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Abstract

Given the continual emergence of digital
agents that employ tools and engines to satisfy
multiple-nature user requests, there arises a crit-
ical need for efficiently orchestrating dialog in
human-agent interactions. A fundamental func-
tion of this orchestration is to recognize user
intent and send the appropriate request to the
right engine/tool. However, given a dialog is
conducted, information about the request might
span through the whole conversation. In this
work, we investigate the ability of large lan-
guage models to recognize the user request in
multi-turn human-agent interactions, consider-
ing dependencies in dialog and also reformulate
it as a stand-alone sentence to be used for intent
recognition and activation of tools, and engines
without memory cells. To evaluate models as
orchestrators, a demonstration dataset consist-
ing of 42 dialogs, between an agent specialized
in satellite data archives and a user, is devel-
oped and made publicly available. Thirteen
models have been tested and five of them give
outputs that comply with reference requests,
with Gemini Pro 1.5 coming first.

1 Introduction

The massive and ongoing development and deploy-
ment of large language models with rich world
knowledge and significant language capabilities
(OpenAl, 2023; Almazrouei et al., 2023; Touvron
et al., 2023; Scao et al., 2022; Jiang et al., 2023;
Mesnard et al., 2024; Abdin et al., 2024; Anil et al.,
2023) gave the potential to the evolution of Al
agents. Al agents, defined as language model-
powered entities able to plan and take actions to ex-
ecute goals over multiple iterations, given a persona
and access to a variety of tools (Xi et al., 2023),
have a history that lies far before the emergence
of LLMs (Mukhopadhyay et al., 1986; Miiller and
Pischel, 1994; Maes, 1990). However, specific ca-
pabilities of the latter such as autonomy, reactivity,
pro-activeness, and social ability make them well-

fit for primary components of the agents’ brain (Xi
et al., 2023).

However, LLMs have limitations and are not
enough to stand as agents themselves. In particular,
there are cases that they struggle for completeness
(Carlini et al., 2023; Savelka et al., 2023) or domain
knowledge (Ling et al., 2024), while they are prone
to hallucinations (Roller et al., 2021) or influenced
by contextual prompts (Mialon et al., 2023). In
order to ensure complete, precise, specialized and
consistent answers, tools are plugged in and called
by agents to combine these advantages with the
human-like assistance that LLMs offer. Agents
use tools for various reasons, such as search and
navigate the web (Nakano et al., 2021), call models
expert in specific domains (Ge et al., 2023; Wu
et al., 2023) or adjust to particular environments
based on real-world experience (Ichter et al., 2022).

Crucial for an agent that uses multiple tools is
to decide on using the appropriate tool to satisfy
the user’s request, which requires identifying the
user’s intent and matching it to one (or more) of
the existing tools. Intent classification has been a
major topic in agent development (Tur, 2011; Tur
et al., 2018) before LLMs arrival and is usually
combined with slot filling, giving better results
(Weld et al., 2023). Intent classification by LLMs
has also been of interest to researchers (He and
Garner, 2023), who assess their ability to classify
intent in single-turn commands. However, since
agents interact with humans with multi-turn dialog,
evaluating them in such settings is more appropriate
for intent classification.

Attention has also been paid to the efficiency of
tool calling by Al agents (Schick et al., 2023; Liu
et al., 2024; Shinn et al., 2023; Yao et al., 2023)
which -although relevant to intent classification- is
a process that may also fail because of failures in
other stages, e.g., breaking a complex task into sub-
tasks or task execution. In our opinion, understand-
ing the user’s intent should be studied detached



from task planning and tool execution, but taking
into account the dialog dependencies, to form a new
objective for agents, broader than intent detection:
request detection.

In summary, the main contributions of our work
are:

1. We introduce a new perspective on assessing
agents’ potential for task management related
to the agent’s cognitive skills, answering the
question “What is the user asking for at the
moment?”, querying not only the user’s intent
but also all the information that is included
in that request. This is strongly dependent on
the dialog process, while detached from the
success of the task execution.

2. We develop a multi-turn human-agent demon-
stration dataset to evaluate request reformula-
tion and test state-of-the-art LLMS in this task,
assessing their ability to understand both the
intent -since this might be inferred- but also
the completeness of the request in terms of
informativeness. The dataset is consciously
created by the authors based on the linguistic
phenomena that naturally exist in dialog, e.g.,
deixis.

