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Abstract

Large language models (LLMs) have made significant ad-
vances in the field of natural language processing, but they still
face challenges such as continuous decision-making, lack of
long-term memory, and limited context windows in dynamic
environments. To address these issues, this paper proposes
an innovative framework—Self-evolving Agents with Reflec-
tive and Memory-augmented Abilities (SAGE). The SAGE
framework comprises three agents: the User, the Assistant,
and the Checker. By integrating iterative feedback, reflective
mechanisms, and a memory optimization mechanism based on
the Ebbinghaus forgetting curve, it significantly enhances the
agents’ capabilities in handling multi-tasking and long-span in-
formation. The agents, through self-evolution, can adaptively
adjust strategies, optimize information storage and transmis-
sion, and effectively reduce cognitive load. We evaluate the
performance of the SAGE framework on multiple benchmarks
and long text tasks. Experimental results show that SAGE
significantly improves model performance, achieving a 2.26X
improvement on closed-source models and an improvement
ranging from 57.7% to 100% on open-source models, with
particularly notable effects on smaller models.

Introduction
In recent years, large language models (LLMs) have made

significant progress in the field of natural language process-
ing, demonstrating powerful performance in tasks such as
dialogue and text generation (Brown et al. 2020; He et al.
2025, 2024). Recently, there has been growing interest in ap-
plying LLMs as autonomous agents (LLM agents), which use
language not only for understanding and generation, but also
for planning and acting in interactive environments (Yao et al.
2023b; Shinn et al. 2023; Liang et al. 2024; Li et al. 2024;
Zhou et al. 2024). However, these models still face several
challenges: (1) LLM Agents need to continuously make deci-
sions in changing environments and adapt to new situations
and tasks. (2) LLM Agents lack long-term memory mech-
anisms, which is increasingly evident in situations requir-
ing sustained interaction with the environment (Graves et al.
2016). The limited context window also hinders the model’s
ability to handle information over long time spans (Rae et al.
2019).

To tackle these challenges, researchers have proposed
meta-learning and multi-task learning to enhance the trans-
ferability and adaptability of LLM agents. For memory limi-

tations, prior works like MemGPT (Packer et al. 2024) use a
FIFO queue to manage forgetting, while MemoryBank em-
ploys a forgetting curve based on insertion time. However,
these approaches are often task-specific, lacking a general
framework to systematically improve LLM agents in complex
environments. Recent innovations, such as AutoGPT (Yang,
Yue, and He 2023) and BabyAGI (Nakajima 2024), leverage
LLMs as core controllers, aiming to solve real-world chal-
lenges. Yet, multi-agent frameworks still face issues like com-
munication overload, heavily relying on memory to maintain
context. As interaction history grows, resource demands and
latency increase, limiting efficient deployment in practical
scenarios.

In this paper, we propose an innovative framework, Self-
evolving Agents with reflective and memory-augmented abil-
ities (SAGE). By enhancing agents’ self-adjustment capabili-
ties through reflection, they can more effectively utilize his-
torical information and make efficient decisions when faced
with complex and dynamic tasks. From the perspective of self-
evolution, we introduce a memory optimization mechanism
based on the Ebbinghaus forgetting curv (Ebbinghaus 1885).
This mechanism helps agents selectively retain key informa-
tion, optimize information storage and transmission, reduce
unnecessary cognitive load, and enhance agents’ capabilities
in interaction tasks with the environment. Experimental re-
sults demonstrate that our approach consistently enhances
the performance of both proprietary and open-source LLMs
across a wide range of benchmarks. The improvements are
especially notable in smaller models, where the gains are
more pronounced. On tasks such as multi-source question
answering and code generation, our method sets a new stan-
dard, outperforming existing techniques and achieving lead-
ing benchmarks (Etezadi and Shamsfard 2023), including
AgentBench (Liu et al. 2023).

The main contributions of our work are as follows:
• We propose a novel framework, SAGE, which introduces

a reflection mechanism to enhance agents’ self-adjustment
capabilities. Without any additional training, this enables
agents to utilize historical information more effectively
and make better decisions when faced with complex and
dynamic tasks.

