
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DES-LOC: DESYNCED LOW COMMUNICATION ADAP-
TIVE OPTIMIZERS FOR FOUNDATION MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Scaling foundation model training with Distributed Data Parallel (DDP) methods
is bandwidth-limited. Existing infrequent communication methods like Local
SGD were designed to synchronize model parameters only and cannot be trivially
applied to adaptive optimizers due to additional optimizer states. Heuristic ap-
proaches that keep states local or reset them lack guarantees and can be unstable in
compute-efficient batch regimes; conversely, Local Adam synchronizes all states
uniformly and is provably convergent but triples communication costs. We propose
Desynced Low Communication Adaptive Optimizers (DES-LOC), a family of opti-
mizers assigning independent synchronization periods to parameters and momenta,
enabling lower communication costs while preserving convergence. Our theoretical
analysis shows that while parameter synchronization dominates the asymptotic rate
in-expectation, high-probability convergence guarantees require at least infrequent
synchronization of the second momentum. Furthermore, we prove that more fre-
quent momentum sync permits larger stable step sizes. Experiments on language
models of up to 1.7B show that DES-LOC can communicate 170× less than DDP
and 2× less than the previous state-of-the-art Local Adam, enabling 1.3–2.1×
wall-clock speedups over DDP for 1-13B models on 100Gb/s links. Furthermore,
unlike previous heuristic methods, DES-LOC is robust to worker failures offering
a scalable, efficient, and fault-tolerant solution for foundation model training.

1 INTRODUCTION

Training foundation models requires distributing optimization across workers for improved memory
and compute. However, frequent gradient communication in standard Distributed Data Parallelism
(DDP) (Li et al., 2020a) increases networking costs and limits scalability. Early works like Local
SGD (Stich, 2019) and FedAvg (McMahan et al., 2017) reduced this overhead by synchronizing
infrequently, averaging parameters only after K ≫ 1 local steps, instead of gradients at every step.
However, modern foundation model training, e.g., Large Language Models (Dubey et al., 2024), uses
adaptive optimizers (Kingma & Ba, 2015) which require additional momenta.

Some extensions of Local SGD to adaptive optimizers (Sani et al., 2025; Douillard et al., 2023)
only average model parameters, which poses challenges. First, they lack convergence guarantees.
Second, keeping momenta local (Douillard et al., 2023) accumulates noisy small-batch gradients and
provides no means to initialize workers. This makes them unsuitable for failure-prone environments.
Third, re-initializing momenta (Sani et al., 2024; 2025) destabilizes training.

Local Adam (Cheng & Glasgow, 2025) addresses these challenges, proving periodic synchro-
nization can converge faster than standard Adam with DDP, and remain robust to the addition of
new workers. However, it requires synchronizing momenta alongside model parameters, tripling
communication costs compared to Local SGD. Hence, we aim to answer the following question:

Can independently syncing parameters and momenta improve communication
efficiency for adaptive optimizers while maintaining convergence and robustness?

As a result of our inquiry, we propose a new optimizer family, Desynced Low Communication
Adaptive Optimizers (DES-LOC), which sets independent synchronization frequencies for parameters
and momenta. This approach significantly reduces communication overhead by synchronizing
momenta less frequently.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Contributions :

1. Provable convergence. We prove convergence (see Section 3) for DES-LOC under: non-convex
objectives when using SGD with momentum (SGDM), and weakly convex objectives when us-
ing Adam. Our theory indicates a higher momentum sync frequency enables larger step sizes.
Furthermore, high-probability bounds demand momenta be synced with finite period for β2 < 1.0.

2. Communication reduction. We empirically show that parameters require more frequent sync than
momenta, and that less frequent momentum sync reduces communication costs (2× vs Local
Adam, 170× vs DDP), leading to 1.3−2.1× reductions in training time over DDP on our hardware.

3. Scalability to large models. We validate DES-LOC at billion-scale language model training,
demonstrating competitive ICL performance against both Local Adam and DDP.

4. Hardware robustness. Unlike previous heuristic methods, DES-LOC avoids persistent local states,
enabling it to seamlessly integrate new workers to support environments prone to system failures.

2 DESYNCED LOW COMMUNICATION ADAPTIVE OPTIMIZERS (DES-LOC)

We start by characterizing the relation between the rate of change of optimizer states and Local
Adam, and how these can be leveraged to lower the communication cost. Consider the Adam update:
ut = β1ut−1 + (1− β1)gt and vt = β2vt−1 + (1− β2)gt ⊙ gt.

For Local Adam, convergence is contingent on β2 satisfying 1− β2 = Õ
(
K−3/2R−1/2

)
(Cheng &

Glasgow, 2025) where K is the number of local steps and R the total communication rounds. Large
K or R, implies β2→1, and conversely larger β2 permits higher K or R.

A useful summary measure is the number of steps until a state’s weight decays to a fraction ψ,
τψ(β) =

lnψ
ln β . Following Pagliardini et al. (2025), we use the half-life τ0.5 as our primary measure,

omitting β when clear. For typical values of β, we have τ0.5(0.95) ≈ 13.5 (Allal et al., 2025),
τ0.5(0.999) ≈ 692.8 (Kingma & Ba, 2015), and τ0.5(0.9999) ≈ 6931 (Taniguchi et al., 2024).
Intuitively, larger half-lives imply synchronizing gradients over longer horizons as the optimizer
is less sensitive to new gradients; choosing β = 0 ignores all previous momenta, whereas β → 1
progressively attenuates signal from the current gradient.

While the half-life captures the horizon for which an optimizer state remains relevant to model
updates, it provides no information on its absolute rate of change. With coordinate-wise clipping,
each gradient component satisfies |(gt)i| ≤ ρ. Unrolling Adam’s recursions over K local steps gives
the follow relation: ut+K = βK1 ut+(1−β1)

∑K−1
k=0 βk1 gt+K−1−k and its second moment analogue.

Since |gt,i| ≤ ρ and |(gt ⊙ gt)i| ≤ ρ2, the maximal ℓ∞ drift of each moment is (see Section F):∥∥ut+K − ut
∥∥
∞ ≤ 2ρ

(
1− βK1

)
, (1)∥∥vt+K − vt

∥∥
∞ ≤ 2ρ2

(
1− βK2

)
. (2)

From the above, large β values and small clip bounds ρ, a common practice in foundation model
training (Brown et al., 2020; Scao et al., 2022), limit the absolute changes in optimizer states. We can
construct similar reasoning for other optimizers (Sutskever et al., 2013; Taniguchi et al., 2024), and
norm-based clipping (Pascanu et al., 2013; Brown et al., 2020). From the above, the half-life of an
optimizer state should inform its synchronization frequency. For example, if τ0.5(0.95) ≈ 13.5 and
K = 256, synchronization only affects few initial local steps. Over the course of the local training,
the impact of the synchronised optimizer state shall decay to 0 given Equations 1 and 2. Conversely,
if K = 16, synchronization approximately matches the half-life, strongly influencing local updates.

2.1 DES-LOC ALGORITHM

Motivated by the above insights, we formalize Desynced Low Communication Adaptive Optimizers
as a family of optimizers offering the same convergence and robustness as Local Adam but with
significantly lower communication costs. Our approach applies generically to adaptive optimizers
parameterized by OPT : (Rd,Rd,R>0, {Rd}N)→ Rd, with N optimizer states {sj−1}Nj=1 ⊂ Rd,
each updated by UPDATEj : (Rd,Rd)→Rd. Coordinate-wise clipping is defined as [clip(X, ρ)]i =

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Algorithm 1 DES-LOC
Require: Model tensors, update functions, hyper-parameters
1: x0 ∈ Rd, {sj−1}Nj=1 ∈ (Rd)N — initial parameter vector, the initial N optimizer states
2: {UPDATEj}Nj=1 : (Rd×Rd → Rd)N — updates optimizer state j from its previous state and the gradient.
3: OPT : Rd × Rd × R+ × (Rd)N → Rd — update params from all worker models.
4: SERVEROPT : Rd → Rd — update params using an abstract outer optimizer
5: ρ ∈ R+, {ηt}T−1

t=0 ∈ (R+)
T−1 — clipping radius for clip(·, ρ), learning-rate for each time-step

6: T,M ∈ N+ — total optimization steps and number of workers
7: Kx ∈ N+, {Kj}Nj=1 ∈ (N+)

N — communication periods (steps)
Ensure: xT , {sjT−1}

N
j=1

8: for each worker m: xm
0 ← x0, s

j,m
−1 ← sj−1 local init

9: for t = 0, . . . , T − 1 do training loop
10: for all workers m = 0, . . . ,M − 1 in parallel do
11: gmt ← ∇F (xm

t ; ξmt) stochastic grad
12: ĝmt ← clip(gmt , ρ) per-coordinate clipping
13: for j = 1 to N do
14: if t mod Kj = 0 then sync sj

15: sj,mt ← UPDATEj
(
Em[sj,mt−1], ĝ

m
t

)
16: else
17: sj,mt ← UPDATEj

(
sj,mt−1, ĝ

m
t

)
18: if t mod Kx = 0 then sync x
19: xm

t+1 ← OPT
(
SERVEROPT(Em[xm

t]), ĝmt , ηt, {sj,mt }Nj=1

)
20: else
21: xm

t+1 ← OPT
(
xm
t , ĝmt , ηt, {sj,mt }Nj=1

)

sgn(Xi) · min{|Xi|, ρ}. To ensure that our method is provably convergent, SERVEROPT is that of
FedAvg (McMahan et al., 2017). However, our algorithm directly extends to the larger FedOpt
(Reddi et al., 2021) framework, which we discuss in Section C.1.

We focus our analysis on SGDM and Adam. As shown in Algorithm 1, DES-LOC synchronizes
parameters x ∈ Rd and optimizer states {sj}Nj=1 at state-specific intervals Kx, {Kj}Nj=1 ∈ N+.
Setting N = 2, s1t = ut, s2t = vt, and using update rules UPDATE1, UPDATE2 based on the Adam
update rules above yields DES-LOC-Adam (see Algorithm 2).

Figure 1: We present: (left) the distance to the optimum and (right) a 2-D contour of a toy problem
where DES-LOC (Kx = 192,Ku = 192,Kv = 692) and Local Adam (K = Kx) both converge to
the optimum (overlapping). Methods keeping optimizer states local () fail to converge. Periodically
resetting states () similarly stalls due to repeated oscillations. We optimize the non-convex function
f(x1, x2) = (1− x1)

2 + 100(x2 − x21)
2 with M = 256 workers and IID Gaussian noise (σ = 1.5).

We show an example of such a toy problem on Non-IID data in Fig. 8.

Toy Example To highlight DES-LOC’s practical benefit, Fig. 1 illustrates a scenario where DES-LOC
and Local Adam converge under noisy gradients, while prior heuristic methods (Douillard et al.,
2023; Sani et al., 2025; Iacob et al., 2025; Sani et al., 2024) fail.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 CONVERGENCE GUARANTEES FOR DES-LOC

This section provides theoretical support for the proposed DES-LOC approach. We focus on a version
of the Adam optimizer that uses only a single momentum state. Extensions to the full Adam optimizer
with both momenta are available in Section D.1 with high-probability bounds shown in Section E.

Formally, we consider the following optimization problem:

minx∈Rd f(x) := 1
M

∑M
m=1 fm(x), with fm(x) = Eξ∼Dm [Fm(x; ξ)]. (3)

In this setup, all M machines collaboratively minimize the objective in (3). Generally, we assume
each machine m has access to only dataset Dm, which can differ from device to device. This recovers
the homogeneous distribution case when all machines have the same dataset D1 = D2 = · · · = DM
and minimize the same loss f1(x) = f2(x) = · · · = fm(x) = f(x). We assume each machine m
computes mini-batch stochastic gradients corresponding to randomly selected samples ξ ∼ Dm from
dataset Dm. We further use the following technical assumptions on the problem structure.
Assumption 1 (Lower bound and smoothness). The overall loss function f : Rd → R is lower
bounded by some f∗ ∈ R and all local loss functions fm are L-smooth:

∥∇fm(x)−∇fm(y)∥ ≤ L∥x− y∥, for any x, y ∈ Rd.
Assumption 2 (Unbiased noise with bounded stochastic variance). The stochastic gradient gm of
local loss function fm computed by machine m is unbiased and the noise has bounded variance:

E[gm] = ∇fm(x), E[∥gmt −∇fm(x)∥2] ≤ σ2, for any x ∈ Rd.
Assumption 3 (Bounded heterogeneity). For any x ∈ Rd, the heterogeneity is bounded by

1
M

∑M
m=1 ∥∇fm(x)∥2 ≤ G2 +B2∥∇f(x)∥2.

All three assumptions are standard and widely used in the convergence analysis of optimization
algorithms Yu et al. (2019); Karimireddy et al. (2020b); Wang et al. (2021); Yuan et al. (2022).
Note that the bounded heterogeneity condition recovers the homogeneous case when G2 = 0 and
B2 = 1. To facilitate the technical presentation of the analysis, we view model and optimizer
state synchronizations through assigning probabilities to each averaging event. Particularly, instead
of averaging model parameters every Kx steps (i.e., t mod Kx = 0), we average with probability
px = 1

Kx
, which are statistically equivalent. In the following theorem, we provide convergence rate

of SGDM optimizer under such probabilistic and decoupled synchronization:
Theorem 1. Let Assumptions 1, 2 and 3 hold. Then, choosing the step size η = min(η0,

1√
T
) with

η0
def
= 1

4L min

(
1− β, 1

6
√
ψmax(1,B2−1)

)
, where ψ

def
= 4(1−px)

p2x
· (1−β)(1−pu)

1−(1−pu)β , (4)

the average iterates xt = Em[xmt] of DES-LOC-SGDM converge with the following rate:
1
T

∑T−1
t=0 E∥∇f(xt)∥2 ≤ 4√

T

(
f(x0)− f∗ + Lσ2

2M

)
+O

(
1+ψ
T

)
. (5)

We now discuss the convergence result and its implications. The obtained rate (5) is asymptotically
optimal for this setup (Arjevani et al., 2023). Notably, the leading term O(1√

T
) is unaffected by the

number of local steps. Interestingly, probabilities px, pu, and the momentum parameter β appear in
the higher-order term O(1

T), and thus have a limited impact on asymptotic convergence speed.

Regarding state synchronization, it is evident from (4) that model synchronization has a greater
impact on convergence due to the dependence ψ = O(1

p2x
). With vanishing px, the ψ term becomes

unbounded and breaks the rate. For optimizer states, it seems that momentum averaging can be
turned off (pu = 0) without affecting the asymptotic behavior of the rate. Setting px = 1 and pu = 0
recovers standard mini-batch SGDM (Liu et al., 2020). However, the ψ term also appears in the step-
size restriction (4). As pu → 0, (1−pu)

1−(1−pu)β → 1
1−β . This imposes the most severe restriction on the

learning rate η0 since η0 ∝ 1√
ψ

, as ψ is maximized. This theory shows that increasing the frequency
pu of momentum averaging—while not changing the asymptotic rate—allows for a larger step size,
potentially leading to faster convergence in practice. This theory justifies that momentum states
can be synchronized less frequently than parameters and that more averaging improves convergence
by supporting larger step sizes. Furthermore, our high probability analysis of DES-LOC-Adam in
Section E shows that the sync frequency of momenta must be finite for β2 < 1.0.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4 EXPERIMENTAL DESIGN

Our experimental setup addresses the following research questions:

RQ1 Do theoretical rates of change predict the empirical evolution of optimizer states?
RQ2 How does the synchronization frequency of a model/optimizer state impact performance?
RQ3 To what extent can DES-LOC cut communication w.r.t. Local Adam in practical scenarios?
RQ4 How does DES-LOC scale with increasing model size and longer training horizons?
RQ5 How does DES-LOC perform when using a Nesterov outer optimizer?

4.1 EXPERIMENTAL SETUP

Models and data. We train a 135M-parameter GPT-style model (arch. in Table 3) with sequence
length 2048. We distinguish worker batch size Bw from global B =

∑M−1
w=0 Bw (Sani et al., 2025). A

2M token global batch is split across M = 4 workers sampling IID from SmolLM2 (Allal et al.,
2025): 70% Fineweb-Edu (Penedo et al., 2024), 10% Cosmopedia (Ben Allal et al., 2024), 10%
Python-Edu, 5% FineMath 4+, and 5% Infi-WebMath 4+. The 135M model trains for
6.4B tokens (2.4× compute-optimal (Hoffmann et al., 2022)). For RQ4, we scale to a 1.7B model for
40B tokens (2× compute-optimal) (Sardana et al., 2024). We show Non-IID data results in Fig. 14.

Optimizers. We use Adam (Kingma & Ba, 2015) (results in Section B) and its variant
ADOPT (Taniguchi et al., 2024), which modifies the update to guarantee convergence for any β2.
For the 135M model, we grid-search (β1, β2, η) under DDP; the 1.7B model uses hyperparameters
from Allal et al. (2025); Taniguchi et al. (2024). Learning rates use the WSD schedule (Hägele et al.,
2024; Allal et al., 2025). We favor ADOPT (β2 = 0.9999) in high-β regimes where Adam is unstable.
We also ablate the outer optimizer, comparing FedAvg with a Nesterov optimizer (Reddi et al.,
2021; Douillard et al., 2023; Charles et al., 2025) on a 700M model trained on 40B tokens.

Baselines. We compare DES-LOC with: (i) synchronous DDP; (ii) Local Adam/ADOPT; (iii)
FAVG+OPT (persistent states (Sani et al., 2025; Douillard et al., 2023)); and (iv) FAVG−OPT
(reset states (Sani et al., 2024; Iacob et al., 2025)). Persistent-state FedAvg is DES-LOC with
Ku,Kv = ∞, an upper bound on comms efficiency. DDP is an upper bound on ML performance.

Metrics. We evaluate models by (i) perplexity and (ii) per-worker asymptotic communication cost
assuming a bandwidth-optimal Ring-AllReduce (Sergeev & Balso, 2018) algorithm scaling
linearly with model size. For the 1.7B model, we report standard in-context-learning (ICL) bench-
marks (Brown et al., 2020). We use a zero-shot setting for ICL tasks unless stated otherwise following
Allal et al. (2025) and report the best performing communication-efficient method in blue with the
best-performing overall in bold. To fairly compare optimizer-state changes across decay rates, we
measure their relative rates of change as ∥st+K − st∥2/∥st∥2. For convergence plots, we report
final-round means and standard deviations next to labels. We also provide wall-time clock results; we
use 4 machines with one H100 for sub-1B models, and 4 machines with 8 H100s each for larger scales.
While the links between machines run at 100Gb/s, we observed overheads limiting the practical
bandwidth to 60− 70 Gb/s. We report stepwise (see Section B.3.1) and timewise convergence. We
also provide an analysis on the wall-clock time vs bandwidth in Section G.1.

5 EVALUATION

Our results show optimizer states change at different rates (Section 5.1), forming a clear synchroniza-
tion hierarchy (Section 5.2). DES-LOC reduces communication 2× vs. Local Adam (Section 5.3)
while converging robustly with adding workers and scaling effectively to large models (Section 5.4).

5.1 HIGHER β OPTIMIZER STATES HAVE SLOWER EMPIRICAL RATES OF CHANGE (RQ1)

Figure 2 shows that relative rates of change for the two momenta in Local ADOPT/Adam scale
with their decay rates under gradient clipping (ρ = 1). Supported by our theoretical discussions on
momenta half-lives (Section 2), the second momentum evolves substantially slower than the first at
high-β2. For Local Adam, the second momentum remains slower even when β2 ≈ β1, potentially

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 2: Relative rates of change for first (left) and second (right) momenta across rounds using
standard Local ADOPT (K = 64). For ADOPT (β2 = 0.9999), increasing β1 ≥ 0.99 greatly slows
the first-momentum rate of change. The second momentum evolves ∼ 100× slower (note y-axis is in
log scale), consistent with their decay rates and half-lives.

(a) DES-LOC vary Kx , fixed Ku = Kv = 256 (b) DES-LOC vary Kv , fixed Kx = Ku = 256

(c) DES-LOC vary Ku, fixed Kx = Kv = 16 (d) DES-LOC vary Ku, fixed Kx = Kv = 256

Figure 3: Model perplexity for DES-LOC (ADOPT, β1 = 0.95, β2 = 0.9999), varying synchroniza-
tion periods independently (others fixed at Kb). Parameter synchronization (a) is critical, with sharp
degradation at higher periods. Second-momentum synchronization (b) minimally affects performance
due to its large half-life (τ0.5(β2) ≫ Kb). First-momentum synchronization significantly improves
perplexity (c) only when the baseline matches its half-life (Kb = 16), having minimal impact other-
wise (d). Parameters and second momentum behave similarly across sync frequencies (Section B)

because gradient variance (Kingma & Ba, 2015) evolves slower than the mean direction (first
momentum).

