described in a config-
uration file, commoncore.yaml, where standards are instantiated by composing high-level
components from the Common Core attribute grammar. Moreover, we provide our prompts used to
generate the dataset and model responses, as well as all problems and model responses for all LLMs
we evaluated.

We list the Common Core standards we represent in MathCAMPS in Tables 5 through 13, segregated
by grade. Standards 3.MD.D.8, 4.MD.A.2, 7.NS.A.1, and 7.NS.A.3 are split up into sub-standards.
This was done for ease of implementation of the grammar.

B FAMILIARITY BIAS

MathCAMPS was generated using GPT-4. GPT-4o, a model of the same family, was also the best
performer overall (Table 1). To test whether this might be due to a familiarity bias — problems being
in-distribution for GPT-4o, but out-of-distribution for other models —, we generated a 10%-scale
dataset using the exact same pipeline, but using Claude 3 Opus for both generating word problems
and testing cycle consistency. This dataset has the same distribution of standards as MathCAMPS.
We evaluated GPT-4o and Claude 3 Opus on this dataset — accuracies are reported in Table 14.
GPT-4o also performs better in this dataset, suggesting that its performance in MathCAMPS was not
due to a higher relative familiarity with the problems.
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Standard ID Description
2.OA.A.1 Use addition and subtraction within 100 to solve one- and two-step word

problems involving situations of adding to, taking from, putting together,
taking apart, and comparing, with unknowns in all positions, e.g., by
using drawings and equations with a symbol for the unknown number to
represent the problem.

2.NBT.B.5 Fluently add and subtract within 100 using strategies based on place
value, properties of operations, and/or the relationship between addition
and subtraction.

2.NBT.B.6 Add up to four two-digit numbers using strategies based on place value
and properties of operations.

2.NBT.B.7 Add and subtract within 1000, using concrete models or drawings and
strategies based on place value, properties of operations, and/or the
relationship between addition and subtraction; relate the strategy to a
written method. Understand that in adding or subtracting three-digit
numbers, one adds or subtracts hundreds and hundreds, tens and tens,
ones and ones; and sometimes it is necessary to compose or decompose
tens or hundreds.

2.MD.B.5 Use addition and subtraction within 100 to solve word problems involv-
ing lengths that are given in the same units, e.g., by using drawings (such
as drawings of rulers) and equations with a symbol for the unknown
number to represent the problem.

2.MD.C.8 Solve word problems involving dollar bills, quarters, dimes, nickels, and
pennies, using $ and ¢ symbols appropriately.

Table 7: CC Standards for Grade 2

Standard ID Description
3.OA.A.3 Use multiplication and division within 100 to solve word problems in

situations involving equal groups, arrays, and measurement quantities,
e.g., by using drawings and equations with a symbol for the unknown
number to represent the problem.

3.OA.A.4 Determine the unknown whole number in a multiplication or division
equation relating three whole numbers.

3.OA.C.7 Fluently multiply and divide within 100, using strategies such as the
relationship between multiplication and division (e.g., knowing that 8 ×
5 = 40, one knows 40 ÷ 5 = 8) or properties of operations. By the end of
Grade 3, know from memory all products of two one-digit numbers.

3.OA.D.8 Solve two-step word problems using the four operations. Represent these
problems using equations with a letter standing for the unknown quantity.
Assess the reasonableness of answers using mental computation and
estimation strategies including rounding.

3.MD.D.8-
triangle

Solve real world and mathematical problems involving perimeters of
polygons, including finding the perimeter given the side lengths, finding
an unknown side length, and exhibiting rectangles with the same perime-
ter and different areas or with the same area and different perimeters.

3.MD.D.8-
quadrilateral

Solve real world and mathematical problems involving perimeters of
polygons, including finding the perimeter given the side lengths, finding
an unknown side length, and exhibiting rectangles with the same perime-
ter and different areas or with the same area and different perimeters.

3.MD.D.8-
polygon

Solve real world and mathematical problems involving perimeters of
polygons, including finding the perimeter given the side lengths, finding
an unknown side length, and exhibiting rectangles with the same perime-
ter and different areas or with the same area and different perimeters.

