

000 DES-LOC: DESYNCED LOW COMMUNICATION ADAP- 001 002 TIVE OPTIMIZERS FOR FOUNDATION MODELS 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

010 Scaling foundation model training with Distributed Data Parallel (DDP) methods
011 is bandwidth-limited. Existing infrequent communication methods like Local
012 SGD were designed to synchronize model parameters only and cannot be trivially
013 applied to adaptive optimizers due to additional optimizer states. Heuristic ap-
014 proaches that keep states local or reset them lack guarantees and can be unstable in
015 compute-efficient batch regimes; conversely, Local Adam synchronizes all states
016 uniformly and is provably convergent but triples communication costs. We propose
017 Desynced Low Communication Adaptive Optimizers (DES-LOC), a family of opti-
018 mizers assigning independent synchronization periods to parameters and momenta,
019 enabling lower communication costs while preserving convergence. Our theoretical
020 analysis shows that while parameter synchronization dominates the asymptotic rate
021 in-expectation, high-probability convergence guarantees require at least infrequent
022 synchronization of the second momentum. Furthermore, we prove that more fre-
023 quent momentum sync permits larger stable step sizes. Experiments on language
024 models of up to 1.7B show that DES-LOC can communicate **170** \times less than DDP
025 and **2** \times less than the previous state-of-the-art Local Adam, enabling **1.3–2.1** \times
026 wall-clock speedups over DDP for 1-13B models on 100Gb/s links. Furthermore,
027 unlike previous heuristic methods, DES-LOC is robust to worker failures offering
028 a scalable, efficient, and fault-tolerant solution for foundation model training.

029 030 1 INTRODUCTION 031

032 Training foundation models requires distributing optimization across workers for improved memory
033 and compute. However, frequent gradient communication in standard Distributed Data Parallelism
034 (DDP) (Li et al., 2020a) increases networking costs and limits scalability. Early works like Local
035 SGD (Stich, 2019) and FedAvg (McMahan et al., 2017) reduced this overhead by synchronizing
036 infrequently, averaging parameters only after $K \gg 1$ local steps, instead of gradients at every step.
037 However, modern foundation model training, e.g., Large Language Models (Dubey et al., 2024), uses
038 **adaptive optimizers** (Kingma & Ba, 2015) which require additional momenta.

039 Some extensions of Local SGD to adaptive optimizers (Sani et al., 2025; Douillard et al., 2023)
040 only average model parameters, which poses challenges. First, they lack convergence guarantees.
041 Second, keeping momenta local (Douillard et al., 2023) accumulates noisy small-batch gradients and
042 provides no means to initialize workers. This makes them unsuitable for failure-prone environments.
043 Third, re-initializing momenta (Sani et al., 2024; 2025) destabilizes training.

044 Local Adam (Cheng & Glasgow, 2025) addresses these challenges, proving periodic synchro-
045 nization *can* converge faster than standard Adam with DDP, and remain **robust** to the addition of
046 new workers. However, it requires synchronizing momenta alongside model parameters, tripling
047 communication costs compared to Local SGD. Hence, we aim to answer the following question:

048 *Can independently syncing parameters and momenta improve communication
049 efficiency for adaptive optimizers while maintaining convergence and robustness?*

050 As a result of our inquiry, we propose a new optimizer family, Desynced Low Communication
051 Adaptive Optimizers (DES-LOC), which sets independent synchronization frequencies for parameters
052 and momenta. This approach significantly reduces communication overhead by synchronizing
053 momenta less frequently.

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

Contributions :

- Provable convergence.** We prove convergence (see [Section 3](#)) for DES-LOC under: non-convex objectives when using SGD with momentum (SGDM), and weakly convex objectives when using Adam. Our theory indicates a higher momentum sync frequency enables larger step sizes. Furthermore, high-probability bounds demand momenta be synced with finite period for $\beta_2 < 1.0$.
- Communication reduction.** We empirically show that parameters require more frequent sync than momenta, and that less frequent momentum sync reduces communication costs ($2\times$ vs Local Adam, $170\times$ vs DDP), leading to $1.3 - 2.1\times$ reductions in training time over DDP on our hardware.
- Scalability to large models.** We validate DES-LOC at billion-scale language model training, demonstrating competitive ICL performance against both Local Adam and DDP.
- Hardware robustness.** Unlike previous heuristic methods, DES-LOC avoids persistent local states, enabling it to seamlessly integrate new workers to support environments prone to system failures.

2 DESYNCED LOW COMMUNICATION ADAPTIVE OPTIMIZERS (DES-LOC)

We start by characterizing the relation between the rate of change of optimizer states and Local Adam, and how these can be leveraged to lower the communication cost. Consider the Adam update: $u_t = \beta_1 u_{t-1} + (1 - \beta_1) g_t$ and $v_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t \odot g_t$.

For Local Adam, convergence is contingent on β_2 satisfying $1 - \beta_2 = \tilde{\mathcal{O}}(K^{-3/2}R^{-1/2})$ ([Cheng & Glasgow, 2025](#)) where K is the number of local steps and R the total communication rounds. Large K or R , implies $\beta_2 \rightarrow 1$, and conversely larger β_2 permits higher K or R .