3. We conduct a comparative study of state-of-
the-art models’ performance on the task.

2 Motivation

We assume we want to develop a digital assistant
for a satellite archive like the one of NASA!. We
also assume that the archive employs the following
four engines for managing its data: (a) a Knowl-
edge Graph QA (question answering) engine (used
for geospatial QA and image search by metadata),
(b) a Search by Caption (text-image retrieval) en-
gine, (c) a Search by Image (image-image retrieval)
engine, and (d) a Visual QA engine, specialized in
remote sensing.

Both inputs and outputs of the assistant are mul-
timodal, i.e., consist of text, and satellite images.
Users are assisted in retrieving satellite images
based on captions, metadata, or other satellite im-
ages. Additionally, the assistant answers geospatial
questions and - given a satellite image input - vi-
sual questions, too. Finally, the assistant can also
extract objects from satellite images. Examples
of single-turn requests that can be fulfilled by the
assistant are shown in Table 1.

1h'ctps ://data.nasa.gov/

Single-turn request

Engine to activate

Retrieve a satellite
image with big ves-

Image Retrieval by
Caption

sels near the coast.
Show me 10
Sentinel-2  images
from Florida with
cloud coverage over
15%.

Give me 10 similar
satellite images.
What is the name and
the area of the parks
that are in Wards of
Northern Ireland that
are east of Dublin?
Is a commercial
building next to a
landfill present in the
image?

Image Retrieval by
Metadata

Image Retrieval by
Image
Geospatial QA

Visual QA

Table 1: Examples of standalone requests.

The assumed system’s architecture is presented
in Figure 1. The Knowledge Graph QA engine
takes inputs in natural language and queries a
Knowledge Graph deployed for the assistant that
contains geospatial information, links to satellite
images and corresponding metadata. The Search
by Image and Search by Text engines take image
and text queries respectively and retrieve the most
semantically similar images from the satellite data
archive deployed for the assistant, in a scalable way,
based on appropriate representation techniques and
hashing methods. Visual QA engine takes as input
a satellite image -either retrieved by other engines
or uploaded by the user- and utilizing its training,
extracts valuable information to answer the ques-
tion appropriately.

The assistant serves scientists in creating
datasets of interest for various tasks (e.g., data anal-
ysis, training models) and scopes (e.g., ocean clean-
ing, illegal activity tracking). Such agents that are
useful in creating datasets are supposed to have
users who intend to compare different options and
thus pose multiple requests with slight differences
during the conversation. An example of such an
agent-user interaction is shown in Figure 2.

As a result, the gap between the way users ex-

press requests and the way engines are supposed
to take them as inputs needs to be bridged by an
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Figure 1: The digital assistant has an orchestrator (i.e., task interpreter) that activates the engines in order to
fulfill users’ requests related to Earth Observation data. All engines work with single-utterance requests, possibly

combined with images.

USER: Create a dataset containing 100
Sentinel-1 images with vessels near the
port of Genoa.

AGENT: *link to the dataset* .What else can
I assist you with?

USER: Now, from Trieste.

Figure 2: Example of a conversation indicating the need
for request reformulation. Both the last user’s utterance
and the dialog history must be taken into account to form
the standalone request “Create a dataset containing 100
Sentinel-1 images with vessels near the port of Trieste”.

intermediary agent playing the role of the orchestra-
tor that turns dialog-dependent requests into stan-
dalone sentences.

Although this study is conducted on the occa-
sion of a niche Al agent, its results concern a gen-
eral need, that is the easy integration of tools in
agents, utilizing the high-level state-of-the-art in
various domains (e.g., question answering or im-
age retrieval) that share the same input format: a
standalone natural language request, potentially in
combination with an image. In detail, different
from the slot-filling procedure, which presupposes
specific slots, our method can be used to orchestrate
any tools, simplifying the addition of new function-

alities to the agent or replacement of tools without
the need to redesign any orchestration algorithm.

3 Related Work

To the best of our knowledge, there is no published
work concerning request reformulation in agents,
however, we find it appropriate to discuss datasets
relevant to our study, falling into two categories:
intent classification in multi-turn settings and prag-
matics understanding by LLMs.

