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Abstract
Diffusion models, while powerful, can inadver-
tently generate harmful or undesirable content,
raising significant ethical and safety concerns. Re-
cent machine unlearning approaches offer poten-
tial solutions but often lack transparency, making
it difficult to understand the changes they intro-
duce to the base model. In this work, we intro-
duce SAeUron, a novel method leveraging fea-
tures learned by sparse autoencoders (SAEs) to
remove unwanted concepts in text-to-image dif-
fusion models. First, we demonstrate that SAEs,
trained in an unsupervised manner on activations
from multiple denoising timesteps of the diffusion
model, capture sparse and interpretable features
corresponding to specific concepts. Building on
this, we propose a feature selection method that
enables precise interventions on model activations
to block targeted content while preserving overall
performance. Our evaluation shows that SAeU-
ron outperforms existing approaches on the Un-
learnCanvas benchmark for concepts and style un-
learning, and effectively eliminates nudity when
evaluated with I2P. Moreover, we show that with
a single SAE, we can remove multiple concepts
simultaneously and that in contrast to other meth-
ods, SAeUron mitigates the possibility of gener-
ating unwanted content under adversarial attack.
Code and checkpoints are available at GitHub.

1. Introduction
Diffusion models (DMs) (Sohl-Dickstein et al., 2015; Ho
et al., 2020) have revolutionized generative modeling, en-
abling the creation of highly realistic images. Despite
their success, these models can inadvertently generate un-
desirable and harmful content, pornography (Rando et al.,
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Figure 1. Concept unlearning in SAeUron. We localize and re-
move SAE features corresponding to the unwanted concept (Car-
toon) while preserving the overall performance of the diffusion
model.

2022; Schramowski et al., 2023) or copyrighted images
e.g. cloning the artistic styles without consent (Andersen,
2024). The straightforward solution to this problem is to
retrain the model from scratch with curated data. However,
such an approach, due to the enormous sizes of the train-
ing datasets is both costly and impractical. As a result, a
growing number of works focus on removing the influence
of unwanted data from already pre-trained text-to-image
diffusion models through machine unlearning (MU).

Most existing methods build on the basic idea of fine-tuning
the model while using negative gradients for selected un-
wanted samples (Wu et al., 2024; Gandikota et al., 2023;
Heng & Soh, 2024; Kumari et al., 2023). To minimize degra-
dation in the overall model’s performance, recent techniques
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restrict parameter updates to attention layers (Zhang et al.,
2024a) or to their most important subsets (Fan et al., 2024;
Wu & Harandi, 2024). A drawback of fine-tuning-based
approaches is that they offer a limited understanding of how
the base model changes during the process. Consequently,
these methods often fail to fully remove targeted concepts
and instead merely mask them, leaving the models highly
vulnerable to adversarial attacks (Zhang et al., 2025).

In this work, we propose a conceptually different approach
to unlearning in diffusion models, which we dubbed SAeU-
ron. We first adapt sparse autoencoders (Olshausen & Field,
1997) to train them in an unsupervised way on the internal
activations of the Stable Diffusion (Rombach et al., 2022)
text-to-image (T2I) diffusion model. By using activations
extracted from all of the denoising timesteps, our SAE learns
a set of sparse and semantically meaningful features. This
allows us to block a specific concept, by identifying features
associated with it and removing them during the inference.
Figure 1 visualizes this idea.

While the sparsity of SAE features ensures that unlearning
of one concept has a limited influence on the remaining
ones, we additionally demonstrate that the concept-specific
features targeted by our approach are interpretable. As a
result, we can analyze them prior to unlearning, (e.g. by
highlighting their activation areas or annotating them) which
significantly enhances the transparency of our approach
compared to other methods.

We evaluate our method on the recently proposed large and
competitive benchmark UnlearnCanvas (Zhang et al., 2024c)
which assesses unlearning effectiveness across 20 objects
and 50 styles. We train two SAEs – one for styles and one
for objects – each using activations gathered from a single
selected SD block and show that our blocking approach
achieves state-of-the-art (SOTA) performance in unlearn-
ing without affecting the overall performance of the DM.
Evaluation on I2P shows that our approach also effectively
removes nudity. Importantly, due to the fact that SAEs are
trained in an unsupervised way, SAeUron is highly robust to
adversarial attacks and seamlessly scales to removing mul-
tiple concepts simultaneously, contrary to other methods.
The summary of our contributions is as follows:

• We demonstrate that SAEs extract meaningful and in-
terpretable features from the internal activations of
diffusion models across multiple denoising timesteps.

• We propose SAeUron, an interpretable unlearning
method that localizes features corresponding to un-
wanted concepts and ablates them, achieving state-of-
the-art performance.

• We demonstrate that SAeUron enables seamless un-
learning of multiple concepts simultaneously and ex-
hibits high robustness against adversarial attacks.

2. Related Work
Sparse Autoencoders (SAEs) Sparse autoencoders (Ol-
shausen & Field, 1997) are neural networks designed to
learn compact and interpretable representations of data by
encouraging sparsity in the latent space. This is achieved
by incorporating a sparsity penalty into the reconstruction
loss, ensuring that only a small fraction of latent neurons
activate for any given input. Recently, SAEs have emerged
as an effective tool in the field of mechanistic interpretabil-
ity, enabling the discovery of features corresponding to
human-interpretable concepts (Huben et al., 2024; Bricken
et al., 2023) and sparse feature circuits within language mod-
els (Marks et al., 2025). In this study, sparse autoencoders
are used within text-to-image diffusion models to identify
and disable features linked to the generative capabilities of
specific concepts.

Machine Unlearning in Diffusion Models The term and
problem statement for machine unlearning was first intro-
duced by Cao & Yang (2015), where authors transform the
neural network model, through an additional simple layer,
into a format where output is a summation of independent
features. Such a setup allows for unlearning by simply
blocking the selected summation weights or nodes.

Conversely, recent works focusing on unlearning for dif-
fusion models, usually employ fine-tuning in order to un-
learn specific concepts. For example, EDiff (Wu et al.,
2024) formulates this problem as bi-level optimization,
ESD (Gandikota et al., 2023) leverages negative classifier-
free guidance and FMN (Zhang et al., 2024a) introduces
a new re-steering loss applied only to the attention layer.
SalUn (Fan et al., 2024) and SHS (Wu & Harandi, 2024)
select parameters to adapt through saliency maps or con-
nection sensitivity, while SA (Heng & Soh, 2024) replaces
unwanted data distribution with the surrogate one, with an
extension to the selected anchor concepts in CA (Kumari
et al., 2023). SPM (Lyu et al., 2024) takes a different ap-
proach, using small linear adapters added after each linear
and convolutional layer to directly block the propagation of
unwanted content.

By contrast, methods that do not rely on fine-tuning include
SEOT (Li et al., 2024), which eliminates unwanted content
from text embeddings, and UCE (Gandikota et al., 2024),
which adapts cross-attention weights using a closed-form so-
lution. Unlike these approaches, we neither modify prompt
embeddings nor alter the base model’s weights.

In this paper, we revisit the pioneering work by Cao & Yang
(2015) adapting it to the text-to-image diffusion models us-
ing recent advancements in mechanistic interpretability. In
particular, we train a sparse autoencoder on the activations
of the diffusion model and leverage its summative nature to
unlearn concepts by blocking unwanted content. Most simi-
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larly to our approach, Farrell et al. (2024) show that SAEs
can be employed to remove a subset of biological knowl-
edge in large language models (LLMs), while Guo et al.
(2024) benchmark several mechanistic interpretability tech-
niques for knowledge editing and unlearning in LLMs. In
the concurrent work (Kim & Ghadiyaram, 2025), a similar
idea was used to unlearn concepts in DM’s text encoder.