A useful summary measure is the number of steps until a state's weight decays to a fraction ψ , $\tau_\psi(\beta) = \frac{\ln \psi}{\ln \beta}$. Following [Pagliardini et al. \(2025\)](#), we use the half-life $\tau_{0.5}$ as our primary measure, omitting β when clear. For typical values of β , we have $\tau_{0.5}(0.95) \approx 13.5$ ([Allal et al., 2025](#)), $\tau_{0.5}(0.999) \approx 692.8$ ([Kingma & Ba, 2015](#)), and $\tau_{0.5}(0.9999) \approx 6931$ ([Taniguchi et al., 2024](#)). Intuitively, larger half-lives imply synchronizing gradients over longer horizons as the optimizer is less sensitive to new gradients; choosing $\beta = 0$ ignores all previous momenta, whereas $\beta \rightarrow 1$ progressively attenuates signal from the current gradient.

While the half-life captures the horizon for which an optimizer state remains relevant to model updates, it provides no information on its absolute rate of change. With coordinate-wise clipping, each gradient component satisfies $|(g_t)_i| \leq \rho$. Unrolling Adam's recursions over K local steps gives the follow relation: $u_{t+K} = \beta_1^K u_t + (1 - \beta_1) \sum_{k=0}^{K-1} \beta_1^k g_{t+K-1-k}$ and its second moment analogue. Since $|g_{t,i}| \leq \rho$ and $|(g_t \odot g_t)_i| \leq \rho^2$, the maximal ℓ_∞ drift of each moment is (see [Section F](#)):

$$\|u_{t+K} - u_t\|_\infty \leq 2\rho(1 - \beta_1^K), \quad (1)$$

$$\|v_{t+K} - v_t\|_\infty \leq 2\rho^2(1 - \beta_2^K). \quad (2)$$

From the above, large β values and small clip bounds ρ , a common practice in foundation model training ([Brown et al., 2020; Scao et al., 2022](#)), limit the absolute changes in optimizer states. We can construct similar reasoning for other optimizers ([Sutskever et al., 2013; Taniguchi et al., 2024](#)), and norm-based clipping ([Pascanu et al., 2013; Brown et al., 2020](#)). From the above, the half-life of an optimizer state should inform its synchronization frequency. For example, if $\tau_{0.5}(0.95) \approx 13.5$ and $K = 256$, synchronization only affects few initial local steps. Over the course of the local training, the impact of the synchronised optimizer state shall decay to 0 given Equations 1 and 2. Conversely, if $K = 16$, synchronization approximately matches the half-life, strongly influencing local updates.

2.1 DES-LOC ALGORITHM

Motivated by the above insights, we formalize Desynced Low Communication Adaptive Optimizers as a family of optimizers offering the same convergence and robustness as Local Adam but with significantly lower communication costs. Our approach applies generically to adaptive optimizers parameterized by $\text{OPT} : (\mathbb{R}^d, \mathbb{R}^d, \mathbb{R}_{>0}, \{\mathbb{R}^d\}^N) \rightarrow \mathbb{R}^d$, with N optimizer states $\{s_{-1}^j\}_{j=1}^N \subset \mathbb{R}^d$, each updated by $\text{UPDATE}^j : (\mathbb{R}^d, \mathbb{R}^d) \rightarrow \mathbb{R}^d$. Coordinate-wise clipping is defined as $[\text{clip}(X, \rho)]_i =$

108

Algorithm 1 DES-LOC

109

Require: Model tensors, update functions, hyper-parameters

110

```

1:  $x_0 \in \mathbb{R}^d, \{s_{-1}^j\}_{j=1}^N \in (\mathbb{R}^d)^N$  — initial parameter vector, the initial  $N$  optimizer states
2:  $\{\text{UPDATE}^j\}_{j=1}^N : (\mathbb{R}^d \times \mathbb{R}^d \rightarrow \mathbb{R}^d)^N$  — updates optimizer state  $j$  from its previous state and the gradient.
3:  $\text{OPT} : \mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}_+ \times (\mathbb{R}^d)^N \rightarrow \mathbb{R}^d$  — update params from all worker models.
4:  $\text{SERVEROPT} : \mathbb{R}^d \rightarrow \mathbb{R}^d$  — update params using an abstract outer optimizer
5:  $\rho \in \mathbb{R}_+, \{\eta_t\}_{t=0}^{T-1} \in (\mathbb{R}_+)^{T-1}$  — clipping radius for  $\text{clip}(\cdot, \rho)$ , learning-rate for each time-step
6:  $T, M \in \mathbb{N}_+$  — total optimization steps and number of workers
7:  $K_x \in \mathbb{N}_+, \{K_j\}_{j=1}^N \in (\mathbb{N}_+)^N$  — communication periods (steps)

Ensure:  $x_T, \{s_{T-1}^j\}_{j=1}^N$ 
8: for each worker  $m$ :  $x_0^m \leftarrow x_0, s_{-1}^{j,m} \leftarrow s_{-1}^j$  local init
9: for  $t = 0, \dots, T-1$  do training loop
10:   for all workers  $m = 0, \dots, M-1$  in parallel do
11:      $g_t^m \leftarrow \nabla F(x_t^m; \xi_t^m)$  stochastic grad
12:      $\hat{g}_t^m \leftarrow \text{clip}(g_t^m, \rho)$  per-coordinate clipping
13:     for  $j = 1$  to  $N$  do
14:       if  $t \bmod K_j = 0$  then sync  $s^j$ 
15:          $s_t^{j,m} \leftarrow \text{UPDATE}^j(\mathbb{E}_m[s_{t-1}^{j,m}], \hat{g}_t^m)$ 
16:       else
17:          $s_t^{j,m} \leftarrow \text{UPDATE}^j(s_{t-1}^{j,m}, \hat{g}_t^m)$ 
18:       if  $t \bmod K_x = 0$  then sync  $x$ 
19:          $x_{t+1}^m \leftarrow \text{OPT}(\text{SERVEROPT}(\mathbb{E}_m[x_t^m]), \hat{g}_t^m, \eta_t, \{s_t^{j,m}\}_{j=1}^N)$ 
20:       else
21:          $x_{t+1}^m \leftarrow \text{OPT}(x_t^m, \hat{g}_t^m, \eta_t, \{s_t^{j,m}\}_{j=1}^N)$ 

