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ABSTRACT

When performing classification tasks with language models, would you prefer
having only one highly accurate class or having every class deliver reliable per-
formance? Obviously, a more balanced accuracy among classes better reflects
the expectations of the majority of users. Especially for large language models
(LLMs), the fact that they achieve a fair overall accuracy by in-context learning
(ICL) obscures a large difference in individual class accuracies. In this work, we
uncover and tackle language models’ imbalance in per-class prediction accuracy by
reconceptualizing it as the Contextual Oddity Bias (COBias), and we are the first
to engage nonlinear integer programming (NIP) to debias it. Briefly, the proposed
COBias metric measures accuracy differences among class pairs, with which we
reveal the large per-class accuracy differences exhibited in LLMs of varied scales
and families. Then we propose Debiasing as Nonlinear Integer Programming
(DNIP) to correct ICL per-class probabilities towards lower COBias and higher
overall accuracy. Our optimization objective is directly based on the evaluation
scores by COBias and accuracy metrics, which is non-differentiable and solved by
the simulated annealing metaheuristic. Evaluations on three LLMs across seven
NLP classification tasks show that DNIP simultaneously achieves significant CO-
Bias reduction (-27%) and accuracy improvement (+12%) over the conventional
ICL approach, suggesting that modeling pairwise class accuracy differences is a
direction in pushing forward more accurate, more reliable LLM predictions.

1 INTRODUCTION

For large language models (LLMs), the fact that they achieve remarkable test accuracy over all class
labels by few-shot in-context learning (ICL) (Brown et al., 2020) can obscure a large difference in
individual class accuracies. We rethink language models’ imbalance in per-class prediction accuracy
and reconceptualize it as the Contextual Oddity Bias (COBias). What motivates COBias is a subtle
yet overlooked observation, where a most frequently predicted class can hold the majority of wrong
predictions of other classes, especially of a least frequently predicted class; it is empirically obvious
that there is a difference in the most and least frequently predicted classes’ accuracies. To this end,
for this single pair of classes, we define COBiassingle to measure the difference in accuracy by a class
A compared to its “odd” class, which holds the majority wrong predictions of class A. Beyond these
pairs that involve odd classes, the per-class accuracy difference is indeed an issue among every pair
of classes. Extending the above measure to every pair, we propose a COBias metric which aggregates
the differences in pairwise class accuracies. COBias reflects a common language model failure, seen
in a variety of NLP benchmark tasks from text classification to question answering. It is a direct
outcome of LLMs’ liking for specific patterns or answers, leading to highly imbalanced predicted
class distributions (Kassner & Schütze, 2020). This per-class accuracy difference can be further
attributed to ICL prompt sensitivity or rooted in the pretraining data. To name a few, the causes
encompass predilections for common tokens in the pretraining corpora (Zhao et al., 2021), choices of
prompt templates (Jiang et al., 2020; Min et al., 2022; Lyu et al., 2023), demonstrations (Holtzman
et al., 2021), and prompt orders (Lu et al., 2022; Turpin et al., 2023). Unintended LLM behaviors
may also exacerbate the bias, such as user-following sycophancy (Perez et al., 2023; Sharma et al.,
2024; Wei et al., 2024) and prompt toning effects (Jones & Steinhardt, 2022; Lin & Ng, 2023; Li
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et al., 2023; Wang et al., 2024). Despite the causes, COBias renders a language model less effective
for lower-accuracy classes and hinders users from trusting the answers, heightening the need for a
unified debiasing method at output level.

Importantly, it is more than just mitigating a model’s bias towards a class (each class), but more
precisely, the model’s tendency to predict other classes as it.That is why we need to model the
interaction between pairwise class predictions for better bias reduction. An example of an odd class
and the per-class accuracy difference are shown by the upper plots in Figure 1. Essentially, mitigating
per-class accuracy bias is a critical step in pushing forward LLM inference abilities, as it directly
targets improving lower-accuracy classes while improving or at least not hurting the overall accuracy.

To reduce COBias and rectify LLM outputs, we directly operate on the per-class probabilities given by
the conventional ICL approach. We propose DNIP, the Debiasing as Nonlinear Integer Programming
method, to adjust per-class probabilities towards lower COBias and higher overall accuracy, from a
combinatorial optimization viewpoint (Section 3). We formulate the debiasing problem as a discrete
correction weight selection problem. In particular, DNIP re-weights per-class probability with an
optimal set of weights selected based on the evaluation metrics of accuracy and COBias, and thus
obtains much less biased predictions with higher accuracy.

On three widely used, different-scale LLMs across seven NLP evaluation datasets, we show the
effectiveness of DNIP. Our key key messages are as follows:

• We introduce the COBias evaluation metric to assess the pairwise class accuracy bias
in language model predictions, and reveal that LLMs of different scales and families
consistently exhibit a large COBias score, at an average of 43%.

• We propose Debiasing as Nonlinear Integer Programming (DNIP) to jointly minimize
COBias and maximize accuracy. An efficient simulated annealing algorithm is adopted to
solve the mathematical model.

• Experiments show that DNIP achieves the best of both worlds for lower COBias (avg.
43%→ 16%) and higher overall accuracy (avg. 52%→ 64%) over the ICL approach.