• We introduce a memory optimization mechanism based
on the Ebbinghaus forgetting curve. This helps agents
selectively retain key information, reducing the issue of



information overload in multi-agent systems.
• SAGE achieves improvements over strong baselines in

multiple challenging real-world tasks and attains state-
of-the-art results on benchmarks. This framework can be
applied to other LLMs, with particularly strong improve-
ments in smaller models.

Related work
Self-Improvement of Reasoning and
Decision-Making

Deep learning has transformed multiple domains including
NLP, time series analysis and computer vision (Qiu et al.
2025a,b, 2024). A lot of research is focused on making large
language models (LLMs) better at improving themselves.
Some researchers are working on using carefully crafted
prompts to help models learn how to get better, although this
usually only works for one-off tasks. Others are tweaking
how models get feedback during tasks, which helps them get
better at thinking things through (Huang et al. 2022). There’s
also work on using strategies like random beam searches to
help models make smarter decisions and assess their own
work. Most current methods rely on quick, one-off tweaks
and learning strategies that need lots of resources and hands-
on tech help (Tian et al. 2024). This paper introduces a self-
reflection mechanism, showing that LLMs can keep getting
better and produce higher quality work across different tasks,
all without needing extra training.

Memory Mechanism for LLM-based Agents
In LLM-based agents, the memory module stores, pro-

cesses, and retrieves task-related information, supporting
knowledge accumulation, experience handling, and decision-
making. To enhance the self-evolution capabilities of these
agents, researchers are focused on designing and optimizing
these memory modules (Raffel et al. 2020). Past research
has covered various designs and implementations of memory
modules. This includes integrating information from different
trials to boost reasoning abilities or storing information in
natural language to enhance the module’s interpretability and
user-friendliness (Wada, Iwata, and Matsumoto 2019). De-
spite progress, self-adjustment and memory management still
need improvement to handle complex real-world problems
more effectively.

Method
In this section, we present the SAGE framework, designed

to improve agent performance by leveraging three core mech-
anisms: iterative feedback, reflection, and MemorySyntax (as
shown in Figure 1). The assistant agent A iteratively updates
its policy πθ based on feedback ft provided by the checker
agent C, optimizing over successive iterations to maximize
the expected reward R. The reflection mechanism allows
A to incorporate historical observations Ot and actions at,
forming a self-reflection rt, which is stored in the mem-
oryML for future decision-making. Finally, MemorySyntax
combines the Ebbinghaus forgetting curve with linguistic
principles to manage memory decay, dynamically updating

the agent’s short-term memory MS and long-term mem-
oryML by prioritizing information based on its retention
strength S(It), thus improving the agent’s ability to retain
crucial information while discarding less relevant data. The
subsequent subsections detail these components.

Iterative Feedback
The iterative feedback mechanism in the SAGE frame-

work enables the assistant agent A to refine its policy πθ
through repeated interactions with the checker agent C. At
each iteration t, the assistant receives feedback ft based on
its current output ot, and adjusts its policy accordingly. This
process continues until the checker validates the output or
the iteration cap N is reached, ensuring that A incrementally
optimizes its decisions to improve task performance over
successive iterations.

Initialization Phase
• Role Assignment. In the SAGE framework, three agents

are introduced: the userU , the assistantA, and the checker
C. The user, upon receiving prompt PU , assumes the role
of task proposer by specifying a task TU and related con-
straints CU . The assistant, upon receiving prompt PA,
generates a sequence of actions at based on the observa-
tions Ot and environment E . The checker C evaluates the
output oA produced by the assistant, providing feedback
fC based on the discrepancy between oA and the expected
result, updating its policy πθ iteratively to minimize this
gap.

• Task Assignment. The task TU provided by the user in-
cludes an initial task description dU and an instance iU
that serves as the reference for correct output. This forms
the input set IA = (dU , iU ) for the assistant to initiate its
generative process. The assistant then proceeds by select-
ing an action at at each time step t, guided by πθ, with
the goal of maximizing the reward Rt for completing TU .

