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Abstract

Given a continuous probability distribution µ and a discrete distribution ν in the
d-dimensional space, the semi-discrete Optimal Transport (OT) problem asks for
computing a minimum-cost plan to transport mass from µ to ν. In this paper,
given any parameter ε > 0, we present an algorithm that computes a semi-discrete
transport plan τ̃ with cost ¢(τ̃) ≤ ¢(τ∗) + ε in nO(d) log D

ε time; here, τ∗ is the
optimal transport plan, D is the diameter of the supports of µ and ν, and we assume
we have access to an oracle that outputs the mass of µ inside a constant-complexity
region in O(1) time. Our algorithm works for several ground distances including
the Lp-norm and the squared-Euclidean distance.

1 Introduction

Optimal transport (OT) is a powerful tool for comparing probability distributions and computing
maps between them. Put simply, the optimal transport problem deforms one distribution to the other
with smallest possible cost. When both input distributions are discrete, we refer to the problem as the
discrete optimal transport problem. The problem is called semi-discrete when one input distribution
is discrete and the other is a continuous one. Classically, the OT problem has been extensively studied
within the mathematics, statistics, and operations research [37, 38, 47]. In recent years, optimal
transport has seen rapid rise in various machine learning and computer vision applications as a
meaningful metric between distributions. The discrete optimal transport has been extensively used in
generative models [7, 18, 24, 43], supervised learning [27, 35], computer vision applications [9, 26],
and parameter estimation [11, 34]. The semi-discrete OT has also been used in various statistical and
machine learning applications, such as variational inference [6] and blue noise generation [17, 41].
There are several provable and efficient exact and approximation algorithms for the discrete OT
problem. However, very little is known for the semi-discrete OT problem. See the book [40] for a
review of the various applications of and algorithms for the OT problem. In this paper, we present a
new provable polynomial time combinatorial additive approximation algorithm for the d-dimensional
semi-discrete OT problem.

Problem Definition. Let µ be a continuous probability distribution (i.e., density) defined over
a compact bounded support A ⊂ Rd, and let ν be a discrete distribution, where the support of
ν, denoted by B, is a set of n points in Rd. Let d(·, ·) be the ground distance between a pair of
points in Rd. A coupling τ : A×B → R≥0 is called a transport plan for µ and ν if for all a ⊆ A,∑

b∈B τ(a, b) = µ(a) (where µ(a) is the mass of µ inside a) and for all b ∈ B,
∫
A
τ(a, b) da = ν(b).

The cost of the transport plan τ is given by ¢(τ) :=
∫
A

∑
b∈B d(a, b)τ(a, b) da. The goal is to find
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a minimum-cost (semi-discrete) transport plan satisfying µ and ν1. For any parameter ε > 0, a
transport plan τ between µ and ν is called ε-close if the cost of τ is within an additive error of ε from
the cost of the optimal transport plan τ∗, i.e., ¢(τ) ≤ ¢(τ∗) + ε.

The problem of computing semi-discrete OT between µ and ν reduces to the problem of finding a
set of weights y : B → R≥0 so that, for any point b ∈ B, the Voronoi cell of b in the additively
weighted Voronoi diagram has a mass equal to ν(b), i.e., Vor(b) = {x ∈ Rd | d(x, b) − y(b) ≤
d(x, b′)− y(b′),∀b′ ∈ B}, µ(Vor(b)) = ν(b), and the mass of µ in Vor(b) is transported to b; see
[8]. One can thus define an optimal semi-discrete transport plan by describing the weights of points
in B. For arbitrary distributions, weights can have large bit (or algebraic) complexity, so our goal
will be to compute the weights accurately up to s = O(log ε−1) bits, which in turn will return an
ε-close semi-discrete OT plan.