2 THE CONTEXTUAL ODDITY BIAS AND THE DEBIASING PROBLEM

Based on the phenomenon that a class can hold the majority of wrong predictions of another class,
which also empirically manifests as accuracy difference between the two classes, we define the class
that the other class is most biased towards as an odd class, and their absolute accuracy difference
as Contextual Oddity Bias (single), i.e., COBiassingle. As the name suggests, a model’s tendency
to over-predict an odd answer is contextual (depending on the model or task), which may reflect
surface patterns captured from the task-specific prompts or a common token in the pretraining data.
For example, even on the same task, which answers are most frequently predicted can vary across
different models. “CO” in COBias is also interpreted as the pairwise nature of the bias.

The Contextual Oddity Bias Metric. Formally, given an N -way classification task, let xm denote
an input whose label is ym. By few-shot prompting, let pm = (pm1, . . . , pmN ) denote the output
token probability over N classes c1, . . . , cN . The ICL prediction ŷm is argmaxj∈{1,...,N} pm. For
a given class ci, we denote the class it is most biased towards as its oddest class co. Let Ao and Ai

denotes the class accuracies respectively, then COBiassingle is computed by:

COBiassingle =
∑
i ̸=o

∣∣∣∣Ao −Ai

∣∣∣∣ (1)

Class accuracy Ai is given by 1
|Ci|

∑
m∈Ci

1{ŷm = ym}, where Ci is the set of indices of class ci
examples, and 1(·) returns 1 if the condition inside is satisfied and 0 otherwise.

Bedsides the oddest class co, there could be the second oddest, the third oddest, or etc. class for a
given class. Moreover, the per-class accuracy difference is *the issue* to solve for enhancing LLMs’
text classification abilities. Taking these into account, we generalize the above measure to every pair
of classes, proposing the COBias metric in Equation 2:

COBias =
(
N

2

)−1 N−1∑
i=1

N∑
j=i+1

∣∣∣∣Ai −Aj

∣∣∣∣ (2)
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Figure 1: An overview of the DNIP method. We take the TREC (Li & Roth, 2002) task for illustration;
the ICL approach uses 1-shot prompting whose prompt is given by light yellow text boxes. The
upper-left plot shows that Loc. is an odd class to the others, holding their majority wrong predictions,
especially for Ent.; the upper-right plot demonstrates the stark contrast in per-class accuracy, with
100% for Loc. and 0 for Ent.. The bottom plots show that DNIP greatly reduces pairwise class
accuracy differences, especially boosting accuracy for Ent. (0→ 66%).

COBias reflects the inter-class imbalance in accuracy. Indeed, the accuracy difference of some pairs
in Equation 2 does not reflect a strong biasedness between the two classes, however, it reflects a
well-round assessment of both class pairs involving odd classes and those who do not.

The Debiasing Problem. The problem is two-fold - we need to reduce the contextual oddity bias,
while maintaining or increasing the overall test accuracy.

3 IMPROVING LLM OUTPUTS BY Debiasing as Nonlinear Integer Programming

In this work, we approach the debiasing problem as a nonlinear integer programming (NIP) problem.
The objective is to optimize correction weights to rectify the biased, per-class probabilities, with
directly modeling the COBias metric and two accuracy-related metrics. The weights are optimized
on a set of labeled examples, and are simply plugged in to inference-time probabilities. An overview
of the proposed DNIP method is shown in Figure 1. Our source code will be released.

3.1 THE DNIP OBJECTIVE

Considering M examples with known class labels, we let pm denote the normalized output probability
over N class tokens for an example, and pm = (pm1, . . . , pmn, . . . , pmN ),

∑N
n=1 pmn = 1, m ∈

{1, . . . ,M}. To debias pm, we introduce a discrete K-point correction scale ω ranging from 0 to 1,
to re-weight class probability. Let ω = (ω1, . . . , ωK) denote the parameter for the discrete weights
in the correction scale, where ωk = k/K. An example 10-point scale is given by ω = (0.1, . . . , 1.0).
For each class probability in pm, it multiplies by a correction weight chosen from ω to obtain a
debiased class probability.

3
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Finding optimal correction weights is a combinatorial optimization problem: for N -way class
probability pm, each class selects a weight from the K-dimensional correction scale. To find the
optimal combination, the brute force strategy is an enumerated search, where the number of weight
combinations to explore is KN for an example; for M examples, it results in a computational
complexity of O(KN ·M), which can not run in polynomial time, calling for smarter methods.

Instead, we model the debiasing problem as a nonlinear integer program, and search for an optimal
set of class correction weights with simulated annealing. To this end, the problem boils down to
selecting optimal weight indices, and we define an integer selection variable ξ = (ξ1, . . . , ξN ) that
selects a weight index k for the n-th class probability in pm, namely:

ξn = k if the n-th class selects ωk. (3)

The DNIP objective function and constraints are formally given by:

min Z(ξ) =
1

M

M∑
m=1

1{ŷm ̸= ym}+ β

(
N

2

)−1 N−1∑
i=1

N∑
j=i+1

∣∣∣∣Ai −Aj

∣∣∣∣− τ

N∑
j=1

PMIj (4)

s.t. ŷm = argmax
n∈{1,...,N}

ωξnpmn, m = 1, . . . ,M (5)

Ai =
1

|Ci|
∑
m∈Ci

1{ŷm = ym}, i = 1, . . . , N (6)

PMIj = PMI(Ŝj , Sj) = log
f(Ŝj , Sj)

f(Ŝj)f(Sj)
, j = 1, . . . , N (7)

ξn ∈ {1, . . . ,K}, n = 1, . . . , N (8)

where β and τ are parameters that control the bias and the negative PMI terms respectively, Ŝj and
Sj denote the examples of prediction j and true label j respectively1. The debiased class probabilities
and prediction are:

p∗
m = (ωξ1pm1, . . . , ωξN pmN ) (9)
y∗m = argmax

n∈{1,...,N}
p∗
m (10)

The intuition is to encourage the adjusted predictions to have lower inter-class bias while improving
overall accuracy. As the second term COBias has minimized the inter-class accuracy bias, the first
term error rate brings the class prediction closer to the actual class, and the third term negative PMI
further enforces the class prediction to be more confident when it is close to the actual class. The
PMI term can also be seen as a constraint to penalize each individual class.