```

131

132

$\text{sgn}(X_i) \cdot \min\{|X_i|, \rho\}$. To ensure that our method is provably convergent, SERVEROPT is that of FedAvg (McMahan et al., 2017). However, our algorithm directly extends to the larger FedOpt (Reddi et al., 2021) framework, which we discuss in Section C.1.

133

134

We focus our analysis on SGDM and Adam. As shown in Algorithm 1, DES-LOC synchronizes parameters $x \in \mathbb{R}^d$ and optimizer states $\{s^j\}_{j=1}^N$ at state-specific intervals $K_x, \{K_j\}_{j=1}^N \in \mathbb{N}_+$. Setting $N = 2$, $s_t^1 = u_t, s_t^2 = v_t$, and using update rules $\text{UPDATE}^1, \text{UPDATE}^2$ based on the Adam update rules above yields DES-LOC-Adam (see Algorithm 2).

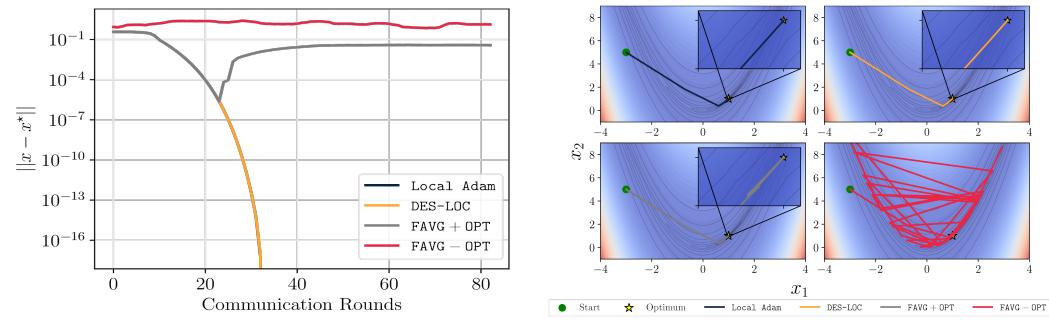
135

136

137

138

139



140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

Figure 1: We present: (left) the distance to the optimum and (right) a 2-D contour of a toy problem where DES-LOC ($K_x = 192, K_u = 192, K_v = 692$) and Local Adam ($K = K_x$) both converge to the optimum (overlapping). Methods keeping optimizer states local (■) fail to converge. Periodically resetting states (■) similarly stalls due to repeated oscillations. We optimize the non-convex function $f(x_1, x_2) = (1 - x_1)^2 + 100(x_2 - x_1^2)^2$ with $M = 256$ workers and IID Gaussian noise ($\sigma = 1.5$). We show an example of such a toy problem on Non-IID data in Fig. 8.

Toy Example To highlight DES-LOC’s practical benefit, Fig. 1 illustrates a scenario where DES-LOC and Local Adam converge under noisy gradients, while prior heuristic methods (Douillard et al., 2023; Sani et al., 2025; Jacob et al., 2025; Sani et al., 2024) fail.

162

3 CONVERGENCE GUARANTEES FOR DES-LOC

163

164 This section provides theoretical support for the proposed DES-LOC approach. We focus on a version
165 of the Adam optimizer that uses only a single momentum state. Extensions to the full Adam optimizer
166 with both momenta are available in [Section D.1](#) with high-probability bounds shown in [Section E](#).

167 Formally, we consider the following optimization problem:

168
$$\min_{x \in \mathbb{R}^d} f(x) := \frac{1}{M} \sum_{m=1}^M f_m(x), \quad \text{with } f_m(x) = \mathbb{E}_{\xi \sim \mathcal{D}_m} [F_m(x; \xi)]. \quad (3)$$
169

170 In this setup, all M machines collaboratively minimize the objective in (3). Generally, we assume
171 each machine m has access to only dataset \mathcal{D}_m , which can differ from device to device. This recovers
172 the homogeneous distribution case when all machines have the same dataset $\mathcal{D}_1 = \mathcal{D}_2 = \dots = \mathcal{D}_M$
173 and minimize the same loss $f_1(x) = f_2(x) = \dots = f_m(x) = f(x)$. We assume each machine m
174 computes mini-batch stochastic gradients corresponding to randomly selected samples $\xi \sim \mathcal{D}_m$ from
175 dataset \mathcal{D}_m . We further use the following technical assumptions on the problem structure.