Actual Interaction Phase Following the role assignment
and task definition in the initialization phase, the assistant
A transitions into the actual interaction phase to generate
outputs aimed at accomplishing the task TU . In this phase, A
iteratively produces outputs ot at each time step t based on
the task description dU and instance iU provided in the input
set IA = (dU , iU ). At each time step t, the assistant selects
an action at by following its policy πθ, which is conditioned
on the current state st, the reward signal Rt (the reward score
for task performance), and feedback f it from the checker C.
This decision-making process is formalized as:

ot ∼ πθ(ot | st, Rt, f
i
t ), (1)

where πθ represents the assistant’s policy, Rt reflects the
reward signal based on task performance at time t, and f it is
the feedback provided by the checker during the i-th iteration.

As the interaction progresses, the checker C evaluates
each output ot generated by A, comparing it against the
expected outcome derived from iU . Based on this comparison,
the checker provides iterative feedback f it to guide A in
refining its actions at and outputs ot. The iterative refinement



Figure 1: An illustration of the SAGE: a user provides a description and instance to the assistant with short-term (STM) and long-term (LTM)
memory. The assistant performs observation, action, reflection, and output, which the checker reviews. The retention rate curve on the right
illustrates memory decay over time, with a self-evolving loop guiding continued updates.

Figure 2: An example of the assistant’s iterative workflow, including checker evaluation, prompt templates for feedback, and reflection processes
integrating short-term and long-term memory.

continues until either the checker validates the output as
correct or the iteration limit N is reached.
Theoretical optimality of iterative feedback mechanism.
In the SAGE framework, the assistant repeatedly updates its
policy through this checker feedback, enabling the outputs
to be incrementally refined until either the result is validated
or a specified iteration limit is reached. The assistant’s utility
RA reflects task performance, and the checker’s utility RC

depends on its feedback. The following theorem indicates that
this iterative feedback mechanism leads to strategy stability
in the sense of a Nash equilibrium (Fudenberg and Tirole
1991).

Theorem 0.1 (Theory for the multi-agent iterative feedback
system). Let U ,A, C denote the compact, convex strategy
spaces of the user (U), assistant (A), and checker (C), respec-
tively. Assume that the utility functions

RU : U ×A× C → R, RA : U ×A× C → R,
and RC : U ×A× C → R.

(2)

are continuous in each player’s strategy. Then, by the
Debreu-Glicksberg-Fan fixed-point theorem, there exists a
Nash equilibrium

(s∗U , s
∗
A, s

∗
C) ∈ U ×A× C. (3)



Furthermore, suppose that the assistant’s policy πθ is updated
via policy gradient methods and that the checker’s strategy
is refined through convex optimization. Then, the iterative
update procedures yield sequences

{π(k)
θ }k≥0 and {f (k)}k≥0, (4)

which converge to a stable strategy profile (π∗
θ , f

∗), and has:

RA(π
∗
θ , f

∗) ≥ RA(πθ, f
∗), RC(π

∗
θ , f

∗) ≥ RC(π
∗
θ , f).

(5)
This result demonstrates that the iterative feedback mecha-

nism enhances the model’s strategy stability by converging
to a Nash equilibrium in the three-player game. It provides a
stronger justification for the three-agent system versus sim-
pler alternatives (such as two-agent systems).

Evolutionary Goals and Directions Leveraging the feed-
back f it obtained at each iteration t, the assistantA formulates
new evolutionary objectives:

Gt+1 = (At+1,Dt+1), (6)

Dt+1 = arg min
Dt∈∆

∑
i∈It

LD

(
Dt; f

i
t , π

t
θ

)
(7)

where At+1 represents the updated memory optimization
mechanisms, and Dt+1 ∈ ∆ refers to the model’s self-
adjustments to make the RL algorithm converge. These evolu-
tionary objectives guide the assistant in updating its policy πθ
for the subsequent iteration. The policy update is governed
by the function ψ, which integrates the current policy πt

θ with
the new evolutionary objectives Gt+1:

θt+1 = ϕ
(
θt,Gt+1

)
= θt + α∇θ

[
λALA

(
θt,At+1

)
+ λDLD

(
θt,Dt+1

)]
(8)

Here LA(θ,A) and LD(θ,D) are MSE loss functions cor-
responding to the memory-optimization and self-adjustment
aspects, respectively, and λA, λD ≥ 0 are weighting coeffi-
cients. The iterative policy refinement enables the assistant
A to continuously adapt its strategies based on cumulative
feedback and evolving task requirements, thereby improving
its overall performance in dynamic environments.