3.2 SOLVING DNIP WITH SIMULATED ANNEALING

We solve DNIP by simulated annealing (Kirkpatrick et al., 1983; Eglese, 1990). Simulated annealing
(SA) is a Metropolis-Hastings sampling algorithm, which is widely adopted to solve optimization
problems with its versatility in dealing with highly nonlinear models, noisy data, and many constraints
(Busetti, 2001). The DNIP mathematical model is such a case, pointing to the need of SA. We
especially take advantages of SA algorithms’ searching ability - escaping from local optima and
finding global optima after reaching local optima - to find optimal correction weights. In details,
the SA strategy consists of searching the solution space starting from a randomly initialized ξ and
then generating a new one by perturbing it. The new solution is either accepted or rejected by the
Metropolis criterion after evaluating the objectives.

1In details, f(Ŝj) is the ratio between the number of examples with prediction j and the total number of
examples, similarly, f(Sj) is the ratio between the number of examples with class label j and the total number
of examples, f(Ŝj , Sj) is the ratio between the number of correct predictions of class j and the total number
of examples. Therefore, PMIj = log

( n(Ŝj ,Sj)/N

n(Ŝj)/N·n(Sj)/N

)
, where n(·) is the count. In actual computations, we

apply add-u smoothing to smooth out zeros in the numerator and denominator. The value of the smoothing
coefficient u is selected along other parameters on a development set.
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Algorithm 1 Optimizing the selection of correction weights
with simulated annealing

Input: (ξ,p, y, ω): weight selection variable, class proba-
bilities and labels, the weight scale

Output: (ξ, {y∗m}M1 )
1: T ← Tmax, ξ∗ ← ξ ← INIT()
2: while T ≥ Tmin do
3: while inner-loop criterion is not satisfied do
4: ξnew ← PERTURB(ξ) ▷ Sample a new ξ
5: ∆z ← z(ξnew)− z(ξ)
6: if ∆z ≤ 0 then
7: ξ ← ξnew
8: if z(ξnew) < z(ξ∗) then
9: ξ∗ ← ξnew

10: else if RANDOM(0, 1) < EXP(∆z/T ) then
11: ξ ← ξnew ▷ Accept a worse ξ

12: T ← αT
13: y∗ ← INFER(ξ∗,p, ω)
14: return ξ∗, y∗

Algorithm 1 describes the searching
for optimal ξ using SA. The outer loop
performs the cooling/annealing pro-
cess. In this work, a geometric decay
with α = 0.95 and initial tempera-
ture of 200,000 is set as cooling sched-
ule. The inner loop simulates the ther-
mal equilibrium reaching process at a
temperature, and its criterion ensures
that either the number of generated
or accepted solutions at a tempera-
ture is above a threshold Romeo &
Sangiovanni-Vincentelli (1991). We
sample a new ξ from the neighbor-
hood by randomly substitute a selec-
tion in ξ. The computational complex-
ity for the SA algorithm is O(NK).
Please refer to Appendix A for deriva-
tions.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Evaluation Tasks. The proposed method is evaluated on a diverse set of binary and multi-class
NLP classification tasks, across general domains and biomedical domains. The five general-domain
evaluation datasets are 4-way news topic classification AGNews (Zhang et al., 2015), 14-way ontology
classification DBpedia (Auer et al., 2007), 5-way sentiment classification SST-5 (Socher et al., 2013),
6-way retrieval question classification TREC (Voorhees & Tice, 2000; Li & Roth, 2002), binary
entailment recognition RTE (Dagan et al., 2006); the two domain-specific datasets from BLURB
(Gu et al., 2021) are 5-way biomedical relation extraction DDI (Segura-Bedmar et al., 2013), and
3-way biomedical question answering PubMedQA (Jin et al., 2019). The selected biomedical tasks
are of practical uses. For example, detecting DDI is useful in preventing adverse effects from drug
combinations.

Each dataset comes with a training and a test set. We make use of the default training set for DNIP
optimization, except for AGNews, DBpedia, and DDI, for which we randomly select 10,000 training
examples since the datasets are quite large. We then split the training examples into 95%, 5%
optimization and development sets. We evaluate on the default test set except for AGNews, for which
we evaluate on 5,000 randomly selected test examples. Evaluation metrics are COBias and accuracy.

Models and Experimental Configuration. We evaluate three open-source LLMs across varied
scales and model families, including GPT-2-XL (1.5B parameters), Llama-2-7B (7B parameters), and
Llama-2-13B (13B parameters). For ICL, we use 1-shot prompting, and obtain the output per-class
softmax probabilities. To standardize calculations, we normalize the softmax probabilities over all
classes. For DNIP, we tune parameters of β, τ,K, u on the development set. To account for variance
caused by different demonstrations, for each model and dataset, we perform three runs of prompting
with different 1-shot demonstrations and obtain three sets of initial probabilities. For both ICL and
DNIP, we report the average test accuracy and COBias over the three runs. The demonstration is
randomly selected from training examples. All prompting is done on an NVIDIA A100 GPU. The
simulated annealing algorithm executes on CPU (execution time depends on the optimization set size,
3 to 30 minutes on AMD EPYC 7742 CPU or slightly longer on local laptop CPU).