Takeaway: As discussed in Sections 2 and 3, when β1 ≪ β2, the second momentum evolves slower
than the first, proportional to half-life ratio of the two τ0.5(β2)

τ0.5(β1)
=

ln(β1)
ln(β2)

.

5.2 PARAMETERS REQUIRE FREQUENT SYNC, MOMENTA SYNC PROPORTIONAL TO β (RQ2)

Figure 3 evaluates the effect of independently varying synchronization periods (Kx,Ku,Kv) for
parameters and optimizer states. We consider two baseline periods (Kb = 16, 256), chosen based
on the fastest state’s half-life (τ0.5(0.95) ≈ 13.5). Frequent parameter synchronization (Kx) is
crucial for performance, while synchronizing momenta (Ku,Kv) significantly impacts training only
if their half-lives align with the base frequency Kb. Otherwise, synchronization frequency primarily
influences communication costs rather than model quality. Adam results can be seen in Section B.

Takeaway: Parameter synchronization frequency (Kx) strongly impacts performance, motivated
by the leading term in theoretical bounds (Section 3). Momentum synchronization periods matter
empirically only when chosen near their half-lives, consistent with Sections 2 and 3.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

5.3 DES-LOC BRINGS 2× COMMUNICATION REDUCTIONS OVER LOCAL ADAM (RQ3)

As shown in Figure 4, DES-LOC halves communication versus Local Adam (Cheng & Glasgow,
2025) with matching perplexity by syncing momenta less frequently (Ku = 3Kx,Kv = 6Kx),
exploiting the second-momentum’s lower sensitivity to sync frequency (Fig. 3). This yields a 1.37×
speedup over DDP and 1.1× over Local Adam at Kx = 16 on 4 H100s. At Kx = 256, the speedup
over DDP increases to 1.47× and both DES-LOC and Local Adam saturate throughput.

(a) DES-LOC-ADOPT vs baselines Kx = 16 IID (b) DES-LOC-ADOPT vs baselines Kx = 256 IID

(c) Perplexity impact of doubling workers, Kx = 128. (d) Gradient norms after doubling workers, Kx = 128.

Figure 4: DES-LOC (Ku,Kv = 3Kx, 6Kx) reduces comms by 2× over Local Adam while match-
ing its performance and that of heuristic baselines at high (a) and low (b) frequencies (Section 4.1).
We show robustness by doubling worker count at step 1536 (c,d), where DES-LOC and Local Adam
maintain stable perplexity/norms, outperforming heuristics and ad-hoc optimizer-state averaging.

As shown in Figure 4, DES-LOC effectively initializes new workers and outperforms the straightfor-
ward approach of ad-hoc averaging from checkpoints—whose insufficiency is detailed in Section H.

Takeaway: DES-LOC achieves a 2× communication reduction over Local Adam by leveraging two
insights: optimizer-state sync matters less than parameter sync, and slower-changing states (high β2)
can sync less often. By eventually syncing all optimizer states, DES-LOC matches the robustness of
Local Adam with K = max(Kx,Ku,Kv) when adding new workers/responding to system failures.

5.4 DES-LOC IS SUITABLE FOR LARGE-SCALE TRAINING (RQ4)

Figure 5: DES-LOC matches Local Adam perplexity (left) for billion-scale model training at half
the communication cost (Kx = 256,Ku = 3Kx,Kv = 6Kx), representing a 170× reduction
over DDP. Both DES-LOC and Local Adam converge to competitive perplexity at this scale.
FAVG+OPT achieves good performance (left) but suffers activation growth (right) and parameter-
norm growth (Section B), potentially due to noisy updates, raising concerns for extended training.

Figure 5 shows that DES-LOC reliably scales to 1B models and very infrequent communica-
tion (Kx = 256). Evaluating the billion-scale models on the ICL tasks (Table 1), DES-LOC is

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

competitive with all baselines while reducing communication versus Local Adam and DDP. The
heuristic baseline (Sani et al., 2025) suffers training instabilities (Fig. 5.b) potentially impacting
downstream performance (Table 1) and underscoring the advantage of DES-LOC’s training stability.
We elaborate more on the settings in which we expect DES-LOC to improve stability in Section J.

Our method’s reduced communication costs result in a ≈ 2.2× training speedup over DDP (Figure 5).
As show by our benchmarks Table 2, these time savings scale with model size and comms frequency.
At the 13B scale with Kx = 16, DES-LOC would save 13 days over Local Adam and 73 days
over DDP. The advantage over DDP widens for Kx = 256, where communication-efficient methods
maximize throughput. Table 5 shows equivalent results for throughput.

Table 1: Our billion-scale model trained with DES-LOC matches or surpasses the (ICL) performance
of models trained with Local Adam and FAVG+OPT, approaching DDP performance. FAVG+OPT
underperforms compared to its perplexity results from Fig. 5.a, indicating that the activation in-
creases (Fig. 5.b) from the unstable training procedure may have damaged the model.

Arc Challenge Arc Easy PIQA HellaSwag Avg

DES-LOC 31.8 59.0 70.7 44.9 51.6
Local Adam 31.9 59.0 70.6 45.8 51.8
FAVG+OPT 30.1 58.0 70.0 44.8 50.7

DDP 33.8 62.5 71.1 47.8 53.8

Table 2: Wall-clock time (days) for 1B-13B models to reach 2× compute-optimal tokens at high
(K = 16) and low (K = 256) frequencies with a 2M token batch size. At high frequency (K = 16),
DES-LOC outperforms Local ADAM by over 13 days on the 13B model and is within 3% of
FAVG+OPT. At low frequency (K = 256), it cuts the 13B’s training time > 93 days versus DDP.

1B Model 7B Model 13B Model
Kx 16 256 16 256 16 256

DDP (Baseline) 1.41± 0.008 1.41± 0.008 38.74± 0.161 38.74± 0.161 175.50± 0.478 175.50± 0.478

FAVG+OPT 0.80± 0.007 0.63± 0.006 28.52± 0.095 24.01± 0.088 100.21± 0.544 82.46± 0.513
Local Adam 0.96± 0.006 0.64± 0.006 31.46± 0.090 24.18± 0.087 116.10± 0.484 83.34± 0.509
DES-LOC (Ku,Kv = 3Kx, 6Kx) 0.81± 0.006 0.63± 0.006 28.80± 0.094 24.06± 0.088 102.03± 0.537 82.68± 0.512

Takeaway: DES-LOC enables efficient training of large-scale foundation models, especially at long
training horizons, with downstream ICL performance competitive with DDP. We recommend setting
Kx for sufficient throughput based on bandwidth, then setting Ku, kv as constant multiples (e.g,
3×, 6×) or based on the half-life of their β (see Section I).

5.5 NESTEROV AS THE OUTER OPTIMIZER (RQ5)

5.5.1 DOES NESTEROV IMPROVE DES-LOC

We ablate the outer optimizer for DES-LOC on a 700M parameter model, comparing averaging to a
Nesterov optimizer with momentum of 0.9, outer learning rate of 1.0 tuned following Charles et al.
(2025). The experiment ran on 4 H100s and used a medium-synchronization regime (Kx = 32,Ku =
3Kx,Kv = 6Kx) where models are initialised from 2048-step DDP checkpoints, following Charles
et al. (2025). While our convergence bound is not trivially applicable, our analysis of Eq. (4) suggests
a higher momentum synchronization frequency (pu) should permit a larger step size (η0 ∝ 1/

√
ψ).

As shown in Figure 6, two key points emerge. First, more frequent synchronization (Kx = 32)
allows DES-LOC to come within 1% of the final perplexity of DDP, performing much better than
in infrequent settings (Kx = 256). Second, using Nesterov as the outer optimizer improves
performance over averaging by ≈ 0.5%, with its performance w.r.t DDP being similar to the one
reported in Charles et al. (2025, Table 4) for models at this scale. The Nesterov approach
preserves the practical benefits of DES-LOC, ensuring effective worker initialization and reducing
local optimization noise, which can help prevent issues like exploding activation norms.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 6: Ablation of the outer optimizer for DES-LOC on a 700M parameter model in a medium-
frequency communication setting (Kx = 32), showing (left) convergence in terms of time and (right)
in terms of steps. In this regime, DES-LOC’s final perplexity is within 1% of the DDP baseline. Using
a Nesterov outer optimizer provides a further improvement over averaging.

Figure 7: Comparison of Adam-DDP, Local Adam, DiLoCo, and DES-LOC Nesterov on a
1B-parameter model trained for 40,960 steps with an AdamW inner optimizer. Top left: train
perplexity vs steps. Top right: worker gradient norms. Bottom left: train perplexity vs time, bottom
right: whole-model output activation norms. Shaded regions show std across workers. DES-LOC
Nesterov outperforms Adam, it also outperforms DiLoCo at the cost of more communication.
Error bars show variance across workers, accounting for compounding local drift.

Takeaway: Frequent synchronization (Kx = 32) allows DES-LOC to reach within 1% of the perplex-
ity of DDP. Furthermore, using a Nesterov outer optimizer improves performance over averaging,
while preserving practical benefits like effective worker initialization and reduced optimization noise.

5.5.2 DOES DES-LOC WITH NESTEROV PROVIDE BENEFITS OVER Ku = Kv = ∞

Having shown that a Nesterov outer optimizer improves DES-LOC, we ask whether synchronizing
optimizer states still helps relative to the local-state (Ku = Kv = ∞) Nesterov method DiLoCo.
Charles et al. (2025) has shown that at large scale (> 1B parameters) DiLoCo can match or
outperform DDP with Adam. We adopt their outer hyper-params and train a 1B model with the same
experimental design as Section 5.5.1 using 4× 8 H100s for 40,960 steps (≈ 4× compute-optimal)
with inner Adam, comparing Adam-DDP, Local Adam, DiLoCo, and DES-LOC Nesterov, with
Kx = 32 for Local Adam and DiLoCo and Ku = 4Kx,Kv = 8Kx for DES-LOC Nesterov.

Figure 7 (top left) shows that Nesterov-based methods outperform AdamW: DiLoCo achieves
7.63±0.20 validation perplexity, improving over Adam-DDP by ≈ 2%, while DES-LOC Nesterov
reaches 7.56 ± 0.20, a ≈ 0.9% gain over DiLoCo; both outperform Local Adam (8.13 ± 0.23).
Note that this comparison pits Nesterov-based local updates against DDP with standard Adam; as
Charles et al. (2025) note, once DDP also uses Nesterov, this gap can shrink or reverse depending
on model size and worker count. These results show that that synchronizing optimizer states preserves
the benefits of Nesterov while retaining the advantages of state averaging.

We analyze the interaction between the optimizer states and the outer optimizer by measuring the
gradient norms and activation statistics. In Figure 7 (top and bottom right), for both DiLoCo and

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

DES-LOC Nesterov, gradient norms drop rapidly relative to Adam-DDP and Local Adam and
remain roughly 2× smaller than DDP thereafter, suggesting that Nesterov may steer optimization
toward smoother regions of the loss landscape. State synchronization slightly accelerates the decrease
in gradient norm over DiLoCo, after which the curves coincide.

Under DiLoCo, total output activation norms grow monotonically to more than 2× the Adam-
DDP values, whereas DES-LOC Nesterov substantially slows this growth, ending ≈ 32% below
DiLoCo (bottom row). This resembles the stabilization seen for DES-LOC versus FedAvg baselines
without optimizer-state averaging (Fig. 5), where periodic averaging also curbed activation growth.
This supports viewing finite synchronization as a regularizer that limits worker drift and optimizer-
state noise, yielding better-controlled activations while offering Nesterov’s benefits. DES-LOC
Nesterov does incur additional communication costs relative to DiLoCo at fixed Kx, being ≈ 2%
slower than DiLoCo under these bandwidth conditions (Fig. 7 bottom left) andKu,Kv settings while
being ≈ 8% faster than Local Adam. The extra cost can be made arbitrarily small by increasing
the optimizer-state sync periods (Ku,Kv): in the limit Ku,Kv → ∞ it recovers DiLoCo in both
performance and communication, while any finite sync period partly inherits the robustness and
fault-tolerance benefits of synchronizing optimizer states, modulated by the chosen β’s.

Takeaway: At the 1B scale and long horizons, Nesterov-based local-update methods (DiLoCo,
DES-LOC Nesterov) outperform Adam-DDP, consistent with prior scaling-law results. Relative
to DiLoCo, DES-LOC Nesterov matches or improves perplexity while substantially reducing
gradient and activation norms via periodic optimizer-state synchronization, yielding a tunable point on
the communication–performance Pareto frontier.

6 RELATED WORK

In synchronous data-parallel training, workers exchange full gradients or parameters every iteration,
incurring communication costs linear in model size using Ring-AllReduce (Sergeev & Balso,
2018). When hardware is weakly connected or widely distributed, communication significantly
slows wall-clock training time (Sani et al., 2025) as workers need to wait for synchronization to
finish. Federated Averaging (FedAvg) (McMahan et al., 2017) and Local SGD (Stich,
2019) reduce communication by performing K local optimization steps before averaging parameters,
decreasing communication rounds by a factor of K. Ad-hoc extensions to adaptive optimizers either
keep optimizer states local (Douillard et al., 2023; Charles et al., 2025; Liu et al., 2024) or reset them
after each sync (Sani et al., 2024; 2025), both lacking robust convergence guarantees.

Adam (Kingma & Ba, 2015) is popular for pre-training as it scales to larger batches than SGD (Kunst-
ner et al., 2023; Dubey et al., 2024). It uses moving averages of gradients and their squares, however,
its convergence is not guaranteed as it requires β1 <

√
β2 < 1, with large, problem-specific β2 (Reddi

et al., 2018; Zhang et al., 2022). Other optimizers also track gradient moments (Sutskever et al.,
2013; Chen et al., 2023; You et al., 2020; Taniguchi et al., 2024). Local Adam (Cheng & Glasgow,
2025) reduces communication with local steps but requires syncing optimizer states, which triples the
communication cost relative to Local SGD/DDP, as sync costs scale with the number of states. For
further related work, including compression/sparsification and structured updates, check Section K.

7 CONCLUSION

DES-LOC reconciles communication efficiency with rigorous convergence guarantees in distributed
adaptive optimization. By extending theory to the independent synchronization of Adam and SGDM
optimizer states, we empirically demonstrate convergence alongside 170× and 2× communication
reductions over DDP and prior state-of-the-art methods at billion-scale LLM training, even in envi-
ronments prone to system failures. Our findings yield clear guidelines: i) frequently synchronize
parameters, and ii) synchronize optimizer states less often, proportional to their half-lives. These
insights open avenues for future research, including layer-wise synchronization, adaptive frequencies,
compressed updates, as well as emerging applications, such as worldwide cross-data center training
and collaborative training. As training workloads scale, we envision DES-LOC becoming the standard
for efficient, resilient foundation-model training in data centers and distributed environments.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We are committed to the reproducibility of our work and provide the code, data-processing scripts,
and configurations necessary to replicate the results in this paper.

Code and Environment. Our complete source code is available in the supplementary material. All
dependencies are open-source and can be installed using the provided scripts (system_setup.sh,
install_env.sh), which automate the full environment setup.

Datasets. The experiments use publicly available, open-source datasets. We provide the
script convert_hf_dataset_to_mds_smollm_corpus.sh to replicate our entire data pre-
processing pipeline, from downloading raw corpora to converting them into the required format.

Experimental Protocol. Reproducing our large-scale experiments requires access to significant com-
putational infrastructure (e.g., multi-GPU servers), as specified in our documentation. All experiments
are controlled via a well-defined configuration system using YAML files. Key hyperparameters and al-
gorithmic settings, such as the synchronization frequencies for our method (fl.n_local_steps,
fl.parameter_scheduler_kwargs) and the data distribution across workers, are explicitly
defined. We include example scripts that execute the main experiments reported in the pape when
using the approriate hyperparameters reported in Sections A and 4, providing a clear path to reproduce
our findings.

REFERENCES

Dan Alistarh, Torsten Hoefler, Mikael Johansson, Nikola Konstantinov, Sarit Khirirat, and Cédric
Renggli. The convergence of sparsified gradient methods. In Conference on Neural Information
Processing Systems (NeurIPS), 2018.

Loubna Ben Allal, Anton Lozhkov, Elie Bakouch, Gabriel Martín Blázquez, Guilherme Penedo, Lewis
Tunstall, Andrés Marafioti, Hynek Kydlícek, Agustín Piqueres Lajarín, Vaibhav Srivastav, Joshua
Lochner, Caleb Fahlgren, Xuan-Son Nguyen, Clémentine Fourrier, Ben Burtenshaw, Hugo Larcher,
Haojun Zhao, Cyril Zakka, Mathieu Morlon, Colin Raffel, and Thomas Wolf. Smollm2: When
smol goes big - data-centric training of a small language model. arXiv preprint arXiv:2502.02737,
2025.

Yossi Arjevani, Yair Carmon, John C Duchi, Dylan J Foster, Nathan Srebro, and Blake Woodworth.
Lower bounds for non-convex stochastic optimization. Mathematical Programming, 199(1-
2):165–214, 2023.

Loubna Ben Allal, Anton Lozhkov, Guilherme Penedo, Thomas Wolf, and Leandro von Werra.
Cosmopedia, February 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learners. In Conference on Neural Information
Processing Systems (NeurIPS), 2020.

Zachary Charles, Gabriel Teston, Lucio Dery, Keith Rush, Nova Fallen, Zachary Garrett, Arthur
Szlam, and Arthur Douillard. Communication-efficient language model training scales reliably
and robustly: Scaling laws for diloco. arXiv preprint arXiv:2503.09799, 2025.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Hieu Pham, Xuanyi Dong,
Thang Luong, Cho-Jui Hsieh, Yifeng Lu, and Quoc V. Le. Symbolic discovery of optimization
algorithms. In Conference on Neural Information Processing Systems (NeurIPS), 2023.

Ziheng Cheng and Margalit Glasgow. Convergence of distributed adaptive optimization with local
updates. In International Conference on Learning Representations (ICLR), 2025.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh,
Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam
Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James
Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Lev-
skaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin
Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret Zoph,
Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick, Andrew M.
Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, Rewon
Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas Eck, Jeff Dean,
Slav Petrov, and Noah Fiedel. Palm: Scaling language modeling with pathways. J. Mach. Learn.
Res., 24:240:1–240:113, 2023.

Arthur Douillard, Qixuang Feng, Andrei A. Rusu, Rachita Chhaparia, Yani Donchev, Adhiguna
Kuncoro, Marc’Aurelio Ranzato, Arthur Szlam, and Jiajun Shen. Diloco: Distributed low-
communication training of language models. arXiv preprint arXiv:2311.08105, 2023.

Arthur Douillard, Yanislav Donchev, Keith Rush, Satyen Kale, Zachary Charles, Zachary Gar-
rett, Gabriel Teston, Dave Lacey, Ross McIlroy, Jiajun Shen, Alexandre Ramé, Arthur Szlam,
Marc’Aurelio Ranzato, and Paul Barham. Streaming diloco with overlapping communication:
Towards a distributed free lunch. CoRR, abs/2501.18512, 2025.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn,
Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston
Zhang, Aurélien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Rozière, Bethany Biron,
Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris
McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton
Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, David
Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip
Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Graeme Nail,
Grégoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo
Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan Misra, Ivan Evtimov,
Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer
van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang,
Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua
Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Kartikeya Upasani, Kate Plawiak,
Ke Li, Kenneth Heafield, Kevin Stone, and et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Personalized federated learning: A meta-
learning approach. arXiv preprint arXiv:2002.07948, 2020.

Alexander Hägele, Elie Bakouch, Atli Kosson, Loubna Ben Allal, Leandro von Werra, and Martin
Jaggi. Scaling laws and compute-optimal training beyond fixed training durations. In Conference
on Neural Information Processing Systems (NeurIPS), 2024.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical data
distribution for federated visual classification. arXiv preprint arXiv:1909.06335, 2019.

Alex Iacob, Lorenzo Sani, Meghdad Kurmanji, William F. Shen, Xinchi Qiu, Dongqi Cai, Yan Gao,
and Nicholas Donald Lane. DEPT: Decoupled embeddings for pre-training language models. In
International Conference on Learning Representations (ICLR), 2025.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Keller Jordan, Yuchen Jin, Vlado Boza, Jiacheng You, Franz Cesista, Laker Newhouse, and Jeremy
Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024. URL https:
//kellerjordan.github.io/posts/muon/.

Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista A. Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, Rafael
G. L. D’Oliveira, Hubert Eichner, Salim El Rouayheb, David Evans, Josh Gardner, Zachary Garrett,
Adrià Gascón, Badih Ghazi, Phillip B. Gibbons, Marco Gruteser, Zaïd Harchaoui, Chaoyang
He, Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri Joshi,
Mikhail Khodak, Jakub Konečný, Aleksandra Korolova, Farinaz Koushanfar, Sanmi Koyejo,
Tancrède Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock, Ayfer Özgür, Rasmus
Pagh, Hang Qi, Daniel Ramage, Ramesh Raskar, Mariana Raykova, Dawn Song, Weikang Song,
Sebastian U. Stich, Ziteng Sun, Ananda Theertha Suresh, Florian Tramèr, Praneeth Vepakomma,
Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu, and Sen Zhao. Advances
and open problems in federated learning. Found. Trends Mach. Learn., 14(1-2):1–210, 2021.

Satyen Kale, Arthur Douillard, and Yanislav Donchev. Eager updates for overlapped communication
and computation in diloco. arXiv preprint arXiv: 2502.12996, 2025.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
CoRR, abs/2001.08361, 2020.

Sai Praneeth Karimireddy, Martin Jaggi, Satyen Kale, Mehryar Mohri, Sashank J Reddi, Sebastian U
Stich, and Ananda Theertha Suresh. Mime: Mimicking centralized stochastic algorithms in
federated learning. arXiv preprint arXiv:2008.03606, 2020a.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. SCAFFOLD: Stochastic controlled averaging for federated learning. In
International Conference on Machine Learning (ICML), 2020b.

Ahmed Khaled, Satyen Kale, Arthur Douillard, Chi Jin, Rob Fergus, and Manzil Zaheer. Understand-
ing outer optimizers in local sgd: Learning rates, momentum, and acceleration. arXiv preprint
arXiv: 2509.10439, 2025.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), 2015.

Frederik Kunstner, Jacques Chen, Jonathan Wilder Lavington, and Mark Schmidt. Noise is not the
main factor behind the gap between sgd and adam on transformers, but sign descent might be. In
International Conference on Learning Representations (ICLR), 2023.

Black Forest Labs, Stephen Batifol, Andreas Blattmann, Frederic Boesel, Saksham Consul, Cyril
Diagne, Tim Dockhorn, Jack English, Zion English, Patrick Esser, Sumith Kulal, Kyle Lacey, Yam
Levi, Cheng Li, Dominik Lorenz, Jonas Müller, Dustin Podell, Robin Rombach, Harry Saini, Axel
Sauer, and Luke Smith. FLUX.1 kontext: Flow matching for in-context image generation and
editing in latent space. CoRR, abs/2506.15742, 2025.

Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li, Adam Paszke, Jeff
Smith, Brian Vaughan, Pritam Damania, and Soumith Chintala. Pytorch distributed: Experiences
on accelerating data parallel training. Proc. VLDB Endow., 2020a.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. In Inderjit S. Dhillon, Dimitris S. Papailiopou-
los, and Vivienne Sze (eds.), Proceedings of Machine Learning and Systems 2020, MLSys 2020,
Austin, TX, USA, March 2-4, 2020. mlsys.org, 2020b.

Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. Ditto: Fair and robust federated
learning through personalization. In International Conference on Machine Learning (ICML), 2021.

Yujun Lin, Song Han, Huizi Mao, Yu Wang, and Bill Dally. Deep gradient compression: Reducing
the communication bandwidth for distributed training. In International Conference on Learning
Representations (ICLR), 2018.

13

https://kellerjordan.github.io/posts/muon/
https://kellerjordan.github.io/posts/muon/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Bo Liu, Rachita Chhaparia, Arthur Douillard, Satyen Kale, Andrei A. Rusu, Jiajun Shen, Arthur
Szlam, and Marc’Aurelio Ranzato. Asynchronous local-sgd training for language modeling. arXiv
preprint arXiv:2401.09135, 2024.

Jingyuan Liu, Jianlin Su, Xingcheng Yao, Zhejun Jiang, Guokun Lai, Yulun Du, Yidao Qin, Weixin
Xu, Enzhe Lu, Junjie Yan, Yanru Chen, Huabin Zheng, Yibo Liu, Shaowei Liu, Bohong Yin,
Weiran He, Han Zhu, Yuzhi Wang, Jianzhou Wang, Mengnan Dong, Zheng Zhang, Yongsheng
Kang, Hao Zhang, Xinran Xu, Yutao Zhang, Yuxin Wu, Xinyu Zhou, and Zhilin Yang. Muon is
scalable for LLM training. CoRR, abs/2502.16982, 2025.

Yanli Liu, Yuan Gao, and Wotao Yin. An improved analysis of stochastic gradient descent with
momentum. arXiv preprint arXiv:2007.07989, 2020.

Sam McCandlish, Jared Kaplan, Dario Amodei, and OpenAI Dota Team. An empirical model of
large-batch training. CoRR, abs/1812.06162, 2018.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In International
Conference on Artificial Intelligence and Statistics (AISTATS), 2017.

Matteo Pagliardini, Pierre Ablin, and David Grangier. The adEMAMix optimizer: Better, faster,
older. In International Conference on Learning Representations (ICLR), 2025.

Razvan Pascanu, Tomás Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural
networks. In International Conference on Machine Learning (ICML), 2013.

Guilherme Penedo, Hynek Kydlícek, Loubna Ben Allal, Anton Lozhkov, Margaret Mitchell, Colin A.
Raffel, Leandro von Werra, and Thomas Wolf. The fineweb datasets: Decanting the web for the
finest text data at scale. In Conference on Neural Information Processing Systems (NeurIPS), 2024.

Bowen Peng, Jeffrey Quesnelle, and Diederik P Kingma. Demo: Decoupled momentum optimization.
arXiv preprint arXiv:2411.19870, 2024.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: memory optimizations
toward training trillion parameter models. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, 2020.

Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. In
International Conference on Learning Representations (ICLR), 2018.

Sashank J. Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečný,
Sanjiv Kumar, and Hugh Brendan McMahan. Adaptive federated optimization. In 9th International
Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021.
OpenReview.net, 2021.

Thomas Robert, Mher Safaryan, Ionut-Vlad Modoranu, and Dan Alistarh. Ldadam: Adaptive
optimization from low-dimensional gradient statistics. In International Conference on Learning
Representations (ICLR), 2025.

Joshua Romero, Junqi Yin, Nouamane Laanait, Bing Xie, M. Todd Young, Sean Treichler, Vitalii
Starchenko, Albina Y. Borisevich, Alex Sergeev, and Michael A. Matheson. Accelerating collective
communication in data parallel training across deep learning frameworks. In NSDI, pp. 1027–1040.
USENIX Association, 2022.

Lorenzo Sani, Alex Iacob, Zeyu Cao, Bill Marino, Yan Gao, Tomas Paulik, Wanru Zhao, William F.
Shen, Preslav Aleksandrov, Xinchi Qiu, and Nicholas D. Lane. The future of large language model
pre-training is federated. arXiv preprint arXiv:2405.10853, 2024.

Lorenzo Sani, Alex Iacob, Royson Lee Zeyu Cao, Bill Marino, Yan Gao, Wanru Zhao, Dongqi
Cai, Zexi Li, Xinchi Qiu, and Nicholas D. Lane. Photon: Federated llm pre-training. In Eighth
Conference on Machine Learning and Systems, 2025.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Nikhil Sardana, Jacob P. Portes, Sasha Doubov, and Jonathan Frankle. Beyond chinchilla-optimal:
Accounting for inference in language model scaling laws. In International Conference on Machine
Learning (ICML), 2024.

Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilic, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, Jonathan Tow, Alexander M.
Rush, Stella Biderman, Albert Webson, Pawan Sasanka Ammanamanchi, Thomas Wang, Benoît
Sagot, Niklas Muennighoff, Albert Villanova del Moral, Olatunji Ruwase, Rachel Bawden, Stas
Bekman, Angelina McMillan-Major, Iz Beltagy, Huu Nguyen, Lucile Saulnier, Samson Tan,
Pedro Ortiz Suarez, Victor Sanh, Hugo Laurençon, Yacine Jernite, Julien Launay, Margaret
Mitchell, Colin Raffel, Aaron Gokaslan, Adi Simhi, Aitor Soroa, Alham Fikri Aji, Amit Alfassy,
Anna Rogers, Ariel Kreisberg Nitzav, Canwen Xu, Chenghao Mou, Chris Emezue, Christopher
Klamm, Colin Leong, Daniel van Strien, David Ifeoluwa Adelani, and et al. BLOOM: A 176b-
parameter open-access multilingual language model. arXiv preprint arXiv:abs/2211.05100, 2022.

Alexander Sergeev and Mike Del Balso. Horovod: fast and easy distributed deep learning in
tensorflow. arXiv preprint arXiv:1802.05799, 2018.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. Megatron-lm: Training multi-billion parameter language models using model parallelism.
CoRR, abs/1909.08053, 2019.

Sebastian U. Stich. Local SGD converges fast and communicates little. In International Conference
on Learning Representations (ICLR), 2019.

Jianlin Su, Murtadha H. M. Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer:
Enhanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Ilya Sutskever, James Martens, George E. Dahl, and Geoffrey E. Hinton. On the importance of
initialization and momentum in deep learning. In International Conference on Machine Learning
(ICML), 2013.

Shohei Taniguchi, Keno Harada, Gouki Minegishi, Yuta Oshima, Seong Cheol Jeong, Go Nagahara,
Tomoshi Iiyama, Masahiro Suzuki, Yusuke Iwasawa, and Yutaka Matsuo. ADOPT: modified adam
can converge with any β2 with the optimal rate. In Conference on Neural Information Processing
Systems (NeurIPS), 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,
Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023.

Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H. Vincent Poor. Tackling the Objective
Inconsistency Problem in Heterogeneous Federated Optimization. arXiv preprint aXiv:2007.07481,
2020.

Jianyu Wang, Zachary Charles, Zheng Xu, Gauri Joshi, H. Brendan McMahan, Blaise Aguera y Arcas,
Maruan Al-Shedivat, Galen Andrew, Salman Avestimehr, Katharine Daly, Deepesh Data, Suhas
Diggavi, Hubert Eichner, Advait Gadhikar, Zachary Garrett, Antonious M. Girgis, Filip Hanzely,
Andrew Hard, Chaoyang He, Samuel Horvath, Zhouyuan Huo, Alex Ingerman, Martin Jaggi, Tara
Javidi, Peter Kairouz, Satyen Kale, Sai Praneeth Karimireddy, Jakub Konecny, Sanmi Koyejo,
Tian Li, Luyang Liu, Mehryar Mohri, Hang Qi, Sashank J. Reddi, Peter Richtarik, Karan Singhal,
Virginia Smith, Mahdi Soltanolkotabi, Weikang Song, Ananda Theertha Suresh, Sebastian U. Stich,

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Ameet Talwalkar, Hongyi Wang, Blake Woodworth, Shanshan Wu, Felix X. Yu, Honglin Yuan,
Manzil Zaheer, Mi Zhang, Tong Zhang, Chunxiang Zheng, Chen Zhu, and Wennan Zhu. A field
guide to federated optimization. arXiv preprint arXiv:2107.06917, 2021.

Jue Wang, Yucheng Lu, Binhang Yuan, Beidi Chen, Percy Liang, Christopher De Sa, Christopher
Re, and Ce Zhang. Cocktailsgd: Fine-tuning foundation models over 500mbps networks. In
International Conference on Machine Learning (ICML), 2023.

Mitchell Wortsman, Tim Dettmers, Luke Zettlemoyer, Ari Morcos, Ali Farhadi, and Ludwig Schmidt.
Stable and low-precision training for large-scale vision-language models. In NeurIPS, 2023.

Yang You, Jing Li, Sashank J. Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep
learning: Training BERT in 76 minutes. In International Conference on Learning Representations
(ICLR), 2020.

Hao Yu, Rong Jin, and Sen Yang. On the linear speedup analysis of communication efficient
momentum sgd for distributed non-convex optimization. arXiv preprint arXiv:1905.03817, 2019.

Kun Yuan, Xinmeng Huang, Yiming Chen, Xiaohan Zhang, Yingya Zhang, and Pan Pan. Revisiting
optimal convergence rate for smooth and non-convex stochastic decentralized optimization. arXiv
preprint arXiv:2210.07863, 2022.

Hanlin Zhang, Depen Morwani, Nikhil Vyas, Jingfeng Wu, Difan Zou, Udaya Ghai, Dean Foster,
and Sham M. Kakade. How does critical batch size scale in pre-training? In The Thirteenth
International Conference on Learning Representations, 2025.

Yushun Zhang, Congliang Chen, Naichen Shi, Ruoyu Sun, and Zhi-Quan Luo. Adam can converge
without any modification on update rules. In Conference on Neural Information Processing Systems
(NeurIPS), 2022.

Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu, Less Wright, Hamid
Shojanazeri, Myle Ott, Sam Shleifer, Alban Desmaison, Can Balioglu, Pritam Damania, Bernard
Nguyen, Geeta Chauhan, Yuchen Hao, Ajit Mathews, and Shen Li. Pytorch FSDP: experiences on
scaling fully sharded data parallel. Proc. VLDB Endow., 2023.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Appendix

A Table of Contents
A Experimental Details and Optimizer Hyperparameter Sweeps (See Section 4.1) 18

A.1 Architecture Details and Hyperparameters . 18
A.2 Optimizer Parameters Sweeping Procedure . 18

B Complementary Results to Sections 2.1 and 5 20
B.1 Toy Problem on Non-IID Data (See Section 2.1) 20
B.2 RQ2: Independent Sync Frequencies . 21
B.3 RQ3: Communication Reduction And Baseline Comparisons 23
B.4 RQ4: Additional Metrics and Training Instabilities of FAVG+OPT (See Fig. 5.b) 26
B.5 Very low bandwidth experiments . 26
B.6 Muon as the inner optimizer . 27
B.7 Experiments on the Flux Vision Model . 28
B.8 Throughput at 7B Scale . 28

C Further Algorithmic Details of DES-LOC 29
C.1 Extension to FedOpt . 29
C.2 Deterministic Optimizer-specific Variants of Algorithm 1 30
DES-LOC-Adam . 30
DES-LOC-ADOPT . 30

D Convergence Analysis of DES-LOC-SGDM (in expectation bounds) 31
D.1 Extension to Adam optimizer . 34
D.2 Key Lemmas . 39

E Convergence Analysis of DES-LOC-Adam (high-probability bounds) 43

F Derivation of Eqs. (1) and (2): Maximum Momentum Change With Clipping 45

G Wall-Clock Time Modeling 46
G.1 Estimating Total Wall-Clock Time . 47
G.2 Modeling Results . 49

H Checkpointing vs. Periodic State Synchronization 50

I Choosing Synchronization Frequencies 50

J Critical Batch Size and Regime Positioning 51

K Extended Related Work 52

L LLM Usage Declaration 53

M Limitations 53

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A EXPERIMENTAL DETAILS AND OPTIMIZER HYPERPARAMETER
SWEEPS (SEE SECTION 4.1)

Here we provide additional experimental details complementing those in Section 4.1, including: a)
model architecture details and hyperparameters independent of optimizer choice (Section A.1), b)
our hyperparameter sweep procedure to select optimizer-specific settings (Section A.2), and c) the
optimal hyperparameters with those used in Section 5 highlighted in bold.

A.1 ARCHITECTURE DETAILS AND HYPERPARAMETERS

Table 3: Model architecture and training parameters. We denote the number of transformer blocks by
#Blocks, number of attention heads by #Heads, embedding dimension by dmodel, vocabulary size by
|V|, and feedforward-layer expansion by Exp. Ratio. All models use positional embeddings (Su et al.,
2024), the silu activation function, and norm-based gradient clipping with clip-bound ρ. Global
batch size (summed across all workers) is |BG|, and sequence length is standard for models at these
scales. For model initialization we use σ = 1/

√
dmodel. The total number of steps is denoted by T .

Model Size Blocks dmodel |V| #Heads Exp. Ratio ROPE θ ACT Init σ ρ Seq Len |BG| T

135M 30 576 50K 9 4 10000 silu 0.04 1.0 2048 1024 1536, 3072
720M 12 2048 50K 16 4 10000 SiLU 0.02 1.0 2048 512 38912
1.7B 24 2048 50K 16 4 10000 silu 0.02 1.0 2048 1024 20480

Table 3 summarizes the architectural details of our models, following established practices for large
language models at their respective scales. Unless otherwise stated, we adopt the hyperparameters
recommended by Allal et al. (2025) for both the 135M and the 1.7B models. We operate at a
batch size of 2M tokens, which is very large for the 135M model at the length of training we
perform (Zhang et al., 2025) and industry-standard for the 1.7B model (Touvron et al., 2023), we
chose to operate at large batch sizes because adaptive optimizers provide benefits primarily in large-
batch training regimes (Kunstner et al., 2023). Moreover, we intend DES-LOC for use in cross
data-center scenarios, where effectively utilizing available accelerators naturally demands large batch
sizes and/or model scales. For both model sizes, we train for approximately 2× the compute-optimal
token budget (Hoffmann et al., 2022), placing our evaluations within the context of extended-duration
foundation model training (Allal et al., 2025). Our chosen token budget is conservative due to
resource constraints; for comparison, Allal et al. (2025) used 11 trillion tokens which is over 4000×
compute-optimal for the 135M model, and 300× for the 1.7B.

We select warmup and decay schedules following recommendations from Zhang et al. (2025); Hägele
et al. (2024); Allal et al. (2025). For the 135M model, the warmup period is set to TWARM = 512
steps, corresponding to the roughly 40% of the compute-optimal training tokens recommended by
Zhang et al. (2025). For the 1.7B model, we use the recommended TWARM = 2048 steps from Allal
et al. (2025), roughly 10% of total training. The stable-decay period uses a 1− SQRT schedule over
the final TDECAY = 10%× T steps (Hägele et al., 2024). For shorter runs, such as T = 1536 during
heterogeneous-data evaluations, we keep the warmup fixed and proportionally scale the decay to
ensure well-conditioned parameter updates during the stable learning rate period. The seeds we use
for data sampling and for controlling the training algorithms and model are provided in the code
accompanying the appendix.

A.2 OPTIMIZER PARAMETERS SWEEPING PROCEDURE

As detailed in Section 2 and verified empirically in Section 5.2, the choice of decay rates β1, β2
strongly influences the effective synchronization frequencies achievable by both DES-LOC and
Local Adam. This relationship arises directly from the half-life of optimizer states, given by
τ0.5 = ln(0.5)

ln(β) .

For Adam, prior studies such as Wortsman et al. (2023) have demonstrated a critical interplay between
the learning rate (η), batch size, and the second-momentum decay β2. Specifically, increasing either

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

the learning rate or batch size typically demands a lower β2 to maintain training stability and avoid
loss spikes. Conversely, higher β2 values constrain the learning rate and batch size. Such dynamics
have also been recently observed between the learning rate and the first-momentum decay β1 in
Pagliardini et al. (2025). Given that all our experiments use a fixed large batch size of roughly 2
million tokens (appropriate for billion-scale training), we systematically tune the learning rate η in
response to changes in β1, β2. We try values of β1, β2 based on previous works (Zhang et al., 2025)
and follow the theoretical convergence requirement of Zhang et al. (2022) setting β1 ≤

√
β2.

Due to computational constraints, we cannot jointly optimize synchronization periods, data distribu-
tions, and decay parameters, and instead adopt a structured two-stage tuning approach:

1. Stage 1: Tuning η for DDP. Starting from the recommended baseline learning rate (η0)
from Allal et al. (2025), we conduct a grid search as outlined by Charles et al. (2025):
{. . . ,

√
2
−2
η0,

√
2
−1
η0, η0,

√
2η0,

√
2
2
η0, . . . } We expand this search until perplexity stops

improving, identifying an optimal learning rate η∗DDP for each (β1, β2) configuration.
2. Stage 2: Tuning η for Local Adam. We then repeat this procedure for Local Adam,

using η∗DDP as the new baseline. To balance generalizability and computational cost, we set
the synchronization period to an intermediate value of K = 64, between high-frequency
(K = 16) and low-frequency (K = 256) scenarios.

Additionally, following Zhang et al. (2025), we omit weight decay (set to zero) to simplify the
hyperparameter tuning process, as it directly affects only model parameters, not optimizer states.