Intent classification in a multi-turn setting. To
study the role of memory in goal-oriented dia-
logue systems, Asri et al. (2017) developed a cor-
pus called Frames, which consists of information-
seeking human-human dialogs between a user and
an agent. The agent has access to a database of
vacation packages containing round-trip flights and
a hotel and assists users in finding packages based
on a few constraints such as a destination and a
budget. The dataset is also annotated concerning
possible intents (referred to as user dialog acts) that
follow in one of twelve categories with the majority
of them being generic dialog acts (e.g., greeting,
thanking, affirming, negating), some related to slot-
filling (e.g., inform a slot value, ask for the value
of a particular slot) and two asking for new alterna-



tives or comparison between alternatives.

In the subject of problem-solving, TRAINS 2 a
dataset with multi-turn dialogs has been developed.
The dialogues involve two participants: one who
plays the role of a user and has a certain task to
accomplish, and another who plays the role of the
system by acting as a planning assistant.

Two more datasets developed during research
challenges focus on improving the state of the art in
tracking the state of spoken dialog systems: DSTC-
2 and DSTC-33. DSTC-2 includes dialogs related
to restaurant search and introduces changing user
goals, tracking requested slots. DSTC-3 addresses
the problem of adapation to a new domain - tourist
information.

Pragmatics understanding by LLMs. Sravan-
thi et al. (2024) released a pragmatics understand-
ing benchmark dataset, called PUB, which consists
of dialogs either created by the authors or adapted
from pre-existing datasets in combination with mul-
tiple choice questions and answers concerning prag-
matics phenomena (e.g., decide the implied mean-
ing of a response between some options). Their
work deals with fourteen tasks in four pragmatics
phenomena: implicature, presupposition, reference,
and deixis.

4 Dataset

The dataset creation’s starting point was the stan-
dalone requests dataset used for evaluating single-
turn intent classification by the assistant. We aim
to investigate the ability of the agent in handling
dialog dependencies while maintaining intent (i.e.,
calling the same tool) and also with navigation be-
tween intents.

4.1 Maintaining Intent

Search by Caption The samples of this category
include requests that ask for images with vessels of
various sizes, amounts, positions in the image, and
proximity to the coastline. An example of a dialog
that falls into this category can be found in Figure
3.

Search by Metadata Requests of this category
deal with satellite images where the user can spec-
ify geographic locations or features, environmental
variables (e.g., cloud or vegetation coverage), but

2https ://www.cs.rochester.edu/research/cisd/
resources/trains.html
3h'ctps ://github.com/matthen/dstc

USER: Show me a satellite image with two
very small boats.

AGENT:

USER: I want another one with them located
at the center.

AGENT:

USER: Same for medium-sized vessels.

Figure 3: Search by Caption

also the satellite mission and platform they are in-
terested in getting the images from. An example is
shown in Figure 4.

USER: Retrieve Sentinel-2 images from the
Alpes, on January 2020.

AGENT:

USER: Same for the whole year.

AGENT:

USER: With snow coverage of more than
80%.

AGENT:

USER: Now, I want the respective products
from the Sentinel-1 platform.

Figure 4: Conversation with dialog dependent Search
by Metadata requests

Search by Image Here requests for satellite im-
ages that resemble one that the user uploaded or
that was previously retrieved by the agent are in-
cluded. Requests of this category do not have
any other parameter than the number of images re-
quested to be returned, so this type is not included
in the “maintaining intent" part of the dataset.

Geospatial Question Answering As geospatial,
we define qualitative and quantitative questions
that refer to specific places and geographic enti-
ties, examining relationships and sophisticated in-
formation, that are related to particular represen-
tation (e.g., polygons rather than points) and of-
ten demand complex computation in order to be
answered. The standalone questions were based
on the GeoQuestions1089 dataset (Kefalidis et al.,
2023). Examples are included in Figure’s 5 dialog.

Visual Question Answering Standalone visual
QA requests used are a subset of the RSVQAXBEN
dataset (Lobry et al., 2021) and concern questions
about the number of specific objects in images,
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USER: Where is Monaghan located?

AGENT:

USER: And what is the total area of lakes in
it?

AGENT:

USER: What is the largest of them?

AGENT:

USER: How far is it from Dublin?

Figure 5: Conversation with dialog dependent Geospa-
tial QA requests

other characteristics of these objects (e.g., size and
shape), even image segmentation. An example is
shown in Figure’s 6 dialog.

USER: Is a water area present?

AGENT:

USER: How many commercial buildings are
there at the bottom of the water area?

AGENT:

USER: What is the total area covered by
them?

AGENT:

USER: How many of them are rectangular?