Interpretability of Diffusion Models Numerous studies
explored disentangled semantic directions within the bottle-
neck layers of UNet-based diffusion models (Kwon et al.,
2023; Park et al., 2023; Hahm et al., 2024) and analyzed
cross-attention layers to investigate their internal mecha-
nisms (Tang et al., 2023). Despite these efforts, detailed
interpretation of the specific functions and features learned
by specific components in T2I diffusion models remains lim-
ited. Recently, Basu et al. (2023; 2024) localized knowledge
about visual attributes in DMs, showing that modifying text
input in a few cross-attention layers can consistently alter
attributes like styles, objects or facts. Additionally, Toker
et al. (2024) aimed to interpret T2I models’ text encoders
by generating images from their intermediate representa-
tions. In contrast, our work employs sparse autoencoders to
achieve a more fine-grained understanding of the internal
representations in diffusion models.

Although SAEs are widely used in the language domain,
their application to vision remains limited. Early studies
applied them to interpret and manipulate CLIP (Radford
et al., 2021) representations (Fry, 2024; Daujotas, 2024) or
traditional vision networks (Szegedy et al., 2015; Gorton,
2024). More recently, SAEs have been successfully applied
in vision-language models (VLMs) to tackle problems such
as mitigating hallucinations (Jiang et al., 2025) and generat-
ing interpretable radiology reports (Abdulaal et al., 2024).
To date, only a few studies have utilized SAEs to investi-
gate the inner workings of T2I diffusion models. Ijishakin
et al. (2024) use SAEs to identify semantically meaningful
directions within the bottleneck layer. Surkov et al. (2024)
trained SAEs on activations from a one-step distilled SDXL-
Turbo diffusion model, demonstrating that SAEs can detect
interpretable features within specific model’s blocks and en-
able causal interventions on them. Furthermore, Kim et al.
(2024) applied SAEs to activations from the diffusion model
sampled in an unconditional way. By training a separate
SAE model for each diffusion timestep, they revealed the
visual features learned by these models and their connection
to class-specific information.

In contrast to prior approaches, our work involves training
a single SAE on activations from multiple denoising steps
of a standard, non-distilled Stable Diffusion model. Addi-
tionally, we leverage the well-disentangled and interpretable
features learned by SAEs for downstream unlearning tasks,
showcasing their potential in real-world use cases.

3. Sparse Autoencoders for Diffusion Models
In this work we adapt sparse autoencoders to Stable-
Diffusion text-to-image diffusion model. Importantly, un-
like previous works utilizing SAEs for diffusion models, we
train them on activations extracted from every step t of the
denoising diffusion process. These activations are obtained
from the cross-attention blocks of the diffusion model and
form a feature maps. Each feature map extracted at timestep
t is a spatially structured tensor of shape Ft ∈ Rh×w×d,
where h and w denote the height and width of the feature
map, and d is the dimensionality of each feature vector.
Each spatial position within the feature map corresponds to
a patch in the input image.

As a single SAE training sample, we consider an individual
d-dimensional feature vector, disregarding the information
about its spatial position. Therefore from each feature map,
we obtain h× w training samples. For simplicity, we drop
the timestep index t in subsequent notations.

Let x ∈ Rd denote the d-dimensional vector of activations
from a single position of a feature map and let n be the latent
dimension in sparse autoencoder. The encoder and decoder
of standard single-layer ReLU sparse autoencoder (Bricken
et al., 2023) are then defined as follows:

z = ReLU (Wenc(x− bpre) + benc)

x̂ = Wdecz+ bpre,
(1)

where Wenc ∈ Rn×d and Wdec ∈ Rd×n are encoder and
decoder weight matrices respectively, bpre ∈ Rd and benc ∈
Rn are learnable bias terms. Elements of z called feature
activations are usually denoted as f1,...,n(x). Typically, n
is equal to d multiplied by a positive expansion factor.

The objective function of SAE is defined as:

L(x) = ∥x− x̂∥22 + αLaux, (2)

where ∥x− x̂∥22 is a reconstruction error and Laux is a recon-
struction error using only the largest kaux feature activations
that have not fired on a large number of training samples,
so-called dead latents. The auxiliary loss is used to prevent
dead latents from occurring and is scaled by a coefficient α.

In our work, we additionally apply two extensions over
vanilla ReLU SAEs. First, we follow Gao et al. (2025)
and use the TopK activation function (Makhzani & Frey,
2013) which retains only the k largest latent activations for
each vector x, setting the rest to zeros. While the decoder
remains unchanged, the encoder is thus redefined to:

z = TopK (Wenc(x− bpre)) . (3)

Second, we leverage the BatchTopK approach introduced
by Bussmann et al. (2024), which dynamically selects the
B × k largest feature activations across the entire input data
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Figure 2. Unlearning procedure in SAeUron. (a) Concept-specific features are selected for unlearning according to their importance
scores. (b) During inference in the U-Net of the diffusion model, activation between selected cross-attention blocks is passed through a
trained SAE. The selected SAE features are then ablated by scaling them with a negative multiplier γc, removing their influence on the
final output. The remaining features are left unchanged, ensuring minimal impact on the overall model performance.

batch of size B during training. It allows the SAE to more
flexibly distribute active latents across samples. During
inference, k is fixed to a constant value. We observed that
BatchTopK SAEs tend to activate more frequently in the
central regions of samples while allocating fewer latents to
the image borders, as presented in Appendix A. This aligns
with the nature of the LAION dataset (Schuhmann et al.,
2022) used for the training of the SD model.

4. Method
Given a trained sparse autoencoder able to reconstruct ac-
tivations of the diffusion model, our SAeUron method for
concept unlearning involves two steps. First, we identify
which SAE features will be targeted for unlearning a spe-
cific concept c. This selection is based on the importance
scores associated with features. Then, during the inference
of the diffusion model, we encode the original activations
with SAE, ablate the selected features to remove the tar-
geted concept associated with them, and decode them back.
Thanks to the summative nature of SAEs and the sparsity
of activated features, this process effectively removes the
influence of the targeted concept on the final generation,
while preserving the overall performance of the diffusion
model. We present the overview of our method in Figure 2.

4.1. Selection of SAE features for unlearning

To identify SAE features that exhibit strong correspondence
exclusively to the target concept c, we define a score func-
tion that measures the importance of each i-th feature for
concept c at every denoising timestep t. Utilizing a dataset
of activations from the diffusion model D = Dc ∪ D¬c,
which includes data containing a target concept Dc and data

that does not D¬c, we define score as:

score(i, t, c,D) = µ(i, t,Dc)∑n
j=1 µ(j, t,Dc) + δ

− µ(i, t,D¬c)∑n
j=1 µ(j, t,D¬c) + δ

,

(4)

where δ is a small constant added to prevent division by
zero and µ(i, t,D) = 1

|D|
∑

x∈D fi(xt) denotes the aver-
age activation of i-th feature on activations from a timestep
t. To ensure that features activating on many concepts do
not dominate the scores, we normalize both components by
the average activation values for the corresponding subsets
of the dataset. Thus, features with high scores exhibit strong
activation for concept c while remaining weakly activated
for all other concepts. Figure 3 shows a histogram of scores
calculated for each prompt and timestep using our validation
set. Importantly, only a small fraction of features achieve
high scores, indicating that SAE learns a limited number
of concept-specific features. Consequently, we target high-
scoring features in our method to unlearn concepts without
affecting the overall performance of a model, blocking only
τc features with the highest scores. Additionally, we filter
out features based on their activation frequency to exclude
dead features and those activating too frequently (more of-
ten than the 99th percentile of feature density distribution,
presented in Figure 14 in the Appendix).

4.2. SAE-based concept unlearning

Building on the method introduced for locating features
that correspond to specific concepts, we now present our
SAE-based unlearning procedure, which we apply for each
timestep t during the inference of the diffusion model. To
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Figure 3. Feature importance scores. Most of the features have
near-zero scores, indicating that SAE learns only a few concept-
specific features. During the evaluation, we find the most important
features according to this score and block them.

that end, we utilize previously trained sparse autoencoder
applied to a single U-Net cross-attention block.