4.2 MAIN RESULTS

The average test accuracy (in black) and COBias (in blue) with standard deviation over three runs are
shown in Table 2. We find that test COBias by ICL is large in all three LLMs, with GPT-2-XL having
the largest average COBias of 50.3%, showing that LLMs of different sizes and families exhibit large
per-class accuracy differences. With DNIP, the average test COBias over three models reduces from
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Model Eval. Metric AGNews DBpedia SST-5 TREC RTE DDI PubMedaQA Avg.

1-shot ICL

GPT-2-XL Acc
COBias

52.15.4
35.511.5

31.89.9
40.03.6

34.913.7
48.75.4

27.410.5
45.68.7

55.41.9
82.424.5

14.54.4
40.75.9

55.20.0
59.412.6

38.8
50.3

Llama-2-7B Acc
COBias

86.42.5
14.06.5

88.92.0
13.52.1

42.111.1
55.61.5

66.76.6
33.210.0

66.34.3
61.610.5

6.70.4
41.41.7

40.36.7
40.916.1

56.8
37.2

Llama-2-13B Acc
COBias

79.97.0
28.316.1

88.61.7
16.23.7

44.94.3
53.15.0

68.510.8
35.96.5

71.52.2
43.47.0

7.20.9
45.65.9

55.12.9
61.21.9

59.4
40.5

DNIP

GPT-2-XL Acc
COBias

68.51.0
1.40.5

69.99.1
24.18.3

44.52.20
26.02.5

46.312.7
27.27.2

50.82.1
7.15.0

43.914.9
17.07.1

57.11.3
29.825.0

54.4
18.9

Llama-2-7B Acc
COBias

86.70.4
1.30.1

92.90.4
7.70.6

50.62.7
28.021.6

68.11.0
15.91.6

73.92.3
1.91.8

44.53.8
11.63.0

62.78.3
35.422.8

68.5
14.5

Llama-2-13B Acc
COBias

87.90.7
6.30.6

93.40.6
7.70.6

48.31.9
18.710.1

77.12.0
14.21.3

74.30.8
4.33.3

40.46.0
7.53.2

63.114.0
41.129.6

69.2
14.3

Table 1: Performance comparisons between the 1-shot ICL approach and DNIP. In each cell, we
report the average test accuracy/COBias (%) and standard deviation over three different prompts.
DNIP greatly improves test accuracy and significantly lowers test COBias upon the ICL approach.

43% to 16%, and the test accuracy increases from 52% to 64%. Specifically, DNIP achieves an 16%,
12%, and 10% absolute improvement in test accuracy for GPT-2-XL, Llama-2-7B, and Llama-2-13B
respectively; meanwhile, DNIP significantly reduces test COBias by an absolute 29%, 23%, and
26% for the three models, over ICL results. As for detailed results, for GPT-2-XL where the ICL
test accuracy is below 30% (DDI), DNIP boosts test accuracy by 29% while lowering test COBias
from 41% to 17%; for Llama-2 7B and 13B where the ICL test accuracy is already in higher 80s,
e.g., DBpedia, DNIP can further improve the accuracy to 90s while reducing COBias. In addition,
we observe a very large ICL test COBias at 82.4% for GPT-2-XL on RTE. After applying DNIP, the
COBias greatly reduces to 7.1%. The 82.4% COBias on RTE suggests that the conventional ICL
predictions mostly fall in a single class, failing to predict the other class. In fact, The RTE task seems
too challenging that GPT-2-XL’s output probability of class True is much higher than that of class
False. Though re-weighting can lower both probabilities, it may not gain a corrected prediction. Still,
the over 75% absolute reduction in COBias demonstrates that DNIP in the worst case can balance
severely skewed ICL predictions without hurting the overall accuracy much. On two biomedical tasks,
DNIP brings an average absolute increase of 34% and 11% in accuracy, and an average absolute
reduction of 31% and 13% in COBias, showing its effectiveness for domain-specific tasks.

These results show that DNIP strongly mitigates COBias and greatly improves the accuracy of
lower-performing classes, while boosting overall accuracy. Moreover, relatively large LLMs can
suffer even higher COBias than smaller models on biomedical tasks, suggesting that the per-class
accuracy bias does not go away as models scale, and debiasing is essentially needed to improve
inference for larger LLMs. Furthermore, on all datasets, the computational time is in the scale of
minutes, ranging from a few minutes to dozens of minutes, even for tasks of more than 10 classes.
Last but not least, for most of the datasets experimented in this paper, a weight scale of 30 is good
enough, suggesting the effectiveness of DNIP without requiring a highly fine-grained weight scale.