Figure 6: Conversation with dialog dependent Visual
QA requests

4.2 Navigating between intents

This part of the dataset includes dialogs where the
user’s requests -although related to the previous
ones- activate another tool to be fulfilled. An ex-
amples is shown in Figure 7.

4.3 Dataset Samples

The dataset consists of dialog inputs that can be
decomposed into two parts: the previous dialog
and the last utterance. Expected output is the stan-
dalone request catching all the relevant information

USER: Which streams cross Oxfordshire?

AGENT:

USER: Retrieve 10 Sentinel-1 images of them
with cloud coverage ranging between
20% - 50%.

Figure 7: Conversation with navigation between intents:
the second (Search by Metadata) request is dependent
on the first (Geospatial QA) request

Dialogs Total
with dependent last utterance 21
with independent last utterance | 21
with intent maintained 36
with navigation between intents | 6
4-turn 24
6-turn 10
8-turn 8

Table 2: Statistics of the dataset

from the dialog. One ground output was created
by the authors for each dataset sample. From each
ground request, we have extracted words with sig-
nificant importance, corresponding to slots in slot-
filling settings. To examine the case when a request
is independent of the previous dialog and how the
model’s output is affected, we also include dialogs
with independent last utterance. Statistics about the
dataset are shown in table 2.

S Experimental Setup

The models that were tested are: GPT 4 (OpenAl,
2023), GPT 3 & GPT 3 Instruct (Brown et al.,
2020), Mistral (Large, Small, 7B & 7B Instruct)
(Jiang et al., 2023), Mixtral 8x7B(Jiang et al., 2024)
LLaMA 3* (8b, 8B Instruct), Gemini Pro 1.5 (Anil
et al., 2023), Gemma 7b (Mesnard et al., 2024) and
Claude 3 Opus’. Based on the models develop-
ment particularities, we enclosed the prompt in the
appropriate tokens when needed (e.g., [INST] and
[/INST] for Mistral 7b Instruct).

All models were prompted with the following
prompt:

Repeat the wuser’s request made in
the last utterance, catching all dialog
dependencies, if any. Express yourself

like you are the user.

[PREVIOUS DIALOG]:
{previous_dialog}

[LAST UTTERANCE]:
{last_utterance}

[REQUEST]
USER:

*https://1lama.meta.com/1lama3/
5https: //www.anthropic.com/claude
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LLMs do not give absolutely deterministic re-
sults, especially when the task they are tested on
is generative (Ouyang et al., 2023; Riach, 2019;
Power, 2021). However, to provide the commu-
nity with the most reproducible results possible,
we: (a) set temperature to 0, (b) perform greedy
search for models used from HuggingFace (param-
eters num_beams and do_sample were set to one
and False respectively),(c) use a constant seed for
OpenAl API calls. Except for the above, we ran
the experiments three times and present both the
average, maximum, and minimum scores for each
one of the metrics we used.

6 Evaluation

Since request reformulation is a task introduced
in this study, there are no metrics established for
its evaluation. This evaluation should compare the
system’s answers to the references, given previous
dialog conduction, an objective that shares simi-
larities with the one of the conversational QA task
(Reddy et al., 2019; Choi et al., 2018) so, we fol-
low the evaluation paradigm for it and compute the
macro-average F1 score of word overlap between
the models’ outputs and the references.

However, given the facts that the goal is for the
output request to have the same meaning as the
ground one and that we have only one ground out-
put (reference) for each dialog, the averaged F1
can be misleading. For this reason, we compute the
cosine similarity of the Sentence-BERT (Reimers
and Gurevych, 2019) embeddings of the output and
the reference, implemented with the ‘paraphrase-
MiniLM-L6-v2’ model of the Sentence Transform-
ers library ©, as the Sentence Text Similarity (STS)
metric, to be used as an auxiliary metric that should
get us to revisit cases that demonstrate remarkable
inconsistency between them.

Additionally, given the significance of intents
and slots for requests, we -manually- extract slots
from the model’s response (an example of manual
pre-process before the evaluation is shown in Ta-
ble 3), and given that we do not have slots from
the models and thus cannot compute the standard
F1-score for slot filling (Weld et al., 2023), we de-
fine Slot accuracy as the fraction of the number of
ground slots that exist in the model’s output over
the total number of ground slots that we manually
extracted from the corresponding reference. The
case of incorrect intent in answers has a strong im-

6h'ctps ://www.sbert.net/

Slots

two, medium-
sized, vessels,
center

Request

Retrieve a satellite image with
two medium-sized vessels lo-
cated at the center of the im-
age.