3.NBT.A.2 Fluently add and subtract within 1000 using strategies and algorithms
based on place value, properties of operations, and/or the relationship
between addition and subtraction.

Table 8: CC Standards for Grade 3
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Standard ID Description
4.OA.A.3 Solve multistep word problems posed with whole numbers and having

whole-number answers using the four operations, including problems
in which remainders must be Interpreted. Represent these problems
using equations with a letter standing for the unknown quantity. Assess
the reasonableness of answers using mental computation and estimation
strategies including rounding.

4.OA.B.4 Find all factor pairs for a whole number in the range 1-100. Recognize
that a whole number is a multiple of each of its factors. Determine
whether a given whole number in the range 1-100 is a multiple of a given
one-digit number. Determine whether a given whole number in the range
1-100 is prime or composite.

4.NBT.B.4 Fluently add and subtract multi-digit whole numbers using the standard
algorithm.

4.NBT.B.5 Multiply a whole number of up to four digits by a one-digit whole
number, and multiply two two-digit numbers, using strategies based on
place value and the properties of operations. Illustrate and explain the
calculation by using equations, rectangular arrays, and/or area models.

4.NBT.B.6 Find whole-number quotients and remainders with up to four-digit divi-
dends and one-digit divisors, using strategies based on place value, the
properties of operations, and/or the relationship between multiplication
and division. Illustrate and explain the calculation by using equations,
rectangular arrays, and/or area models.

4.NF.A.2 Compare two fractions with different numerators and different denom-
inators, e.g., by creating common denominators or numerators, or by
comparing to a benchmark fraction such as 1/2. Recognize that com-
parisons are valid only when the two fractions refer to the same whole.
Record the results of comparisons with symbols ¿, =, or ¡, and justify the
conclusions, e.g., by using a visual fraction model.

4.MD.A.2-
decimal

Use the four operations to solve word problems involving distances,
Intervals of time, liquid volumes, masses of objects, and money, includ-
ing problems involving simple fractions or decimals, and problems that
require expressing measurements given in a larger unit in terms of a
smaller unit. Represent measurement quantities using diagrams such as
number line diagrams that feature a measurement scale.

4.MD.A.2-
fraction

Use the four operations to solve word problems involving distances,
Intervals of time, liquid volumes, masses of objects, and money, includ-
ing problems involving simple fractions or decimals, and problems that
require expressing measurements given in a larger unit in terms of a
smaller unit. Represent measurement quantities using diagrams such as
number line diagrams that feature a measurement scale.

4.MD.A.3 Apply the area and perimeter formulas for rectangles in real world and
mathematical problems.

Table 9: CC Standards for Grade 4
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Standard ID Description
5.OA.A.1 Use parentheses, brackets, or braces in numerical expressions, and eval-

uate expressions with these symbols.
5.NBT.B.5 Fluently multiply multi-digit whole numbers using the standard algo-

rithm.
5.NBT.B.6 Find whole-number quotients of whole numbers with up to four-digit div-

idends and two-digit divisors, using strategies based on place value, the
properties of operations, and/or the relationship between multiplication
and division. Illustrate and explain the calculation by using equations,
rectangular arrays, and/or area models.

5.NBT.B.7 Add, subtract, multiply, and divide decimals to hundredths, using con-
crete models or drawings and strategies based on place value, properties
of operations, and/or the relationship between addition and subtraction;
relate the strategy to a written method and explain the reasoning used.

5.NF.A.1 Add and subtract fractions with unlike denominators (including mixed
numbers) by replacing given fractions with equivalent fractions in such a
way as to produce an equivalent sum or difference of fractions with like
denominators.

5.NF.A.2 Solve word problems involving addition and subtraction of fractions
referring to the same whole, including cases of unlike denominators, e.g.,
by using visual fraction models or equations to represent the problem.
Use benchmark fractions and number sense of fractions to estimate
mentally and assess the reasonableness of answers.

5.NF.B.4 Apply and extend previous understandings of multiplication to multiply
a fraction or whole number by a fraction.