For experiments using Nesterov, we follow the hyperparamtere sweeping procedure of Charles
et al. (2025), starting with a server learning rate of 1.0 and a momentum of 0.9 and only lowering it
if it fails to converge

A.2.1 OPTIMIZERS’ HYPERPARAMETER CONFIGURATIONS

Table 4: Optimal learning rates η∗ for β1, β2 configurations of ADOPT/Adam. The hyperparameter
sweep procedure (see Section A.2) involves incrementally adjusting the learning rate by factors of√
2 around the initial value from Allal et al. (2025) until performance stops improving.

Optimizer β1 β2 η∗

ADOPT

0.9 0.9999 0.0021
0.95 0.9999 0.0021
0.99 0.9999 0.0014
0.995 0.9999 0.0007

Adam

0.9 0.95 0.0042
0.95 0.95 0.003
0.9 0.99 0.003
0.95 0.99 0.003
0.99 0.99 0.0021

Our hyperparameter sweep (Table 4) indicates that the optimal learning rate η∗ under the warmup-
stable-decay scheduler (Hägele et al., 2024) strongly depends on both optimizer type and the chosen
β1, β2 values. For Adam, optimal learning rates and second-momentum decay (β2) align closely
with recommendations from Allal et al. (2025), though a slightly higher first-momentum decay (β1)
consistently performs better, in agreement with prior findings (Zhang et al., 2025). For ADOPT
(default β2), we observe a lower optimal learning rate compared to Adam, but similar best-performing
β1 values. We also find that the optimal learning rate does not differ between DDP and Local Adam
for given β1, β2 when K = 64 and using a

√
2 sweep, higher learning rates either do not provide a

benefit or diverge while lower learning rates are only necessary when pushing K far closer to the
complete training duration.

We find that increasing β1 for ADOPT, and β1, β2 for Adam, leads to rapid performance degradation,
particularly at or above 0.99. Since the half-life at β = 0.99 (τ0.5 ≈ 69) is not sufficiently longer
than at β = 0.95 (τ0.5 ≈ 13.5) to justify the observed performance drop, we select β1 = 0.95 for all
experiments, along with the default β2 for ADOPT and β2 = 0.95 for Adam.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Takeaway: Increasing an optimizer state’s β significantly affects performance. Since linear increases
in β cause only logarithmic changes in half-life τ0.5, raising β beyond the optimal value degrades
performance without substantially improving the achievable synchronization frequency (Section 5.2).

B COMPLEMENTARY RESULTS TO SECTIONS 2.1 AND 5

We now provide additional results supplementing those presented in the main text. Specifically:

1. Section B.1 complements Section 2.1 by including results on the heterogeneous data
distribution described in Section 4.1. This highlights DES-LOC’s robustness under imperfect
sampling or strongly Non-IID federated scenarios (see Kairouz et al., 2021, Sec 3.1).

2. Section B.2.1 complements Fig. 3 by showing the separate impact of varying synchronization
frequencies for parameters and the second momentum when the base frequency is Kb = 16.
It supports our claim that parameters and second momentum exhibit similar behavior across
different synchronization regimes, unlike the first momentum.

3. Section B.2.2 extends Fig. 3 by evaluating DES-LOC-Adam. We confirm that the parameter
synchronization frequency is the most important, as predicted by our theory. In contrast, the
momenta sync frequency is far less impactful, especially for low parameter sync frequencies.

4. Section B.3.2 complements Fig. 4 by showing DES-LOC-ADOPT’s perplexity against
baseline methods on heterogeneous data (as defined in Section 4.1). This validates our claim
from Contribution 2 regarding DES-LOC’s effectiveness on heterogeneous datasets.

5. Section B.3.3 presents an ablation study examining alternative low-communication configu-
rations of DES-LOC, justifying our choice of Ku = 3Kx,Kv = 6Kx used in Fig. 4.

6. Section B.3.4 repeats the baseline comparison from Fig. 4 for DES-LOC-Adam, demon-
strating that DES-LOC achieves similar communication reductions and performance when
using Adam instead of ADOPT.

7. Section B.4 provides additional metrics illustrating training instabilities for the FAVG+OPT
baseline, including rapidly growing parameter norms, supporting observations in Fig. 5.b.

B.1 TOY PROBLEM ON NON-IID DATA (SEE SECTION 2.1)

Toy Example Non-IID: Fig. 8 simulates the scenario from Section 3, where each worker m

optimizes a distinct loss fm on heterogeneous data. Both DES-LOC and Local Adam show more
stable convergence and get closer to the optimum than heuristic baselines.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

(a) Distance to the optimum. (b) 2-D contour.

Figure 8: We present a toy problem in a Non-IID setting, where DES-LOC (with synchronization
periods Kx = 192,Ku = 192,Kv = 692) and Local Adam (with K = Kx) converge to a superior
solution compared to methods that keep optimizer states local (Douillard et al., 2023; Sani et al.,
2025) or periodically reset them (Sani et al., 2024; Iacob et al., 2025). Like the IID scenario,
resetting optimizer states prevents convergence due to repeated oscillations caused by reinitializations.
Additionally, as seen in panel (a) between rounds 15 and 40, methods keeping optimizer states
local suffer from larger oscillations further away from the optimum. The function optimized is
f(x1, x2) = (1− x1)

2 + 100(x2 − x21)
2, and we simulate M = 256 workers, each adding Gaussian

noise with worker-specific standard deviation σm ∼ N (0, 3).

B.2 RQ2: INDEPENDENT SYNC FREQUENCIES

This section provides supplementary results for RQ2, complementing Section 5.2. Section B.2.1
shows that perplexity has similar sensitivity to the first and second momentum synchronization
frequencies at both high and low base synchronization frequencies. Additionally, Section B.2.2
repeats the comparison from Fig. 3 for DES-LOC-Adam, revealing similar trends regarding the
importance of the parameters, with a reduced importance for the momenta due to lower β2.

B.2.1 PARAMETER AND SECOND MOMENTUM AT Kb = 16 (SEE FIG. 3.A,FIG. 3.B)

Figure 9 examines the effects of independently varying synchronization periods (Kx,Kv) for pa-
rameters and second momentum under DES-LOC-ADOPT in the high-frequency regime (Kb = 16),
chosen based on the first momentum’s half-life (τ0.5 ≈ 13.5). Similar to the low-frequency results in
Fig. 3.a, parameter synchronization frequency (Kx) strongly influences perplexity, while the second
momentum (Kv) has minimal impact due to its long half-life. This contrasts with the first momentum,
whose half-life closely matches the high-frequency period.

(a) DES-LOC vary Kx , fixed Ku = Kv = 16 (b) DES-LOC vary Kv , fixed Kx = Ku = 16

Figure 9: Model perplexity for DES-LOC (ADOPT, β1 = 0.95, β2 = 0.9999), independently varying
synchronization periods at a high baseline frequency (Kb = 16). Similar to Fig. 3, parameter
synchronization (a) is critical, with performance sharply degrading at higher periods, while second-
momentum synchronization (b) has minimal impact due to its large half-life (τ0.5(β2) ≫ Kb).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

(a) First momentum change rate for Local Adam. (b) Second momentum change rate for Local Adam.

Figure 10: Relative rates of change for first and second momenta across rounds using standard Local
Adam (K = 64). Increasing β1 substantially reduces the rate of change of the first momentum, while
increasing either β1, β2 decreases the rate of change of the second.

(a) DES-LOC vary Kx , fixed Ku = Kv = 16 (b) DES-LOC vary Kx , fixed Ku = Kv = 256

(c) DES-LOC vary Ku, fixed Kx = Kv = 16 (d) DES-LOC vary Ku, fixed Kx = Kv = 256

(e) DES-LOC vary Kv , fixed Kx = Ku = 16 (f) DES-LOC vary Kv , fixed Kx = Ku = 256

Figure 11: Model perplexity for DES-LOC-Adam (β1 = β2 = 0.95) when independently varying
sync periods (Kx,Ku,Kv) while fixing others at baseline Kb. Parameter synchronization (a,b)
influences performance in both high (Kb = 16) and low (Kb = 256) frequency regimes. Momenta
synchronization minimally impacts perplexity due to both states’ high adaptivity (low β), with
potentially minor effects during the early stages of training in high-frequency regimes (c,e).

Takeaway: In high-frequency synchronization regimes, the importance of parameters and the second
momentum remains similar to the low-frequency regime shown in Section 5.2,

B.2.2 ADAM RESULTS (SEE FIG. 3)

Fig. 10 show the rate of change results for Adam momenta at various β values.

Figure 11 provides complementary results to Figs. 3 and 9 using DES-LOC-Adam with β1 = β2 =
0.95. Unlike ADOPT, the relatively low β result in both the first and second momentum quickly
adapting to the local gradients, reducing the impact of their sync frequency.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Takeaway: For DES-LOC-Adam, parameter synchronization remains critical, consistent with theory.
However, due to reduced β2, momenta synchronization is less impactful since both the numerator and
denominator of Adam updates are driven by local worker gradients after a few initial steps.

B.3 RQ3: COMMUNICATION REDUCTION AND BASELINE COMPARISONS

This section provides supplementary results for RQ3, complementing Section 5.3. Section B.3.2
shows the perplexity of different configurations providing a 2× communication reduction over
Local Adam. Additionally, Section B.3.4 repeats the comparison against baselines from Section 5.3
for DES-LOC-Adam, showing similar communication reductions relative to Local Adam.

B.3.1 STEPWISE PLOTS FOR BASELINE COMPARISON

Figures 12 and 13 show stepwise plots for wall-clock results in the main text, they are the counterparts
to Figs. 4 and 5.

(a) DES-LOC-ADOPT vs baselines Kx = 16 IID (b) DES-LOC-ADOPT vs baselines Kx = 256 IID

Figure 12: Setting Kx = K, Ku = 3Kx, and Kv = 6Kx, DES-LOC achieves a 2× communication
reduction over Local Adam, matching performance at high (a) and low (b) frequencies for Local
Adam and heuristic baselines (see Section 4.1). Using stepwise converges shows that DES-LOC
matches Local Adam on a per-step basis.

(a) DES-LOC-ADOPT 1B-model perplexity

Figure 13: DES-LOC matches Local Adam perplexity for billion-scale model training at half the
communication cost (Kx = 256,Ku = 3Kx,Kv = 6Kx), representing a 170× reduction over DDP.
Plot shows that stepwise convergence matches between Local Adam and DES-LOC).

Takeaway: DES-LOC matches the stepwise convergence of Local Adam and approaches the
convergence speed of DDP.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

B.3.2 DES-LOC ON HETEROGENEOUS DATA (SEE CONTRIBUTION 2)

Figure 14 evaluates the robustness of DES-LOC against baselines under heterogeneous (Non-IID)
data distributions as described in Section 4.1. We set synchronization periods toKx = K,Ku = 3Kx,
and Kv = 6Kx to achieve a targeted 2× communication reduction over Local Adam.

(a) DES-LOC-Adam, high sync frequency Kx = 16. (b) DES-LOC-Adam, low sync frequency Kx = 128.

Figure 14: Comparison of perplexity under Non-IID conditions for DES-LOC, Local Adam
(Kx = Ku = Kv), and heuristic baselines (defined in Section 4.1) at high (a) and low (b) synchro-
nization frequencies. Due to higher cross-worker variance caused by heterogeneous data, parameters
require slightly more frequent synchronization in the low-frequency regime (Kx = 128 < 256).
Experiments are limited to T = 1536 steps (∼compute-optimal) for computational feasibility.

Takeaway: DES-LOC effectively converges on heterogeneous data distributions, maintaining the
2× communication reduction observed in homogeneous settings. This aligns with our theoretical
convergence results for heterogeneous losses (Section 3) and shows applicability in federated scenarios.

B.3.3 DES-LOC LOW COMMUNICATION CONFIGURATIONS ABLATION (SEE FIG. 4)

Figure 15 explores alternative synchronization configurations enabling DES-LOC to achieve im-
proved communication efficiency over Local Adam. Motivated by theoretical insights (Sections 2
and 3) and empirical evidence (Sections 5.1 and 5.2), we only consider settings where parameter
synchronization is most frequent (Kx ≤ min(Ku,Kv)). This constraint follows from experiments in
Section 5.2, which show that infrequent parameter synchronization significantly degrades perplexity,
while momentum synchronization frequency has a smaller impact. For a fixed 2× communication
reduction over Local Adam, our findings confirm that synchronizing the first momentum more
frequently than the second aligns with their respective half-lives and maintains performance close to
Local Adam.

(a) DES-LOC-ADOPT, high sync frequency Kx =
16.

(b) DES-LOC-ADOPT, low sync frequency Kx =
256.

Figure 15: Configurations of DES-LOC targeting 2× lower communication than Local Adam
(Kx = Ku = Kv), setting Ku,Kv as multiples of Kx. In both high (a) and low-frequency (b)
regimes, performance depends on how communication is split between momenta for β1 ≪ β2.
Syncing the first momentum less often (Ku = 6Kx,Kv = 3Kx) degrades performance, wasting
communication on the slow second momentum. Conversely, syncing it frequently (Ku = 3Kx,Kv =
6Kx) yields performance comparable to Local Adam. Setting Ku = Kv = 4Kx produces
intermediate results.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Takeaway: For a given parameter synchronization period Kx determined by bandwidth constraints,
choose momentum synchronization periods Ku,Kv as multiples of Kx. When β1 ≪ β2, set Ku <

Kv , with Ku = 3×Kx and Kv = 6×Kx providing robust default choices.

B.3.4 ADAM RESULTS (SEE FIG. 4)

We now present results for DES-LOC-Adam with β1 = β2 = 0.95. DES-LOC-Adam achieves
similar communication reductions over Local Adam and DDP as ADOPT. However, due to the
lower β2, the second-momentum half-life (τ0.5(0.95) ≈ 13.5) is significantly shorter than for ADOPT
(τ0.5(0.9999) ≈ 6931). Figure 16 shows that with both momenta evolving at similar rates, the benefit
of selecting Ku < Kv diminishes. For consistency and due to meaningful empirical differences in
rates of change (Section 5.1), we keep Ku = 3×Kx and Kv = 6×Kx in subsequent comparisons.

(a) DES-LOC-Adam, high sync frequency Kx = 16. (b) DES-LOC-Adam, low sync frequency Kx = 256.

Figure 16: Configurations of DES-LOC targeting 2× lower communication than Local Adam
(Kx = Ku = Kv), using Adam (β1 = β2 = 0.95). In contrast to DES-LOC-ADOPT (where
β1 ≪ β2 yields an advantage for Ku < Kv as shown in Fig. 15), the similar half-lives in Adam
make perplexity insensitive to how communication is split between momenta for high (a) and low-
frequencies (b).

Figure 17 shows DES-LOC-Adam achieves a 2× communication reduction over the prior state-of-
the-art Local Adam (Cheng & Glasgow, 2025) without significant perplexity degradation. Due
to the much faster evolution of the optimizer states using Adam compared to ADOPT, local worker
gradients drive the optimization reducing the benefit of allocating more of the communication budget
to the first momentum.

(a) DES-LOC-Adam, high sync frequency Kx = 16. (b) DES-LOC-Adam, low sync frequency Kx = 256.

Figure 17: Setting Kx = K, Ku = 3Kx, and Kv = 6Kx, DES-LOC-Adam achieves a 2× commu-
nication reduction over Local Adam, matching performance at high (a) and low (b) frequencies for
Local Adam and heuristic baselines (see Section 4.1).

Takeaway: DES-LOC-Adam achieves a similar 2× communication reduction over Local Adam as
DES-LOC-ADOPT by exploiting the reduced importance of optimizer-state synchronization relative
to parameters. However, due to the smaller β2 in Adam, there is limited benefit from assigning
different synchronization frequencies to the first and second momenta compared to ADOPT.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

B.4 RQ4: ADDITIONAL METRICS AND TRAINING INSTABILITIES OF FAVG+OPT (SEE
FIG. 5.B)

Figure 18 complements Fig. 5.b by showing parameter and update norms for DES-LOC and baseline
methods when training billion-scale models. Both DES-LOC and Local Adam regularize updates
by synchronizing optimizer states, effectively reducing update norms due to averaging across workers
(triangle inequality). In contrast, the heuristic baseline (Sani et al., 2025) experiences large updates,
leading to uncontrolled parameter growth, increased activations (Fig. 5.b), and degraded performance
on downstream ICL tasks (Table 1) relative to its perplexity (Fig. 5.a).

(a) DES-LOC-ADOPT 1B-update norms (b) DES-LOC-ADOPT 1B-parameter norms

Figure 18: Comparison of update (a) and parameter norms (b) for billion-scale models trained with
DES-LOC (Kx = 256,Ku = 768,Kv = 1536), Local Adam (K = 256), DDP, and Federated
Averaging with persistent optimizer states (FAVG+OPT). Frequent synchronization in Local Adam
and DDP consistently reduces update and parameter norms. Similarly, DES-LOC achieves comparable
reductions at intervals corresponding to multiples of lcm(Kx,Ku,Kv), with smaller intermediate
drops. Conversely, FAVG+OPT, which does not synchronize optimizer states, experiences persistently
larger and noisier updates, becoming vulnerable to spikes (notably before step 5000). This leads to
uncontrolled parameter growth (b).

Table 5: Throughput (batches/sec) for 1B-13B models to reach 2× compute-optimal tokens at high
(K = 16) and low (K = 256) frequencies with a 2M token batch size. All local methods achieve
significant throughput gains over the DDP baseline. At high frequency (K = 16), DES-LOC boosts
throughput by over 1.7× on the 13B model. At low frequency (K = 256), this advantage grows to
over 2.1× versus DDP.

1B Model 7B Model 13B Model
Method Kx = 16 Kx = 256 Kx = 16 Kx = 256 Kx = 16 Kx = 256

DDP (Baseline) 171.9± 0.94 171.9± 0.9 25.1± 0.10 25.1± 0.10 11.1± 0.03 11.1± 0.03

FAVG+OPT 304.9± 2.51 385.4± 3.7 34.0± 0.11 40.4± 0.15 19.4± 0.11 23.5± 0.15
Local Adam 253.1± 1.59 380.1± 3.6 30.9± 0.09 40.2± 0.15 16.7± 0.07 23.3± 0.14
DES-LOC (Ku,Kv = 3Kx, 6Kx) 299.2± 2.39 384.1± 3.7 33.7± 0.11 40.4± 0.15 19.0± 0.10 23.5± 0.15

Takeaway: Unlike heuristic methods, which maintain purely local optimizer states leading to un-
stable, noisy updates, DES-LOC provides stable regularization similar to Local Adam and DDP by
periodically synchronizing parameters and momenta, reducing training instabilities.

B.5 VERY LOW BANDWIDTH EXPERIMENTS

While perplexity is invariant to network bandwidth, wall-clock time is highly sensitive to it. To
practically showcase this, we perform a benchmark with a 1B model to measure time under extremely
low bandwidth conditions (10 Gbit/s). This setup simulates a scenario with affordable, consumer-
grade interconnects rather than data-centers. Due to the extreme gradient synchronization delay
inherent to DDP in this regime, the benchmark was limited to a 10,240 step horizon to remain feasible.

As shown in Figure 19, DES-LOC Nesterov dramatically reduces training time by ≈ 9.42×
compared to DDP, completing the run in 8.99 hours versus 84.73 hours (3.5 days) for DDP, even with
the constant overheads of our unoptimized implementation. Furthermore, DES-LOC Nesterov
is more efficient than Local Adam, finishing ≈ 7% faster (8.99h vs. 9.62h) while achieving

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Figure 19: Training efficiency benchmark on a 1B model under restricted bandwidth (10 Gbit/s).
Left: Perplexity versus wall-clock time. DES-LOC Nesterov effectively decouples training time
from bandwidth, finishing in ≈ 9 hours compared to the projected ≈ 3.5 days for DDP (dashed
blue). Right: Perplexity versus sequential steps. While step-wise convergence is comparable, the
communication overhead of DDP creates a massive bottleneck in the time domain.

significantly lower perplexity (8.91 vs. 10.19). When compared to the ultra-lightweight DiLoCo
baseline (8.68h), DES-LOC Nesterov incurs a time penalty of ≈ 3.6% due to the additional
optimizer state synchronization. However, this yields performance gains, improving final perplexity
by ≈ 2.3% (8.91 vs. 9.12) over DiLoCo.

Takeaway: In extremely low bandwidth settings (10 Gbit/s), DES-LOC Nesterov eliminates
the communication bottleneck, reducing training time by 9.42× over DDP. It strikes a balance on
the Pareto frontier: its wall-clock time is in-between those of Local Adam and DiLoCo while
outperforming them both in perplexity.