176 **Assumption 1** (Lower bound and smoothness). *The overall loss function $f: \mathbb{R}^d \rightarrow \mathbb{R}$ is lower
177 bounded by some $f^* \in \mathbb{R}$ and all local loss functions f_m are L -smooth:*

178
$$\|\nabla f_m(x) - \nabla f_m(y)\| \leq L\|x - y\|, \quad \text{for any } x, y \in \mathbb{R}^d.$$
179

180 **Assumption 2** (Unbiased noise with bounded stochastic variance). *The stochastic gradient g^m of
181 local loss function f_m computed by machine m is unbiased and the noise has bounded variance:*

182
$$\mathbb{E}[g^m] = \nabla f_m(x), \quad \mathbb{E}[\|g_t^m - \nabla f_m(x)\|^2] \leq \sigma^2, \quad \text{for any } x \in \mathbb{R}^d.$$
183

184 **Assumption 3** (Bounded heterogeneity). *For any $x \in \mathbb{R}^d$, the heterogeneity is bounded by*

185
$$\frac{1}{M} \sum_{m=1}^M \|\nabla f_m(x)\|^2 \leq G^2 + B^2 \|\nabla f(x)\|^2.$$
186

187 All three assumptions are standard and widely used in the convergence analysis of optimization
188 algorithms [Yu et al. \(2019\)](#); [Karimireddy et al. \(2020b\)](#); [Wang et al. \(2021\)](#); [Yuan et al. \(2022\)](#).
189 Note that the bounded heterogeneity condition recovers the homogeneous case when $G^2 = 0$ and
190 $B^2 = 1$. To facilitate the technical presentation of the analysis, we view model and optimizer
191 state synchronizations through assigning probabilities to each averaging event. Particularly, instead
192 of averaging model parameters every K_x steps (i.e., $t \bmod K_x = 0$), we average **with probability**
193 $p_x = \frac{1}{K_x}$, which are statistically equivalent. In the following theorem, we provide convergence rate
194 of SGDM optimizer under such probabilistic and decoupled synchronization:

195 **Theorem 1.** *Let Assumptions 1, 2 and 3 hold. Then, choosing the step size $\eta = \min(\eta_0, \frac{1}{\sqrt{T}})$ with*

196
$$\eta_0 \stackrel{\text{def}}{=} \frac{1}{4L} \min \left(1 - \beta, \frac{1}{6\sqrt{\psi} \max(1, B^2 - 1)} \right), \quad \text{where } \psi \stackrel{\text{def}}{=} \frac{4(1-p_x)}{p_x^2} \cdot \frac{(1-\beta)(1-p_u)}{1-(1-p_u)\beta}, \quad (4)$$
197

198 the average iterates $x_t = \mathbb{E}_m[x_t^m]$ of DES-LOC-SGDM converge with the following rate:

199
$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \|\nabla f(x_t)\|^2 \leq \frac{4}{\sqrt{T}} \left(f(x_0) - f^* + \frac{L\sigma^2}{2M} \right) + \mathcal{O} \left(\frac{1+\psi}{T} \right). \quad (5)$$
200

201 We now discuss the convergence result and its implications. The obtained rate (5) is asymptotically
202 optimal for this setup ([Arjevani et al., 2023](#)). Notably, the leading term $\mathcal{O}(\frac{1}{\sqrt{T}})$ is unaffected by the
203 number of local steps. Interestingly, probabilities p_x , p_u , and the momentum parameter β appear in
204 the higher-order term $\mathcal{O}(\frac{1}{T})$, and thus have a limited impact on asymptotic convergence speed.

205 Regarding state synchronization, it is evident from (4) that model synchronization has a greater
206 impact on convergence due to the dependence $\psi = \mathcal{O}(\frac{1}{p_x^2})$. With vanishing p_x , the ψ term becomes
207 unbounded and breaks the rate. For optimizer states, it seems that momentum averaging can be
208 turned off ($p_u = 0$) without affecting the asymptotic behavior of the rate. Setting $p_x = 1$ and $p_u = 0$
209 recovers standard mini-batch SGDM ([Liu et al., 2020](#)). However, the ψ term also appears in the step-
210 size restriction (4). As $p_u \rightarrow 0$, $\frac{(1-p_u)}{1-(1-p_u)\beta} \rightarrow \frac{1}{1-\beta}$. This imposes the most severe restriction on the
211 learning rate η_0 since $\eta_0 \propto \frac{1}{\sqrt{\psi}}$, as ψ is maximized. This theory shows that increasing the frequency
212 p_u of momentum averaging—while not changing the asymptotic rate—allows for a larger step size,
213 potentially leading to faster convergence in practice. This theory justifies that momentum states
214 can be synchronized less frequently than parameters and that more averaging improves convergence
215 by supporting larger step sizes. Furthermore, our high probability analysis of DES-LOC-Adam in
[Section E](#) shows that the sync frequency of momenta must be finite for $\beta_2 < 1.0$.