Related work. Many known algorithms for semi-discrete OT compute an ε-close transport plan
using the first- and second-order numerical solvers [8, 10, 14, 17, 29, 30, 33, 38]. These algorithms
start with an initial set of weights for points in B and iteratively improve the weights until the
mass inside the Voronoi cell of any point b ∈ B is an additive factor ε away from ν(b). One can
use these solvers to compute an ε-close transport plan by executing poly(n, 1/ε) iterations. Each
iteration requires computation of several weighted Voronoi diagrams, each of which takes nO(d) time.
Another widely used approach is to draw samples from the continuous distribution and convert the
semi-discrete OT problem to a discrete instance [23]; however, due to sampling errors, this approach
provides an additive approximation. Van Kreveld et. al. [46] presented a (1 + ε)-approximation
OT algorithm for the restricted case when the continuous distribution is uniform over a collection
of simple geometric objects (e.g. segments, simplices, etc.), by sampling roughly n2 points. Their
running time is roughly n2ε−O(d)poly log(n).

The discrete OT problem under any metric can be modeled and solved as an uncapacitated minimum-
cost flow problem [39, 44]. There has also been extensive work on the design of near-linear time
(1 + ε)-approximation algorithms for the optimal transport problem [9, 21, 22, 28, 45]; the running
time of all these algorithms are exponentially dependent on the dimension, which make them less
usable for the high-dimensional instances that arise in machine learning applications. Due to the lack
of fast (relative) approximation algorithms in high dimensions, researchers have designed algorithms
with additive guarantees on approximation [2, 4, 5, 12, 16, 19, 25, 32, 42].

Our contributions. We present a cost-scaling algorithm that computes an ε-close transport plan
for a semi-discrete instance in nO(d) log(D/ε) time, assuming that we have access to an oracle that,
given a constant complexity region φ, returns µ(φ):

Theorem 1.1. Let µ be a continuous distribution defined on a compact bounded set A ⊂ Rd for
some fixed d ≥ 1, ν a discrete distribution with a support B ⊂ Rd of size n, and ε > 0 a parameter.
Suppose there exists an ORACLE which, given a constant complexity region φ, returns µ(φ) in Q time.
Then an ε-close transport plan can be computed in QnO(d) log(Dε ) time, where D is the diameter of
A ∪B.

To the best of our knowledge, our algorithm is the first one to compute an ε-close transport plan
in time that is polynomial in both n and log(ε−1). Earlier algorithms had an ε−O(1) factor in the
run time2. Our algorithm not only computes an ε-close transport plan, it also finds the optimal
dual weights within an additive error of ε, i.e., it computes optimal dual-weights up to O(log ε−1)
bits of accuracy. Our algorithm works for any ground distance where the bisector of two points
under the distance function d(·, ·) is an algebraic variety of constant degree. Consequently, it works
for several important distances, including the Lp-norm and the squared-Euclidean distance. The
previous best-known algorithm by Kitagawa [29] for the semi-discrete OT has an execution time
nΩ(d)D/ε; furthermore, their algorithm only approximates the cost and does not necessarily provide
any guarantees for the transport plan or the dual weights of B.

1Apparently the semi-discrete OT was introduced by Cullen and Purser [15] without reference to optimal
transport.

2Mérigot and Thibert had conjectured that an algorithm for computing an ε-close OT for semi-discrete setting
with runtime (n log ε−1)O(1) might follow using a scaling framework [36, Remark 24]. Our result proves their
conjecture in the affirmative.
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For each scale δ, our algorithm starts with a set of dual weights assigned to B and constructs an
instance of discrete OT by using the arrangement of 4n+ 1 shifts of the Voronoi cell of each point
in B. This discrete instance, which is of size nO(d), is then solved using a primal-dual solver. The
optimal dual weights for this discrete instance are then used to refine the dual weights of B. These
refined dual weights act as the starting dual weights for the next scale δ/2. Starting with δ = D, our
algorithm executes O(log(D/ε)) scales and stops when δ ≤ ε . In order to show that the semi-discrete
transport plan computed in scale δ is δ-close, we introduce a set of exponentially many δ-feasibility
constraints and show that any transport plan that satisfies these is a δ-close transport plan. We then
show that, in scale δ, the semi-discrete OT plan and the duals computed by our polynomial time
algorithm satisfies all of these exponentially many constraints and therefore, is δ-close.