Table 10: CC Standards for Grade 5

Standard ID Description
6.NS.B.2 Fluently divide multi-digit numbers using the standard algorithm.
6.NS.B.3 Add, subtract, multiply, and divide decimals to hundredths, using con-

crete models or drawings and strategies based on place value, properties
of operations, and/or the relationship between addition and subtraction;
relate the strategy to a written method and explain the reasoning used.

6.EE.A.1 Write and evaluate numerical expressions involving whole-number ex-
ponents.

6.EE.B.7 Solve real-world and mathematical problems by writing and solving
equations of the form x + p = q and px = q for cases in which p, q and x
are all nonnegative rational numbers.

Table 11: CC Standards for Grade 6

Standard ID Description
7.NS.A.1-
fraction

Apply and extend previous understandings of addition and subtraction
to add and subtract rational numbers; represent addition and subtraction
on a horizontal or vertical number line diagram.

7.NS.A.1-
decimal

Apply and extend previous understandings of addition and subtraction
to add and subtract rational numbers; represent addition and subtraction
on a horizontal or vertical number line diagram.

7.NS.A.2 Apply and extend previous understandings of multiplication and division
and of fractions to multiply and divide rational numbers.

7.NS.A.3-
fraction

Solve real-world and mathematical problems involving the four opera-
tions with rational numbers.

7.NS.A.3-
decimal

Solve real-world and mathematical problems involving the four opera-
tions with rational numbers.

Table 12: CC Standards for Grade 7
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Standard ID Description
8.EE.A.2 Use square root and cube root symbols to represent solutions to equations

of the form x² = p and x³ = p, where p is a positive rational number.
Evaluate square roots of small perfect squares and cube roots of small
perfect cubes. Know that the square root of 2 is irrational.

8.EE.C.7 Solve linear equations in one variable.
8.EE.C.8 Analyze and solve pairs of simultaneous linear equations.

Table 13: CC Standards for Grade 8

Model GPT4-generated MathCAMPS accuracy Claude-generated MathCAMPS accuracy

GPT-4o 0.910 0.954
Claude 3 Opus 0.887 0.909

Table 14: Performance of GPT-4o and Claude 3 Opus on the dataset genreated using Claude

C DATA GENERATION PIPELINE DETAILS

C.1 GRAMMAR

We implemented a global attribute grammar in Python, where production rules are implemented as
recursive Python functions. Effectively, each CC standard has its own grammar, composed of pieces
from components from the global CC grammar, as well as possibly adding unique non-terminals.
Each CC standard contains the following parameters:

Description: The description of the CC standard.

Short description: A shortened description of the CC standard.

Filters: A list of problem filters to ensure that all problems in this standard satisfy some requirement
given in the Common Core description of the standard. The ProblemLength filter makes
sure that the problem is within the desired length. CheckIntermediateValues filters out
any problems with intermediate values greater or lesser than max value or min value,
respectively. The ChainsOfVariables filter eliminates any problems where variables are
assigned to equal exactly another variable, and nothing else. The ContainsTen filter checks
if the math word problem contains numbers adding up to 10, or contains a 10 in the problem
(for standards K.OA.A.4 and K.NBT.A.1, respectively).

Transforms: List of problem transformations applied to all symbolic structures from this standard.
The NoUselessVariables transform performs dead code elimination — it removes any
variables that do not contribute to the final answer by applying a simple graph reachability
algorithm on a dependency graph between statements, removing statements that the answer
does not depend on. The Simplify transform essentially inlines variables that are used only
once.

Expressions: Lists non-terminals available to generate expressions in symbolic structures for this
standard. For example, this can make specific binary operations (e.g. addition, division)
available on that particular standard.

Min/max value: Specifies bounds on values for both the final answer and all intermediate values in
the solution.

Min/max number: Specifies bounds on numeric constants sampled in the symbolic structure.

Max depth: Sets a maximum depth for expressions in the symbolic structure.