4.3 DNIP BALANCES CLASS ACCURACIES ACROSS VARIED CLASSIFICATION TASKS, AS
MANY AS 14 CLASSES

We visualize pairwise class accuracy differences before and after applying DNIP on Llama-2-13B by
the heatmaps in Figure 2, which show that DNIP is straightforwardly effective in reducing COBias.
In each heatmap, the value of row i, column j cell represents the absolute difference between the test
accuracies of two classes i, j , i.e., |Ai −Aj |. We observe that DNIP brings the accuracy differences
down to close to zero for 4 out of 7 datasets, including AGNews, DDI, DBpedia, and RTE; and
the most relative reduction is seen on TREC. These results show that DNIP consistently reduces
prediction bias across different NLP classification tasks.
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Figure 2: Comparisons of pairwise class accuracy differences on test sets before and after applying
DNIP; the pinker the higher difference, the greener the lower difference; average accuracy over three
runs are used. Heatmaps after debiasing show nearly 0 differences for many class pairs, demonstrating
DNIP’s effectiveness for COBias reduction.

Relieving Odd Classes for 14-Way Ontology Classification. We further investigate the 14-way
classification task DBpedia. Before debiasing, the Nat. class exhibits the largest class accuracy
difference compared to other classes, suggesting that Nat. is either the highest-accuracy class
manifesting a strong prediction bias towards Nat., or the lowest-accuracy class where predictions
of true Nat. examples are biased to one or more odd classes. We plot the confusion matrix of test
results of 1 run out of 3 runs in Figure 3 and find that Nat. has the lowest accuracy, and its predictions
are biased to two odd classes, Trans. and Bldg., with Trans. being the oddest to Nat.. DNIP greatly
reduces false negatives for Nat., i.e., reduces wrong Trans. and Bldg. predictions for Nat.. Besides
these visualizations, on an average over three runs, the test accuracy for Nat. improves from 44% to
89%, and that for Trans. also increases from 78% to 87%, demonstrating DNIP’s effectiveness in
reducing pairwise class accuracy bias for classification tasks of as many as 14 classes.

Figure 3: Test confusion matrix for DBpedia before and after
applying DNIP. DNIP greatly reduces wrong predictions for
Nat., which is the lowest-accuracy class before debiasing.

Furthermore, we see more balanced
class accuracies with DNIP for
smaller LLMs of Llama-2-7B and
GPT-2-XL, in Appendix B.

4.4 DNIP OBJECTIVE ABLATION

We present ablation analysis on objec-
tive functions to show that the inte-
gration of accuracy-related objectives
and the COBias objective are indis-
pensable in achieving the best of both
worlds. Recall three parts in our ob-
jective function z: the error rate term
z1 = 1

M

∑M
m=1 1{ŷm ̸= ym}; the

COBias term z2 =
(
N
2

)−1 ∑N−1
i=1

∑N
j=i+1 |Ai − Aj |; and the PMI term z3 =

∑N
j=1 PMIj ; the

accuracy-related terms are z1 and z3. We set up 7 different objective functions to perform DNIP:
z1, z2, z3, z1 + βz2, z1− τz3, βz2− τz3, z1 + βz2− τz3, and compare their effectiveness on Llama-
2-13B in Figure 4. Ablations on GPT-2-XL and Llama-2-7B show similar findings (Appendix C). To
make fair comparisons, we fix β = 2.7, τ = 0.2 and weight scale K = 30, which may not result in
the same scores reported in Table 2.

Among all ablations, z1 +βz2− τz3 achieves a balance point between accuracy and COBias. For the
criteria, lower COBias is our top priority; when COBias scores are similarly low, we prefer the one
that achieves higher accuracy. Compared to z1 + βz2 − τz3z1: (1) Using z1 or z3 solely emphasizes
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Figure 4: Ablation analysis of the objective function, exemplified with Llama-2-13B; test scores
averaged over 7 datasets are used for the rightmost plot.

improving accuracy; though obtaining higher or similar accuracy, they suffer a higher COBias. (2)
Using z1 − τz3 also obtains a higher/similar accuracy but a higher COBias. (3) Using z2 solely
focuses on mitigating COBias and is straightforwardly effective in reducing COBias. However, the
shortcoming is obvious: a lower accuracy. (4) Using z1 + βz2 or βz2 − τz3 is promising with a
similar/lower accuracy and a slightly lower COBias. We note that accuracy-related objectives alone
increase accuracy by over 16% (75%− 59%), which is greater than using the objective combining
COBias, suggesting the NIP can be a direction for those who look for accuracy improvement.

4.5 PERFORMANCE IMPROVEMENTS VS. NUMBER OF OPTIMIZATION EXAMPLES

We evaluate DNIP with varying optimization examples on Llama-2-13B. We find that DNIP requires
only a small optimization set of 10 examples for a fair improvement in both COBias and accuracy,
and it exhibits a further, emergent COBias reduction at several thousands optimization examples.

Figure 5: Relative test COBias reduc-
tion; higher is better.

Test COBias reduction reaches 9% to 72% at 10 opti-
mization examples, and continues to grow with more
optimization examples. Figure 5 shows the relative test
COBias reduction over ICL results. At 10 examples, DNIP
can achieve a relative COBias reduction ranging from 9%
to 72%. We observe an overall trend of COBias reduction
except for DDI and PubMedQA, who have a spike at 100
examples, but DDI rises again after 500 examples while
PubMedQA levels off (PubMedQA full optimization size:
950). An explanation is that DNIP prioritizes COBias re-
duction more than accuracy increase at fewer examples; at
more examples, the accuracy-related objectives show more
influence. It also indicates that domain-specific datasets
are more sensitive to the trade-off. We further notice a
surge in reductions from 1,000 to full for DDI, SST-5, and
DBpedia (full optimization sizes: 9,500, 8,116, 9,500), suggesting that around 8,000 examples are
needed for a further emergent reduction - PubMedQA may see further COBias reduction if more
optimization examples are available.