B.6 MUON AS THE INNER OPTIMIZER

To assess the versatility of our framework beyond Adam and ADOPT, we integrate DES-LOC with
Muon (Jordan et al., 2024), a novel optimizer utilizing Newton-Schulz iterations for orthogonalization.
Distinct from standard adaptive algorithms that track second-moment variances, Muon preconditions
only the momentum term directly. This architectural difference reduces the relevant synchronization
periods to just two: the parameters (Kx) and the first momentum (Ku). Although a comprehensive
theoretical treatment of preconditioned local updates is outside the scope of this work, the DES-LOC
design is inherently compatible with such structures. Here, we provide empirical evidence of
DES-LOC’s efficacy when wrapping Muon as the inner optimizer.

Experimental Details. We utilize the standard PyTorch implementation of Muon with Nesterov
momentum enabled and a weight decay of 0.1. Following the recommendations of Liu et al. (2025),
we apply the match_rms_norm adjustment to learning rates. We adopt the conventional split
optimization strategy for Muon: AdamW handles embeddings and layer normalizations, while Muon
optimizes all 2D matrices (Jordan et al., 2024). The momentum parameter for Muon is set to β = 0.9,
while the Adam component retains the β1 = 0.9, β2 = 0.999 settings used elsewhere. Gradient
clipping thresholds are scaled by model size: 1.0 for 16M, 0.5 for 125M, and 0.25 for 360M. For
the Local Muon baseline, all optimizer states (Muon momentum; Adam first/second momenta)
synchronize every 32 steps. In contrast, DES-LOC delays state synchronization: the first momentum
(for both optimizers) synchronizes every 96 steps (3× reduction), and Adam’s second momentum
synchronizes every 192 steps (6× reduction).

Figure 20: Training loss comparison between Local Muon (K = 32) and DES-LOC-Muon
(Kx = 32,Ku = 96,Kv = 192) across model scales (16M, 125M, 360M). DES-LOC provides
a perplexity matching the Local Muon baseline across all scales. Crucially, by decoupling the
synchronization frequencies, DES-LOC communicates more than 1.5× less bytes than the baseline.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Takeaway: DES-LOC is compatible with optimizers that rely on Newton-Schulz preconditioning,
such as Muon. By reducing the synchronization frequency of the momentum buffer, DES-LOC
maintains solution quality while significantly lowering communication volume.

B.7 EXPERIMENTS ON THE FLUX VISION MODEL

To demonstrate the universality of DES-LOC across different modalities and architectures beyond
standard decoder-only LLMs, we evaluate its performance on Flux (Labs et al., 2025), a Rectified
Flow Transformer designed for text-to-image generation. This architecture differs significantly
from the causal language models evaluated in previous sections, serving as a robust test for the
generalizability of our decoupled synchronization approach.

Experimental Setup. We utilize the 280M parameter variant of Flux provided by torchtitan,
training with a global batch size of 256. The inner optimizer is AdamW with β1 = 0.9, β2 = 0.999.
We compare three settings: (1) DDP, (2) Local Adam with a synchronization period of K = 32, and
(3) DES-LOC with a parameter sync period ofKx = 32. For DES-LOC, we decouple the momentum
synchronization significantly, setting Ku = 3Kx and Kv = 6Kx (192 steps).

Figure 21: Training loss comparison on the 280M parameter Flux model (Rectified Flow Trans-
former). DES-LOC (Kx = 32,Ku = 192,Kv = 192) effectively matches the convergence trajectory
of both the fully synchronous DDP baseline and Local Adam (K = 32).

Our results, visualized in Fig. 21, indicate that DES-LOC generally matches the performance of
Local Adam and approaches the DDP upper bound.

Takeaway: The efficacy of DES-LOC extends beyond LLMs to Rectified Flow Transformers (Flux).
The method generally matches the performance of DDP and Local Adam while reducing communi-
cation by 2× over Local Adam, demonstrating the universality of the approach. We leave the scaling
of this result to larger vision models for future work.

B.8 THROUGHPUT AT 7B SCALE

To assess the practical scalability of our method on state-of-the-art hardware and at large model
scales, we measure the training throughput of a 7B parameter model distributed across 8 independent
NVIDIA B200 GPUs.

Throughput Analysis. As illustrated in Fig. 22, during the local update phases, each GPU operates
at the peak efficiency of a fully isolated local run, achieving identical tokens-per-second throughput
as a single B200 with zero synchronization overhead. Distinct drops in throughput are observed only
at the sparse synchronization boundaries (Kx = 32, Ku = 96, Kv = 192), where the system pauses
to aggregate model parameters and optimizer states.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Figure 22: Instantaneous throughput (tokens/sec) for a 7B model on 8x B200s. DES-LOC maintains
peak "local-only" speed for the vast majority of steps, with throughput dips occurring only at
synchronization intervals (32, 96, 192). In contrast, standard DDP would incur a synchronization
penalty at every step, permanently depressing the throughput curve.

Crucially, standard DDP incurs this communication penalty at every single training step, significantly
lowering the average tokens/sec. Even with our current unoptimized "stop-the-world" implemen-
tation—which explicitly pauses computation to communicate and does not leverage computation-
communication overlap—DES-LOC significantly increases aggregate throughput by amortizing these
costs over long local training windows.

Takeaway: On high-performance B200 hardware, DES-LOC enables near-linear scaling by keeping
workers in a high-throughput local regime for the majority of training. By restricting communication
overhead to sparse intervals, it delivers significant wall-clock speedups over DDP, even without
low-level implementation optimizations like communication overlap.

C FURTHER ALGORITHMIC DETAILS OF DES-LOC

C.1 EXTENSION TO FEDOPT

Although Cheng & Glasgow (2025) show provable convergence for adaptive inner optimizers in a
federated optimization framework, their result rests on the assumption that after a period of local
work, the new global model is created by averaging the local client models. In relation to the larger
FedOpt literature (Reddi et al., 2021), the scheme chosen by Cheng & Glasgow (2025) resembles
that of FedAvg, or where the server optimizer is SGD with the outer learning rate set to one (Reddi
et al., 2021). Naturally, the question of whether alternate server optimizers than have been used in
prior works can also be implemented for Local Adam, and thus DES-LOC, arises.

We argue that indeed DES-LOC’s principles can be effectively applied to any FedOpt method and
not just FedAvg. While using an alternate server optimizer does not have proven convergence
guarantees as yet, we show in Algorithm 1 that the choice of the ServerOpt is not constrained
from a practical point-of-view. However, the improvements that DES-LOC provide are related to
the local optimization procedure, which is orthogonal to the outer optimizer choice. Choosing the
correct, and most effective, outer optimizer is an open research area (Khaled et al., 2025), and we
leave the investigations of the interactions between DES-LOC and outer optimziers to future work.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

C.2 DETERMINISTIC OPTIMIZER-SPECIFIC VARIANTS OF ALGORITHM 1

Algorithm 2 DES-LOC-Adam
Require: Model tensors, Hyper-parameters
1: x0,u−1, v−1 ∈ Rd — initial parameter vector,seeds for first and second moments
2: {ηt}T−1

t=0 ⊂ R>0 — step-size schedule
3: β1, β2 ∈ [0, 1) — Adam decay factors
4: ρ, λ ∈ R>0 — gradient clipping term, ℓ2 stability term
5: T,M ∈ N+ — total iterations, number of workers
6: Kx,Ku,Kv ∈ N+ — sync periods for parameters, first and second moments

Ensure: xT , uT−1, vT−1

7: for each worker m: xm
0 = x0, u

m
−1 = vm−1 = 0 local init (t = −1 seeds)

8: for t = 0, . . . , T − 1 do training loop
9: for all workers m = 0, . . . ,M − 1 in parallel do

10: gmt ← ∇F (xm
t ; ξmt) stochastic gradient

11: ĝmt ← clip(gmt , ρ) clip to radius ρ
12: if t mod Ku = 0 then sync u
13: um

t ← β1 Em[um
t−1] + (1− β1)ĝ

m
t

14: else
15: um

t ← β1 u
m
t−1 + (1− β1)ĝ

m
t

16: if t mod Kv = 0 then sync v
17: vmt ← β2 Em[vmt−1] + (1− β2)(ĝ

m
t ⊙ ĝmt)

18: else
19: vmt ← β2 v

m
t−1 + (1− β2)(ĝ

m
t ⊙ ĝmt)

20: dmt ←
ηt√

vmt + λ2
⊙ um

t bias-corrected step

21: if t mod Kx = 0 then sync x
22: xm

t+1 ← Em[xm
t]− dmt

23: else
24: xm

t+1 ← xm
t − dmt

Algorithm 3 DES-LOC-ADOPT
Require: Model tensors,Hyper-parameters
1: x0,m−1, v−1 ∈ Rd — initial parameter vector and momenta
2: {ηt}T−1

t=0 ⊂ R>0 — learning rate schedule
3: β1, β2 ∈ [0, 1) — decay factors
4: ρ, ϵ ∈ R>0 — gradient clipping term,small stability constant
5: T,M ∈ N+ — total iterations,number of workers
6: Kx,Km,Kv ∈ N+ — sync periods for parameters, first and second moments

Ensure: xT , mT−1, vT−1

7: for each worker m: xm
0 = x0, m

m
−1 = vm−1 = 0 local initialization

8: for t = 0, . . . , T − 1 do
9: for all workers m = 0, . . . ,M − 1 in parallel do

10: gmt ← ∇F (xm
t ; ξmt) stochastic gradient

11: ĝmt ← clip(gmt , ρ) gradient clipping
12: if t mod Kv = 0 then
13: vmt ← β2 Em[vmt−1] + (1− β2)(ĝ

m
t ⊙ ĝmt)

14: else
15: vmt ← β2 v

m
t−1 + (1− β2)(ĝ

m
t ⊙ ĝmt)

16: if t mod Km = 0 then
17: mm

t ← β1 Em[mm
t−1] + (1− β1)

ĝmt
max{
√

vm
t−1,ϵ}

18: else
19: mm

t ← β1 m
m
t−1 + (1− β1)

ĝmt
max{
√

vm
t−1,ϵ}

20: dmt ← ηtm
m
t ADOPT update

21: if t mod Kx = 0 then
22: xm

t+1 ← Em[xm
t]− dmt

23: else
24: xm

t+1 ← xm
t − dmt

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

D CONVERGENCE ANALYSIS OF DES-LOC-SGDM (IN EXPECTATION
BOUNDS)

Here we provide a non-convex convergence analysis of the proposed DES-LOC approach applied to
the SGDM optimizer which has a single state (N = 1, momentum). The complete description of the
algorithm can be found in Algorithm 4.

Algorithm 4 DES-LOC-SGDM
Require: Model tensors
1: x0 ∈ Rd — initial parameter vector
2: u−1 ∈ Rd — seed for the momentum, initialised to 0

Require: Hyper-parameters
3: {ηt}T−1

t=0 ⊂ R>0 — step-size schedule
4: β ∈ [0, 1) — Momentum decay factor
5: T ∈ N+ — total optimisation iterations
6: M ∈ N+ — number of workers
7: px = 1

Kx
, pu = 1

Ku
∈ [0, 1] — synchronization probabilities for parameters and momentum

Ensure: xT , uT−1, vT−1

8: for each worker m: xm
0 = x0, u

m
−1 = vm−1 = 0 local init (t = −1 seeds)

9: for t = 0, . . . , T − 1 do training loop
10: for all workers m = 0, . . . ,M − 1 in parallel do
11: gmt ← ∇Fm(xm

t ; ξmt) stochastic gradient

12: um
t ←

{
Em[βum

t−1 + (1− β)gmt], with probability pu
βum

t−1 + (1− β)gmt , with probability 1− pu
sync u

13: xm
t+1 ←

{
Em[xm

t − ηtu
m
t], with probability px

xm
t − ηtu

m
t , with probability 1− px

sync x

In order to facilitate the technical presentation, we model synchronization frequencies by assigning
probabilities to each averaging event. For example, the parameters xmt are synchronized with the
probability px = 1

Kx
, which is statistically equivalent to performing the averaging in every 1

px
= Kx

iteration. Similarly, momentum umt synchronization happens with probability pu = 1
Ku

, which can
differ from px.

Step 1 (virtual iterates). For each step t ≥ 0, denote the average parameters, momentum and gradient
as follows:

xt
def
= Em[xmt], ut

def
= Em[umt], gt

def
= Em[gmt].

Then these averaged variables follow the “standard” centralized SGDM dynamics:

ut = βut−1 + (1− β)gt

xt+1 = xt − ηut.

Letting x−1 = x0, define the global virtual iterations as follows

zt
def
=

1

1− β
xt −

β

1− β
xt−1, t ≥ 0.

The key property of this virtual iterates we are going to exploit in the next steps is that they follow
averaged gradients, namely for any t ≥ 0 we have

zt+1 − zt =
1

1− β
(xt+1 − xt)−

β

1− β
(xt − xt−1)

= − η

1− β
ut +

ηβ

1− β
ut−1 = − η

1− β
(ut − βut−1) = −ηgt.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Step 2 (smoothness over virtual iterates). Then we apply smoothness of the global loss function f
over these global virtual iterates.

f(zt+1) ≤ f(zt) + ⟨∇f(zt), zt+1 − zt⟩+
L

2
∥zt+1 − zt∥2

= f(zt) + ⟨∇f(xt), zt+1 − zt⟩︸ ︷︷ ︸
I

+ ⟨∇f(zt)−∇f(xt), zt+1 − zt⟩︸ ︷︷ ︸
II

+
L

2
∥zt+1 − zt∥2︸ ︷︷ ︸

III

.

In the next step, we separately bound each term appearing in the above bound.

Step 3a (one step progress). Bounding term I.

E⟨∇f(xt), zt+1 − zt⟩

= −ηE

〈
∇f(xt),

1

M

M∑
m=1

gmt

〉
= −ηE

〈
∇f(xt),

1

M

M∑
m=1

∇fm(xmt)

〉

= −η
2
E∥∇f(xt)∥2 −

η

2
E

∥∥∥∥∥ 1

M

M∑
m=1

∇fm(xmt)

∥∥∥∥∥
2

+
η

2
E

∥∥∥∥∥∇f(xt)− 1

M

M∑
m=1

∇fm(xmt)

∥∥∥∥∥
2

= −η
2
E∥∇f(xt)∥2 −

η

2
E

∥∥∥∥∥ 1

M

M∑
m=1

∇fm(xmt)

∥∥∥∥∥
2

+
η

2
E

∥∥∥∥∥ 1

M

M∑
m=1

∇fm(xt)−∇fm(xmt)

∥∥∥∥∥
2

≤ −η
2
E∥∇f(xt)∥2 −

η

2
E

∥∥∥∥∥ 1

M

M∑
m=1

∇fm(xmt)

∥∥∥∥∥
2

+
η

2M

M∑
m=1

E∥∇fm(xt)−∇fm(xmt)∥2

≤ −η
2
E∥∇f(xt)∥2 −

η

2
E

∥∥∥∥∥ 1

M

M∑
m=1

∇fm(xmt)

∥∥∥∥∥
2

+
ηL2

2M

M∑
m=1

E∥xt − xmt ∥2︸ ︷︷ ︸
Lemma 3

.

Step 3b (one step progress). Bounding term II.

E⟨∇f(zt)−∇f(xt), zt+1 − zt⟩ = −ηE

〈
∇f(zt)−∇f(xt),

1

M

M∑
m=1

∇fm(xmt)

〉

≤ ηρ

2
E∥∇f(zt)−∇f(xt)∥2 +

η

2ρ
E

∥∥∥∥∥ 1

M

M∑
m=1

∇fm(xmt)

∥∥∥∥∥
2

≤ ηρL2

2
E∥zt − xt∥2︸ ︷︷ ︸

Lemma 2

+
η

2ρ
E

∥∥∥∥∥ 1

M

M∑
m=1

∇fm(xmt)

∥∥∥∥∥
2

.

Step 3c (one step progress). Bounding term III.

L

2
E∥zt+1 − zt∥2 =

η2L

2
E

∥∥∥∥∥ 1

M

M∑
m=1

gmt

∥∥∥∥∥
2

=
η2L

2
E

∥∥∥∥∥ 1

M

M∑
m=1

gmt −∇fm(xmt)

∥∥∥∥∥
2

+
η2L

2
E

∥∥∥∥∥ 1

M

M∑
m=1

∇fm(xmt)

∥∥∥∥∥
2

=
η2L

2M2

M∑
m=1

E∥gmt −∇fm(xmt)∥2 + η2L

2
E

∥∥∥∥∥ 1

M

M∑
m=1

∇fm(xmt)

∥∥∥∥∥
2

≤ η2L

2M
σ2 +

η2L

2
E

∥∥∥∥∥ 1

M

M∑
m=1

∇fm(xmt)

∥∥∥∥∥
2

.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Step 3abc (one step progress). Combining previous bounds.

Ef(zt+1)− Ef(zt) ≤ E ⟨∇f(xt), zt+1 − zt⟩︸ ︷︷ ︸
I

+E ⟨∇f(zt)−∇f(xt), zt+1 − zt⟩︸ ︷︷ ︸
II

+E
L

2
∥zt+1 − zt∥2︸ ︷︷ ︸

III

≤ −η
2
E∥∇f(xt)∥2 −

η

2
E

∥∥∥∥∥ 1

M

M∑
m=1

∇fm(xmt)

∥∥∥∥∥
2

+
ηL2

2M

M∑
m=1

E∥xt − xmt ∥2︸ ︷︷ ︸
Lemma 3

+
ηρL2

2
E∥zt − xt∥2︸ ︷︷ ︸

Lemma 2

+
η

2ρ
E

∥∥∥∥∥ 1

M

M∑
m=1

∇fm(xmt)

∥∥∥∥∥
2

+
η2L

2K
σ2 +

η2L

2
E

∥∥∥∥∥ 1

M

M∑
m=1

∇fm(xmt)

∥∥∥∥∥
2

≤ −η
2
E∥∇f(xt)∥2 −

η

2

(
1− 1

ρ
− ηL

)
E

∥∥∥∥∥ 1

M

M∑
m=1

∇fm(xmt)

∥∥∥∥∥
2

+
ηρL2

2
E∥zt − xt∥2︸ ︷︷ ︸

Lemma 2

+
ηL2

2M

M∑
m=1

E∥xt − xmt ∥2︸ ︷︷ ︸
Lemma 3

+
η2L

2M
σ2.

Step 4 (final). Now we average over the iterates and apply the bounds derived in Lemmas 1,2.

E[f(zT)− f(z0)]

T
=

1

T

T−1∑
t=0

E[f(zt+1)− f(zt)]

≤ − η

2T

T−1∑
t=0

E∥∇f(xt)∥2 −
η

2

(
1− 1

ρ
− ηL

)
1

T

T−1∑
t=0

E

∥∥∥∥∥ 1

M

M∑
m=1

∇fm(xmt)

∥∥∥∥∥
2

+
ηρL2

2

1

T

T−1∑
t=0

E∥zt − xt∥2︸ ︷︷ ︸
Lemma 1

+
ηL2

2

1

TM

T−1∑
t=0

M∑
m=1

E∥xt − xmt ∥2︸ ︷︷ ︸
Lemma 2

+
η2L

2M
σ2

≤ − η

2T

T−1∑
t=0

E∥∇f(xt)∥2 −
η

2

(
1− 1

ρ
− ηL

)
1

T

T−1∑
t=0

E

∥∥∥∥∥ 1

M

M∑
m=1

∇fm(xmt)

∥∥∥∥∥
2

+
η2L

2M
σ2

+
ηρL2

2

 η2β2

(1− β)2M
σ2 +

η2β2

(1− β)2
1

T

T−1∑
τ=0

E

∥∥∥∥∥ 1

M

M∑
m=1

∇fm(xmτ)

∥∥∥∥∥
2


+
ηL2

2

(
12η2(B2 − 1)ψ · 1

T

T−1∑
t=0

E∥∇f(θt)∥2 + 4η2ψ(σ2 + 3G2)

)

≤ −η
2

(
1− 12η2L2(B2 − 1)ψ

) 1

T

T−1∑
t=0

E∥∇f(xt)∥2

− η

2

(
1− 1

ρ
− ηL− η2β2ρL2

(1− β)2

)
1

T

T−1∑
t=0

E

∥∥∥∥∥ 1

M

M∑
m=1

∇fm(xmt)

∥∥∥∥∥
2

+
η2L

2M
σ2 +

η3ρL2β2

2(1− β)2M
σ2 + 2η3L2ψ(σ2 + 3G2).