Organization. In Section 2, we first describe the overall framework, then provide details of the
algorithm, and finally analyze the running time of our algorithm. Then, in Section 3, we provide
a discussion on the correctness of our algorithm. Finally, we show in Section 4 that our algorithm
computes a set of accurate dual weights as well. We provide the proofs of all claims and lemmas in
the full version [3].

2 Computing a Highly Accurate Semi-Discrete Optimal Transport

Given a continuous distribution µ over a compact bounded set A ⊂ Rd, a discrete distribution ν over
a set B ⊂ Rd of n points, and a parameter ε > 0, we present a cost-scaling algorithm for computing
an ε-close transport plan from µ to ν. We first describe the overall framework, then provide details of
the algorithm and analyze its efficiency, and finally prove its correctness.

In our algorithm, we use a black-box primal-dual discrete OT solver PD-OT(µ′, ν′) that given two
discrete distributions µ′ and ν′ defined over two point sets A′ and B′, returns a transport plan σ from
µ′ to ν′ and a dual weight y(v) for each point v ∈ A′ ∪B′ such that for any pair (a, b) ∈ A′ ×B′,

y(b)− y(a) ≤ d(a, b), (1)
y(b)− y(a) = d(a, b) if σ(a, b) > 0. (2)

Standard primal-dual methods [31] construct a transport plan while maintaining (1) and (2). For
concreteness, we use Orlin’s algorithm [39] that runs in O(|A′ ∪B′|3) time.

2.1 The Scaling Framework.

The algorithm works in O(log(Dε−1)) rounds, where D is the diameter of A ∪B. In each round, we
have a parameter δ > 0 that we refer to as the current scale, and we also maintain a dual weight y(b)
for every point b ∈ B. Initially, in the beginning of the first round, δ = D and y(b) = 0 for all b ∈ B.
Execute the following steps s =

⌈
log2(Dε−1)

⌉
times3.

(i) Construct a discrete OT instance: Using the current values of dual weights of B, as described
below, construct a discrete distribution µ̂δ with a support set Xδ , where |Xδ| = nO(d), and
define a (discrete) distance function dδ : Xδ ×B → {0, . . . , 4n+ 1}.

(ii) Solve OT instance: Compute an optimal transport plan between discrete distributions µ̂δ

and ν using the procedure PD-OT(µ̂δ, ν). Let σδ be the coupling and ŷ : B → R be the
dual weights returned by the procedure.

(iii) Update dual weights: y(b)← y(b) + δŷ(b) for each point b ∈ B.

(iv) Update scale: δ ← δ/2.

Our algorithm terminates when δ ≤ ε. We now describe the details of step (i) of our algorithm, which
is the only non-trivial step. Let y(·) be the dual weights of B at the start of scale δ.

3Computing an ε-close transport plan requires O(log(D/ε)) iterations. When the goal, on the other hand,
is to obtain accurate dual weights up to O(log ε−1) bits, we need to execute our algorithm for O(log(nD/ε))
iterations. See Section 4.
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(a) (b)

Figure 1: (a) The (expanded) Voronoi cells V i
· of three points b, b′, b′′ ∈ B, (b) A region φ ∈ A(V)

(highlighted in gray) with a representative point r ∈ Xδ, where dδ(b, r) = 0 since r ∈ V 1
b ,

dδ(r, b
′) = 1 since r ∈ V 2

b′ \ V 1
b′ , and dδ(r, b

′′) = 2 since r ∈ V 3
b′′ \ V 2

b′′ . The ground distance d(·, ·)
in this figure is squared Euclidean.