To unlearn a concept c, we first identify a set of SAE features
Fc associated with c and compute their average activations
on a validation dataset D:

Fc := {i | i ∈ Top-τc({score(i, t, c,D)})}
µ(i) := µ

(
i, t,D

)
, ∀i ∈ Fc

(5)

Then, we cut the connection in the diffusion model between
the block SAE was trained on and the subsequent one, ap-
plying trained SAE in between them. During inference, the
SAE encoder decomposes each activation vector x from
the feature map Ft of the previous cross-attention block fol-
lowing Equation (3). Then, activations of selected features
Fc are ablated by scaling them with a negative multiplier
γc < 0 normalized by the average activation on concept
samples µ(i, t,Dc). This removes the influence of the tar-
geted concept on the activation vector x. In summary, each
i-th latent feature activation is modified as follows:

fi(x) =

γcµ(i, t,Dc)fi(x),
if i ∈ Fc ∧
fi(x) > µ(i, t,D),

fi(x), otherwise.
(6)

The condition fi(x) > µ(i, t,D) ensures that only signifi-
cant features are selected, preventing random feature abla-
tion when all scores are low. The modified representations
are decoded back using the SAE decoder, preserving the
error term, and passed to the next diffusion block. An
overview of this procedure is shown in Figure 2, with pseu-
docode provided in Appendix S. Procedure involves two
hyperparameters: τc and γc, further discussed in Section 5.3.

5. Experiments
5.1. Technical details

Where to apply SAEs Recent studies on mechanistic in-
terpretability in diffusion models (Basu et al., 2023; 2024)

show that different cross-attention blocks specialize in gen-
erating specific visual aspects like style or objects. Building
on this fact, we apply our unlearning technique to activa-
tions from key cross-attention blocks. For style filtering,
we use second to last up-sampling block up.1.2, and for
object filtering up.1.1, identified empirically as the most
effective. Exemplary generations demonstrating the effects
of ablating these blocks are presented in Appendix C.

UnlearnCanvas benchmark (Zhang et al., 2024c) is a large
benchmark aiming to extensively evaluate MU methods for
DMs. Benchmark consists of 50 styles× 20 objects, provid-
ing a test bed both for style and object unlearning evaluation.
Authors, along with a dataset, also provide a Stable Diffu-
sion v1.5 model fine-tuned on the selected objects and styles
from the benchmark, ensuring a fair evaluation.

SAE training dataset To ensure a fair evaluation, the SAE
training set is comprised of text prompts that are distinct
from those employed in the evaluation on the UnlearnCan-
vas benchmark. Specifically, we utilize simple one-sentence
prompts (referred to as anchor prompts), which were em-
ployed by the authors of the benchmark in training of the
CA method (Kumari et al., 2023). For each of the 20 objects,
we use 80 prompts. Additionally, to enable the SAE to learn
the styles used in the benchmark, we append the postfix ”in
{style} style.” to each prompt.

For each generation, we collect the internal activations from
the specified cross-attention blocks across 50 denoising
timesteps.Importantly, we only gather feature maps related
to text-conditioned generation part, discarding the uncondi-
tioned ones. Nonetheless, during inference, trained SAEs
reconstruct both parts of feature maps. Appendix E provides
details on SAE training.

Validation dataset for feature score calculation To calcu-
late feature scores during the unlearning of concept c, we
collect feature activations fi(xt) at each denoising timestep
t using a validation set D of anchor prompts, similar to
SAE’s training set. Following the UnlearnCanvas evaluation
setup, activations are gathered over 100 denoising timesteps.
Despite being trained on 50 steps, SAEs generalize well
to this extended range. For style unlearning, we use 20
prompts per style and for object unlearning 80 per object.
Style validation prompt templates are shown in Appendix B.

5.2. Interpreting SAE features

Before presenting the experimental results for our SAE-
based unlearning method, we first evaluate how well the
sparse encoding captures the concepts to be unlearned.
Specifically, we assess whether the features selected us-
ing our score-based approach correspond to the desired
concepts, as selecting relevant features is critical to our
method’s success. Additionally, we examine the image re-
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Figure 4. Object classification with k-nearest neighbors algo-
rithm based on SAE feature activations. Features selected with
our score-based selection approach demonstrate strong discrimi-
native power across timesteps. Even randomly selected features
exhibit notably higher accuracy than random guess baseline, prov-
ing that SAE learns meaningful visual attributes.

gions where these features strongly activate to verify their
connection to the targeted concepts and their alignment with
human-interpretable attributes.

5.2.1. DO FEATURES EXHIBIT DISCRIMINATIVE POWER?

To validate whether SAE learns meaningful visual features,
we train a 5-nearest neighbors classifier on SAE feature acti-
vations extracted at each timestep from the validation dataset
used for the score calculation. Importantly, activations are
gathered from the unconditional part of the generation to
exclude the influence of text embeddings. In each setup, we
use 40 features, with 2 features per class.

Figure 4 shows object classification accuracies across
timesteps. As expected, when we use all features the accu-
racy improves as denoising progresses, due to the emergence
of object-relevant visual attributes. Notably, our score-based
selection approach identifies the most important features,
achieving high accuracy across most timesteps. Interest-
ingly, randomly selected SAE features (matching the num-
ber chosen by the score-based method) still exhibit discrimi-
native power, significantly outperforming the random guess
baseline. These results confirm that our method effectively
selects the most concept-relevant features and signifies that
SAE successfully learns meaningful visual features from the
diffusion model. Analogous results for style classification
are shown in Figure 16 in the Appendix.

5.2.2. DO FEATURES RELATE TO CONCEPTS?

To further enhance our understanding of features learned
by SAEs, we visualize their activations on corresponding
image patches to assess whether they relate to interpretable
patterns. We generate heatmaps of activations from features
selected by our score-based approach, normalized to the
range [0, 1], and overlay them on the generations, as shown
in Figure 5. For each timestep t, we visualize the corre-

Figure 5. Activations of features selected for unlearning dis-
played on image patches. (Left) Features corresponding to the
Bricks style strongly activate on patterns characteristic of this style.
(Right) Conversely, Butterfly-related features activate successfully
on image regions containing the object, regardless of the style.

Figure 6. The most important features for Cats unlearning ac-
cording to our score-based approach across timesteps. Features
are sorted by importance in each row from left to right. Examples
for other objects are presented in Appendix M.

sponding generated image by predicting the fully denoised
sample x0 from the diffusion model’s representation at t.

The visualizations reveal that style-related features strongly
activate on patches with characteristic style patterns while
remaining inactive elsewhere. Notably, these features focus
on style-related backgrounds while ignoring object regions,
demonstrating the precision of our score-based selection in
isolating style features. Similarly, object-related features
activate only on the targeted object, regardless of the back-
ground or style.

A key advantage of our approach is the ability to directly
observe which features are modified to remove a specific
concept. Figure 6 shows examples of the most important
features our score-based method selected for unlearning
the Cats class. We see that these features are highly inter-
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Table 1. Evaluation of SAeUron against state-of-the-art methods on style and object unlearning. The best result for each metric is
highlighted in bold, and the second-best is underlined. Our approach significantly outperforms others on style unlearning and performs
comparably on object unlearning. Importantly, SAeUron demonstrates consistent performance across all metrics.

Method
Effectiveness Efficiency

Style Unlearning Object Unlearning Avg. (↑) FID (↓) Memory Storage
UA (↑) IRA (↑) CRA (↑) UA (↑) IRA (↑) CRA (↑) (GB) (↓) (GB) (↓)

ESD (Gandikota et al., 2023) 98.58% 80.97% 93.96% 92.15% 55.78% 44.23% 77.61% 65.55 17.8 4.3
FMN (Zhang et al., 2024a) 88.48% 56.77% 46.60% 45.64% 90.63% 73.46% 66.93% 131.37 17.9 4.2
UCE (Gandikota et al., 2024) 98.40% 60.22% 47.71% 94.31% 39.35% 34.67% 62.45% 182.01 5.1 1.7
CA (Kumari et al., 2023) 60.82% 96.01% 92.70% 46.67% 90.11% 81.97% 78.05% 54.21 10.1 4.2
SalUn (Fan et al., 2024) 86.26% 90.39% 95.08% 86.91% 96.35% 99.59% 92.43% 61.05 30.8 4.0
SEOT (Li et al., 2024) 56.90% 94.68% 84.31% 23.25% 95.57% 82.71% 72.91% 62.38 7.34 0.0
SPM (Lyu et al., 2024) 60.94% 92.39% 84.33% 71.25% 90.79% 81.65% 80.23% 59.79 6.9 0.0
EDiff (Wu et al., 2024) 92.42% 73.91% 98.93% 86.67% 94.03% 48.48% 82.41% 81.42 27.8 4.0
SHS (Wu & Harandi, 2024) 95.84% 80.42% 43.27% 80.73% 81.15% 67.99% 74.90% 119.34 31.2 4.0
SAeUron 95.80% 99.10% 99.40% 78.82% 95.47% 95.58% 94.03% 62.15 2.8 0.2

pretable and often represent monosemantic concepts like
ears, paws or whiskers. We also find that features learned by
our SAEs tend to be either low-frequency (activating mostly
in the early diffusion timesteps) or high-frequency (activat-
ing in middle and later timesteps). Although low-frequency
features activate on image areas related to objects or back-
grounds, their detailed interpretation needs further study.
Visualizing these removed features provides greater control
and transparency over the unlearning process. This includes
helping to detect and explain failure cases, as discussed in
Appendix O.