Memory Management
The SAGE framework implements a dual-memory system,

consisting of Short-Term Memory (STM) and Long-Term
Memory (LTM), to manage task-relevant information and en-
hance the agent’s reasoning and decision-making capabilities
(see Figure 2 for a visual representation of this process).
Short-Term Memory (STM). STM is responsible for stor-
ing immediate, task-specific data with limited capacity. It
updates rapidly with new observations (Ot) and actions (at),
maintaining a recent trajectory history Tt = (Ot,at). This
allows the agent to make real-time decisions and respond
quickly to dynamic changes in the environment (Mnih et al.
2015).

Long-Term Memory (LTM). LTM retains critical informa-
tion and self-reflections (rt) over extended periods, enabling
the agent to accumulate knowledge from past interactions and
apply it to future tasks. Stored asML = {rt | t ∈ T}, this
memory mechanism allows the agent to use prior experiences
to improve task performance, particularly in complex envi-
ronments that require long-span information (Graves et al.
2016).

By integrating STM and LTM, the SAGE framework al-
lows the agent to balance immediate task demands with the
ability to draw from accumulated knowledge, thereby enhanc-
ing its overall decision-making efficiency.

Reflection Figure 3 illustrates an example of the reflection
mechanism applied to a HotpotQA task (Yang et al. 2018b).
The reflection mechanism equips the assistant A with sparse
reward signals, such as binary success/failure states, trajec-
tory Tt, and its stored memoryML. The assistant processes
these inputs, deriving insights from past performance and
storing self-reflections rt for future decision-making. These
self-reflections, richer than scalar rewards, enhance the assis-
tant’s learning capacity and are incorporated into long-term
memory:

rt = ref(o1:t,R1:t), (9)
where ref(·) denotes the reflection function based on the
output sequence o1:t and rewards R1:t. The derived reflection
rt is then added toML:

ML ←ML ∪ {rt}. (10)
The process gradually enhances the agent’s decision-making,
allowing it to adapt effectively through accumulated experi-
ence.

MemorySyntax Building upon the reflection mechanism,
the MemorySyntax method integrates the Ebbinghaus forget-
ting curve with linguistic principles to emulate human-like
memory processes within the agent’s memory management
system. Let It denote the information received at time t, and
let R(It, τ) represent its retention rate after a time interval τ .
According to the Ebbinghaus forgetting curve, the retention
rate is modeled as:

R(It, τ) = e−
τ
S , (11)

where S is the strength of the information, reflecting its im-
portance and complexity.

To enhance retention, MemorySyntax applies linguistic
optimization to It, producing an optimized version I∗t with
increased strength S∗ > S. The retention rate for I∗t is de-
fined as:

R(I∗t , τ) =

{
e−

τ
S∗ , if I∗t ∈MS ,

e−
τ
S , if I∗t ∈ML,

(12)

whereMS andML represent short-term memory and long-
term memory, respectively.

The agent updates its memory stateMt based on the re-
tention rate of I∗t using predefined thresholds θ1 and θ2, with
θ1 > θ2. The memory update rule is formalized as:

Mt+1 =


Mt ∪ {I∗t }, if R(I∗t , τ) ≥ θ1,
Mt \ {I∗t }, if R(I∗t , τ) < θ2,

Mt, otherwise.
(13)



Figure 3: The illustration of an example HotpotQA with SAGE.

This update rule operates under the following conditions:

• Retention in Short-Term Memory (MS): If R(I∗t , τ) ≥
θ1, the information I∗t is retained in short-term memory
MS .

• Discarding Information: If R(I∗t , τ) < θ2, the informa-
tion I∗t is considered insignificant and is discarded.

• Transfer to Long-Term Memory (ML): If θ2 ≤
R(I∗t , τ) < θ1, the information I∗t is transferred to long-
term memoryML.

By simulating human memory dynamics, MemorySyntax
enables the agent to prioritize essential information, retain
critical data in short-term memoryMS , store important but
less frequently used information in long-term memoryML,
and discard irrelevant data. The mechanism addresses mem-
ory capacity limitations and enhances the agent’s ability to
perform complex tasks requiring efficient memory manage-
ment.