Samples: We include 2+ hand-written, standard-relevant examples of a symbolic problem followed
by a relevant natural language problem generation, which we use as few-shot prompts during
problem generation. We also use these prompts, but in reverse (natural language followed
by symbolic problem), when we prompt GPT-4 during cycle consistency.
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Faithful problem Unfaithful problem
Cycle-consistent 208 5

Not cycle-consistent 7 25

Table 15: Efficacy of Cycle Consistency

C.2 ANSWER GRADING DURING EVALUATION

Given a solution in natural language, we first use a rule-based answer extractor to extract any model’s
numerical answer. In cases where a language model doesn’t answer in the required format, or
answers in an unexpected format, the answer is initially marked as incorrect. For all problems with
incorrect answers, we use Llama-3 70B to re-extract the final answer. We few-shot prompt it with
hand-generated examples of solutions and extracted final answers, and ask it to extract the final
answer from the new solution. If a problem that was previously incorrect is marked as correct (given
the newly extracted answer), we rerun the model on any followups the problem might have. Note
that this “regrading” step can only improve accuracy from the base result, since we only run it on
problems that failed under the rule-based evaluation. In practice, we found this process to have
negligible false-positive rate — only in a handful of cases across all models we observed either
answer extraction processes extracting the correct answer out of a wrong response (e.g., if the answer
to a problem is 2, and the model responds “On day 2, Sally bought 9 dolls”, the rule-based parser
extracts 2 as being the model’s answer, though the sentence implies its answer to be 9). On the other
hand, the LLaMA-3 70B extractor greatly reduces our false negative rate in a handful of models
(especially DeepSeek) which are more likely to respond in a format different from what our prompt
asks for.

C.3 COST ESTIMATE

All problems in MathCAMPS were generated using OpenAI gpt-4-0613, in May 2024. We
estimate an approximate cost of 330 USD to generate 9607 problems (including main problems and
follow-ups). This includes the cost to perform cycle consistency, and problems that are discarded by
cycle consistency. This gives an average cost of 0.034 USD (3.4 cents) per cycle-consistent problem
or follow-up question.

D CYCLE CONSISTENCY EFFICACY AND FAILURE CASES

As we note in the paper, we manually evaluated 245 random problems generated by sampling a
symbolic structure and then a word problem from GPT-4. The results are shown in Table 15.

D.1 UNFAITHFUL BUT CYCLE-CONSISTENT PROBLEMS

We noted that of the five problems that were unfaithful but cycle-consistent, two had ambiguous
language that led to the generation of a cycle-consistent symbolic structure. The three other problems
were all from the same CC standard (4.NBT.B.6, a skill regarding the calculation of quotients and
remainders).

D.2 UNFAITHFUL AND NON-CYCLE CONSISTENT PROBLEMS

Below, we provide threeexamples of unfaithful problem generations that were unfaithful and correctly
discarded by the cycle-consistency process.

Original symbolic structure: [[var f = (5 - 4)]][[var t = (4 - f)]][[question d = [’t’]]] theme: Rocket

Generated word problem: In the space exploration research center, Diego has 5 rockets. He
launched 1 rocket for testing purposes. After this, he orders 4 new rockets, but doesn’t count the one
that he just launched. How many rockets does Diego have now?

New symbolic structure: [[var initial rockets = 5]][[var launched rockets = 1]][[var ordered rockets
= 4]][[var total rockets = (initial rockets - launched rockets + ordered rockets)]][[question result =
[’total rockets’]]]
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Original symbolic structure: [[var v = (79.24 * 37.6)]][[question s = [’v’]]] theme: Treasure chest

Generated word problem: A pirate finds a treasure chest full of golden coins. Each golden coin
weighs 79.24 grams. If the total weight of the coins is 37.6 kilograms, how many golden coins are
there in the treasure chest?

New symbolic structure: [[var weightInGrams = (37.6 * 1000)]][[var n = (weightInGrams /
79.24)]][[question numCoins = [’n’]]]

Original symbolic structure: [[var j = (4450 / 89)]][[var c = ((69 * j) + j)]][[question b = [’c’]]]
theme: Sandwich

Generated word problem: The Sandwich Factory makes sandwiches at a rate of 4450 sandwiches
every 89 days. If the factory not only produces 69 sandwiches each day, but also an additional batch
of the exact same rate each day, how many sandwiches are produced in total each day?