To further highlight the potential of SAEs not only for un-
learning tasks but also as a general tool for interpreting
diffusion models, we extend this analysis by automating fea-
ture annotation using VLMs (Appendix T), which provide
text descriptions for features, making it easier to understand
what they represent.

5.3. Concept unlearning with SAeUron

Metrics We evaluate our method on unlearning tasks us-
ing metrics from the UnlearnCanvas, calculated using Vi-
sion Transformer-based (Dosovitskiy et al., 2021) classifiers
provided by the authors of the benchmark. Assuming that
we want to remove concept c, unlearning accuracy (UA)
measures the proportion of samples generated from prompts
containing c that are not correctly classified. In-domain
retain accuracy (IRA) quantifies correctly classified sam-
ples with other concepts, while cross-domain retain accu-
racy (CRA) assesses accuracy in a different domain (e.g., in
style unlearning, we calculate object classification accuracy).
Additionally, we measure the overall quality of images gen-
erated after unlearning through FID (Heusel et al., 2017).
This set of metrics enables evaluating each method’s effec-
tiveness in removing concepts from the base model while
preserving the generative capabilities of others.

Hyperparameters Our method uses two hyperparameters
tunable for each concept c separately: number of blocked
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Figure 7. Evaluation on sequential unlearning of multiple con-
cepts. Results present the average of unlearning accuracy (UA)
and retaining accuracy (RA = IRA+CRA

2
). SAeUron achieves supe-

rior unlearning effectiveness while retaining the overall model’s
performance. At the same time, we observe a significant drop in
retaining the ability of competing approaches.

features τc and negative multiplier γc. For style unlearning
we empirically observed that setting τc = 1 and γc = −1
yield satisfying results across all styles. For the case of
object unlearning we tune hyperparameters on the validation
dataset, presenting the selected values in Appendix G.

Results We evaluate SAeUron on style and object unlearn-
ing tasks using the UnlearnCanvas benchmark, comparing
it to state-of-the-art methods. Table 1 presents results aver-
aged over 5 random seeds, with competing method results
taken from UnlearnCanvas. Despite using unsupervised
SAE features, SAeUron significantly outperforms all meth-
ods in style unlearning and ranks second in object unlearn-
ing, achieving the best overall average performance.

Unlike other approaches that train a separate model for each
removed concept, SAeUron requires SAE training on just
two cross-attention blocks once. Additionally, SAEs are
lightweight, requiring minimal memory and storage. No-
tably, SAeUron maintains stable performance across both

7



SAeUron: Interpretable Concept Unlearning in Diffusion Models with Sparse Autoencoders

Figure 8. Qualitative evaluation of SAeUron on object and style unlearning. For more examples and comparison with contemporary
methods, see Appendix P.

unlearning (UA) and preservation metrics (IRA, CRA). This
is contrary to the other methods which mostly fail to effec-
tively balance those two aspects.

Figure 8 present qualitative results showcasing the workings
of our method on the unlearning task. SAeUron removes
unlearning target while preserving other visuals. Our find-
ings confirm that SAEs are effective for real-world tasks
like unlearning in diffusion models. Moreover, the inter-
pretability of our method, which explicitly relies on a small
number of human-interpretable features, provides an addi-
tional advantage, making SAeUron a transparent approach
for real-world applications.

5.4. Nudity unlearning

To highlight the potential of SAeUron in real-world appli-
cations, we extend our study to the evaluation with the I2P
benchmark, focusing on the real-world application of NSFW
content removal. To do that, we use an established I2P
benchmark consisting of 4703 inappropriate prompts. We
train SAE on SD-v1.4 activations gathered from a random
30K captions from COCO train 2014. Additionally, we add
to the train set prompts ”naked man” and ”naked woman”
to enable SAE to learn nudity-relevant features. SAE is
trained on up.1.1 block, following all hyperparameters
used for class unlearning setup. We use our score-based
method to select features related to nudity, selecting fea-
tures that strongly activate for ”naked woman” or ”naked
man” prompts and not activating on a subset of COCO train
captions.

Following other works, we employ the NudeNet detector for
nudity detection, filtering out outputs with confidence less
than 0.6. Additionally, we calculate FID and CLIPScore

on 30k prompts from the COCO validation set to measure
the model’s overall quality when applying SAE. As shown
in Table 2, SAeUron achieves state-of-the-art performance
in removing nudity while preserving the model’s overall
quality. This highlights the potential of our method in real-
world applications.

6. Additional experiments
6.1. Unlearning of multiple concepts

Recent studies show that traditional machine unlearning
approaches, while effective for removing a single concept,
struggle in scenarios requiring the sequential removal of
multiple concepts from a diffusion model (Zhang et al.,
2024c). In contrast, SAeUron enables seamless filtering of
multiple concepts with minimal impact on other concepts.
We evaluate our approach against competing methods on
sequential unlearning of 6 styles, with results presented in
Figure 7. Notably, the performance of other methods drops
as the number of targeted concepts increases, due to the
growing degradation of the model’s overall performance.
By selectively removing a limited subset of features strongly
tied to the targeted concepts, SAeUron achieves superior
retention of non-targeted concepts. To further evaluate the
retention capabilities of our approach, we run an additional
experiment with an extreme scenario where we unlearn 49
out of 50 styles present in the UnlearnCanvas benchmark
(leaving one style out to evaluate the quality of its preser-
vation). We observe almost no degradation in SAeUron
performance for three randomly selected combinations. For
unlearning of 49/50 styles simultaneously, we observe UA:
99.29%, IRA: 96.67%, and CRA: 95.00%. Further details
on the evaluation setup are provided in the Appendix D.
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Table 2. Nudity unlearning evaluation on the I2P benchmark. The best result for each metric is highlighted in bold.
Method Armpits Belly Buttocks Feet Breasts (F) Genitalia (F) Breasts (M) Genitalia (M) Total CLIPScore (↑) FID (↓)
FMN (Zhang et al., 2024a) 43 117 12 59 155 17 19 2 424 30.39 13.52
CA (Kumari et al., 2023) 153 180 45 66 298 22 67 7 838 31.37 16.25
AdvUn (Zhang et al., 2024b) 8 0 0 13 1 1 0 0 28 28.14 17.18
Receler (Huang et al., 2024) 48 32 3 35 20 0 17 5 160 30.49 15.32
MACE (Lu et al., 2024) 17 19 2 39 16 0 9 7 111 29.41 13.42
CPE (Lee et al., 2025) 10 8 2 8 6 1 3 2 40 31.19 13.89
UCE (Gandikota et al., 2024) 29 62 7 29 35 5 11 4 182 30.85 14.07
SLD-M (Schramowski et al., 2023) 47 72 3 21 39 1 26 3 212 30.90 16.34
ESD-x (Gandikota et al., 2023) 59 73 12 39 100 6 18 8 315 30.69 14.41
ESD-u (Gandikota et al., 2023) 32 30 2 19 27 3 8 2 123 30.21 15.10
SAeUron 7 1 3 2 4 0 0 1 18 30.89 14.37

SD v1.4 148 170 29 63 266 18 42 7 743 31.34 14.04
SD v2.1 105 159 17 60 177 9 57 2 586 31.53 14.87
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Figure 9. Robustness to adversarial prompts crafted using Un-
learnDiffAtk method. Our blocking approach demonstrates
strong robustness to adversarial prompts, as evidenced by a mini-
mal drop in unlearning accuracy under attack scenarios. In contrast,
competing methods exhibit significant vulnerability.