216

4 EXPERIMENTAL DESIGN

217
218 Our experimental setup addresses the following research questions:
219

220 **RQ1** Do *theoretical* rates of change predict the *empirical* evolution of optimizer states?
 221 **RQ2** How does the synchronization frequency of a model/optimizer state impact performance?
 222 **RQ3** To what extent can DES-LOC cut communication w.r.t. Local Adam in practical scenarios?
 223 **RQ4** How does DES-LOC scale with increasing model size and longer training horizons?
 224 **RQ5** How does DES-LOC perform when using a Nesterov outer optimizer?
 225

226

4.1 EXPERIMENTAL SETUP

227
228 **Models and data.** We train a 135M-parameter GPT-style model (arch. in [Table 3](#)) with sequence
 229 length 2048. We distinguish worker batch size \mathcal{B}_w from global $\mathcal{B} = \sum_{w=0}^{M-1} \mathcal{B}_w$ ([Sani et al., 2025](#)). A
 230 2M token global batch is split across $M = 4$ workers sampling IID from SmolLM2 ([Allal et al., 2025](#)): 70% Fineweb-Edu ([Penedo et al., 2024](#)), 10% Cosmopedia ([Ben Allal et al., 2024](#)), 10%
 231 Python-Edu, 5% FineMath 4+, and 5% Infi-WebMath 4+. The 135M model trains for
 232 6.4B tokens ($2.4 \times$ compute-optimal ([Hoffmann et al., 2022](#))). For **RQ4**, we scale to a 1.7B model for
 233 40B tokens ($2 \times$ compute-optimal) ([Sardana et al., 2024](#)). We show Non-IID data results in [Fig. 14](#).
 234
235 **Optimizers.** We use Adam ([Kingma & Ba, 2015](#)) (results in [Section B](#)) and its variant
 236 ADOPT ([Taniguchi et al., 2024](#)), which modifies the update to guarantee convergence for any β_2 .
 237 For the 135M model, we grid-search (β_1, β_2, η) under DDP; the 1.7B model uses hyperparameters
 238 from [Allal et al. \(2025\)](#); [Taniguchi et al. \(2024\)](#). Learning rates use the WSD schedule ([Hägele et al., 2024](#);
 239 [Allal et al., 2025](#)). We favor ADOPT ($\beta_2 = 0.9999$) in high- β regimes where Adam is unstable.
 240 We also ablate the outer optimizer, comparing FedAvg with a Nesterov optimizer ([Reddi et al., 2021](#);
 241 [Douillard et al., 2023](#); [Charles et al., 2025](#)) on a 700M model trained on 40B tokens.
 242
243 **Baselines.** We compare DES-LOC with: (i) synchronous DDP; (ii) Local Adam/ADOPT; (iii)
 244 FAVG+OPT (persistent states ([Sani et al., 2025](#); [Douillard et al., 2023](#))); and (iv) FAVG-OPT
 245 (reset states ([Sani et al., 2024](#); [Iacob et al., 2025](#))). Persistent-state FedAvg is DES-LOC with
 $K_u, K_v = \infty$, an upper bound on comms efficiency. DDP is an upper bound on ML performance.
 246
247 **Metrics.** We evaluate models by (i) perplexity and (ii) per-worker asymptotic communication cost
 248 assuming a bandwidth-optimal Ring-AllReduce ([Sergeev & Balso, 2018](#)) algorithm scaling
 249 linearly with model size. For the 1.7B model, we report standard in-context-learning (ICL) bench-
 250 marks ([Brown et al., 2020](#)). We use a zero-shot setting for ICL tasks unless stated otherwise following
 251 [Allal et al. \(2025\)](#) and report the best performing communication-efficient method in [blue](#) with the
 252 best-performing overall in [bold](#). To fairly compare optimizer-state changes across decay rates, we
 253 measure their *relative* rates of change as $\|s_{t+K} - s_t\|_2 / \|s_t\|_2$. For convergence plots, we report
 254 final-round means and standard deviations next to labels. We also provide wall-time clock results; we
 255 use 4 machines with one H100 for sub-1B models, and 4 machines with 8 H100s each for larger scales.
 256 While the links between machines run at 100Gb/s, we observed overheads limiting the practical
 257 bandwidth to 60 – 70 Gb/s. We report stepwise (see [Section B.3.1](#)) and timewise convergence. We
 258 also provide an analysis on the wall-clock time vs bandwidth in [Section G.1](#).
 259
260

5 EVALUATION

261 Our results show optimizer states change at different rates ([Section 5.1](#)), forming a clear synchroniza-
 262 tion hierarchy ([Section 5.2](#)). DES-LOC reduces communication $2 \times$ vs. Local Adam ([Section 5.3](#))
 263 while converging robustly with adding workers and scaling effectively to large models ([Section 5.4](#)).
 264
265

5.1 HIGHER β OPTIMIZER STATES HAVE SLOWER EMPIRICAL RATES OF CHANGE (RQ1)

266

267 [Figure 2](#) shows that relative rates of change for the two momenta in Local ADOPT/Adam scale
 268 with their decay rates under gradient clipping ($\rho = 1$). Supported by our theoretical discussions on
 269 momenta half-lives ([Section 2](#)), the second momentum evolves substantially slower than the first at
 high- β_2 . For Local Adam, the second momentum remains slower even when $\beta_2 \approx \beta_1$, potentially



Figure 2: Relative rates of change for first (left) and second (right) momenta across rounds using standard Local ADOPT ($K = 64$). For ADOPT ($\beta_2 = 0.9999$), increasing $\beta_1 \geq 0.99$ greatly slows the first-momentum rate of change. The second momentum evolves $\sim 100\times$ slower (note y-axis is in log scale), consistent with their decay rates and half-lives.