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Next, we choose ρ = 2 and step size η such that

12η2L2(B2 − 1)ψ ≤ 1

2
⇐⇒ to bound the first term

ηL+
2η2β2L2

(1− β)2
≤ 1

2
⇐⇒ to bound the second term

12η2L2ψ ≤ 1

2
⇐⇒ from Lemma 3

Note that

η0
def
=

1

4L
min

(
1− β,

1

6
√
ψmax(1, B2 − 1)

)
satisfies all three bounds. Then, with any η ≤ η0 we get

E[f(zT)− f(z0)]

T
≤ − η

4T

T−1∑
t=0

E∥∇f(xt)∥2

+
η2L

2M
σ2 +

η3ρL2β2

2(1− β)2M
σ2 + 2η3L2ψ(σ2 + 3G2).

Noticing that z0 = x0 and f∗ ≤ f(zT), we have

1

T

T−1∑
t=0

E∥∇f(xt)∥2 ≤ 4(f(x0)− f∗)

ηT
+

2ηL

M
σ2 +

4η2L2β2

(1− β)2M
σ2 + 8η2L2ψ(σ2 + 3G2).

Furthermore, choosing η = min(η0,
1√
T
), we get the following rate:

1

T

T−1∑
t=0

E∥∇f(xt)∥2

≤ max

(
1,

1

η0
√
T

)
4(f(x0)− f∗)√

T
+

2Lσ2

M
√
T

+
4L2β2σ2

(1− β)2MT
+

8L2ψ(σ2 + 3G2)

T

≤ 4(f(x0)− f∗)√
T

+
2Lσ2

M
√
T

+
4(f(x0)− f∗)

η0T
+

4L2β2σ2

(1− β)2MT
+

8L2ψ(σ2 + 3G2)

T

=
4√
T

(
f(x0)− f∗ +

Lσ2

2M

)
+O

(
1 + ψ

T

)
.

D.1 EXTENSION TO ADAM OPTIMIZER

Here we discuss extension of the previous analysis for the Adam optimizer including the second-
order momentum in the analysis. The addition is similar to the first-order momentum while the
synchronization probability pv can differ from other probabilities pu and pu. The complete description
of the algorithm can be found in Algorithm 5. Instead of bounded heterogeneity Assumption 3, in
this analysis we use stronger condition mentioned below:
Assumption 4 (Bounded gradient). For any iterate t ≥ 0 and worker m, the local stochastic gradient
is bounded, namely ∥gmt ∥2 ≤ G.

This condition facilitates the analysis by providing uniform upper bounds for gradients/momentum
variables and is commonly used in the analysis of adaptive optimization.

Step 1 (preconditioning and virtual iterates). Let Γmt
def
= diag−1/2(ṽmt + λ2) be the preconditioning

matrix and for each step t ≥ 0, denote the averaged variables

xt
def
= Em[xmt], ut

def
= Em[umt], vt

def
= Em[vmt], ṽt

def
= Em[ṽmt], gt

def
= Em[gmt].

Then

ut = β1ut−1 + (1− β1)gt

xt+1 = xt − dt = xt − ηEm[Γmt u
m
t].

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Algorithm 5 DES-LOC-Adam (with probabilistic synchronization)
Require: Model tensors
1: x0 ∈ Rd — initial parameter vector
2: u−1, v−1 ∈ Rd — seeds for first and second moments, initialised to 0

Require: Hyper-parameters
3: {ηt}T−1

t=0 ⊂ R>0 — step-size schedule
4: β1, β2 ∈ [0, 1) — Adam decay factors
5: λ ∈ R≥0 — ℓ2 stability term
6: T ∈ N+ — total optimisation iterations
7: M ∈ N+ — number of workers
8: px = 1

Kx
, pu = 1

Ku
, pv = 1

Kv
∈ [0, 1] — synchronization probabilities for parameters and momentums

Ensure: xT , uT−1, vT−1

9: for each worker m: xm
0 = x0, u

m
−1 = vm−1 = 0 local init (t = −1 seeds)

10: for t = 0, . . . , T − 1 do training loop
11: for all workers m = 0, . . . ,M − 1 in parallel do
12: gmt ← ∇F (xm

t ; ξmt) stochastic gradient

13: um
t ←

{
Em[β1u

m
t−1 + (1− β1)g

m
t], with probability pu

β1u
m
t−1 + (1− β1)g

m
t , with probability 1− pu

sync u

14: vmt ←

{
Em[β2v

m
t−1 + (1− β2)(g

m
t ⊙ gmt)], with probability pv

β2v
m
t−1 + (1− β2)(g

m
t ⊙ gmt), with probability 1− pv

sync u

15: ṽmt ← max(vmt , ṽmt−1) AMSGrad Normalization, ṽ−1 = v−1

16: dmt ←
ηt√

ṽmt + λ2
⊙ um

t bias-corrected update

17: xm
t+1 ←

{
Em[xm

t − dmt], with probability px
xm
t − dmt , with probability 1− px

sync x

Consider the same averaged iterates xt and virtual iterates zt as before:

zt =
1

1− β1
xt −

β1
1− β1

xt−1.

In particular, z0 = x0. Then,

zt+1 − zt =
1

1− β1
(xt+1 − xt)−

β1
1− β1

(xt − xt−1)

= − η

1− β1
Em[Γmt u

m
t] +

ηβ1
1− β1

Em[Γmt−1u
m
t−1]

= − η

1− β1
Em[Γmt u

m
t] +

ηβ1
1− β1

Em[Γmt−1u
m
t−1]±

ηβ1
1− β1

Em[Γmt u
m
t−1]

= − η

1− β1
Em[Γmt (umt − β1u

m
t−1)] +

ηβ1
1− β1

Em[(Γmt−1 − Γmt)umt−1]

= −ηEm[Γmt g̃
m
t] +

ηβ1
1− β1

Em[(Γmt−1 − Γmt)umt−1]

= −ηEm[Γmt gt] + ηEm[Γmt (gt − g̃mt)] +
ηβ1

1− β1
Em[(Γmt−1 − Γmt)umt−1]

= −ηΓtgt + η · Em[Γmt (gt − g̃mt)]︸ ︷︷ ︸
def
= Ut

+η · β1
1− β1

Em[(Γmt−1 − Γmt)umt−1]︸ ︷︷ ︸
def
= Vt

,

where Γt
def
= Em[Γmt] and g̃mt

def
=

um
t −β1u

m
t−1

1−β1
for which, Em[g̃mt] = Em[gmt] = gt.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Step 2 (smoothness over virtual iterates). Then we apply smoothness of the global loss function f
over these global virtual iterates.

f(zt+1)− f(zt) ≤ ⟨∇f(zt), zt+1 − zt⟩+
L

2
∥zt+1 − zt∥2

= −η ⟨∇f(zt),Γtgt⟩+ η⟨∇f(zt), Ut⟩+ η⟨∇f(zt), Vt⟩+
L

2
∥zt+1 − zt∥2

= −η ⟨∇f(xt),Γtgt⟩︸ ︷︷ ︸
I

+ η⟨∇f(zt), Ut⟩︸ ︷︷ ︸
II

+ η ⟨∇f(zt), Vt⟩︸ ︷︷ ︸
III

+
η2L

2
∥Γtgt − Ut − Vt∥2︸ ︷︷ ︸

IV

+ η ⟨∇f(xt)−∇f(zt),Γtgt⟩︸ ︷︷ ︸
V

.

In the next step, we separately bound each term appearing in the above bound. For clarity, we are
also going to use ∥∇f(xt)∥ ≤ G and ∥∇f(zt)∥ ≤ G. However, these conditions can be avoided
through linking ∇f(zt) term to ∇f(xt), and ∇f(xt) term to Em∇fm(xmt) with the bound for
E[∥xt − xmt ∥2].
Step 3a (one step progress). Bounding term I.

I = −η ⟨∇f(xt),Γtgt]⟩
= −ηE [⟨∇f(xt),Γt−1gt⟩] + ηE [⟨∇f(xt), (Γt−1 − Γt)gt⟩]

≤ −ηE

〈∇f(xt), 1

M

M∑
m=1

∇fm(xmt)

〉
Γt−1

+ ηG2E[∥Γt−1 − Γt∥].

≤ −η
2
E
[
∥∇f(xt)∥2Γt−1

]
− η

2
E

∥∥∥∥∥ 1

M

M∑
m=1

∇fm(xmt)

∥∥∥∥∥
2

Γt−1


+
η

2
E

∥∥∥∥∥∇f(xt)− 1

M

M∑
m=1

∇fm(xmt)

∥∥∥∥∥
2

Γt−1

+ ηG2E[∥Γt−1 − Γt∥]

≤ −η
2
∥Γt−1∥minE∥∇f(xt)∥2 −

η

2
E

∥∥∥∥∥ 1

M

M∑
m=1

∇fm(xmt)

∥∥∥∥∥
2

Γt−1


+
η

2
∥Γt−1∥maxE

∥∥∥∥∥ 1

M

M∑
m=1

∇fm(xt)−∇fm(xmt)

∥∥∥∥∥
2
+ ηG2E[∥Γt−1 − Γt∥]

≤ − η

2C0
E∥∇f(xt)∥2 −

η

2
E

∥∥∥∥∥ 1

M

M∑
m=1

∇fm(xmt)

∥∥∥∥∥
2

Γt−1


+

η

2λM

M∑
m=1

E
[
∥∇fm(xt)−∇fm(xmt)∥2

]
+ ηG2E[∥Γt−1 − Γt∥]

≤ − η

2C0
E∥∇f(xt)∥2 +

ηL2

2λM

M∑
m=1

E
[
∥xt − xmt ∥2

]
+ ηG2E[∥Γt−1 − Γt∥],

where ∥ · ∥ indicates the spectral norm for matrices, and we used the following inequalities:

∥Γt−1∥min =

∥∥∥∥∥ 1

M

M∑
m=1

Γmt−1

∥∥∥∥∥
min

=
1

M

M∑
m=1

Γmt−1[i, i] =
1

M

M∑
m=1

1√
ṽt−1[i] + λ2

≥ 1√
G2 + λ2

def
=

1

C0
.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Step 3b (one step progress). Bounding term II.

II = η⟨∇f(zt), Ut⟩ ≤ η∥∇f(zt)∥∥Ut∥ ≤ ηG

M

M∑
m=1

∥Γmt (gt − g̃mt)∥

≤ ηG

λM

M∑
m=1

∥gt − g̃mt ∥.

Step 3c (one step progress). Bounding term III.

III = η⟨∇f(zt), Vt⟩ ≤ η∥∇f(zt)∥∥Vt∥ ≤ ηβ1
1− β1

G

M

M∑
m=1

∥(Γmt−1 − Γmt)umt−1∥

≤ ηβ1
1− β1

G2

M

M∑
m=1

∥Γmt−1 − Γmt ∥.

Step 3d (one step progress). Bounding term IV.

IV =
η2L

2
∥Γtgt − Ut − Vt∥2

≤ 3η2L

2
∥Γtgt∥2 +

3η2L

2
∥Ut∥2 +

3η2L

2
∥Vt∥2

≤ 3η2LG2

2λ2
+

3η2L

2λ2M

M∑
m=1

∥gt − g̃mt ∥2 + 3η2β1LG

2(1− β1)M

M∑
m=1

∥∥Γmt−1 − Γmt
∥∥2

Step 3e (one step progress). Bounding term V.

V = η ⟨∇f(xt)−∇f(zt),Γtgt⟩
= ηE [⟨∇f(xt)−∇f(zt),Γt−1gt⟩] + ηE [⟨∇f(xt)−∇f(zt), (Γt − Γt−1)gt⟩]

≤ ηE

〈∇f(xt)−∇f(zt),
1

M

M∑
m=1

∇fm(xmt)

〉
Γt−1

+
η2Lβ1
1− β1

E
[∥∥Em[Γmt−1u

m
t−1]

∥∥ ∥(Γt − Γt−1)gt∥
]

≤ ηE
[
⟨∇f(xt)−∇f(zt),∇f(xt)⟩Γt−1

]
+ ηE

〈∇f(xt)−∇f(zt),
1

M

M∑
m=1

∇fm(xmt)−∇fm(xt)

〉
Γt−1

+
η2Lβ1G

2

(1− β1)λ
E [∥Γt − Γt−1∥]

≤ η

λ
E [∥∇f(xt)−∇f(zt)∥∥∇f(xt)∥]

+
η

λ
E

[
∥∇f(xt)−∇f(zt)∥ ·

1

M

M∑
m=1

∥∇fm(xmt)−∇fm(xt)∥

]
+
η2Lβ1G

2

(1− β1)λ
E [∥Γt − Γt−1∥]

≤ η

λ
E
[
1

2ρ
∥∇f(xt)−∇f(zt)∥2 +

ρ

2
∥∇f(xt)∥2

]
+
η

λ
E

[
1

2
∥∇f(xt)−∇f(zt)∥2 +

1

2

L2

M

M∑
m=1

∥xmt − xt∥2
]
+
η2Lβ1G

2

(1− β1)λ
E [∥Γt − Γt−1∥] ,

where we used the following uniform bound on ∥∇f(xt)−∇f(zt)∥:

∥∇f(xt)−∇f(zt)∥ ≤ L ∥xt − zt∥ ≤ β1L

1− β1
∥xt − xt−1∥ =

ηβ1L

1− β1

∥∥Em[Γmt−1u
m
t−1]

∥∥
≤ ηβ1L

1− β1
Em[

∥∥Γmt−1∥∥umt−1]
∥∥ ≤ ηβ1L

1− β1

G

λ
.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Therefore, ignoring the constants, we have the following bounds:

V ≤ O
(
η2

ρ

)
+
ηρ

2λ
· E[∥∇f(xt)∥2] +O (η) · 1

M

M∑
m=1

E[∥xmt − xt∥2] +O
(
η2
)

IV ≤ O
(
η2
)

III ≤ O (η) · 1

M

M∑
m=1

E[∥Γmt−1 − Γmt ∥]

II ≤ O (η) · 1

M

M∑
m=1

E[∥gt − g̃mt ∥]

I ≤ − η

2C0
E∥∇f(xt)∥2 +O (η) · 1

M

M∑
m=1

E
[
∥xt − xmt ∥2

]
+O (η) · 1

M

M∑
m=1

E[∥Γmt−1 − Γmt ∥]

To get the O
(

1√
T

)
bound for the averaged gradients E[∥∇f(xt)∥2], note that we are left to choose

small value for ρ = λ
2C0

and show the following bounds:

1

TM

T−1∑
t=0

M∑
m=1

E[∥xmt − xt∥2] = O(η2), (extension of Lemma 3)

T−1∑
t=0

E[∥Γmt−1 − Γmt ∥] = O(1), (follows from AMSGrad normalization)

1

M

T−1∑
t=0

M∑
m=1

E[∥gt − g̃mt ∥] = O(1), (see below).

For the last bound, we can use similar steps as in Lemma 3, namely

E[∥ut − umt ∥] = pu · 0 + (1− pu)E[∥β1ut−1 + (1− β1)gt − (β1u
m
t−1 + (1− β1)g

m
t)∥]

≤ (1− pu)β1E[∥ut−1 − umt−1)∥] + (1− pu)(1− β1)E[∥gt − gmt)∥]

≤ (1− pu)(1− β1)

t∑
τ=0

((1− pu)β1)
t−τE[∥gτ − gmτ ∥].

E[∥gt − g̃mt ∥] = E
∥∥∥∥ut − β1ut−1

1− β1
−
umt − β1u

m
t−1

1− β1

∥∥∥∥
≤ β1

1− β1
E∥ut−1 − umt−1∥+

1

1− β1
E[∥ut − umt ∥]

=
1

1− β1

t∑
τ=t−1

βt−τ1 E∥uτ − umτ ∥

= (1− pu)

t∑
τ=t−1

τ∑
ν=0

βt−τ1 ((1− pu)β1)
τ−νE[∥gν − gmν ∥]

=

t+1∑
τ=t

τ−1∑
ν=0

βt−τ1 ((1− pu)β1︸ ︷︷ ︸
=q2

)τ−νE[∥gν − gmν ∥],

which has the same double geometric sum structure as (7).

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

D.2 KEY LEMMAS

Lemma 2. For all T ≥ 1, we have

T−1∑
t=0

∥zt − xt∥2 ≤ η2β2

(1− β)2M
Tσ2 +

η2β2

(1− β)2

T−1∑
t=0

E

∥∥∥∥∥ 1

M

M∑
m=1

∇fm(xmt)

∥∥∥∥∥
2

. (6)

Proof. Since u−1 = 0, unrolling the update rule of momentum, for any t ≥ 0 we get

ut = βut−1 + (1− β)gt = (1− β)

t∑
τ=0

βt−τgτ .

Using this and the definition of the average iterates, we have

zt − xt =
β

1− β
(xt − xt−1) = − βη

1− β
ut = −βη

t∑
τ=0

βt−τgτ .

Using convexity of squared norm function and letting st
def
=
∑t
τ=0 β

t−τ = 1−βt+1

1−β , for all t ≥ 0, we
have

∥zt − xt∥2 = η2β2s2t

∥∥∥∥∥
t∑

τ=0

βt−τ

st
gτ

∥∥∥∥∥
2

≤ η2β2s2t

t∑
τ=0

βt−τ

st
∥gτ∥2 ≤ η2β2

1− β

t∑
τ=0

βt−τ∥gτ∥2.

Summing over the iterates yields

T−1∑
t=0

E∥zt − xt∥2 ≤ η2β2

1− β

T−1∑
t=0

t∑
τ=0

βt−τE∥gτ∥2

=
η2β2

1− β

T−1∑
τ=0

T−1∑
t=τ

βt−τE∥gτ∥2

=
η2β2

1− β

T−1∑
τ=0

1− βT−τ

1− β
E∥gτ∥2

≤ η2β2

(1− β)2

T−1∑
τ=0

E∥gτ∥2

=
η2β2

(1− β)2

T−1∑
τ=0

E

∥∥∥∥∥ 1

M

M∑
m=1

gmτ −∇fm(xmτ)

∥∥∥∥∥
2

+
η2β2

(1− β)2

T−1∑
τ=0

E

∥∥∥∥∥ 1

M

M∑
m=1

∇fm(xmτ)

∥∥∥∥∥
2

=
η2β2

(1− β)2M2

T−1∑
τ=0

M∑
m=1

E ∥gmτ −∇fm(xmτ)∥2 + η2β2

(1− β)2

T−1∑
τ=0

E

∥∥∥∥∥ 1

M

M∑
m=1

∇fm(xmτ)

∥∥∥∥∥
2

=
η2β2

(1− β)2M
Tσ2 +

η2β2

(1− β)2

T−1∑
τ=0

E

∥∥∥∥∥ 1

M

M∑
m=1

∇fm(xmτ)

∥∥∥∥∥
2

.