6.2. Robustness to adversarial attacks

Finally, as shown by Zhang et al. (2025), recent unlearn-
ing works do not always fully block the unwanted content,
making it possible to bypass the unlearning mechanisms. In
particular, authors show that when prompted with crafted
adversarial inputs models can still be forced to generate un-
learned concepts. We evaluate SAeUron under the Unlearn-
DiffAtk method (Zhang et al., 2025), optimizing a 5-token
prefix for 40 iterations with a learning rate of 0.01. Figure 9
shows unlearning accuracies before and after the attack for
all methods. Competing approaches suffer significant per-
formance drops, suggesting they primarily mask concepts
instead of unlearning them. In contrast, our method, by
filtering internal activations of the diffusion model, remains
highly robust, showing minimal performance degradation.
We present similar evaluation for robustness to adversarial
attacks in nudity unlearning in the Appendix L.

7. Limitations
There are several limitations of our approach serving as in-
teresting future work directions. SAeUron operates during
inference, introducing a 1.92% overhead, which slightly
slows down the generation process. Moreover, the two-
phase approach that we employ in our work brings both

strengths and limitations. Most importantly, in order to
maintain high-quality retention of the remaining concepts,
we have to train SAE on activations gathered from a reason-
able number of various data samples (see Appendix N for
more details). This might bring some computational over-
head when trying to unlearn a single concept. On the other
hand, such an approach naturally allows us to efficiently
unlearn several concepts at the same time without the need
for any additional training. This also includes concepts not
present in the SAE training set, as validated in Appendix F.
Another limitation when compared to finetuning-based un-
learning is that our solution can only be employed in practice
in a situation where users do not have direct access to the
model, as it would be relatively easy to remove the blocking
mechanism in the open-source situation.

Additionally, training SAEs demands significant storage for
activations, posing challenges for large datasets. However,
as presented in Table 1, when compared to other techniques
our approach has low GPU and storage requirements.

Finally, as we apply our approach to the diffusion model’s
activations, we observe limitations in performance, particu-
larly when attempting to unlearn concepts while preserving
similar ones, or when targeting abstract concepts lacking
distinct visual characteristics (see Appendix O).

8. Conclusions
In this work, we propose SAeUron, a novel method lever-
aging sparse autoencoders to unlearn concepts from text-
to-image diffusion models. Training SAEs on activations
from DM, we demonstrate that their sparse and interpretable
features enable precise, concept-specific interventions while
maintaining overall model performance. Method’s reliance
on interpretable features enhances transparency, allowing for
a clearer understanding of the unlearning process. SAeUron
achieves SOTA results on the UnlearnCanvas benchmark,
showcasing robustness to adversarial attacks and the capa-
bility to unlearn multiple concepts sequentially.
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A. BatchTopK SAEs trained for diffusion models
The BatchTopK variant of SAEs enables the model to flexibly distribute active features across a data batch to achieve better
reconstruction performance. Specifically, our SAEs allocate more active latents to image patches with detailed content,
while less important areas, such as the background, are reconstructed using fewer features. As shown in Figure 10, SAEs
distribute active features unevenly across image samples. While most of the distribution centers around a mean of 8192
(since k = 32 and each image contains 16× 16 activation vectors), a notable number of samples use significantly fewer or
more active features.

Additionally, Figure 11 shows the average number of activated features per image patch. Central regions of the image tend
to have more active features, while background areas have fewer. Interestingly, corners of the images also exhibit frequent
activations.

5000 6000 7000 8000 9000 10000 11000
Number of active latents

101

102

103

104

Fr
eq

ue
nc

y

Distribution of active latents per sample
Mean: 8192
Median: 8192
Max: 11276
Min: 5103

Figure 10. Number of active features per image sample. We see that SAEs assigns unequal number of active features per sample,
signifying that some samples are more important than the others for SAE to obtain good reconstruction error.
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Figure 11. Average number of active features corresponding to image patches. Interestingly we observe that BatchTopK SAEs trained
on activations from diffusion model allocate more active features to reconstruct activation vectors corresponding to central image regions.
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B. Prompts from a validation set for feature score calculation
Below, we present the prompts used in our validation set to gather feature activations for style unlearning. The same prompts
are applied to each style used in the UnlearnCanvas benchmark. For object unlearning, we use all anchor prompts from the
CA work, excluding the ”in {style} style” postfixes.

• ”Gothic cathedral with flying buttresses and stained glass windows in {style} style.”

• ”A bear dressed as a medieval knight in armor in {style} style.”

• ”A bird with feathers as iridescent as an oil slick in the sunlight in {style} style.”

• ”A butterfly emerging from a jeweled cocoon in {style} style.”

• ”A cat wearing a superhero cape leaping between buildings in {style} style.”

• ”A dog wearing aviator goggles piloting an airplane in {style} style.”

• ”A goldfish swimming in a crystal-clear bowl in {style} style.”

• ”A candle’s flame flickering in a mysterious old library in {style} style.”

• ”Flower blooming in the middle of a snow-covered landscape in {style} style.”

• ”A frog with a croak that sounds like a jazz musician’s trumpet in {style} style.”

• ”Wild horse galloping across the prairie at sunrise in {style} style.”

• ”A man hiking through a dense forest in {style} style.”

• ”Jellyfish floating serenely in deep blue water in {style} style.”

• ”Rabbit peering out from a burrow in {style} style.”

• ”A classic BLT sandwich on toasted bread in {style} style.”

• ”Sea waves crashing over ancient coastal ruins in {style} style.”

• ”Statue of a forgotten hero covered in ivy in {style} style.”

• ”Tower soaring above the clouds in {style} style.”

• ”A majestic oak tree in a serene forest in {style} style.”

• ”Moonlit waterfall in a serene forest in {style} style.”

C. Selection of cross-attention blocks to apply SAE
In LLMs, SAEs are typically trained on activations from the residual stream, MLP layers, or attention layers (Kissane et al.,
2024). Building on recent studies on mechanistic interpretability in diffusion models (Basu et al., 2023; 2024), we apply
SAEs to cross-attention blocks.

To identify the appropriate blocks for style and object unlearning, we conduct an experiment where each cross-attention
block is ablated one by one, and the block causing the most significant degradation in the targeted visual attribute (style or
object) is selected. Ablation involves replacing the block with identity function. Intuitively, this localizes the block most
responsible for generating the analyzed attribute.

Figure 12(a) shows original generated images compared to those with the object block up.1.1 ablated, while Figure 12(b)
demonstrates the effect of ablating the style block up1.2. Although objects remain visible after ablating the object block,
they are significantly more degraded compared to ablations of other blocks. In contrast, ablating the style block almost
entirely removes the original style from the image.
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(a)

(b)

Figure 12. Ablation of cross-attention blocks. (a) Ablating the object block up.1.1 notably degrades the quality of generated objects
and (b) ablating the style block up.1.2 almost completely removes the original style of the image.

D. Details of sequential unlearning evaluation
The sequential unlearning evaluation assesses methods in a scenario where unlearning requests arrive sequentially. This
setup requires methods to progressively remove an increasing number of concepts from a base model while ensuring
previously unlearned targets remain unlearned. At the same time, it significantly challenges the retention of the model’s
overall performance.

To ensure fair comparison, we follow the evaluation protocol from the UnlearnCanvas paper. Specifically, we sequentially
unlearn the following styles in this order:

1. Abstractionism

2. Byzantine

3. Cartoon

4. Cold Warm

5. Ukiyoe

6. Van Gogh

After each phase, we compute the UA and RA metrics, where RA is the average of IRA and CRA. Figure 13 shows UA
averaged over all unlearned concepts up to each phase. SAeUron consistently maintains high unlearning accuracy and
significantly outperforms competing methods in retaining the ability to generate all other concepts.
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Figure 13. Evaluation on unlearning multiple concepts. SAeUron achieves high unlearning accuracy and outperforms other approaches
in retaining generative capabilities for non-targeted concepts.