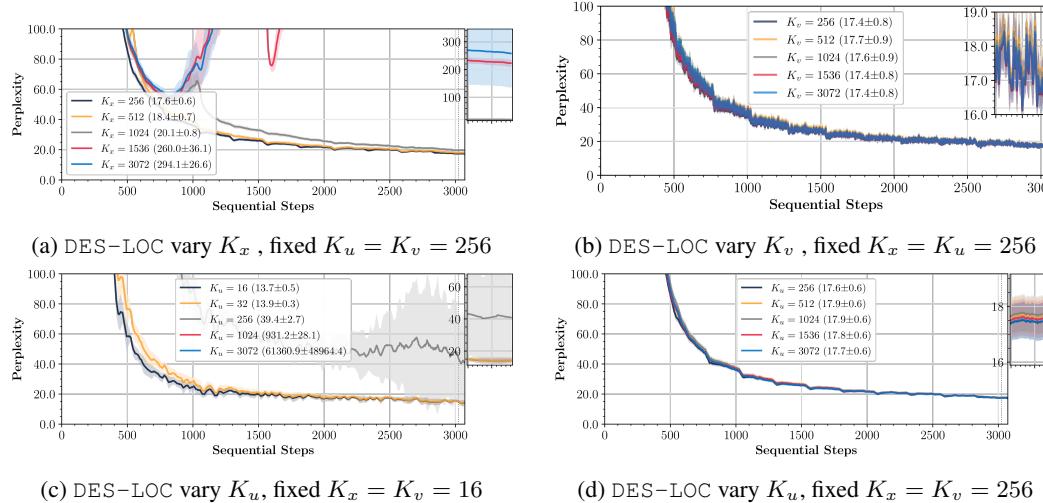


Figure 3: Model perplexity for DES-LOC (ADOPT, $\beta_1 = 0.95$, $\beta_2 = 0.9999$), varying synchronization periods independently (others fixed at K_b). Parameter synchronization (a) is critical, with sharp degradation at higher periods. Second-momentum synchronization (b) minimally affects performance due to its large half-life ($\tau_{0.5}(\beta_2) \gg K_b$). First-momentum synchronization significantly improves perplexity (c) only when the baseline matches its half-life ($K_b = 16$), having minimal impact otherwise (d). Parameters and second momentum behave similarly across sync frequencies (Section B)

because gradient variance (Kingma & Ba, 2015) evolves slower than the mean direction (first momentum).

Takeaway: As discussed in Sections 2 and 3, when $\beta_1 \ll \beta_2$, the second momentum evolves slower than the first, proportional to half-life ratio of the two $\frac{\tau_{0.5}(\beta_2)}{\tau_{0.5}(\beta_1)} = \frac{\ln(\beta_1)}{\ln(\beta_2)}$.

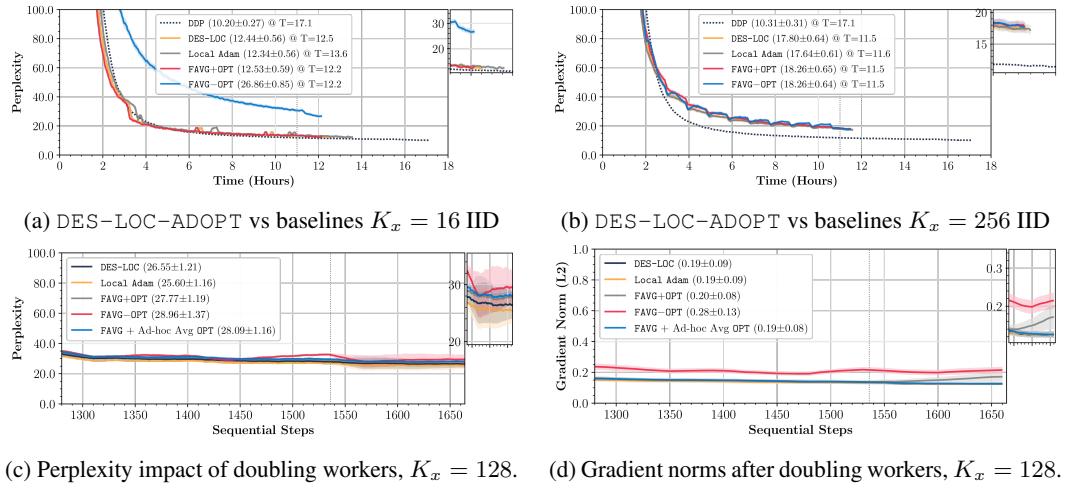
5.2 PARAMETERS REQUIRE FREQUENT SYNC, MOMENTA SYNC PROPORTIONAL TO β (RQ2)

Figure 3 evaluates the effect of independently varying synchronization periods (K_x, K_u, K_v) for parameters and optimizer states. We consider two baseline periods ($K_b = 16, 256$), chosen based on the fastest state's half-life ($\tau_{0.5}(0.95) \approx 13.5$). Frequent parameter synchronization (K_x) is crucial for performance, while synchronizing momenta (K_u, K_v) significantly impacts training only if their half-lives align with the base frequency K_b . Otherwise, synchronization frequency primarily influences communication costs rather than model quality. Adam results can be seen in Section B.

Takeaway: Parameter synchronization frequency (K_x) strongly impacts performance, motivated by the leading term in theoretical bounds (Section 3). Momentum synchronization periods matter empirically only when chosen near their half-lives, consistent with Sections 2 and 3.