Constructing a discrete OT instance. We construct the discrete instance by constructing a family
of Voronoi diagrams and overlaying some of their cells. For a weighted point set P ⊂ Rd with
weights w : P → R and a distance function d : Rd × P → R≥0, we define the weighted distance
from a point p ∈ P to any point x ∈ Rd as dw(x, p) = d(x, p)−w(p). For a point p ∈ P , its Voronoi
cell (also known as Laguerre cell) is Vorw(p) = {x ∈ Rd | dw(x, p) ≤ dw(x, p

′),∀p′ ∈ P}, and the
Voronoi diagram (also known as Laguerre diagram) VDw(P ) is the decomposition of Rd induced by
Voronoi cells; see [20].

For i ∈ [1, 4n+ 1] and a point b ∈ B, we define a Voronoi cell V i
b using a weight function wi : B →

R≥0, as follows. We set wi(b) = y(b) + iδ and wi(b
′) = y(b′) for all b′ ̸= b. We set V i

b = Vorwi
(b)

in VDwi
(B). By construction, V 1

b ⊆ V 2
b ⊆ · · · ⊆ V 4n+1

b . Set Vb = {V i
b | i ∈ [1, 4n + 1]} and

V =
⋃

b∈B Vb (See Figure 1(a)). Let A(V) be the arrangement of V , the decomposition of Rd into
(connected) cells induced by V; each cell of A(V) is the maximum connected region lying in the
same subset of regions of V [1].

For each cell φ in A(V), we choose a representative point rφ arbitrarily and set its mass to µ̂δ(rφ) =
µ(φ), where for any region ρ in Rd, µ(ρ) =

∫
ρ
µ(a) da is the mass of µ inside ρ (Here we assume

the mass to be 0 outside the support A of µ). Set Xδ = {rφ | φ ∈ A(V)}. The resulting mass
distribution on Xδ is µ̂δ .

The (discrete) distance dδ(r, b) between any point b ∈ B and a point r ∈ Xδ is defined as

dδ(r, b) =


0, if r ∈ V 1

b ,

i, if r ∈ V i+1
b \ V i

b , i ∈ [1, 4n],

4n+ 1, if r /∈ V 4n+1
b .

See Figure 1(b). Since each V i
b is defined by n algebraic surfaces of constant degree, assuming the

bisector of two points under the distance function d(·, ·) is an algebraic variety of constant degree,
A(V) has nO(d) cells and a point in every cell of A(V) can be computed in nO(d) time [13]. Hence,
|Xδ| = nO(d). This completes the construction of Xδ, µ̂δ, and dδ .

Computing a semi-discrete transport plan. At the end of any scale δ, we compute a δ-close
transport plan τδ from the discrete transport plan σδ as follows: For any edge (rφ, b) ∈ Xδ × B,
we arbitrarily transport σδ(rφ, b) mass from the points inside the region φ to the point b. A simple
construction of such transport plan is to set, for any region φ, any point a ∈ φ, and any point b ∈ B,
τδ(a, b) =

µ(a)
µ̂δ(rφ)σδ(rφ, b). Our algorithm will only compute the transport plan at the end of the last

scale, i.e., δ ≤ ε.
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Figure 2: The weighted Voronoi diagrams for four different weight vectors in Wδ. The ground
distance in this figure is squared Euclidean.

Efficiency analysis. Our algorithm runs O(log(Dε−1)) scales, where in each scale, it constructs a
discrete OT instance in nO(d) time and solves the OT instance using a polynomial-time primal-dual
OT solver. Since the size of the discrete OT instance is nO(d), solving it also takes nO(d) time,
resulting in a total execution time of nO(d) log(Dε−1) for our algorithm.

3 Proof of Correctness

In the discrete setting, cost scaling algorithms obtain an ε-close transport plan that satisfies (2) and
an additive ε relaxation of (1). For our proof, we extend these relaxed feasibility conditions to a
semi-discrete setting and show that the transport plan computed by our algorithm for a scale δ satisfies
these conditions. We use the relaxed feasibility conditions to show that our transport plan is δ-close.
Thus, our algorithm returns an ε-close transport plan from µ to ν at the end of the last scale (δ ≤ ε).