Test accuracy is improved with only 10 optimization examples, and plateaus at around 500
examples. Figure 6 shows that, at 10 examples, the relative increase in accuracy ranges from 0.2%
to 11% except DDI, which is 160%. At 100 examples, the increase ranges from 3% to 208% (DDI,
7.2%→ 18.7%). The increase continues to grow and stabilizes at around 500 examples. At 1,000
examples, test accuracy for DDI rises to 52%, which is more than 6 times of the ICL accuracy, showing
that DNIP is effective for this challenging biomedical NLP task. Moreover, we observe for RTE a
declining trend of accuracy increase, which matches its growing trend of COBias reduction, reflecting
the trade-off between the two objectives. We also note a slight decrease in accuracy improvement for
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SST-5 and DDI at full size, which matches their sudden increase in COBias reduction, verifying that
DNIP has emergent COBias reduction abilities with thousands of optimization examples.

Figure 6: Relative test accuracy increase; higher is better.

Overall, DNIP improves
both accuracy and CO-
Bias at 10 examples, and
achieves acceptable CO-
Bias reduction and accuracy
improvement at 100 exam-
ples, with test COBias re-
duced by 57% and test accu-
racy improved. For detailed
scores, please refer to Ap-
pendix D.

5 RELATED WORK

LLMs may fail in various ways. Analysis towards understanding LLM failure modes has gained
remarkable insights on how they fail and how to identify/avoid failures. For example, understanding
hallucinations in LLMs facilitates fact-checking evaluation metrics for LLMs.Ji et al. (2023); Dhingra
et al. (2019); Guo et al. (2022). Jones & Steinhardt (2022) reveals failure modes of LLMs which
resemble cognitive biases and measures the failures on GPT-3.5 and Codex. Lu et al. (2022) identify
ICL order sensitivity that result in LLM prompting failures. Turpin et al. (2023) shows that LLM
reasoning abilities are affected by adding biasing features to the input. Along this line, we tackle
a common LLM failure of the per-class accuracy difference, via nonlinear integer programming
optimization on the evaluation metric scores.

6 DISCUSSION

More Methods That Potentially Improve Accuracy while Reducing COBias. Prior methods tackle
the prediction bias problem from different angles. Although COBias is not be explicitly modeled,
they are promising to reduce COBias. Therefore, we draw comparisons to two popular categories of
debiasing methods, adaptations and calibrations.

Figure 7: Comparisons to more methods.

In particular,
with the same
class probability
vectors as input,
we build a single
linear adapter
(LA) network
with adapter
dimension of
64, and train
it towards the
same objective as
DNIP; we also follow the batch calibration method (Zhou et al., 2024) to estimate a calibration
term using test examples. Figure 7 shows the comparison results. As can be seen, finetuning a
simple linear adapter does not work well on the class output probabilities. The proposed method
outperforms both methods in accuracy and COBias.

More ICL Settings. To see how DNIP scales with more diverse prompts, we prompted Llama-2-13B
in two additional settings: 5-shot, where each demonstration is randomly selected as in the 1-shot
case; k-shot, where k is the number of classes and each class is represented by a demonstration
example in the prompt. Results are shown in Appendix E. DNIP significantly reduces COBias and
improves accuracy in both settings, further showcasing the effectiveness of our approach.

Using Chain-of-Thought Prompting to Improve LLM Predictions. Some may argue that a simple
remedy for biased predictions is Chain-of-Thought (CoT) prompting, which elicit more reasoning in
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LLMs. However, Turpin et al. (2023) points out that CoT explanations can be unfaithful, as they can
be biased towards class A when prompts always put letter A as the answer, causing 36% accuracy
drops on BBH (Suzgun et al., 2023). We add that prompt-based models may fall for pattern matching
instead of recalling learned factual knowledge (Kassner & Schütze, 2020). Therefore, CoT may not
help due to unfaithful explanations.

Using Calibration Methods to Mitigate ICL Biases. Previous calibration methods reduce biases
caused by prompting. For example, Zhao et al. (2021); Zhou et al. (2024) use content-free or content-
based prompts to measure an offset and calibrate class probabilities by removing it. This may be
good for mitigating bias towards a single class, but it does not consider the interaction between class
predictions, e.g., pairwise class accuracy bias studied in this work. Another hazard is using prompts
to compute the offset, which may cascade biases brought by a certain or several prompt templates,
and biases inherited from pretraining may not be reflected. Instead, we correcct biased predictions
without more prompting, but we differ in that our correction weights are explicitly optimized on
COBias and accuracy metrics, while the cluster-based decision boundary is implicitly learned.

Evaluating Closed LLMs. While closed LLMs such as ChatGPT and GPT-4 (OpenAI et al., 2024)
are interesting to evaluate, they do not return logits/softmax probabilities over the entire vocabulary at
an output token. For example, ChatGPT returns log probabilities of up to 20 most likely output tokens,
and may not cover the probability for every class that is needed in our class prediction debiasing.

Optimization Algorithms for Integer Programming. The classic solvers for integer programming
include operational research techniques such as Branch and Bound (BnB), commonly used for
linear integer programming problems. However, it is difficult for these methods to solve our DNIP
model, which contains discontinuous functions and is non-differentiable. In this case, a series of
metaheuristic algorithms are more suitable, solversincluding Simulated Annealing (SA), Genetic
Algorithms, Ant Colony Optimization, and Particle Swarm Optimization. These algorithms all belong
to the same category, and each meta heuristic has their own pros and cons. Therefore, SA in this
paper has a clear purpose of tackling our NIP mathematical model that classical operational research
methods cannot solve.