Table 3: Manual extraction of slots before evaluation.

Ground Request Verbose Ouput

How far is the | Here’s my reformulated
largest lake of | request, taking into ac-
Monaghan from | count the entire conver-
Dublin? sation: “I’d like to know

the distance from Dublin
to Monaghan, the county
we’ve been discussing,
which has a certain total
area of lakes, and is home
to the largest lake we pre-
viously identified.”

Table 4: Example of a verbose reformulated request,
coming from the dialog 5.

pact on STS, so there is no need for it to be consid-
ered in any other way. However, slight differences
in slots (e.g., replacing the word ‘boats’ with ‘ves-
sels’) do not affect STS much but are significant
for the assistant’s later functionality.

Finally, to measure how focused the models’ re-
sponses were to the requests -or whether they were
verbose, we introduce the Verbosity metric defined
as the fraction of the output length over the ground
request length in words, as an indicator of noisy
answers (example in Table 4), over all the model’s
responses.

7 Results and Discussion

Running the experiments, we came across a separa-
tion of models between the ones that actually gave
user-like requests and the other ones that did not.
Since only the first ones are candidates for inte-
gration into agents, in zero-shot settings (scores in
Tables 5 and 6) while the latter are excluded from
automatic evaluation.

In Table 5 the results concerning the ability of the
models to reformulate the user’s requests based on
the dialog dependencies, if any, are presented. We
observe that the evaluated scores are consistent be-
tween runs, and only GPT models give differences
up to 7%. When the last utterance is dependent
on the previous dialog, results concerning the simi-
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F1 STS Slot Accuracy Verbosity
model min max avg | min max avg | min max avg avg
Gemini Pro 1.5 0.78 0.78 0.78 | 091 091 091 | 094 094 094 1.24
GPT 4 0.74 074 0.74 1092 092 092|094 094 094 1.21
LLaMA 3 8b Instruct | 0.59 0.59 0.59 | 0.83 0.83 0.83 | 0.83 0.83 0.83 1.43
GPT 3 Instruct 059 06 059079 081 0.8 | 057 059 0.58 1.06
GPT 3 0.59 0.62 0.61 072 0.75 0.74 | 0.62 0.69 0.67 0.93

Table 5: Models performance for requests dependent on dialog

F1 STS Slot Accuracy Verbosity
model min max avg | min max avg | mih max avg avg
Gemini Pro 1.5 097 097 097099 099 09 | 10 10 1.0 0.99
GPT 3 094 094 094|099 099 09 | 10 10 1.0 0.99
GPT 4 074 0.77 0751095 096 095| 1.0 10 1.0 1.24
LLaMA 3 8b Instruct | 0.59 0.59 0.59 | 091 091 0091|098 098 0.98 1.4
GPT 3 Instruct 047 05 048|068 0.72 0.7 |073 0.78 0.75 1.25

Table 6: Models performance for requests independent of dialog

larity between the models’ outputs and the ground
requests give an F1 of 0.78 for Gemini Pro 1.5, and
of 0.74 for GPT 4. The rest of the models gave F1
between 0.59 and 0.62 in successive experiments,
and their order by descendent STS is: LLaMA 3
8b Instruct, GPT 3 Instruct, and GPT 3.

It is crucial to highlight the significance of keep-
ing the independent requests as they are, in order
not to “lose" stand-alone requests (which are pretty
clear and can already be answered by tools) while
trying to address the dialog-dependent ones. The
impact of these settings on stand-alone requests is
presented in Table 6. Gemini Pro 1.5, takes the
lead again, with F1 of 0.97 showing that such a
modification is feasible in agents, without loss on
the stand-alone requests. GPT 3 and GPT 4 follow
with F1 of 0.94 and 0.75 respectively.

As for the correlation of the evaluation met-
rics used, we observe that in the case of dialog-
independent requests, the model ranking order is
the same for any of the F1, STS and Slot Accuracy
metrics, as a criterion. As for the dialog-dependent
requests, this pattern is also maintained unless the
differences in scores are slight (1%-2% ). As for
the verbosity of the models give output requests
that differ by -7% to +43% to the ground outputs.