324 5.3 DES-LOC BRINGS 2× COMMUNICATION REDUCTIONS OVER LOCAL ADAM (RQ3)

326 As shown in Figure 4, DES-LOC halves communication versus Local Adam (Cheng & Glasgow,
 327 2025) with matching perplexity by syncing momenta less frequently ($K_u = 3K_x, K_v = 6K_x$),
 328 exploiting the second-momentum’s lower sensitivity to sync frequency (Fig. 3). This yields a 1.37×
 329 speedup over DDP and 1.1× over Local Adam at $K_x = 16$ on 4 H100s. At $K_x = 256$, the speedup
 330 over DDP increases to 1.47× and both DES-LOC and Local Adam saturate throughput.



331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748<br

378 competitive with all baselines while reducing communication versus Local Adam and DDP. The
 379 heuristic baseline (Sani et al., 2025) suffers training instabilities (Fig. 5.b) potentially impacting
 380 downstream performance (Table 1) and underscoring the advantage of DES-LOC’s training stability.
 381 We elaborate more on the settings in which we expect DES-LOC to improve stability in Section J.
 382

383 Our method’s reduced communication costs result in a $\approx 2.2 \times$ training speedup over DDP (Figure 5).
 384 As show by our benchmarks Table 2, these time savings scale with model size and comms frequency.
 385 At the 13B scale with $K_x = 16$, DES-LOC would save 13 days over Local Adam and 73 days
 386 over DDP. The advantage over DDP widens for $K_x = 256$, where communication-efficient methods
 387 maximize throughput. Table 5 shows equivalent results for throughput.
 388

388 Table 1: Our billion-scale model trained with DES-LOC matches or surpasses the (ICL) performance
 389 of models trained with Local Adam and FAVG+OPT, approaching DDP performance. FAVG+OPT
 390 underperforms compared to its perplexity results from Fig. 5.a, indicating that the activation in-
 391 creases (Fig. 5.b) from the unstable training procedure may have damaged the model.

	Arc Challenge	Arc Easy	PIQA	HellaSwag	Avg
DES-LOC	31.8	59.0	70.7	44.9	51.6
Local Adam	31.9	59.0	70.6	45.8	51.8
FAVG+OPT	30.1	58.0	70.0	44.8	50.7
DDP	33.8	62.5	71.1	47.8	53.8

400 Table 2: Wall-clock time (days) for 1B-13B models to reach 2 \times compute-optimal tokens at high
 401 ($K = 16$) and low ($K = 256$) frequencies with a 2M token batch size. At high frequency ($K = 16$),
 402 DES-LOC outperforms Local ADAM by over 13 days on the 13B model and is within 3% of
 403 FAVG+OPT. At low frequency ($K = 256$), it cuts the 13B’s training time > 93 days versus DDP.
 404

K_x	1B Model		7B Model		13B Model	
	16	256	16	256	16	256
DDP (Baseline)	1.41 ± 0.008	1.41 ± 0.008	38.74 ± 0.161	38.74 ± 0.161	175.50 ± 0.478	175.50 ± 0.478
FAVG+OPT	0.80 ± 0.007	0.63 ± 0.006	28.52 ± 0.095	24.01 ± 0.088	100.21 ± 0.544	82.46 ± 0.513
Local Adam	0.96 ± 0.006	0.64 ± 0.006	31.46 ± 0.090	24.18 ± 0.087	116.10 ± 0.484	83.34 ± 0.509
DES-LOC ($K_u, K_v = 3K_x, 6K_x$)	0.81 ± 0.006	0.63 ± 0.006	28.80 ± 0.094	24.06 ± 0.088	102.03 ± 0.537	82.68 ± 0.512

411 **Takeaway:** DES-LOC enables efficient training of large-scale foundation models, especially at long
 412 training horizons, with downstream ICL performance competitive with DDP. We recommend setting
 413 K_x for sufficient throughput based on bandwidth, then setting K_u, k_v as constant multiples (e.g.,
 414 $3 \times, 6 \times$) or based on the half-life of their β (see Section I).
 415

416 5.5 NESTEROV AS THE OUTER OPTIMIZER (RQ5)

417 5.5.1 DOES NESTEROV IMPROVE DES-LOC

418 We ablate the outer optimizer for DES-LOC on a 700M parameter model, comparing averaging to a
 419 Nesterov optimizer with momentum of 0.9, outer learning rate of 1.0 tuned following Charles et al.
 420 (2025). The experiment ran on 4 H100s and used a medium-synchronization regime ($K_x = 32, K_u =$
 421 $3K_x, K_v = 6K_x$) where models are initialised from 2048-step DDP checkpoints, following Charles
 422 et al. (2025). While our convergence bound is not trivially applicable, our analysis of Eq. (4) suggests
 423 a higher momentum synchronization frequency (p_u) should permit a larger step size ($\eta_0 \propto 1/\sqrt{\psi}$).
 424

425 As shown in Figure 6, two key points emerge. First, more frequent synchronization ($K_x = 32$)
 426 allows DES-LOC to come within 1% of the final perplexity of DDP, performing much better than
 427 in infrequent settings ($K_x = 256$). Second, using Nesterov as the outer optimizer improves
 428 performance over averaging by $\approx 0.5\%$, with its performance w.r.t DDP being similar to the one
 429 reported in Charles et al. (2025, Table 4) for models at this scale. The Nesterov approach
 430 preserves the practical benefits of DES-LOC, ensuring effective worker initialization and reducing
 431 local optimization noise, which can help prevent issues like exploding activation norms.
 432