δ-feasible transport plan. For points B = {b1, b2, . . . , bn}, let w = ⟨w1, . . . , wn⟩ be an n-
dimensional vector representing a weight assignment to the points in B. We say that the vector w is
valid if each wi is a non-negative integer multiple of δ and bounded by (8n+ 2)D. Consider the set
Wδ of all valid vectors, i.e., Wδ = (δZ ∩ [0, (8n+ 2)D])n. For any δ, consider a decomposition of
the support A of the continuous distribution µ into a set of regions Aδ, where each region ϱ in Aδ

satisfies the following condition:

(P1) Any two points x and y in ϱ have the same weighted nearest neighbor in B with respect to
any valid weight vector w ∈Wδ ,

where a point b is a weighted nearest neighbor of a point a ∈ A with respect to weights w(·) if
dw(a, b) = minb′∈B dw(a, b

′). For a valid vector w ∈Wδ , let VDw(B) denote the weighted Voronoi
diagram constructed for the points in B with weights w. The partitioning Aδ is simply the overlay of
all weighted Voronoi diagrams VDw(B) across all valid weight vectors w ∈Wδ (See Figure 2). For
each region ϱ ∈ Aδ , let rϱ denote an arbitrary representative point inside ϱ.

For any point b ∈ B, let y(b) be the dual weight of b, where y(b) is a non-negative integer multiple of
δ. For each region ϱ ∈ Aδ , we derive a dual weight yδ(rϱ) for its representative point as follows. Let
bϱ ∈ B be the weighted nearest neighbor of rϱ with respect to weights y(·). We set the dual weight
of rϱ as

yδ(rϱ)← y(bϱ)− d(rϱ, bϱ)− δ. (3)
We say that a transport plan τ from µ to ν along with the set of dual weights y(·) for points in B is
δ-feasible if, for each point b ∈ B and each region ϱ ∈ Aδ ,

y(b)− yδ(rϱ) ≤ d(rϱ, b) + δ, (4)
y(b)− yδ(rϱ) ≥ d(rϱ, b) if τ(ϱ, b) > 0. (5)

In the following lemma, we show that any δ-feasible transport plan τ, y(·) from µ to ν is δ-close.
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Lemma 3.1. Suppose τ, y(·) is any δ-feasible transport plan from µ to ν and let τ∗ denote any
optimal transport plan from µ to ν. Then, ¢(τ) ≤ ¢(τ∗) + δ.

Let y(·) denote the set of dual weights maintained by our algorithm at the beginning of scale δ. For
any point b ∈ B and any region ϱ ∈ Aδ , we define a slack on condition (4) for the pair (ϱ, b), denoted
by sδ(ϱ, b), as

sδ(ϱ, b) :=

⌊
d(rϱ, b) + δ − y(b) + yδ(rϱ)

δ

⌋
δ.

Next, we show that for each scale δ, the semi-discrete transport plan τδ and dual weights (y + δŷ)(·)
for the points in B computed by our algorithm at the end of the scale is a δ-feasible transport plan.

δ-feasibility of the computed transport plan. We begin by relating the decomposition Aδ to the
partitioning A(V) that is constructed in step (i) of our algorithm. We also relate the distance dδ
computed by our algorithm to the slacks sδ .

In any scale δ, it can be shown that for each point b ∈ B and each i ∈ [1, 4n+ 1], the i-expansion
V i
b can be seen as the Voronoi cell of b in the weighted Voronoi diagram constructed with respect to

some valid weight vector in Wδ . Hence, by the construction of Aδ , each region ϱ ∈ Aδ completely
lies inside some region φ ∈ A(V), i.e., each region in A(V) consists of a collection of regions in Aδ .

We observe that for each point b ∈ B, all regions with a zero slack to b lie inside the 1-expansion V i
b ,

all regions with a slack iδ to b, for i ∈ [1, 4n], lie inside the region sandwiched between i and i+ 1
expansions of the weighted Voronoi cell of b, and all regions ϱ with a slack > 4nδ to b are outside
V 4n+1
b . Using this observation, in the next lemma, we establish a connection between the slacks and

the distances dδ .