New symbolic structure: [[var a = 4450]][[var b = 89]][[var c = 69]][[var d = a / b]][[var e = c +
d]][[question f = [’e’]]]

D.3 FAITHFUL BUT NON-CYCLE-CONSISTENT PROBLEMS

The 7 faithful problems were discarded were because one of two issues. 6 our of 7 problems were
discarded because their back-translated symbolic structure had a small structural error (e.g. and extra
square bracket at the end of a variable declaration). The 7th problem had a genuine error in its back
translation, which caused the new symbolic structure to have a different final answer than the original
symbolic structure, causing us to discard the problem.

E CORRELATION BETWEEN MATHCAMPS AND GSM8K

Figure 3 shows accuracies of several models on both GSM8k and MathCAMPS, along with the
line of best fit. There is a strong correlation between overall accuracy in both datasets (ρ = 0.91,
p < 10−6), though MathCAMPS allows for many fine-grained analysis besides overall performance.

F COMPLETE TABLES

Table 16 shows the full table from which Table 2 was extracted.

Table18 shows the full table from which Table 4 was extracted.

G FOLLOWUP ANALYSIS

Table 17 lists model accuracies when only looking at the main problems (Main Acc.), their accuracies
when only looking at the incremental followups (IFUP Acc.), their accuracies when only looking
at the counterfactual followups (CFUP Acc.), and finally, the total number of followups seen by
each model. The total number of followups a model sees relies on whether or not they get the main
question for that followup correct. If a model does not correctly solve the main question, it is not
prompted with follow-ups. Note that each followup serves as a followup to the main question, as
opposed to a followup to each other.
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Figure 3: Relation between accuracy on GSM8k and on MathCAMPS.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 16: Largest model rank changes when focusing on one CC standard, in contrast to only overall
performance. This is a complete version of Table 2, which only shows some models for brevity.

Model Top outlier skill Rank change

GPT-4o 8.EE.C.8 - Solve two-variable systems (1st 22th)
Claude-3 Opus 2.MD.B.5 - Add/sub within 100 (2nd 18th)
Gemini-1.5 Pro K.OA.A.4 - Adding to equal 10 (4th 23th)

Gemini-1.5 Flash 4.OA.B.4 - Factor pairs within 100 (5th 26th)
GPT-3.5 Turbo 6.EE.A.1 - Evaluate exponents (6th 27th)

Claude-3 Sonnet 5.NF.B.4 - Mult fractions (7th 16th)
Claude-3 Haiku 6.EE.A.1 - Evaluate exponents (10th 20th)

Qwen2-Math 72B 8.EE.C.8 - Solve two-variable systems (3rd 26th)
Llama 3 70B 3.OA.A.3 - Mul/div within 100 (8th 21th)

Mixtral 8x22B 8.EE.C.8 - Solve two-variable systems (9th 21th)
Qwen2-Math 7B 8.EE.C.8 - Solve two-variable systems (11th 25th)
DeepSeek 67B K.NBT.A.1 - Decompose into 10s (12th 1st)

DeepSeek Math 7B Base 8.EE.C.8 - Solve two-variable systems (13th 28th)
NuminaMath 7B TIR 8.EE.C.8 - Solve two-variable systems (14th 27th)

Llama 3 8B K.OA.A.4 - Adding to equal 10 (15th 3rd)
Mixtral 8x7B 6.EE.A.1 - Evaluate exponents (16th 26th)

InternLM-Math Base 20B 2.NBT.B.5 - Add/sub within 100 (17th 2nd)
Llemma 34B 3.OA.A.3 - Mul/div within 100 (18th 1st)
Mistral 7B 1.OA.A.1 - Add/sub within 20 (19th 26th)