E. SAE trainings details
We train our BatchTopK sparse autoencoders with k = 32 and an expansion factor of 16. Optimization uses Adam (Kingma,
2014) with a learning rate of 0.0004 and a linear scheduler without warmup. We set the batch size to 4096 and unit-normalize
decoder weights after each training step.

Following heuristics from (Gao et al., 2025), we set kaux to a power of two close to n
2 and α = 1

32 . Additionally, in line
with Templeton et al. (2024), we consider a latent dead if it has not activated over the last 10M training samples. We train
the SAE on the up.1.1 object block for 5 epochs and on the up.1.2 style block for 10 epochs.

Table 3 summarizes key training hyperparameters and metrics, while Figure 14 presents log feature density plots at the end
of training. The SAE trained on up.1.1 exhibits dead latents, whereas the one trained on up.1.2 does not. Notably, very
few features activate very frequently, which suggests promising interpretability.

Both SAEs were trained on a single NVIDIA RTX A5000 GPU. Training the SAE on the up.1.1 object block took 27
hours and 40 minutes, while training on the up.1.2 style block required 59 hours and 1 minute.

(a) Log feature density of block up.1.1 (b) Log feature density of block up.1.2

Figure 14. Log feature density plots of SAEs trained on cross-attention blocks.
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Table 3. Summary of SAE trainings.

Block # Latents n k α
Fraction Var. Learning Batch Dead Feature Epochs Normalize
Unexplained Rate Size Threshold Decoder

up.1.1 20480 32 1
32 0.181 0.0004 4096 10M 5

√

up.1.2 20480 32 1
32 0.198 0.0004 4096 10M 10

√

F. SAE generalization abilities
We assess the generalization of SAEs by training a sparse autoencoder on activations from prompts in a randomly selected
half (25) of the styles in the UnlearnCanvas benchmark. The training setup remains identical to our other SAEs.

To evaluate the ability to unlearn concepts not seen during training, we apply SAeUron to the style unlearning task using
this SAE, following the setup in Section 5.3. Table 4 presents results for SAEs trained on half of the styles, evaluating
performance on all styles, in-distribution styles, and out-of-distribution (OOD) styles.

Notably, we achieve over 50% unlearning accuracy on OOD data, demonstrating that SAEs effectively generalize and can
unlearn concepts even when they were absent from the training set.

Table 4. Unlearning performance with SAE trained on half of the data.

Setup UA (↑) IRA (↑) CRA (↑) Avg. (↑)
All data 75.00% 90.18% 80.74% 81.97%
In-distribution 99.76% 99.23% 98.48% 99.16%
Out of distribution 51.00% 67.38% 98.36% 72.25%

G. Hyperparameters for object unlearning
For object unlearning we tune our two hyperparameters: number of selected features τc and multiplier γc for each class
separately. Selected parameters are presented in Table 5.

Table 5. Hyperparameters of our method for object unlearning.

Object Selected features τc Multiplier γc
Architectures 20 −20.0
Bears 10 −30.0
Birds 20 −10.0
Butterfly 3 −15.0
Cats 1 −15.0
Dogs 2 −20.0
Fishes 2 −30.0
Flame 3 −25.0
Flowers 20 −20.0
Frogs 5 −5.0
Horses 25 −25.0
Human 25 −20.0
Jellyfish 25 −15.0
Rabbits 4 −30.0
Sandwiches 20 −15.0
Sea 15 −30.0
Statues 20 −30.0
Towers 25 −20.0
Trees 30 −25.0
Waterfalls 30 −30.0
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H. Activation steering on style features
We further explain what information is encoded by our SAE as individual features with the highest correspondence to a
concept c. To that end, we generate unconditional examples using diffusion model (using an empty prompt) and steer the
generation process by increasing activations of the highest scoring features for a given concept. Specifically, we modify
feature maps Ft during forward pass of the diffusion model at each timestep t in the following manner:

Ft ← Ft +
∑
i∈Fc

γ+
c µ(i, t,Dc)di, (7)

where di is feature direction corresponding to a i-th column of SAE decoder, γ+
c > 0 ∈ R is a concept-specific positive

multiplier that determines the strength of steering and Fc := {i | i ∈ Top-τc({score(i, t, c,D)})} is a set of chosen features.
In Figure 15 we demonstrate that such steering results in generations that exhibit visual attributes corresponding to specific
artistic styles. This evidences a strong correspondence of features with these styles and thus supports the effectiveness of our
feature localization method.

Reference
Image

Without
Steering

With
Steering

Picasso

Abstractionism

Superstring

Pastel

Color
Fantasy

Figure 15. Steering on unconditional generations with features selected using score-based method. Features associated with specific
styles effectively produce generations that visibly reflect those styles.
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I. K-nearest neighbors classification for style features
We conduct an analogous experiment to the one in Section 5.2.1, this time on style features. Figure 16 presents the results.
Notably, both the score-based and random feature setups use only a single feature, as our selection method identifies only
one feature for style unlearning.

Interestingly, accuracy remains similar between using all features and the score-based selection. Moreover, accuracy
tends to increase from approximately the 30-th timestep, suggesting that style-related features emerge later compared to
object-related features in the classification setup.
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Figure 16. Style classification with k-nearest neighbors algorithm based on SAE feature activations.

J. Distribution of feature importance scores across timesteps
We analyze how the distribution of score importance varies across denoising timesteps. Figure 17 shows two high percentiles
of score distributions over all 100 timesteps. We observe that the threshold value decreases as the generation process
progresses, indicating that more features receive high scores early in denoising. As the process continues, only a small
number of features remain highly relevant to specific concepts.
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Figure 17. Percentiles of score distribution across denoising timesteps.
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K. UnlearnDiffAtk evaluation of object unlearning
We also evaluate our method on adversarial prompts crafted using the UnlearnDiffAtk method for object unlearning. As
shown in Figure 18, unlearning accuracy drops significantly under attack. However, this is largely due to the nature of
the evaluation process, where each iteration of UnlearnDiffAtk determines attack success based on the classifier’s argmax
prediction.

As demonstrated in Figure 19, SAeUron completely removes the targeted object from the image. However, since no other
object replaces it, the classifier’s predictions become largely random. Consequently, attacks are often marked as successful,
even when they fail to make the model generate the unlearned object.

To further validate whether images before and after the attack resemble the targeted object, we compute CLIPScore (Radford
et al., 2021) between the target object’s name and the image. As shown in Table 6, the CLIPScore remains nearly unchanged,
indicating that the attack rarely leads to generating the targeted object.
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Figure 18. Robustness to adversarial prompts crafted using UnlearnDiffAtk method on object unlearning.

Table 6. CLIPScore between images and targeted objects before and after the attack. Although the attack is successful, the similarity
to the target object barely changes.

CLIPScore (↓)
Before attack 0.2329
After successful attack 0.2403
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Figure 19. Effect of UnlearnDiffAtk on object unlearning with our approach. The left column shows images generated with SAeUron,
where the object should be unlearned, while the right column presents results after the adversarial attack. Despite the attack’s success, the
targeted object remains absent from the image.

L. Adversarial attack evaluation for nudity unlearning
We run additional comparisons with adversarial attacks using the 143 nudity prompts provided by the authors of UnlearnDif-
fAtk as a benchmark. As presented in Table 7, SAeUron outperforms even the methods specifically designed for robustness
against adversarial attacks.

In this setup Pre-ASR and Post-ASR are Attack Success Rates of nudity generation from the official UnlearnDiffAtk
Benchmark. Both metrics are measured based on the same set of predefined 143 prompts generating nudity in the base
SD-v1.4 model. Pre-ASR measures the percentage of nudity generated by the unlearned evaluated model. In the Post-ASR
scenario, each prompt is additionally tuned in an adversarial way by the UnlearnDiffAtk method to enforce the generation of
nudity content. Substantial differences between those two metrics for some methods witness the fact that they are highly
vulnerable to this type of attack. Notably, our method achieves a Post-ASR of 1.4%, yielding the smallest difference between
Pre and Post ASR.
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Table 7. Attack Success Rate (ASR) before and after UnlearnDiffAtk on nudity prompts. Our method is robust against adversarial
attack.