Lemma 3.2. For any region φ ∈ A(V), any region ϱ ∈ Aδ inside φ, and any point b ∈ B, if
dδ(rφ, b) ≤ 4n, then sδ(ϱ, b) = dδ(rφ, b)δ. Furthermore, if dδ(rφ, b) = 4n + 1, then sδ(ϱ, b) ≥
(4n+ 1)δ.

Recall that Xδ denotes the set of representative points of the regions in A(V) and µ̂δ is the discrete
distribution over Xδ computed by our algorithm at step (i). In the following lemma, we show that
any optimal transport plan σ∗ from µ̂δ to ν under distance function dδ does not transport mass on
edges (rφ, b) ∈ Xδ ×B with cost dδ(rφ, b) > 4n.

Lemma 3.3. For any scale δ, let σ∗ be any optimal transport plan from µ̂δ to ν. For any point b ∈ B
and any region φ ∈ A(V), if σ∗ transports mass from rφ to b, then dδ(rφ, b) ≤ 4n.

Proof. Let τ2δ, y(·) be the 2δ-feasible transport plan computed by our algorithm at scale 2δ. Let σ2δ

denote a transformation of τ2δ into a discrete transport plan from µ̂δ to ν by simply setting, for each
region φ ∈ A(V), σ2δ(rφ, b) := τ2δ(φ, b). Let σ∗ be any optimal transport plan from µ̂δ to ν, where
the cost of each edge (rφ, b) is set to dδ(rφ, b). Define a directed graph G on the vertex set Xδ ∪B as
follows. For any pair (r, b) ∈ Xδ ×B, if σ∗(r, b) > σ2δ(r, b), then we add an edge, called a forward
edge, directed from r to b with a capacity σ∗(r, b)−σ2δ(r, b); otherwise, if σ∗(r, b) < σ2δ(r, b), then
we add an edge, called a backward edge, directed from b to r with a capacity σ2δ(r, b) − σ∗(r, b).
This completes the construction of the directed graph.

For the sake of contradiction, suppose there is a pair (r∗, b∗) ∈ Xδ ×B with dδ(r
∗, b∗) > 4n such

that σ∗(r∗, b∗) > 0. As shown in the full version of our paper, the edge (r∗, b∗) is a forward edge
and is contained in a simple directed cycle C = ⟨b1, r1, . . . , bk, rk, bk+1 = b1⟩ in G. Note that by
the construction of G, the edges of C alternate between forward and backward edges. Define the cost
of the cycle C as

w(C) :=

k∑
i=1

dδ(ri, bi+1)−
k∑

i=1

dδ(ri, bi);

i.e., the cost of C is simply the total distance of its forward edges minus the total distance of its
backward edges. Since σ∗ is an optimal transport plan from µ̂δ to ν, any directed cycle C on G
has a non-positive cost. Since C is a simple cycle, the length of C is at most 2n. Furthermore, as
shown in the full version of our paper, any backward edge has a distance at most 4, i.e., for each
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i ∈ [1, k],dδ(ri, bi) ≤ 4. Finally, by construction, all edges have a non-negative distance. Therefore,

w(C) =

k∑
i=1

dδ(ri, bi+1)−
k∑

i=1

dδ(ri, bi) ≥ dδ(r
∗, b∗)−

k∑
i=1

4 ≥ dδ(r
∗, b∗)− 4n > 0,

which is a contradiction of the fact that all simple cycles have a non-positive cost. Hence, σ∗ cannot
transport mass on edges (r∗, b∗) with distance dδ(r

∗, b∗) > 4n.

Let σδ, ŷ(·) be the optimal transport plan from µ̂δ to ν computed at step (ii) of our algorithm, and
recall that τδ is the transport plan from µ to ν computed at the end of scale δ. In the following lemma,
we show that τδ, (y + δŷ)(·) is a δ-feasible transport plan.

Lemma 3.4. For each scale δ, let (y+ δŷ)(·) denote the set of dual weights for points in B computed
at step (iii) of our algorithm. Then, the transport plan τδ, (y + δŷ)(·) is a δ-feasible transport plan.