DeepSeek Coder 33B 6.EE.A.1 - Evaluate exponents (20th 3rd)
CodeLlama 34B 6.EE.A.1 - Evaluate exponents (21th 11th)

phi-2 K.OA.A.4 - Adding to equal 10 (22th 4th)
Llemma 7B 6.EE.A.1 - Evaluate exponents (23th 5th)
Gemma 7B K.OA.A.5 - Add/sub within 5 (24th 6th)

CodeLlama 13B 1.OA.A.2 - Add three nums within 20 (25th 14th)
InternLM-Math Base 7B 4.OA.B.4 - Factor pairs within 100 (26th 15th)

CodeLlama 7B 8.EE.C.8 - Solve two-variable systems (27th 15th)
Gemma 2B 8.EE.C.8 - Solve two-variable systems (28th 11th)
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Vendor Model Main Acc. IFUP Acc. CFUP Acc. Total FUPs seen
Anthropic Claude-3 Opus 0.89 0.90 0.88 4142
Anthropic Claude-3 Sonnet 0.86 0.86 0.87 3964
Anthropic Claude-3 Haiku 0.84 0.88 0.87 3819
DeepSeek DeepSeek Coder 33B 0.65 0.79 0.85 1022
DeepSeek DeepSeek 67B 0.80 0.87 0.88 3286
EleutherAI Llemma 7B 0.62 0.67 0.79 2835
EleutherAI Llemma 34B 0.71 0.79 0.85 3229

Google Gemini-1.5 Pro 0.89 0.91 0.89 4140
Google Gemini-1.5 Flash 0.87 0.89 0.87 4083
Google Gemma 2B 0.51 0.29 0.54 2044
Google Gemma 7B 0.62 0.55 0.60 2786
Meta Llama 3 8B 0.77 0.84 0.80 3476
Meta Llama 3 70B 0.85 0.87 0.84 3939
Meta CodeLlama 7B 0.52 0.69 0.86 617
Meta CodeLlama 13B 0.58 0.75 0.80 2451
Meta CodeLlama 34B 0.64 0.82 0.88 844

Microsoft phi-2 0.63 0.48 0.78 2873
Mistral Mistral 7B 0.68 0.72 0.80 3090
Mistral Mixtral 8x7B 0.76 0.80 0.82 3439
Mistral Mixtral 8x22B 0.84 0.86 0.83 3948
OpenAI GPT-4o 0.92 0.92 0.90 4358
OpenAI GPT-3.5 Turbo 0.87 0.85 0.86 4063

InternLM InternLM-Math Base 7B 0.58 0.67 0.84 2628
InternLM InternLM-Math Base 20B 0.74 0.78 0.86 3409

Qwen Qwen2-Math 7B 0.83 0.88 0.89 3774
Qwen Qwen2-Math 72B 0.89 0.90 0.91 4119

Numina NuminaMath 7B TIR 0.78 0.82 0.86 3593
DeepSeek DeepSeek Math 7B Base 0.78 0.84 0.88 3583

Table 17: Model performance on our mathematical dialogue task, where the model must answer
follow-up questions besides the initial problem. CFUP and IFUP Acc. indicate the accuracy of
the model on counterfactual and incremental followups respectively. Total FUPs refers to the total
number of follow up questions each model sees, which differs by model since a model, only sees a
followup question if it answers the main question correctly.
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Table 18: Model performance on our mathematical dialogue task, where the model must answer
follow-up questions besides the initial problem. The Table is a complete version of Table 4, which
only shows some models for brevity.

Model Acc. with follow-ups Largest accuracy drop w/ follow-ups

GPT-4o 0.82 5.NF.A.1 - Add/sub fractions 0.86 0.58)
Claude-3 Opus 0.76 7.NS.A.1-fraction - Add/sub with fractions 0.54 0.23)
Gemini-1.5 Pro 0.77 5.OA.A.1 - Evaluating with parentheses 0.95 0.69)

Gemini-1.5 Flash 0.76 7.NS.A.1-fraction - Add/sub with fractions 0.74 0.37)
GPT-3.5 Turbo 0.71 7.NS.A.1-fraction - Add/sub with fractions 0.70 0.21)