Our Motivation Is Different from Classical Post-hoc Corrections. Some may contend that achiev-
ing equitable accuracies across all classes is a well-explored issue in standard machine learning
classifiers. However, it is crucial to see that per-class prediction accuracy imbalances must be under-
stood within their specific context. The accuracy bias in LLMs’ outputs arises from fundamentally
different causes than the unequal class accuracies seen in potentially overfitted traditional classifiers.
In the former, biases stem from prompts and pre-training, while in the latter, the imbalance is driven
by skewness in the supervised training data. This distinction underscores why our approach is
uniquely applied to LLMs’ output token class probabilities.

7 CONCLUSION

This work tackles the imbalance in per-class prediction accuracy of language models. We introduce
COBias and reveal that LLMs of varied scales and families exhibit large COBias at inference. To
minimize COBias and push for higher accuracy, we view debiasing as a combinatorial optimization
problem and propose DNIP, which optimizes class correction weights by jointly minimizing evaluation
scores by COBias and maximizing accuracy. Empirical evaluations on three LLMs across seven multi-
class NLP classification tasks demonstrate that DNIP simultaneously achieves lower test COBias
and higher test accuracy over conventional ICL. We advocate that reducing COBias is a direction to
gain more accurate, reliable LLM predictions. For future works, we may extend our studies to more
tasks and other modalities. We aim to find simple inference-time plug-in solution for further boosting
language model prediction performances.
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A DERIVATION OF SA ALGORITHM COMPLEXITY

Given N classes and K scales, the DNIP objective has NK variables. For each inner loop of SA, the
length of the Markov chain is often several times of the size of variables, i.e., λNK. For a geometric
cooling schedule T = αnTmax, the number of outer-loop iterations is:

N outer = logα
Tmin

Tmax
(11)

The sampling times for the SA algorithm is λNK logα (Tmin/Tmax). Therefore, the computational
complexity is O(λNK logα (Tmin/Tmax)) = O(NK).

B ADDITIONAL HEATMAPS FOR PAIRWISE ACCURACY DIFFERENCES

Figure 8 and 9 demonstrate that more balanced class accuracies are achieved with DNIP for smaller
LLMs of Llama-2-7B and GPT-2-XL.

Figure 8: Comparisons of pairwise test class accuracy differences before and after applying DNIP
on GPT-2-XL; the pinker the higher accuracy difference, the greener the lower accuracy difference;
average accuracy over three runs are used.

Figure 9: Comparisons of pairwise test class accuracy differences before and after applying DNIP on
Llama-2-7B; the pinker the higher accuracy difference, the greener the lower accuracy difference;
average accuracy over three runs are used.
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C ADDITIONAL ABLATION ANALYSIS

We show ablation analysis on GPT-2-XL and Llama-2-7B in Figure 10 and 11.

Figure 10: Ablations on objective function, GPT-2-XL, demonstrating that z1 + βz2 − τz3 achieves
a balance point between accuracy and COBias.

Figure 11: Ablations on objective function, Llama-2-7B, demonstrating that z1 + βz2− τz3 achieves
a balance point between accuracy and COBias.

Prompting Method Metric AGNews DBpedia SST-5 TREC RTE DDI PubMedQA Avg.

Acc 82.52.0 93.61.3 45.86.0 58.723.3 61.916.9 34.142.1 44.75.7 60.25-shot ICL COBias 16.56.0 9.02.0 48.015.4 35.413.7 61.340.4 44.45.4 52.219.3 38.1

Acc 88.50.6 95.80.7 52.92.5 76.68.7 75.84.5 54.15.1 59.91.4 71.95-shot DNIP COBias 7.00.9 5.71.1 15.812.6 14.47.5 3.11.9 16.57.6 9.64.6 10.3

Acc 83.51.5 95.21.2 50.32.3 67.012.7 75.00.8 9.71.0 52.35.3 61.9k-shot (1 demon.
from each class) ICL COBias 14.95.1 7.02.2 36.37.2 38.25.1 22.513.2 39.73.5 20.94.2 25.6

Acc 88.70.5 96.60.5 51.31.0 82.71.4 76.73.7 43.66.1 55.32.6 70.7k-shot (1 demon.
from each class) DNIP COBias 7.30.5 4.30.7 2.81.5 12.15.5 5.03.3 12.54.3 8.71.2 7.5

Table 2: DNIP results int more ICL settings. Average score over three runs are reported.

D FULL TABLE WITH VARYING NUMBER OF OPTIMIZATION EXAMPLES FOR
DNIP

The full results for all three models across varying optimization set sizes are shown in Table 3.