Lemma 3. If 24η2L2ψ ≤ 1, then

1

MT

T−1∑
t=0

M∑
m=1

E∥xt − xmt ∥2 ≤ 12η2(B2 − 1)ψ · 1
T

T−1∑
t=0

E∥∇f(xt)∥2 + 4η2ψ(σ2 + 3G2),

where

ψ =
4(1− px)

p2x
· (1− β)(1− pu)

1− (1− pu)β

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

Proof. Let us expand the term E∥xt+1 − xmt+1∥2 using xmt+1’s probabilistic update rule:

E∥xt+1 − xmt+1∥2 = px · 0 + (1− px) · E∥xt − ηut − (xmt − ηumt)∥2

= (1− px) · E∥xt − xmt − η(ut − umt)∥2

≤ (1− px)(1 + s)E∥xt − xmt ∥2 + η2(1− px)(1 + 1/s)E∥ut − umt ∥2

≤ η2(1− px)(1 + 1/s)

t∑
τ=1

((1− px)(1 + s))t−τE∥uτ − umτ ∥2.

where s > 0 will be chosen later. Next we expand the term E∥ut − umt ∥2 using umt ’s probabilistic
update rule:

E∥ut − umt ∥2 = pu · 0 + (1− pu) · E

∥∥∥∥∥ 1

M

M∑
m=1

(βumt−1 + (1− β)gmt−1)− (βumt−1 + (1− β)gmt−1)

∥∥∥∥∥
2

= (1− pu)E
∥∥β(ut−1 − umt−1) + (1− β)(gt−1 − gmt−1)

∥∥2
≤ (1− pu)βE∥(ut−1 − umt−1)∥2 + (1− pu)(1− β)E∥gt−1 − gmt−1∥2

≤ (1− pu)(1− β)

t−1∑
τ=0

((1− pu)β)
t−1−τE∥gτ − gmτ ∥2

≤ 1− β

β

t−1∑
τ=0

((1− pu)β)
t−τE∥gτ − gmτ ∥2

Denote q1 = (1− px)(1 + s) and q2 = (1− pu)β. Combining the previous two bounds, we get

1

M

M∑
m=1

E∥xt − xmt ∥2

≤ η2(1− px)(1 + 1/s)

t∑
τ=1

((1− p)(1 + s))t−τ
1

M

M∑
m=1

E∥uτ − umτ ∥2 (7)

≤ η2(1− px)(1 + 1/s)

t∑
τ=1

((1− pu)(1 + s))t−τ
1

M

M∑
m=1

[
1− β

β

τ−1∑
ν=0

((1− pu)β)
τ−νE∥gν − gmν ∥2

]

= η2(1− px)(1 + 1/s)
1− β

β

t∑
τ=1

τ−1∑
ν=0

qt−τ1 qτ−ν2

[
1

M

M∑
m=1

E∥gν − gmν ∥2
]

= η2(1− px)(1 + 1/s)
1− β

β

t−1∑
ν=0

t∑
τ=ν+1

qt−τ1 qτ−ν2

[
1

M

M∑
m=1

E∥gν − gmν ∥2
]

= η2(1− px)(1 + 1/s)
1− β

β

t−1∑
ν=0

q2
qt−ν1 − qt−ν2

q1 − q2

[
1

M

M∑
m=1

E∥gν − gmν ∥2
]
,

= η2 (1− px)(1 + 1/s)(1− β)(1− pu)︸ ︷︷ ︸
def
= ϕ

t−1∑
ν=0

qt−ν1 − qt−ν2

q1 − q2

[
1

M

M∑
m=1

E∥gν − gmν ∥2
]
.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

Next, we bound the gradient term above.

1

M

M∑
m=1

E∥gmt − gt∥2 =
1

M

M∑
m=1

E

∥∥∥∥∥gmt − 1

M

K∑
i=1

gti

∥∥∥∥∥
2

≤ 2

K

M∑
m=1

E

∥∥∥∥∥gmt −∇fm(xmt)− 1

M

M∑
m=1

(gmt −∇fm(xmt))

∥∥∥∥∥
2

+
2

M

M∑
m=1

E

∥∥∥∥∥∇fm(xmt)− 1

M

M∑
m=1

∇fm(xmt)

∥∥∥∥∥
2

(Lemma 4) ≤ 2

M

M∑
m=1

E∥gmt −∇fm(xmt)∥2 − 2E

∥∥∥∥∥ 1

M

M∑
m=1

(gmt −∇fm(xmt))

∥∥∥∥∥
2

+
12L2

M

M∑
m=1

E∥xt − xmt ∥2 + 6(B2 − 1)E∥∇f(xt)∥2 + 6G2

≤ 2σ2 +
12L2

M

M∑
m=1

E∥xt − xmt ∥2 + 6(B2 − 1)E∥∇f(xt)∥2 + 6G2.

Again, plugging this bound to the previous one, we get

1

MT

T−1∑
t=0

M∑
m=1

E∥xt − xmt ∥2

≤ 1

MT

T∑
t=1

M∑
m=1

E∥xt − xmt ∥2

≤ η2ϕ

T

T∑
t=1

t−1∑
τ=0

qt−τ1 − qt−τ2

q1 − q2

[
1

M

M∑
m=1

E∥gτ − gmτ ∥2
]

=
η2ϕ

T

T−1∑
τ=0

T∑
t=τ+1

qt−τ1 − qt−τ2

q1 − q2

[
1

M

M∑
m=1

E∥gτ − gmτ ∥2
]

=
η2ϕ

T

T−1∑
τ=0

1

q1 − q2

(
q1(1− qT−τ

1)

1− q1
− q2(1− qT−τ

2)

1− q2

)[
1

M

M∑
m=1

E∥gτ − gmτ ∥2
]

≤ η2ϕ

T

T−1∑
τ=0

1

q1 − q2

(
q1

1− q1
− q2

1− q2

)[
1

M

M∑
m=1

E∥gτ − gmτ ∥2
]

=
η2ϕ

(1− q1)(1− q2)

1

T

T−1∑
τ=0

[
1

M

M∑
m=1

E∥gτ − gmτ ∥2
]
.

Now, let us optimize the factor

ϕ

(1− q1)(1− q2)
=

(1− px)(1 + 1/s)(1− β)(1− pu)

(1− (1− px)(1 + s))(1− (1− pu)β)
=

(1− px)(1 + 1/s)

1− (1− px)(1 + s)
· (1− β)(1− pu)

1− (1− pu)β

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

by choosing optimal value for s introduced earlier. By the first order optimality condition, we find
that the optimal value is s∗ = 1√

1−px
− 1. Hence, the minimal value of the factor is

ϕ

(1− q1)(1− q2)
=

1− px
(1−

√
1− px)2

· (1− β)(1− pu)

1− (1− pu)β

=
(1− px)(1−

√
1− px)

2

(1−
√
1− px)2(1 +

√
1− px)2

· (1− β)(1− pu)

1− (1− pu)β

=
(1− px)(1 +

√
1− px)

2

p2x
· (1− β)(1− pu)

1− (1− pu)β

≤ 4(1− px)

p2x
· (1− β)(1− pu)

1− (1− pu)β

def
= ψ.

Continuing the chain of bounds

1

MT

T−1∑
t=0

M∑
m=1

E∥xt − xmt ∥2

≤ η2ψ · 1
T

T−1∑
t=0

[
1

K

M∑
m=1

E∥gt − gmt ∥2
]

≤ η2ψ · 1
T

T−1∑
t=0

[
12L2

M

M∑
m=1

E∥xt − xmt ∥2 + 6(B2 − 1)E∥∇f(xt)∥2 + 2σ2 + 6G2

]

≤ 12η2L2ψ · 1

TM

T−1∑
t=0

M∑
m=1

E∥xt − xmt ∥2

+ 6η2(B2 − 1)ψ · 1
T

T−1∑
t=0

E∥∇f(xt)∥2 + 2η2ψ(σ2 + 3G2).

Assuming 12η2L2ψ ≤ 1/2 and reordering the first term in the bound, we arrive

1

MT

T−1∑
t=0

M∑
m=1

E∥xt − xmt ∥2 ≤ 12η2(B2 − 1)ψ · 1
T

T−1∑
t=0

E∥∇f(xt)∥2 + 4η2ψ(σ2 + 3G2).

Lemma 4. Under smoothness and bounded heterogeneity assumptions 1 and 3, we have

1

M

M∑
m=1

∥∥∥∥∥∇fm(xmt)− 1

K

K∑
i=1

∇fi(xit)

∥∥∥∥∥
2

≤ 6L2

M

M∑
m=1

∥xt − xmt ∥2 +3(B2 − 1)∥∇f(xt)∥2 +3G2.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

Proof. The bound follows from simple algebraic manipulations and Jensen’s inequality.

1

K

M∑
m=1

∥∇fm(xmt)− 1

K

N∑
i=1

∇fi(xit)∥2

=
1

K

M∑
m=1

∥∥∥∥∥∇fm(xmt)−∇fm(xt) +∇fm(xt)−∇f(xt) +∇f(xt)−
1

K

N∑
i=1

∇fi(xit)

∥∥∥∥∥
2

≤ 3

K

M∑
m=1

∥∇fm(xmt)−∇fm(xt)∥2 +
3

K

M∑
m=1

∥∇fm(xt)−∇f(xt)∥2

+
3

K

M∑
m=1

∥∥∥∥∥∇f(xt)− 1

K

K∑
i=1

∇fi(xit)

∥∥∥∥∥
2

≤ 3L2

K

M∑
m=1

∥xmt − xt∥2 +
3

K

M∑
m=1

∥∇fm(xt)−∇f(xt)∥2 +
3L2

K

K∑
i=1

∥∥xt − xit
∥∥2

=
6L2

K

M∑
m=1

∥xmt − xt∥2 +
3

K

M∑
m=1

∥∇fm(xt)−∇f(xt)∥2

=
6L2

K

M∑
m=1

∥xmt − xt∥2 + 3G2 + 3(B2 − 1)∥∇f(xt)∥2.

E CONVERGENCE ANALYSIS OF DES-LOC-ADAM (HIGH-PROBABILITY
BOUNDS)

For this section, we refer to Algorithm 1 as DES-LOC-OPT(Kx,K1, . . . ,KN). Let us consider
the second algorithm DES-LOC-OPT(K,K, . . . ,K) with K = lcm{Kx,K1, . . . ,KN}. These two
algorithms have a property that they both fully synchronize, i.e., all states and current iterates are the
same, if T = rK for some r ∈ N.

Commonly, the analysis of DES-LOC-OPT(K,K, . . . ,K) proceeds in the following way. In each
step, construct an ideal update as if you were running DES-LOC-OPT(1, 1, . . . , 1) using virtual
iterates (see the proof in the prior section for the example of analysis with virtual iterates), and
bound the drift from this idealized scenario. For the case of DES-LOC-OPT(K,K, . . . ,K), the
bound typically depends on the distance of the current iterate from the last full synchroniza-
tion. Below, we show that the drift of OPT(Kx,K1, . . . ,KN) is not larger than DES-LOC-
OPT(K,K, . . . ,K), since OPT(Kx,K1, . . . ,KN) synchronize more often. Therefore, the con-
vergence rate of OPT(Kx,K1, . . . ,KN) is not worse than the convergence rate for DES-LOC-
OPT(K,K, . . . ,K) as its analysis also applies to OPT(Kx,K1, . . . ,KN), i.e., all final upper
bounds derived for DES-LOC-OPT(K,K, . . . ,K) are also valid for OPT(Kx,K1, . . . ,KN) . For
instance, a typical way to estimate drift is to have an assumption of type ∥sni − sni−1∥ ≤ U for
all i ∈ {1, 2, . . . , k}, and n ∈ {1, 2, . . . ,M}, where sni is some state on client n at step i and
s0 = s10 = . . . = sM0 the synchronized state. Then, drift is usually expressed as ∥snk − s0∥. For
DES-LOC-OPT(K,K, . . . ,K), we can simply bound

∥snk − s0∥ =

∥∥∥∥∥
k∑
i=1

sni − sni−1

∥∥∥∥∥ ≤
k∑
i=1

∥sni − sni−1∥ ≤ kU.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

For DES-LOC-OPT(Kx,K1, . . . ,KN), we can obtain the same bound, where we for simplicity
assume that s is synchronized every Ks steps and k ∈ {Ks + 1, . . . , 2Ks}.

∥snk − s0∥ =

∥∥∥∥∥
k∑

i=Ks+1

(sni − sni−1) + sKs
− s0

∥∥∥∥∥
≤

k∑
i=Ks+1

∥sni − sni−1∥+

∥∥∥∥∥ 1

M

M∑
m=1

Ks∑
i=1

smi − smi−1

∥∥∥∥∥
≤

k∑
i=Ks+1

∥sni − sni−1∥+
1

M

M∑
m=1

Ks∑
i=1

∥∥smi − smi−1

∥∥
≤ kU.

In a more general case, we would apply the above recursively. Such type of adjustments is the
only requirement to adapt analysis of DES-LOC-OPT(K,K, . . . ,K) to obtain the same rate for
DES-LOC-OPT(Kx,K1, . . . ,KN) for the type of the analysis described above.

We do not claim any novelty for this analysis. We mainly include these results for completeness, to
showcase that our method converges under different settings. The main theoretical results showing
that some of the optimizer states can be synchronized less frequently are presented in the prior section
above. We would also like to highlight that this result might be relatively weak and not tight since
we only show that DES-LOC-OPT(K,K, . . . ,K) and DES-LOC-OPT(Kx,K1, . . . ,KN) have the
same worst-case convergence, but DES-LOC-OPT(K,K, . . . ,K) requires less communication than
DES-LOC-OPT(Kx,K1, . . . ,KN) under this analysis, which is not the case in practice nor in the
analyses presented above.

Finally, detailed inspection of the analysis of DES-LOC-Adam (K,K, . . . ,K)Cheng & Glasgow
(2025) reveals that this analysis satisfies the above criteria. Thus, we can directly apply their results
under the following assumptions and preliminaries.

We aim to optimize a neural network x under the loss function f

min
x∈Rd

f(x) := Eξ∼D[F (x; ξ)]. (8)

using M workers, each of which has access to the stochastic gradient of f , ∇F (x; ξ) with ξ
independently drawn from the data distribution D. We define the auxiliary sequence,

zmt+1 =

{
1

1−β1
xmt+1 −

β1

1−β1
xmt if t mod K ̸= −1,

1
1−β1

xmt+1 −
β1

1−β1
xt otherwise.

(9)

where, xt+1 = Em[xmt+1]. We also define zt+1 = Em[zmt+1].

We make the following standard assumptions.
Assumption 5 (Lower-boundedness). f is closed, twice continuously differentiable and
infx∈Rd f(x) =: f(x∗) =: f∗ > −∞.

Assumption 6 (Smoothness). There exists some set Ω ⊂ Rd and L > 0, such that for any x, y ∈ Ω,

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥, (10)

∥∇f(x)∥2 ≤ 2L(f(x)− f∗). (11)
Assumption 7 (Bounded α-moment noise). There exists some set Ω ⊂ Rd, α ≥ 4 and constant
vector σ ⪰ 0 such that for any x ∈ Ω,

Eξ∼D|∇F (x; ξ)−∇f(x)|α ⪯ σα. (12)

Let σ∞ := ∥σ∥∞ = maxi{σi}, σ := ∥σ∥ =
(
σ2
1 + · · ·+ σ2

d

)1/2
.

Assumption 8 (Weak convexity). There exists constant τ > 0 such that f is τ -weakly convex, i.e.,
for any x, y ∈ Rd,

⟨∇f(x)−∇f(y), x− y⟩ ≥ −τ∥x− y∥2, (13)

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩ − τ

2
∥x− y∥2, ∇2f(x) ⪰ −τId. (14)

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

Based on these assumptions, the DES-LOC-Adam variant of Adam converges as stated in the
following theorem.

Theorem 5. Let the Assumptions 5,6 ,7, 8, hold for Ω = conv(BR0(Ω0)), where Ω0 := {x : f(x)−
f∗ ≤ 4∆}, BR0

(Ω0) = {x ∈ Rd : ∃y : ∥x−y∥2 ≤ R0}, R0 =
√

∆
80L , Klcm = lcm{Kx,Ku,Kυ},

and the same assumptions as in Theorem D.3 of (Cheng & Glasgow, 2025), then with probability
≥ 1− δ, DES-LOC-Adam yields,

λ

KlcmR

R−1∑
r=0

Klcm−1∑
k=0

∥∇f(z̄r,k)∥2 = Õ

τ∆
R

+
L∆

KlcmR
+

√
L∆σ2

MKlcmR
+

(L∆σ)
2
3

K
1
3

lcmR
2
3

+

(
L∆σ

a
a−1

KlcmR

) 2(a−1)
3a−2


Proof. The above corresponds to Theorem D.3 of (Cheng & Glasgow, 2025) for DES-LOC-Adam
(Klcm, . . . ,Klcm).

Note that for sufficiently large R, the leading term in the rate is:

1

KlcmR

R−1∑
r=0

Klcm−1∑
k=0

∥∇f(z̄r,k)∥2 = Õ

√ L∆σ2

MKlcmR

 , (15)

In both cases, Theorem 5 shows that for the convergence bounds to hold for the high probability
analysis of DES-LOC-Adam, synchronization needs to be a finite lcm

F DERIVATION OF EQS. (1) AND (2): MAXIMUM MOMENTUM CHANGE WITH
CLIPPING

Lemma. Let the gradient at each step satisfy ∥gt∥∞ ≤ ρ for some constant ρ > 0. Assume the
first-momentum state in Adam is initialized at u−1 = 0 and updated by

ut = β1ut−1 + (1− β1)gt, β1 ∈ [0, 1). (16)

Then, for all t ≥ 0, the momentum is bounded and satisfies

∥ut∥∞ ≤ ρ, and ∥ut+K − ut∥∞ ≤ 2ρ
(
1− βK1

)
∀K ≥ 1. (17)

Proof.

STEP 1: BOUND ON ∥ut∥∞ . We first show by induction that the momentum is always bounded by
ρ.

Base Case (t = 0): Since u−1 = 0, we have:

∥u0∥∞ = ∥β1u−1 + (1− β1)g0∥∞ ≤ (1− β1)∥g0∥∞ ≤ ρ. (18)

Inductive Hypothesis (I.H.): Assume ∥ut∥∞ ≤ ρ for some t ≥ 0.

Inductive Step (t→ t+ 1): Then,

∥ut+1∥∞ = ∥β1ut + (1− β1)gt+1∥∞ (19)
≤ β1∥ut∥∞ + (1− β1)∥gt+1∥∞ (20)
≤ β1ρ+ (1− β1)ρ = ρ. (21)

Thus, by induction, we have the desired result:

∥ut∥∞ ≤ ρ, ∀t ≥ 0. (22)

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

STEP 2: BOUND ON ∥ut+K − ut∥∞ . Now we bound the change in the momentum over K steps
explicitly. Unrolling the recursion, we have:

ut+K = βK1 ut + (1− β1)

K−1∑
k=0

βk1 gt+K−k. (23)

Subtracting ut from both sides, we obtain:

ut+K − ut = (βK1 − 1)ut + (1− β1)

K−1∑
k=0

βk1 gt+K−k. (24)

Applying the triangle inequality gives:

∥ut+K − ut∥∞ ≤ |1− βK1 |∥ut∥∞ + (1− β1)

K−1∑
k=0

βk1∥gt+K−k∥∞. (25)

Using the bounds ∥ut∥∞ ≤ ρ and ∥gt∥∞ ≤ ρ, we simplify to:

∥ut+K − ut∥∞ ≤ (1− βK1)ρ+ (1− β1)ρ

K−1∑
k=0

βk1 . (26)

The geometric series simplifies as:

K−1∑
k=0

βk1 =
1− βK1
1− β1

. (27)

Substituting this back into the expression yields:

∥ut+K − ut∥∞ ≤ (1− βK1)ρ+ (1− βK1)ρ = 2ρ(1− βK1). (28)

Thus, the momentum difference satisfies:

∥ut+K − ut∥∞ ≤ 2ρ(1− βK1), ∀K ≥ 1. (29)

SECOND-MOMENT BOUND. Applying the exact same logic to the second momentum vt, with β1
replaced by β2 and the bounded gradient squared term ∥gt ⊙ gt∥∞ ≤ ρ2, immediately gives:

∥vt+K − vt∥∞ ≤ 2ρ2(1− βK2). (30)

This completes the proof. □

G WALL-CLOCK TIME MODELING

Understanding the practical benefits of our proposal beyond the theoretical aspects and empirical
convergence curves is crucial. This section addresses the practical implications of adopting our
method for training state-of-the-art (SOTA) large language models (LLMs) in large-scale distributed
training infrastructures. The most critical metrics are based on total wall-clock time, communication
time, and resource utilization, i.e., how much of the wall-clock time is spent using the compute
available instead of waiting for the communication to complete. We provide the following simplified
model for estimating total wall-clock time (Section G.1), computation time (Section G.1.1), and
communication time (Section G.1.2) that applies to any method based on distributed data parallelism
(DDP). The notation used here is consistent with that in Algorithm 1. We conclude this section with
the results obtained with this modeling and their discussion.

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

G.1 ESTIMATING TOTAL WALL-CLOCK TIME

The total wall-clock time for completing an LLM pre-training is based on the number of tokens
processed D (dataset size), the model size d (the number of trainable parameters), the number
of compute units M (data-parallel/local workers), the floating point operations per second S that
these compute units can perform, the Model FLOPS Utilization (MFU), the average peer-to-peer
(P2P) bandwidth B and the latency l between compute units. We separate the total wall-clock time
discussion into computational time (Section G.1.1) and communication time (Section G.1.2). In our
modeling, the total wall-clock time is the sum of computational time and communication time:

ttotal = tcompute + tcomms (31)

We next derive tcompute and tcomms separately, and then instantiate ttotal for specific training methods.