Experiment
To demonstrate the capabilities and performance of SAGE

in coordinating autonomous agent groups to work together
on tasks, we conduct extensive quantitative experiments
on benchmark tasks. We use a public benchmark, Agent-
Bench (Liu et al. 2023), which is a multidimensional evolu-
tionary benchmark from which we select six tasks. These
tasks test the reasoning and decision-making abilities of
LLMs acting as agents in multi-turn open-ended generation
settings. To further assess the agents’ long-context under-
standing, we select four widely adopted tasks related to long-
text processing. These tasks reflect the agents’ programming

abilities(LCC(Guo et al. 2023), RepoBench-P (Liu, Xu, and
McAuley 2023)) and reasoning abilities(HotpotQA (Yang
et al. 2018b), TriviaQA (Joshi et al. 2017b)).

Evaluation on AgentBench

Task Description AgentBench includes scenarios from
CODE (Knowledge Graph, OS, DB), GAME (ALF-
World) (Shridhar et al. 2021), and WEB (WebShop (Yao et al.
2023a), Mind2Web (Deng et al. 2023)). For more details for
the datasets and benchmarks, see Appendix ??.

Baselines We evaluate commercial models GPT-3.5 (Brown
et al. 2020) and GPT-4 (OpenAI et al. 2024), and open-source
models Llama2 (Touvron et al. 2023), Codellama (Rozière
et al. 2024), Qwen (Bai et al. 2023), and ChatGLM2 (GLM
et al. 2024). Dialogue history exceeding the model length
limit is truncated, using greedy decoding.

Results As shown in Table 1, our method significantly im-
proves model performance on AgentBench, especially for
smaller models. GPT-3.5 and GPT-4, despite already high
scores, also show notable improvements with SAGE, up to
2.26x in the Database task. Llama2-7b is notably enhanced,
showing the method’s impact on weaker models. CodeLlama-
7b and Qwen-1.8B also see substantial gains. Qwen-1.8B,
after applying our method, performs close to GPT-3.5, high-
lighting its potential as a general agent. Llama2, previously
error-prone, shows a significant reduction in basic errors
through feedback and memory optimization, proving that our
method not only enhances agent capabilities but also reduces
fundamental errors in complex tasks.



Table 1: Baseline and SAGE Framework Performance on AgentBench

LLM Type Model
VER OS DB KG ALF WS M2W

Base SAGE Base SAGE Base SAGE Base SAGE Base SAGE Base SAGE Base SAGE

API
GPT-4 42.4 49.7 32.0 39.8 57.4 63.1 78.0 82.0 67.1 67.8 27.0 32.0 27.0 32.0

GPT-3.5 31.6 38.3 15.7 35.6 25.9 37.6 17.0 23.0 64.1 72.1 16.0 28.0 16.0 28.0

OSS

Llama2-7B Chat 0.0 8.4 0.0 10.2 0.0 25.0 0.0 5.0 4.4 10.4 0.0 15.0 0.0 15.0

CodeLlama-7B Instruct 5.7 18.4 2.6 19.2 0.0 27.0 0.0 12.5 16.3 40.2 0.0 15.0 15.0 15.0

Qwen1.8B Chat 2.7 18.7 1.4 15.1 6.8 45.3 0.0 10.5 6.6 11.4 0.6 13.6 13.6 13.6

Qwen-7B Chat 5.6 22.2 4.8 18.0 0.0 48.0 34.0 38.5 0.0 13.6 0.0 15.0 15.0 15.0

ChatGLM2-6B v1.1 0.0 15.2 0.0 16.3 0.0 17.0 0.0 5.0 0.3 10.3 4.9 14.9 14.9 14.9

Table 2: Evaluation of SAGE and Baseline Models on Three Different Tasks

Agent
Task Completion Answer Accuracy Dialog Coherence Step Completion

Time (min) (QA) (%) (%) Accuracy (%)

GPT-3.5 (Baseline) Long-form QA (HotpotQA) 54.1% 48.5% 62.7%

GPT-4 (Baseline) Long-form QA (HotpotQA) 61.2% 53.8% 68.2%

Llama2-7b (Baseline) Multi-turn Dialog (MultiWOZ) 55.9% 50.1% 64.8%

Codellama-13b (Baseline) Multi-turn Dialog (MultiWOZ) 58.4% 52.3% 66.7%

Mistral-7b (Baseline) Sequential Task (ALFWorld) 56.5% 51.5% 65.1%

SAGE-GPT-3.5 Long-form QA (HotpotQA) 74.9% (+20.8%) 68.3% (+19.8%) 80.6% (+17.9%)