As for the models with no user-like outputs, we
present examples of their outputs in the Appendix
A. Tt is worth noting that instruction-tuned models
gave much more user-like outputs, in comparison
with their corresponding base models. For example,
LLaMA 3 8b Instruct gives user-like answers while

LLaMA3 8b repeats the conversation. Even in
the case that both the instruct and the base model
failed, e.g., Gemma 7b and Gemma 7b Instruct,
there is a differentiation in the failure level between
them, with Gemma 7b Instruct giving a user-like
answet, just a prefix (**User request:*) away from
the correct one.

8 Conclusion and Future Work

The fact that LLMs take into account the previous
dialog with users and condition their response on it,
belongs to their native capabilities and is obvious
for anyone who interacts with them. In this work,
we investigate how this ability can be used in or-
chestrating Al agents, asking them to output how
they “understand"” the user’s last utterance consid-
ering the dialog dependencies and introducing the
task of request reformulation. The performance of
the models on our demonstration dataset, in zero-
shot settings, shows that request reformulation is
a procedure that has the potential to be integrated
into systems that call multiple tools.

The dataset -despite its limited size and specific
development settings- helped us distinguish models
that perform well on this task, with Gemini Pro 1.5
being the best option, given not only the fact that
it has the highest performance in reformulating
requests dependent on previous dialog, but also
because it does not have impact on stand-alone
requests.

The next step is to involve real users in the pro-



cedure in order to (a) gather real dialogs with the
system, (b) have a more representative assessment
by the user, online (i.e., the user will be presented
with the reformulated form of their request and ei-
ther approve or reject it), (c) enlarge the dataset to
a size enough both to assess the models, but also
to to be used in methods aiming to amplify mod-
els’ performance, e.g., instruction-tuning or CoT
prompting.

Limitations

This study’s goal was to investigate whether request
reformulation is a procedure with the potential to
be included in the Al agents pipeline. The reason
for the development of the dataset was to outline
roughly the performance of models with state-of-
the-art language capabilities. However, the settings
in which it was developed, i.e., the fact that the
authors ourselves created the dialogs and also its
limited length, do not let us claim that there may
not be differentiation in the ranking of the models
when it comes to small differences in performance.
On the other hand, we did not want to synthesize
any data using any of those models to avoid insert-
ing bias into our study, since we would evaluate
them, too, on that dataset. Other limitations in-
clude that we have not considered other user dialog
acts, e.g., expressing satisfaction or dissatisfaction,
and also that the dialog dependencies we have ex-
amined lie only on the user’s side and not on the
agent’s response.
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A Models with non user-like outputs

Models that gave outputs that are not user requests,
and examples of such outputs.

Mistral 7b :

I want another one with them located at the
center

[RESPONSE]
AGENT: *response*

[PREVIOUS DIALOG]:

How can I help you?

USER: Show me a satellite image with two
very small boats.

AGENT: *response*

USER: I want another one with them located
at

Mixtral 8x7b :
What did I ask you to do?

[RESPONSE]
AGENT: You asked me to create a dataset
containing 200 images with vessels near the
port of Trieste.

[PREVIOUS DIALOG]
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AGENT: How can I help you?
USER: Create a dataset containing 100
images with vessels near the port

LLaMA 38b:

Show me a satellite image with two very
small boats.

AGENT: *response*

USER: I want another one with them located
at the center

AGENT: *response*

[REQUEST]
USER: I want 3 images with vegetation
percentage over 80%.

[REQUEST]

USER: Show me a satellite image with two
very small boats.

AGENT: *response*

USER: I want another one with them located
at the center

AGENT: *

Gemma 7b :

Repeat the last utterance.

[RESPONSE]
AGENT: Which forest is nearest to the city of
Belfast

Claude 3 Opus :

I do not have enough context to determine the
user’s request, as there is no previous dialog
provided. The prompt only contains the last
user utterance “Retrieve a satellite image with
lakes.", without any prior conversation.

Mistral Small :
You asked about the total area of lakes in Mon-
aghan.

Mistral 7b Instruct :

You asked me to make the radius 75 km for
the dataset containing 100 images with vessels
within a radius of 75 km of the port of Trieste.

Gemma 7b Instruct :

**User request:** Provide me with 10 images
that resemble the uploaded image, focusing
on vessels within a radius of 75 km of the port
of Trieste.
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Mixtral 8x7b : You asked, “What is the largest of
the lakes in Monaghan?" I am repeating your
request so you can verify if I have understood

it correctly.

Mistral Large : Sure, I’d like to know the to-
tal area covered by the commercial buildings
located at the bottom of the water area.
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