Claude-3 Sonnet 0.72 7.NS.A.1-fraction - Add/sub with fractions 0.44 0.10)
Claude-3 Haiku 0.70 7.NS.A.2 - Mult/div with fractions 0.55 0.26)

Qwen2-Math 72B 0.78 5.NF.A.1 - Add/sub fractions 0.49 0.23)
Llama 3 70B 0.69 4.NF.A.2 - Compare two fractions 0.99 0.66)

Mixtral 8x22B 0.69 7.NS.A.1-fraction - Add/sub with fractions 0.69 0.17)
Qwen2-Math 7B 0.71 5.NF.A.2 - Add/sub fraction word problems 0.41 0.17)
DeepSeek 67B 0.68 6.NS.B.3 - Add/sub/mult/div decimals 0.59 0.37)

DeepSeek Math 7B Base 0.65 5.NF.B.4 - Mult fractions 0.81 0.57)
NuminaMath 7B TIR 0.62 5.NF.A.2 - Add/sub fraction word problems 0.44 0.18)

Llama 3 8B 0.58 4.NF.A.2 - Compare two fractions 0.90 0.52)
Mixtral 8x7B 0.58 7.NS.A.2 - Mult/div with fractions 0.60 0.28)

InternLM-Math Base 20B 0.58 7.NS.A.2 - Mult/div with fractions 0.59 0.26)
Llemma 34B 0.55 5.NF.B.4 - Mult fractions 0.68 0.31)
Mistral 7B 0.48 7.NS.A.1-decimal - Add/sub with decimals 0.91 0.50)

DeepSeek Coder 33B 0.60 3.OA.A.3 - Mul/div within 100 0.95 0.81)
CodeLlama 34B 0.60 5.NF.B.4 - Mult fractions 0.51 0.39)

phi-2 0.39 3.NBT.A.2 - Add/sub within 1000 0.71 0.23)
Llemma 7B 0.42 5.NF.B.4 - Mult fractions 0.58 0.21)
Gemma 7B 0.33 7.NS.A.1-decimal - Add/sub with decimals 0.91 0.32)

CodeLlama 13B 0.43 4.NBT.B.4 - Add/sub multi-digit nums 0.81 0.49)
InternLM-Math Base 7B 0.42 7.NS.A.1-decimal - Add/sub with decimals 0.82 0.47)

CodeLlama 7B 0.49 2.NBT.B.7 - Add/sub within 100 0.80 0.67)
Gemma 2B 0.24 3.NBT.A.2 - Add/sub within 1000 0.93 0.26)
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Model Name Citation
GPT-4o (Achiam et al., 2023)
Claude-3 Opus (Anthropic, 2024)
Gemini-1.5 Pro (Team et al., 2023)
Gemini-1.5 Flash (Team et al., 2023)
GPT-3.5 Turbo (Achiam et al., 2023)
Claude-3 Sonnet (Anthropic, 2024)
Claude-3 Haiku (Anthropic, 2024)
Qwen2-Math 72B (Yang et al., 2024)
Llama 3 70B (Touvron et al., 2023)
Mixtral 8x22B (Jiang et al., 2024)
Qwen2-Math 7B (Yang et al., 2024)
DeepSeek 67B (Bi et al., 2024)
DeepSeek Math 7B Base (Shao et al., 2024)
NuminaMath 7B TIR (Fleureau et al., 2024)
Llama 3 8B (Touvron et al., 2023)
Mixtral 8x7B (Jiang et al., 2024)
InternLM-Math Base 20B (Ying et al., 2024)
Llemma 34B (Azerbayev et al., 2023)
Mistral 7B (Jiang et al., 2023)
DeepSeek Coder 33B (Guo et al., 2024)
CodeLlama 34B (Roziere et al., 2023)
phi-2 (Li et al., 2023)
Llemma 7B (Azerbayev et al., 2023)
Gemma 7B (Team et al., 2024)
CodeLlama 13B (Roziere et al., 2023)
InternLM-Math Base 7B (Ying et al., 2024)
CodeLlama 7B (Roziere et al., 2023)
Gemma 2B (Team et al., 2024)

Table 19: Model names and their citations.
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