SAGE-GPT-4 Long-form QA (HotpotQA) 78.4% (+17.2%) 73.4% (+19.6%) 83.9% (+15.7%)

SAGE-Llama2-7b Multi-turn Dialog (MultiWOZ) 72.2% (+16.1%) 67.9% (+17.8%) 78.5% (+13.7%)

SAGE-Codellama-13b Multi-turn Dialog (MultiWOZ) 74.7% (+16.3%) 71.2% (+18.9%) 81.2% (+14.5%)

SAGE-Mistral-7b Sequential Task (ALFWorld) 73.8% (+17.3%) 70.5% (+19.0%) 79.9% (+14.8%)

Complex Problem-Solving Tasks Evaluation
We evaluated SAGE against baseline models on three tasks:

long-form QA (Akash et al. 2023), multi-turn dialog (Cui
et al. 2020), and sequential task completion (Stephens, Cho,
and Ballard 2012). As shown in Table 2, SAGE outperforms
all baselines with significant gains, such as a 20.8% increase
in answer accuracy for GPT-3.5 on HotpotQA (Yang et al.
2018b) and a 17.3% improvement in task completion for
Mistral-7b on ALFWorld (Shridhar et al. 2021). Across all
tasks, SAGE notably enhances answer accuracy, dialog co-
herence, and step completion.

Evaluation of Long-Context Tasks
We evaluated the agent’s code generation and reasoning

on four long-text tasks: LCC Dataset (Mohler et al. 2016)
focuses on predicting the next line of code from a few initial
lines, with Precision, Recall, and F1 as metrics. RepoBench-
P (Liu, Xu, and McAuley 2024) tests retrieval of relevant
code snippets from cross-file and within-file contexts to
predict the next line, also evaluated with Precision, Recall,
and F1. HotPotQA (Yang et al. 2018a), a Wikipedia-based

dataset with 113k question-answer pairs, challenges the agent
to reason across multiple documents, evaluated by answer F1.
TriviaQA (Joshi et al. 2017a) is a reading comprehension
dataset with question-answer pairs and evidence paragraphs
(filtered to over 1,000 words), also using answer F1 for eval-
uation.

We compared two self-refinement methods: Beam
Search (Kool, van Hoof, and Welling 2019), which integrates
self-assessment through stochastic beam search, and Reflex-
ion (Shinn et al. 2023), which uses past trial experience in a
verbal form.

Evaluation Results:
Code Completion Task: On the LCC dataset (Table 3),

SAGE shows a slight improvement in F1 score (79.29) com-
pared to Beam Search and Reflexion. Its memory mecha-
nisms help refine code predictions, but the performance dif-
ference is not substantial in simpler tasks like code comple-
tion.

Reasoning Tasks: SAGE significantly outperforms Re-
flexion and Beam Search on HotPotQA and TriviaQA, with



Table 3: Comparison of Performance Across Different Methods

Models LCC RepoBench-P HotpotQA TriviaQA
Precision Recall F1 Precision Recall F1 F1 F1

Reflexion 77.72 81.00 79.28 78.73 81.86 80.25 11.26 11.23
Beam search 78.98 79.32 79.12 78.75 81.02 79.87 10.26 12.13
SAGE 78.76 79.88 79.29 79.27 83.28 81.22 22.06 22.76

Table 4: Evaluation of different RAG Agents on Different Tasks and Datasets

Agent Accuracy (QA) (%) Latency (ms) Memory Usage (MB)

Task 1: Multi-Document QA (HotpotQA)

RAG (BM25) 60.8 121 613

RAG (DPR) 66.3 129 542

RAG (OpenAI Retrieval) 67.4 108 494

TART 63.2 144 477

FiD (Fusion-in-Decoder) 70.1 153 456

ChatGPT-4 - Sage 74.8 (+4.7) 128 231 (-50%)

Task 2: Document Retrieval for Contextual Answering (Natural Questions)