E MORE ICL SETUPS

We prompted Llama-2-13B in two additional settings: 5-shot, where each demonstration is randomly
selected as in the 1-shot case; k-shot, where k is the number of classes and each class is represented
by a demonstration example in the prompt. Table ?? presents results on seven benchmark datasets in
both settings. DNIP significantly reduces COBias and improves accuracy in both 5-shot and k-shot
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Opt. set Eval. Metric AGNews DBpedia SST-5 TREC RTE DDI PubMedaQA

GPT-2-XL

0 Acc
COBias

52.15.4
35.511.5

31.89.9
40.03.6

34.913.7
48.75.4

27.410.5
45.68.7

55.41.9
82.424.5

14.54.4
40.75.9

55.20.0
59.412.6

10∗ Acc
COBias

72.82.1
17.21.7

40.65.2
28.06.6

40.33.4
40.11.8

51.55.7
39.71.0

50.30.8
6.57.6

23.51.0
40.63.5

53.70.6
41.80.0

100 Acc
COBias

70.05.0
14.81.3

41.429.9
27.88.9

44.31.3
30.83.4

49.010.1
31.15.9

49.82.5
5.34.9

42.25.7
17.17.1

46.710.8
29.216.6

500 Acc
COBias

68.21.2
2.71.8

44.533.2
25.79.6

43.41.5
29.83.7

49.98.5
31.46.2

50.52.4
5.23.9

45.69.2
24.514.3

49.911.4
17.715.8

1,000 Acc
COBias

69.61.0
3.01.2

42.032.2
27.611.0

42.82.3
28.25.9

50.99.0
24.55.4

50.32.2
5.23.3

48.34.9
22.92.5

same as
full

Full Acc
COBias

68.51.0
1.40.5

69.99.1
24.18.3

44.52.20
26.02.5

46.312.7
27.27.2

50.82.1
7.15.0

43.914.9
17.07.1

57.11.3
29.825.0

Llama-2-7B

0 Acc
COBias

86.42.5
14.06.5

88.92.0
13.52.1

42.111.1
55.61.5

66.76.6
33.210.0

66.34.3
61.610.5

6.70.4
41.41.7

40.36.7
40.916.1

10∗ Acc
COBias

86.42.5
14.06.5

89.91.4
12.52.1

51.40.9
36.23.6

70.10.9
22.45.4

74.92.1
4.85.1

31.721.0
26.78.2

44.50.6
28.73.9

100 Acc
COBias

88.40.4
5.80.6

91.80.7
9.71.0

50.91.5
34.312.7

70.11.0
16.72.4

73.62.6
2.90.7

44.92.5
21.06.6

62.64.5
35.418.1

500 Acc
COBias

86.80.9
2.80.3

92.10.6
8.61.6

50.81.7
35.812.3

69.71.2
15.22.1

74.32.9
3.11.4

69.31.7
34.50.3

63.57.5
37.320.4

1,000 Acc
COBias

86.80.3
1.90.5

92.50.2
8.00.4

51.02.1
30.920.4

69.50.8
15.71.2

74.02.5
2.61.2

56.57.9
29.53.4

same as
full

Full Acc
COBias

86.70.4
1.30.1

92.90.4
7.70.6

50.62.7
28.021.6

68.11.0
15.91.6

73.92.3
1.91.8

44.53.8
11.63.0

62.78.3
35.422.8

Llama-2-13B

0 Acc
COBias

79.97.0
28.316.1

88.61.7
16.23.7

44.94.3
53.15.0

68.510.8
35.96.5

71.52.2
43.47.0

7.20.9
45.65.9

55.12.9
61.21.9

10∗ Acc
COBias

86.01.9/
14.33.5

88.81.6/
14.72.5

49.20.8/
41.78.1

75.83.2
29.64.5

74.82.3
12.25.7

18.712.6
30.07.8

59.66.2
35.37.8

100 Acc
COBias

87.80.2/
8.30.5

91.80.2/
10.10.7

47.42.0/
30.44.4

78.32.8
18.52.6

75.51.0
10.46.9

22.22.0
17.34.4

56.910.4
25.816.3

500 Acc
COBias

87.11.5
5.33.1

92.70.0/
9.10.3

49.50.7/
28.03.2

78.72.1
16.31.0

73.61.7
4.03.4

48.227.4
28.011.5

62.215.8
40.429.4

1,000 Acc
COBias

87.70.7/
6.71.5

92.80.1/
9.20.2

49.80.7/
28.82.0

77.32.0
14.21.8

73.91.5
3.64.3

52.010.5
25.09.7

same as
full

Full Acc
COBias

87.90.7
6.30.6

93.40.6
7.70.6

48.31.9
18.710.1

77.12.0
14.21.3

74.30.8
4.33.3

40.46.0
7.53.2

63.114.0
41.129.6

Table 3: Comparisons of DNIP results on varying optimization set sizes; min. optimization set size is
10 for all datasets except for DBpedia, which we use 15 to cover its 14 classes. For full optimization
set sizes, AGNews: 9,500, DBpedia: 9,500, SST-5: 8,116, TREC: 5,179, RTE: 2,365, DDI: 9,500,
PubMedQA: 950.
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settings, further showcasing the effectiveness of our approach. For example, the relative average
COBias reduction (comparing DNIP to ICL) is 65% and 73% for 1-shot and 5-shot cases respectively,
and the relative average accuracy increase is 16% and 19% for 1-shot and 5-shot cases respectively,
demonstrating DNIP’s capabilities with more shots. In addition, prompt design does contribute to
different output probabilities, which could be helpful to provide different starting points for DNIP,
so DNIP could optimize for better solutions. However, prompt engineering alone may not be most
effective to solve the COBias issue. For example, compared to 1-shot prompting (Table 2), increasing
the number of shots does not significantly further reduce COBias or boost accuracy; using more
diverse demonstrations (k-shot) may help with COBias, but does not gain much higher accuracy than
1-shot. These results show that more sophisticated ICL settings may only help with the COBias issue
to a limited extent, highlighting the necessity of a rigorous COBias reduction method, DNIP.
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