Method Pre-ASR Post-ASR

FMN (Zhang et al., 2024a) 88.03 97.89
SPM (Lyu et al., 2024) 54.93 91.55
SAFREE (Yoon et al., 2025) 26.06 85.59
UCE (Gandikota et al., 2024) 21.83 79.58
ESD (Gandikota et al., 2023) 20.42 76.05
RECE (Gong et al., 2024) 13.38 75.42
MACE (Lu et al., 2024) 9.10 74.57
AdvUn (Zhang et al., 2024b) 7.75 21.13
SalUn (Fan et al., 2024) 1.41 11.27
SHS (Wu & Harandi, 2024) 0.00 7.04
Erasediff (Wu et al., 2024) 0.00 2.11
SAeUron 0.00 1.40

M. Unlearning features selection - examples
In this section, we provide additional examples of features selected for unlearning of specific objects at different timesteps:

Figure 20. The most important features for Bears unlearning according to our score-based approach across timesteps. Features are
sorted by importance in each row from left to right. Additionally, we display normalized feature activation to showcase the interpretability
of features.
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Figure 21. The most important features for Dogs unlearning according to our score-based approach across timesteps. Features are
sorted by importance in each row from left to right. Additionally, we display normalized feature activation to showcase the interpretability
of features.

Figure 22. The most important features for Rabbits unlearning according to our score-based approach across timesteps. Features are
sorted by importance in each row from left to right. Additionally, we display normalized feature activation to showcase the interpretability
of features.

N. Unlearning time vs. performance evaluation
To showcase the efficiency of our approach, we measure the time needed to achieve the desired unlearning performance in
Figure 23. We evaluate the scaling of the SAeUron approach using the training set of sizes: 100, 200, 500, 750, and 1000
images. We train our SAE for 5 epochs for each scenario, keeping the hyperparameters constant. Our approach achieves
good unlearning results even in limited training data scenarios while being more efficient from all methods requiring
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fine-tuning.
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Figure 23. Comparison of total time needed for style unlearning across methods. We evaluate SAeUron across 5 different sizes of
SAE training sets, demonstrating its scalability and high performance even with highly limited data. At the same time, all setups of our
approach perform unlearning more efficiently than most methods.
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O. Limitations of SAeUron
The main limitation of our method regarding the unlearning performance can be observed in a situation where two classes -
unlearned and remaining ones, share high similarity. In such cases, we might also ablate features that are activated for the
remaining class. To visualize this issue, we present generated examples of the dog class while unlearning the cat class and
vice versa in Figure 24. Observed degradation is mainly due to the overlap of features selected by our score-based approach
during initial denoising timesteps (Figure 25). To further investigate this issue, in Figure 26 we visualize overlapping
features. The strength of using SAEs for unlearning is that we can interpret the failure cases of our approach - in this case
overlaped feature is related to the generation of heads of both animals. During later timesteps, our score-based selection
approach is mainly effective and features that either do not activate at all on the other class or activate with a much smaller
magnitude (Figure 27 and Figure 28).

Original

“Dogs” unlearning

“Cats” unlearning

“Cats” “Dogs”

Figure 24. Impact of Cats and Dogs unlearning on each other. Due to partially shared features selected for unlearning, we observe a
degrading impact of unlearning. Dogs unlearning particularly negatively impacts the quality of generated Cats.
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Figure 25. Number of overlapping features selected for unlearning of Dogs and Cats. During the first 10 denoising timesteps there is a
feature that is selected by our score-based approach for unlearning of both classes. We show activations of this feature in Fig. 26.
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Figure 26. Activations of overlapped feature 17704 during the first denoising steps. Feature is related to the generation of the head of
both animals.
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Figure 27. Activations of features selected for unlearning of Cats during generation of Cats and Dogs. Selected features do not
activate on a Dog examples at all, or with notably smaller magnitude.
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Figure 28. Activations of features selected for unlearning of Dogs during generation of Cats and Dogs. Selected features do not
activate on a Cat examples at all, or with notably smaller magnitude.
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O.1. Unlearning of abstract concepts

To assess how SAeUron performs in unlearning broad and more abstract concepts, we evaluated its performance on the full
I2P benchmark. Following prior works, we use the Q16 detector to assess whether a generated image contains inappropriate
content. The results are presented in Table 8. We observed that, compared to other benchmarks, our method underperforms
on this one, performing on par only with the FMN method.

We attribute this outcome to the fact that in SAeUron, we train the SAE on internal activations of the diffusion model.
As a result, the learned sparse features correspond to individual visual objects, such as cat ears or whiskers. Thus, while
our method effectively removes well-defined concepts composed of visual elements (e.g., nudity or blood), it struggles to
capture abstract notions like hate, harassment, or violence.

Table 8. Inappropriate content unlearning evaluation. Following Schramowski et al. (2023) and Huang et al. (2024), we present the
ratio of inappropriate content as a meric. The best result for each metric is highlighted in bold.

Method Hate (↓) Harassment (↓) Violence (↓) Self-harm (↓) Shocking (↓) Illegal Activity (↓) Overall (↓) CLIPScore (↑) FID (↓)
FMN (Zhang et al., 2024a) 37.7% 25.0% 47.8% 46.8% 58.1% 37.0% 45.4% 30.39 13.52
SLD-M (Schramowski et al., 2023) 22.5% 22.1% 31.8% 30.0% 40.5% 22.1% 28.2% 30.90 16.34
ESD-x (Gandikota et al., 2023) 26.8% 24.0% 35.1% 33.7% 40.1% 26.7% 31.1% 30.69 14.41
UCE (Gandikota et al., 2024) 36.4% 29.5% 34.1% 30.8% 41.1% 29.0% 33.5% 30.85 14.07
Receler (Huang et al., 2024) 28.6% 21.7% 27.1% 24.8% 34.8% 21.3% 26.4% 30.49 15.32
SAeUron 45.4% 40.7% 46.9% 41.57% 53.9% 36.3% 44.6% 30.45 15.08

SD 44.2% 37.5% 46.3% 47.9% 59.5% 40.0% 46.9% 31.34 14.04

P. Qualitative comparison against other methods
In Figure 29 and Figure 30, we present a qualitative comparison with the best-performing contemporary techniques. In the
first set of plots, we show how SAeUron can remove the Bloosom Season style while retaining the original objects and the
remaining styles. This is not the case for the other approaches that often fail to generate more complex classes like statues or
the sea. At the same time, our technique can unlearn the Dogs class without affecting the remaining objects or all of the
evaluated styles.
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Figure 29. Qualitative comparison with other methods on style unlearning.
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Figure 30. Qualitative comparison with other methods on object unlearning.
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Q. Hyperparameters selection
As stated in Section 5.3, we tune hyperparameters in our validation set. Here, we evaluated multiple values for the multiplier
and the number of features selected for unlearning. As shown in Figure Figure 31 of additional results, our method is robust
to these parameters, with a broad range of values (apart from extreme cases) yielding comparably high performance.