Proof. Let yδ(·) denote the set of dual weights derived for the representative points of regions in
Aδ using Equation (3) at the beginning of scale δ. Consider a set of dual weights y′δ that assigns,
for each region ϱ ∈ Aδ inside a region φ ∈ A(V), a dual weight y′δ(rϱ) := yδ(rϱ) + δŷ(rφ). In
what follows, we show that the transport plan τδ along with dual weights (y + δŷ)(·) and y′δ(·)
satisfy δ-feasibility conditions (4) and (5). Using this, in the full version of our paper, we show
that by reassigning the dual weights of the representative points of regions in Aδ as in Equation (3),
the δ-feasibility conditions (4) and (5) remain satisfied; hence, we conclude that τ, (y + δŷ)(·) is
δ-feasible, as claimed.

For any region φ ∈ A(V), any region ϱ ∈ Aδ inside φ, and any point b ∈ B,

• by Lemma 3.2, dδ(rφ, b)δ ≤ sδ(ϱ, b). Combining with feasibility condition (1),

(y + δŷ)(b)− y′δ(rϱ) = (y(b) + δŷ(b))− (yδ(rϱ) + δŷ(rφ))

= (y(b)− yδ(rϱ)) + δ(ŷ(b)− ŷ(rφ))

≤ (y(b)− yδ(rϱ)) + dδ(rφ, b)δ ≤ (y(b)− yδ(rϱ)) + sδ(ϱ, b)

≤ (y(b)− yδ(rϱ)) + (d(rϱ, b) + δ − y(b) + yδ(rϱ))

= d(rϱ, b) + δ,

leading to δ-feasibility condition 4.

• if τδ(ϱ, b) > 0, then σδ transports mass from rφ to b, i.e., σδ(rφ, b) > 0. In this case, by
Lemma 3.3, dδ(rφ, b) ≤ 4n and by Lemma 3.2, sδ(ϱ, b) = dδ(rφ, b)δ. Combining with
feasibility condition (2),

(y + δŷ)(b)− y′δ(rϱ) = (y(b) + δŷ(b))− (yδ(rϱ) + δŷ(rφ))

= (y(b)− yδ(rϱ)) + δ(ŷ(b)− ŷ(rφ))

= (y(b)− yδ(rϱ)) + dδ(rφ, b)δ = (y(b)− yδ(rϱ)) + sδ(ϱ, b)

≥ (y(b)− yδ(rϱ)) + (d(rϱ, b)− y(b) + yδ(rϱ))

= d(rϱ, b),

leading to δ-feasibility condition 5.

4 Optimal Dual Weights

In this section, we show that in addition to computing an ε-close transport cost in the semi-discrete
setting, our algorithm can also compute the set of dual weights for the points in B accurately, up
to O(log ε−1) bits. To obtain such accurate set of dual weights, we execute our algorithm for
O(log(nD/ε)) iterations so that the final value of δ when the algorithm terminates is at most ε/5n.
In the following, we show that the dual weight computed for each point in B at the last scale is
ε-close to the optimal dual weight value.
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Note that any edge in the graph constructed in Step (i) of our algorithm has a cost at most 4n+ 1.
Consequently, in Step (ii), the largest dual weight returned by the primal-dual solver is at most
4n+ 14 and in Step (iii), the dual weight of any point b ∈ B changes by at most (4n+ 1)δ. Since
the dual weight of b becomes the optimal dual weight in the limit, to bound the difference between
the current dual weight and the optimal, it suffices if we bound the total change in the dual weights
for all scales after scale δ ≤ ε/5n. The difference between the optimal dual weight and the current
dual weight is at most

(4n+ 1)

∞∑
i=1

δ/2i = (4n+ 1)δ ≤ (4n+ 1)(ε/5n) ≤ ε.

Therefore, after O(log(nD/ε)) iterations of the algorithm, the difference in the optimal dual weight
y(b) and the current dual weight of b is at most ε.
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