RAG (BM25) 59.9 125 605

RAG (DPR) 65.5 131 561

RAG (OpenAI Retrieval) 66.8 113 484

TART 62.4 146 455

FiD (Fusion-in-Decoder) 69.8 156 443

ChatGPT-4 - Sage 73.6 (+3.8) 131 227 (-49%)

Task 3: Open-Domain QA with Multiple Contexts (TriviaQA)

RAG (BM25) 62.1 124 615

RAG (DPR) 67.8 129 530

RAG (OpenAI Retrieval) 68.9 117 494

TART 64.7 148 462

FiD (Fusion-in-Decoder) 71.9 155 456

ChatGPT-4 - Sage 75.5 (+3.6) 134 243 (-47%)

F1 scores of 22.06 and 22.76 (Table 3). SAGE’s ability to
effectively integrate multi-document information through re-
flection leads to better reasoning accuracy, while Reflexion
and Beam Search face challenges in handling complex rea-
soning tasks.

Evaluation of RAG Agents
Table 4 compares classical lexical retrieval (RAG with

BM25) (Robertson and Zaragoza 2009), dense passage
retrieval (RAG with DPR) (Reichman and Heck 2024),
a commercial retrieval solution (RAG with OpenAI Re-
trieval) (OpenAI 2023), the TART (Eisenschlos et al. 2022)
sequence-to-sequence retrieval model, and the FiD (Fusion-
in-Decoder) method (Izacard and Grave 2021), all tested on
multi-document and open-domain QA tasks (HotpotQA, Nat-
ural Questions (Kwiatkowski et al. 2019), and TriviaQA).
RAG with BM25 relies on term-based matching, while RAG
with DPR uses learned dense embeddings. TART adopts a
transformer-based approach to produce relevant contexts, and
FiD fuses multiple retrieved passages through an encoder-
decoder design. In contrast, ChatGPT-4 (SAGE) employs a

structured reasoning workflow for retrieval and generation,
which leads to steady accuracy improvements of 3.6% to
4.7% and cuts memory consumption nearly 50% on some
tasks, all without increasing latency.

Error analysis
As shown in Figure 4, the SAGE framework significantly

enhances agent performance across tasks, especially in the
WS task for AgentBench, due to its iterative feedback mech-
anism, which refines outputs through continuous assistant-
checker interaction. In OS and DB tasks, Context Limit Ex-
ceeded and invalid format errors are nearly eliminated, with
a notable reduction in invalid action errors, attributed to the
reflection mechanism that helps the assistant learn and reduce
logical mistakes.

Ablation Study
We conducted ablation experiments on Qwen-1.8B and

CodeLlama-7B to evaluate memory optimization (Table 5).
Without memory optimization, both models perform weakly,
especially Qwen-1.8B, which improves from 6.8 to 48.0 in



Figure 4: Execution results across six tasks (CLE: Context Limit Exceeded, TLE: Task Limit Exceeded). Task limits are the main cause of
incomplete tasks, highlighting LLM agents’ limitations under time constraints.

KG and from 0.0 to 10.5 in ALF after optimization. Similarly,
CodeLlama-7B shows substantial gains, particularly in DB
(2.7 to 41.3) and WS (14.3 to 58.7). Overall, CodeLlama-7B
performs better than Qwen-1.8B, highlighting the stronger
adaptability of models with more parameters in handling
complex tasks.

Table 5: Ablation study for memory optimization on the task of
AgentBench

Models OS DB KG ALF WS M2W

Qwen-1.8B (w/o memo) 10.4 22.6 6.8 0.0 26.6 5.0

Qwen-1.8B (w memo) 18.7 28.3 45.3 10.5 31.4 25.1

Codellama-7B (w/o memo) 9.7 2.7 0.0 0.0 14.3 5.0

Codellama-7B (w memo) 23.4 41.3 48.0 12.5 58.7 15.0

Conclusion
In this paper, we propose the SAGE framework, which

enhances agents’ self-adjustment and memory management
in complex tasks through reflective mechanisms and mem-
ory optimization. Experimental results show significant per-
formance improvements across benchmarks, especially in
smaller models. In the AgentBench test, SAGE boosts the
performance of strong baselines like GPT-3.5 and GPT-4,
while also significantly improving open-source models. It
effectively reduces basic errors and logical mistakes, particu-
larly enabling smaller models to handle complex tasks.
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