-30.0 -25.0 -20.0 -15.0 -10.0 -5.0 0.0
Multiplier

1
2

5
10

15
20

25
30

To
p-

K

51.7 63.3 61.3 22.0 16.3 5.7 1.3

70.3 69.0 69.0 50.0 43.7 55.0 1.7

73.0 74.7 71.7 72.7 69.7 68.3 1.7

73.3 89.7 73.0 72.7 72.0 71.7 5.3

78.3 94.3 95.3 94.0 75.0 72.3 6.0

76.0 76.3 95.7 95.7 94.3 73.7 8.7

79.3 80.3 78.7 95.7 94.3 76.3 8.0

78.7 80.7 97.0 80.0 94.7 91.7 7.7

UA

-30.0 -25.0 -20.0 -15.0 -10.0 -5.0 0.0
Multiplier

1
2

5
10

15
20

25
30

To
p-

K

98.8 98.8 98.8 98.8 98.8 98.8 98.9

97.5 98.6 98.8 98.9 98.7 98.8 98.8

94.3 93.5 93.9 95.1 96.8 98.3 98.8

93.5 93.5 93.8 94.8 94.5 98.1 98.8

93.2 92.6 93.7 94.9 94.3 98.1 98.9

93.0 93.2 93.5 93.8 95.0 98.0 98.9

92.0 92.1 92.4 93.3 93.8 96.7 98.9

92.7 92.1 93.2 93.5 93.8 96.6 98.9

IRA

-30.0 -25.0 -20.0 -15.0 -10.0 -5.0 0.0
Multiplier

1
2

5
10

15
20

25
30

To
p-

K

96.8 96.9 97.0 97.9 98.2 98.7 99.0

95.4 95.8 96.0 96.6 97.0 98.4 99.0

92.0 93.4 93.8 95.2 96.7 97.9 99.0

91.6 92.6 93.7 94.8 96.7 97.7 99.1

91.7 92.2 93.3 95.2 96.6 97.8 99.0

91.4 92.2 93.7 94.9 96.4 97.9 98.9

91.6 92.4 93.6 94.7 96.5 97.9 99.0

91.2 92.6 93.4 95.2 97.0 98.0 99.0

CRA

0

20

40

60

80

100

Sc
or

e 
(%

)

Figure 31. Evaluated metrics for unlearning of classes Cats, Dogs and Towers with different number of selected features and
multiplier.
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R. Detailed performance evaluation
To measure the impact of unlearning on other concepts in Figure 32 we present accuracy on each of 20 classes from
UnlearnCanvas benchmark during unlearning. For most classes, our method successfully removes the targeted class while
preserving the accuracy of the remaining ones. Nonetheless, in some cases where classes are highly similar to each other
(e.g., Dogs and Cats), removing one of them negatively impacts the quality of the other. This observation is consistent across
evaluated methods as presented in appendix D.3 of the original UnlearnCanvas benchmark paper.
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Figure 32. Impact on classification accuracy of classes during unlearning. Unlearning of similar classes, such as Cats and Dogs,
negatively impacts each other. Complicated classes, such as Human, are harder to be effectively removed.
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S. Pseudocode of SAeUron
For ease of understanding our unlearning procedure, we present detailed pseudocode of SAeUron applied on a single
denoising timestep t in Algorithm 2.

Algorithm 1 Prepare for unlearning

1: Input: concept c, timestep t, dataset D, number of features τc, SAE width n
2: Fc ← {i | i ∈ Top-τc({score(i, t, c,D)})}
3: µ(i)← µ

(
i, t,D

)
∀i ∈ Fc

4: Output: Fc,µ

Algorithm 2 SAeUron unlearning method for DMs

1: Input: target concept c, denoising timestep t, validation dataset D, number of features τc, multiplier γc
2: Ft ∈ Rh×w×d ← feature map from cross-attention block
3: F flat

t ∈ R(h×w)×d ← Flatten(Ft)
4: F̂ flat

t ← F flat
t

5: Fc,µ← prepare(c, t,D, τc)
6: for j = 1 to (h× w) do
7: x(j) ← F flat

t [j]
8: z(j), ẑ(j) ← TopK

(
Wenc(x

(j) − bpre)
)

9: for all i ∈ Fc do
10: if ẑ(j)i > µi then
11: ẑ

(j)
i ← γc µ

(
i, t,Dc

)
ẑ
(j)
i

12: end if
13: end for
14: F̂ flat

t [j]←Wdec ẑ
(j) + bpre +

(
z(j) − ẑ(j)

)
15: end for
16: F̂t ← Reshape

(
F̂ flat
t , (h,w, d)

)
17: Output: F̂t ← modified feature map with removed c

T. Auto-interpreting features selected for unlearning
To validate whether the features selected by our score-based method correspond to meaningful and interpretable concepts,
we construct a simple annotation pipeline using GPT-4o (Hurst et al., 2024). To achieve this, we design a prompt for the
GPT model, closely following the one presented in (Paulo et al., 2024) and adapting it to our case. Below, we present this
prompt:

You are a meticulous AI researcher conducting an important investigation into
visual patterns and feature activations. Your task is to analyze two sets
of images and provide an explanation that thoroughly encapsulates the visual
features that trigger a particular activation.

You will be presented with two rows of image examples:

Row 1: Original Images (Context). This row contains 5 original images. These
images provide the visual context for the feature analysis.

Row 2: Activation Overlay Images (Feature Activation). This row contains 5
images. Each image in this row corresponds to the image directly above it in
Row 1, but with a visual overlay. The overlay marks specific regions where a
particular feature is strongly activated in the corresponding original image.

Your goal is to produce a concise, final description that summarizes the shared
visual features and patterns you observe in the highlighted regions of the Row 2
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(Activation Overlay Images), while using the Row 1 (Original Images) for context.
Please adhere to the following guidelines:

Focus on summarizing the visual pattern of activation: Describe the overarching
visual features common to the highlighted areas in the Row 2 (Activation Overlay
Images). Identify and explain the visual patterns you discern within these
overlayed regions. Do not simply describe the entire images in Row 1 or Row 2,
but specifically analyze what visual elements within the activated overlays in
Row 2, when seen in the context of the corresponding original images in Row 1,
indicate the feature is detecting.

Utilize Context from Original Images: Refer to the Row 1 (Original Images) to
understand the objects, scenes, or visual elements present in the areas where the
feature is activated in Row 2. The original images provide crucial context for
interpreting the feature.

Be concise: Keep your final explanation brief and to the point. The explanation
should be a single, concise sentence.

Ignore uninformative examples: If some image pairs or their overlays seem
unclear or do not contribute to identifying a visual pattern, you may disregard
them in your explanation.

Omit marking details: Do not mention the specifics of the visual marking (e.g.,
"red overlay," "highlighted pixels"). Focus solely on the visual content of the
activated regions in Row 2 and describe only the visual content of the activated
regions.

Single explanation: Provide only one concise explanation, not a list of possible
explanations.

Formatted output: The very last line of your response must be the formatted
explanation, beginning with [EXPLANATION]: followed by your concise explanation.

Analyze the following two rows of images (Row 1: Original Images, Row 2:
Activation Overlay Images) and provide your formatted explanation:

Alongside the prompt, we provide the GPT-4o model with images from each class in 10 randomly selected styles. The model
generates feature annotations separately for each style. Figure 33, Figure 34, and Figure 35 visualize feature activations
alongside generated annotations for different objects. As seen in the provided annotations, the GPT model successfully
identified the visual features corresponding to the targeted concepts.
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(a) Generated annotation: ”The activations are strongly triggered by the facial features and eyes
of the rabbits.”

(b) Generated annotation: ”The feature activates in regions corresponding to the rabbits’ facial
features and ears, suggesting a focus on these distinct animal characteristics.”

(c) Generated annotation: ”The activation overlays predominantly highlight the facial features
and ear regions of the rabbits, indicating the model is detecting distinct facial and ear characteris-
tics.”

Figure 33. Activations of selected features for Rabbits unlearning with their annotations generated by the GPT model.

36



SAeUron: Interpretable Concept Unlearning in Diffusion Models with Sparse Autoencoders

(a) Generated annotation: ”The activated regions consistently highlight branching structures
typical of tree tops, indicating the feature is detecting the intricate patterns of tree branches.”

(b) Generated annotation: ”The feature activation highlights the central shape and structure of
the tree tops, focusing on the dense and rounded clusters of foliage.”

(c) Generated annotation: ”The activations consistently highlight the vertical and branching
structures of trees, capturing the contrast between tree trunks and foliage in various lighting
conditions.”

Figure 34. Activations of selected features for Trees unlearning with their annotations generated by the GPT model.
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(a) Generated annotation: ”The feature activation emphasizes vertical flows and streaming pat-
terns resembling waterfalls, highlighting their smooth, elongated shapes and cascading movements
against a textured background.”

(b) Generated annotation: ”The feature activation is consistently triggered by the elongated
vertical flow and white foamy appearance typical of waterfalls in the images.”

(c) Generated annotation: ”The visual pattern of activation corresponds to the vertical flow and
cascading movement of water in waterfalls, highlighted by the contrast between the bright water
streams and the darker, textured background.”

Figure 35. Activations of selected features for Waterfalls unlearning with their annotations generated by the GPT model.
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