G.1.1 ESTIMATING COMPUTATION TIME

The total time spent computing Tcompute depends on the number of compute units M , their floating
point operations per second S, the MFU of the training pipeline, and the total number of FLOPs C
that the training pipeline requires. Following the same approach as in Kaplan et al. (2020); Hoffmann
et al. (2022), the total number of FLOPs required to train an LLM can be estimated as C = 6dD,
where d is the number of model parameters and D the total number of tokens (dataset size). Since
the MFU can be considered a measure of efficiency, i.e., MFU ∈ [0, 1], we can estimate the total time
spent computing as:

tcompute =
C

MFU · S ·M
=

6 · d ·D
MFU · S ·M

(32)

In other words, if the hardware can perform S ·M FLOPs/sec at peak and is utilized at MFU fraction
of peak, the training FLOPs C translate to that many seconds of compute.

In practice, MFU strongly depends on how the pipeline’s parallelization is locally configured across
the workers M . For the sake of fairness in our comparisons, we can assume that the per-batch MFU
of a data-parallel worker is the same as the per-batch MFU of a worker in our proposal and other local
adaptive methods. Importantly, this holds in cases where either such workers refer to a single GPU or
each worker locally performs more advanced parallelism techniques, such as the ones proposed by
Rajbhandari et al. (2020); Zhao et al. (2023).

Resources Utilization and MFU. Theoretically estimating the resource utilization in large-scale
training of LLMs is very challenging despite prior knowledge of the number of hardware accelerators
(GPUs), their theoretical peak FLOPs, and the total amount of FLOPs C required to perform the task
is available. Following previous well-established proposals (Chowdhery et al., 2023), we leverage
MFU and the theoretical peak FLOPs of the hardware accelerators we used in our experiments.
Recent systems research (Shoeybi et al., 2019) has shown it is possible to reach 50% of peak FLOPs
even for trillion-parameter models by carefully combining data, tensor, and pipeline parallelism. This
emphasizes that our model’s assumptions (e.g., each worker sees full d) can be adapted to those
scenarios by treating a model-parallel group as one worker with higher S and similar MFU. For the
sake of a fair comparison, our analysis in this section compares different methods assuming that the
local workers operate with the same theoretical peak FLOPs and the same MFU. The results reported
in Section G.2 describe how such values were obtained.

G.1.2 ESTIMATING COMMUNICATION TIME

Communication time is the most critical factor when comparing standard data-parallel approaches to
our proposal, since the computation time will be the same, given that they train the same model size
on the same number of tokens using the same computing infrastructure. At each communication step,
the workers W synchronize a set of parameters M , the amount of which depends on the method used.
For example, distributed data-parallel synchronization occurs at every batch step on the complete set
of gradients produced by the M workers, each exchanging a payload at batch step i of PDDP,i = d
parameters. In our proposal, the synchronization involves model parameters and optimizer states at
different frequencies, making such estimation slightly more complex. Since their time costs simply

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

add up, we treat the parameter sync and momentum sync contributions independently. For instance,
if parameters are synced every Kx steps and momenta every Ku,Kv steps, we sum the time for each
series of syncs.

Any of such payloads can be exchanged and averaged using bandwidth-efficient AllReduce methods,
such as RingAllReduce (Sergeev & Balso, 2018), which scales only with the speed of the slowest
P2P link. Given the slowest P2P bandwidth B and a latency l, a single communication at timestamp i
is performed synchronously and in parallel across the M workers, taking a total time of:

tcomms,i =
2Pi
B

(
1− 1

M

)
+ l, (33)

where Pi is the payload size of the communication happening at the timestamp i, which depends on
the optimization method adopted as described above.

DDP. In the DDP training approach, each of the T optimization steps to train on D tokens requires
communicating at every step for a total training time of:

ttotal,DDP = tcompute + T ·
[
2d

B

(
1− 1

M

)
+ l

]
(34)

FedAvg. The approach of the FedAvg method is that of synchronizing with frequency K only the
model parameters across the M workers. This, the total training time can be estimated as:

ttotal,FedAvg = tcompute +
T

K
·
[
2d

B

(
1− 1

M

)
+ l

]
(35)

This optimization procedure will communicate less than DDP when K < T .

Local Adam. Using a local adaptive optimizer such as Cheng & Glasgow (2025) with a synchro-
nization frequency of K local steps, requires training for a total training time of:

ttotal,Local Adam = tcompute +
3T

K
·
[
2d

B

(
1− 1

M

)
+ l

]
(36)

This means that, as long as 3K < T , Local Adam will always take less wall clock time than DDP.

Our Method (DES-LOC). Adopting our proposal (DES-LOC-Adam and DES-LOC-ADOPT specif-
ically, which we shall use interchangeably for the purposes of this analysis) requires synchronizing
model parameters x, fist momentum u and second momentum v with frequencies kx,Ku,Kv, re-
spectively. Assuming each of these sets is synchronized independently, we can compose by adding
their communication time contribution to the total training wall-clock time, which results:

ttotal,DES-LOC-Adam = tcompute +

(
T

Kx
+

T

Ku
+

T

Kv

)
·
[
2d

B

(
1− 1

M

)
+ l

]
(37)

This means that, as long as 1
Kx

+ 1
Ku

+ 1
Kv

< 3
K ∧ 1

Kx
+ 1

Ku
+ 1

Kv
< 1, our method will always

take less wall-clock time than Local Adam and DDP.

Limitations. We critically discuss here the limitations of the proposed modeling in order to shed
light on their relevance when it comes to deploying such training algorithms in real-world scenarios.

First, our modeling approach adopts constants for several system components, such as computing
capabilities and interconnects. In particular, MFU in the real world always oscillates around some
average value depending on the operational performance of high-bandwidth memories (HBMs),
DRAM caches, and processing units in the hardware accelerators. At the same time, the P2P
bandwidth and latency between accelerators also fluctuate around average values.

Second, most efficient implementations adopted in the field take advantage of the possibility of
overlapping communication and computation, reducing the communication time. Notably, overlap-
ping communication with computation can drastically reduce effective communication costs, for

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

example, PyTorch’s DDP implementation can overlap 95% of the communication (Romero et al.,
2022). Our model currently assumes synchronous communications, but could incorporate such
approaches by reducing the effective l or B impact. One extension could be adding a parameter
α ∈ [0, 1] representing the fraction of communication time that is not overlapped, so total time
per step i is ttotal,i = tcompute + αtcomm. Setting α = 0 would recover the fully overlapped ideal
(communication is entirely hidden by computation), and α = 1 is the current no-overlap assumption.
This would keep the model framework-agnostic but allow tuning to specific training setups.

Techniques in Rajbhandari et al. (2020); Zhao et al. (2023) complement our analysis by reducing
memory usage and communication volume, effectively scaling down payload Pi or increasing MFU.
Our approach focuses on synchronization timing rather than data partitioning; combining our method
with fragmented updates (e.g., ZeRO) could further improve wall-clock time.

Despite limitations, our model was designed so that any gap with real-world performance evenly
affects all methods analyzed, assuming thoughtful implementation. Thus, results in Section G.2
illustrate potential improvements from adopting DES-LOC, and our model can help practitioners
estimate performance at larger scales.

G.2 MODELING RESULTS

Figures 23 and 24 analyze the wall-clock time, communication overhead, and GPU utilization of
DES-LOC compared to DDP, Local Adam, and heuristic baselines for training our 1.7B model.
By setting synchronization periods as Kx = 256,Ku = 768,Kv = 1536, DES-LOC significantly
reduces communication and improves GPU utilization relative to Local Adam (K = 256), closely
approaching the efficiency of heuristic methods, especially in bandwidth-constrained settings.

Figure 23: Estimated wall-clock time for training the 1.7B model with DES-LOC (Kx = 256,Ku =
768,Kv = 1536), compared to Local Adam (K = 256), DDP, and Federated Averaging with persis-
tent optimizer states (FAVG+OPT,K = 256). At low bandwidth (< 103), all communication-efficient
methods substantially reduce wall-clock time compared to DDP. DES-LOC closely approaches the
maximum efficiency of FAVG+OPT, significantly outperforming Local Adam, which synchronizes
all optimizer states frequently. Moreover, DES-LOC maintains stable and convergent training behav-
ior (Fig. 5). At high bandwidth (> 103), DDP becomes competitive or preferable.

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

(a) Communication costs. (b) Compute utilization.

Figure 24: Communication overhead (a) and GPU utilization (b) for training the 1.7B model with
synchronization periods Kx = 256,Ku = 768,Kv = 1536. DES-LOC reduces communication
costs by 170× compared to DDP, outperforming the 85× reduction achieved by Local Adam while
FAVG+OPT, communicating only parameters, achieves a theoretical maximum reduction (256×).
The improved communication efficiency of DES-LOC translates to higher GPU utilization at low
bandwidths (< 103), significantly improving over DDP and Local Adam.

Takeaway: By synchronizing optimizer states less frequently, DES-LOC enhances GPU utilization
and total wall-clock time compared to DDP and Local Adam, especially under bandwidth constraints.

H CHECKPOINTING VS. PERIODIC STATE SYNCHRONIZATION

A natural question is whether simply checkpointing local optimizer states suffices for dealing with
variable or elastic compute. This approach is inadequate for two reasons. Quality: Initializing new
workers from a single stored state yields worse convergence as shown in Fig. 4.(c) (∼15% higher
perplexity in our tests in the follow-up round) compared to DES-LOC’s averaging. Elasticity: When
the worker count changes from N to M , checkpointing lacks a principled mapping, forcing arbitrary
state duplication or sub-selection, which either amplifies outliers or discards information.

A more principled ad-hoc strategy is averaging the N existing states. To formalize the comparison,
let the local states θi be i.i.d. variables with mean µ (the ideal global state) and variance σ2 (local
drift). The statistical risk is the Mean Squared Error, Risk(µ̂) = E[(µ̂− µ)2].

The random selection estimator (checkpointing), µ̂rand = θk, has a risk equal to the full sample
variance:

Risk(µ̂rand) = σ2 (38)

The averaging estimator, µ̂avg = 1
N

∑N
i=1 θi, reduces this risk by a factor of N :

Risk(µ̂avg) =
σ2

N
(39)

Averaging is thus more robust to the divergence of any single worker. However, even this principled
ad-hoc approach underperforms DES-LOC. The crucial distinction is that DES-LOC builds periodic
averaging into the training loop, treating it as a core mechanism rather than an external recovery tool.
This proactively constrains the variance of local drift (σ2) throughout training, ensuring all workers
remain in a low-variance consensus state and making the system inherently robust to elasticity.

I CHOOSING SYNCHRONIZATION FREQUENCIES

Our results suggest a simple and principled rule-of-thumb for setting the synchronization periods
(K) for model parameters and optimizer momentum states, grounded in the dynamics of exponential
moving averages (EMAs). This methodology provides actionable defaults for practitioners seeking to
balance model convergence with communication efficiency.

The core principle is that the synchronization frequency of any given optimizer state should be based
on its empirical half-life—the time horizon over which its EMA "forgets" half of its past information.

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2026

This ensures that states are synchronized before they drift too far apart, maintaining training stability.
For a state with a decay rate β approaching 1, the half-life can be calcualted as:

t1/2 ≈ ln 2

1− β

Based on this, we propose the following two-step methodology for setting the synchronization periods
Kx (for parameters), Ku (for first moments), and Kv (for second moments).

Parameters First (Kx). The synchronization of model parameters is paramount to training
quality. The period Kx should be chosen to match the end-of-training quality of fully-
synchronous DDP at a target step budget while still materially reducing communication. In
practice, starting points like Kx = 16 or Kx = 32 are effective as shown in our own work
and in Charles et al. (2025). Parameters should always be synchronized at least as frequently
as any momentum state.
Momentum by Half-Life (Ku,Kv). For any optimizer momentum state with a decay rate
β, its synchronization period K should be set near its calculated half-life, i.e., K ≈ t1/2.
For common optimizers like Adam or ADOPT with well-tuned decay rates β1 and β2, this
simplifies to setting the sync periods for the first and second moments as: Ku ≈ ln 2

1−β1
and

Kv ≈ ln 2
1−β2

.

Following this heuristic can yield a minimum 5× reduction in communication cost over DDP for
Kx ≥ 16, significantly decreasing wall-clock time while achieving convergence speed and final
model quality comparable to DDP.

J CRITICAL BATCH SIZE AND REGIME POSITIONING

To formally contextualize the regimes where DES-LOC is most beneficial, we begin with the statistical
properties of gradient estimation. Let the true gradient over the full data distribution for a loss function
L : Rd → R be G(θ) = ∇L(θ). In practice, a mini-batch of size B provides an estimate, Gest(θ).
The variance of this estimator scales inversely with the batch size:

cov(Gest(θ)) =
1

B
Σ(θ)

where Σ(θ) is the per-example gradient covariance. This relationship establishes a fundamental
trade-off: smaller per-worker batch sizes B result in higher-variance, or "noisier," gradient estimates.

Analyses of large-scale training have formalized the concept of a critical batch size, Bcrit (McCan-
dlish et al., 2018; Zhang et al., 2025). This represents the point at which the benefits of increasing
batch size begin to diminish.

When the batch size B < Bcrit, the gradient estimate Gest(θ) is noisy, and increasing B
yields substantial improvements in convergence speed per step.
When B ≫ Bcrit, the gradient estimate Gest(θ) becomes a highly accurate estimate of the
true gradient G(θ), and further increases to B provide negligible returns.

In modern distributed settings with N workers, the goal is often to operate at a compute-optimal
global batch size (G = N × B), which is typically near Bcrit for the given model and training
duration. In massively parallel environments where N is large, maintaining an optimal G necessitates
that the per-worker batch sizeB = G/N becomes small. Consequently, large-scale, compute-optimal
training often forces individual workers into a regime where B ≪ Bcrit, thereby exposing them to
high levels of gradient noise.

For local-update methods (e.g., Local SGD, FedAvg with local optimizers), this high-variance regime
is particularly challenging. Each worker performs multiple optimization steps using its own noisy
gradient estimates, causing its local parameter replica θi to diverge from the other workers. This
inter-worker drift can destabilize training and severely degrade final model quality.

DES-LOC is designed to counteract this divergence precisely in the high-noise, compute-optimal
regime. By periodically synchronizing not only the model parameters but also the optimizer states

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2026

(e.g., Adam’s momentum and variance accumulators), DES-LOC acts as a powerful consensus-
enforcing mechanism. This periodic averaging reduces the variance of the distributed state, effectively
dampening the destabilizing effects of high-variance local gradients and materially improving stability
and final model quality. This allows the system to retain the communication savings of local updates
without succumbing to parametric drift.

While the benefit of desynchronized momentum syncing may shrink in very-large-batch regimes
whereB > Bcrit (as local optimization is inherently more stable), DES-LOC remains highly attractive
due to a combination of other robust properties:

• Provable Convergence: It maintains strong theoretical convergence guarantees under local
updates.

• Graceful Quality-Communication Trade-off: The synchronization frequencies
(Kx,Ku,Kv) provide an explicit and effective mechanism to navigate the trade-off be-
tween communication cost and model performance.

• Inherent Elasticity: The method is fundamentally robust to dynamic changes in the number
of workers. The periodic state averaging provides a principled, low-variance mechanism
for initializing new workers, a scenario where naive checkpointing and state redistribution
underperform significantly.

K EXTENDED RELATED WORK

Federated Optimization. The DES-LOC framework, as mentioned in Section C.1, belongs to
the broader field of federated optimization. A foundational algorithm in this field is FedAvg
(McMahan et al., 2017), which established that a central model can be trained from decentralized
data by averaging the model weights from clients that have performed local training steps. These
findings were later generalized by Reddi et al. (2021) through the FedOpt framework, which re-
frames the training loop as a bi-level optimization, allowing the server to employ an optimization
strategy more complex than simple averaging. Consequently, Reddi et al. (2021) demonstrated the
instantiation of algorithms like FedAdam, FedYogi, and FedAdagrad, which achieve strong
empirical performance and provide nonconvex guarantees (Kingma & Ba, 2015) by substituting
the server’s averaging step with a corresponding optimizer. In a related approach, Hsu et al. (2019)
incorporate server-side momentum to improve the stability of aggregation, particularly when data
is skewed. A primary challenge in federated learning involves heterogeneous data distributions,
where clients hold non-IID data partitions. To address the problems arising from this heterogeneity,
algorithms such as FedProx, which applies a proximal regularizer for stability (Li et al., 2020b),
and SCAFFOLD, which uses control variates for robust convergence (Karimireddy et al., 2020b), have
been developed. Likewise, FedNova addresses objective function inconsistencies by normalizing
local steps (Wang et al., 2020). The Mime algorithm aims to reduce the gap between federated
and centralized convergence through the use of control variates and server statistics (Karimireddy
et al., 2020a). Lastly, methods such as Per-FedAvg (Fallah et al., 2020) and Ditto (Li et al., 2021)
concentrate on personalization to enhance fairness and utility with reduced communication.

Compression of payload. The DES-LOC framework lessens the communication overhead in
parallel training by reducing the communication frequency of parameter and momentum states
compared to standard data parallel approaches. It is important to note, however, that the communicated
payloads—the states themselves—can also be compressed, which would further enhance distributed
training efficiency. Specifically, quantization methods can represent (pseudo)gradients in lower
precision without a loss of model performance (Douillard et al., 2025; Kale et al., 2025). As an
alternative, structured compression can express an update in a lower-rank form, either through
SVD-like algorithms (Robert et al., 2025) or by only communicating the fast-moving momentum
components (Peng et al., 2024). Sparsification techniques can introduce sparse update structures,
which allows for better compression via information redundancy (Lin et al., 2018; Alistarh et al.,
2018). Because update periodicity and update compression are orthogonal operations, they are
frequently applied together to create highly efficient compression schemes without performance
degradation (Douillard et al., 2025; Kale et al., 2025; Wang et al., 2023). Therefore, we anticipate
that this would be a fully composable enhancement to the DES-LOC framework, which we leave as a
direction for future work.

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2026

L LLM USAGE DECLARATION

As noted in our submission, large language models (LLMs) were used throughout to assist with
various aspects of this work. Specifically, we used GPT-5 and Gemini 2.5 Pro to:

• Improve the clarity and flow of our writing.
• Find relevant related work that would be useful for our extended literature review.
• Assist with plotting code and simple code generations.

Beyond the stated uses above, all work, including but not exclusive to the interpretation of related
work and results, is our own.

M LIMITATIONS

Limitations. First, while our main non-convex convergence result holds for SGDM, for Adam our anal-
ysis uses additional assumptions like bounded gradients and homogeneous data distribution. These
assumptions are common in non-convex adaptive optimization. Second, our hyperparameter search
was extensive yet constrained to smaller models. Lastly, while our analysis uses Adam/AMSGrad,
many experiments use modified Adam (ADOPT) (Taniguchi et al., 2024).

53

	Introduction
	Desynced Low Communication Adaptive Optimizers (DES-LOC)
	DES-LOC Algorithm

	Convergence Guarantees for DES-LOC
	Experimental Design
	Experimental Setup

	Evaluation
	Higher Optimizer States Have Slower Empirical Rates of Change (RQ1)
	Parameters Require Frequent Sync, Momenta Sync Proportional to (RQ2)
	DES-LOC Brings 2 Communication Reductions Over Local Adam (RQ3)
	DES-LOC Is Suitable For Large-scale Training (RQ4)
	Nesterov as the outer optimizer (RQ5)

	Related Work
	Conclusion
	Appendix
	 toAppendix
	Experimental Details and Optimizer Hyperparameter Sweeps (See sec:expsetup)
	Architecture Details and Hyperparameters
	Optimizer Parameters Sweeping Procedure

	Complementary Results to subsec:methodalgorithm,sec:evaluation
	Toy Problem on Non-IID Data (See fig:toydistancesiid)
	RQ2: Independent Sync Frequencies
	RQ3: Communication Reduction And Baseline Comparisons
	RQ4: Additional Metrics and Training Instabilities of FAVG+OPT (See fig:eval:largemodels.b)
	Very low bandwidth experiments
	Muon as the inner optimizer
	Experiments on the Flux Vision Model
	Throughput at 7B Scale

	Further Algorithmic Details of DES-LOC
	Extension to FedOpt
	Deterministic Optimizer-specific Variants of alg:desyncgeneric
	DES-LOC-Adam
	DES-LOC-ADOPT

	Convergence Analysis of DES-LOC-SGDM (in expectation bounds)
	Extension to Adam optimizer
	Key Lemmas

	Convergence Analysis of DES-LOC-Adam (high-probability bounds)
	Derivation of eq:abslute changeu,eq:abslute changev: Maximum Momentum Change With Clipping
	Wall-Clock Time Modeling
	Estimating Total Wall-Clock Time
	Modeling Results

	Checkpointing vs. Periodic State Synchronization
	Choosing Synchronization Frequencies
	Critical Batch Size and Regime Positioning
	Extended Related Work
	LLM Usage Declaration
	Limitations