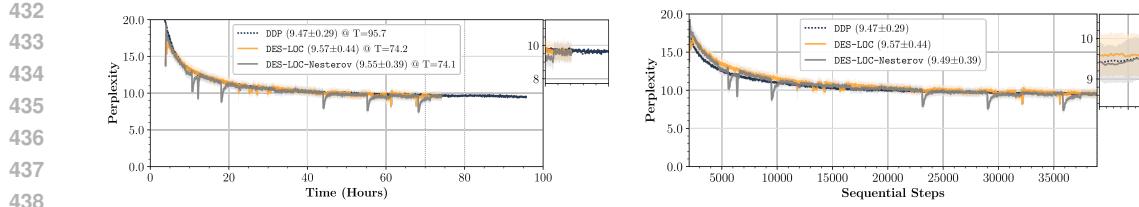


Figure 6: Ablation of the outer optimizer for DES-LOC on a 700M parameter model in a medium-frequency communication setting ($K_x = 32$), showing (left) convergence in terms of time and (right) in terms of steps. In this regime, DES-LOC’s final perplexity is within 1% of the DDP baseline. Using a Nesterov outer optimizer provides a further improvement over averaging.

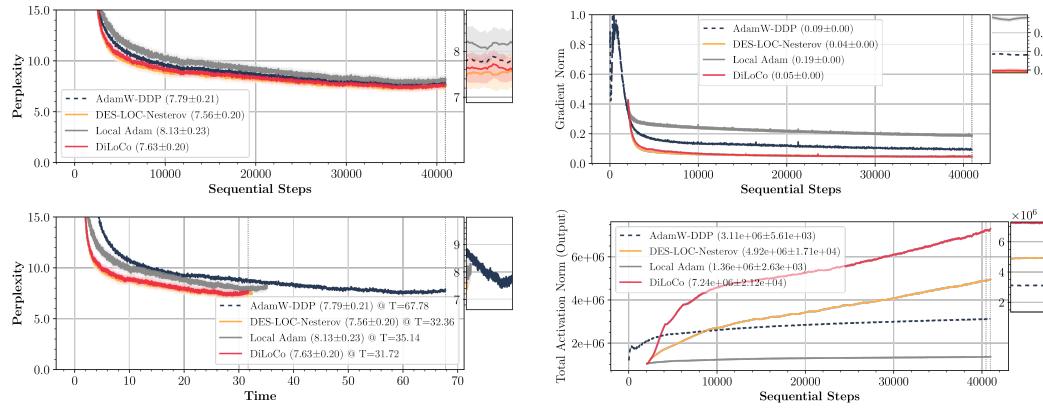


Figure 7: Comparison of Adam-DDP, Local Adam, DiLoCo, and DES-LOC Nesterov on a 1B-parameter model trained for 40,960 steps with an AdamW inner optimizer. Top left: train perplexity vs steps. Top right: worker gradient norms. Bottom left: train perplexity vs time, bottom right: whole-model output activation norms. Shaded regions show std across workers. DES-LOC Nesterov outperforms Adam, it also outperforms DiLoCo at the cost of more communication. Error bars show variance across workers, accounting for compounding local drift.

Takeaway: Frequent synchronization ($K_x = 32$) allows DES-LOC to reach within 1% of the perplexity of DDP. Furthermore, using a Nesterov outer optimizer improves performance over averaging, while preserving practical benefits like effective worker initialization and reduced optimization noise.

5.5.2 DOES DES-LOC WITH NESTEROV PROVIDE BENEFITS OVER $K_u = K_v = \infty$

Having shown that a Nesterov outer optimizer improves DES-LOC, we ask whether synchronizing optimizer states still helps relative to the local-state ($K_u = K_v = \infty$) Nesterov method DiLoCo. Charles et al. (2025) has shown that at **large** scale ($> 1B$ parameters) DiLoCo can match or outperform DDP with Adam. We adopt their outer hyper-params and train a 1B model with the same experimental design as Section 5.5.1 using 4×8 H100s for 40,960 steps ($\approx 4 \times$ compute-optimal) with inner Adam, comparing Adam-DDP, Local Adam, DiLoCo, and DES-LOC Nesterov, with $K_x = 32$ for Local Adam and DiLoCo and $K_u = 4K_x, K_v = 8K_x$ for DES-LOC Nesterov.

Figure 7 (top left) shows that Nesterov-based methods outperform AdamW: DiLoCo achieves 7.63 ± 0.20 validation perplexity, improving over Adam-DDP by $\approx 2\%$, while DES-LOC Nesterov reaches 7.56 ± 0.20 , a $\approx 0.9\%$ gain over DiLoCo; both outperform Local Adam (8.13 ± 0.23). Note that this comparison pits Nesterov-based local updates against DDP with standard Adam; as Charles et al. (2025) note, once DDP also uses Nesterov, this gap can shrink or reverse depending on model size and worker count. These results show that that synchronizing optimizer states preserves the benefits of Nesterov while retaining the advantages of state averaging.

We analyze the interaction between the optimizer states and the outer optimizer by measuring the gradient norms and activation statistics. In Figure 7 (top and bottom right), for both DiLoCo and

486 DES-LOC Nesterov, gradient norms drop rapidly relative to Adam-DDP and Local Adam and
 487 remain roughly $2\times$ smaller than DDP thereafter, suggesting that Nesterov may steer optimization
 488 toward smoother regions of the loss landscape. State synchronization slightly accelerates the decrease
 489 in gradient norm over DiLoCo, after which the curves coincide.

490 Under DiLoCo, total output activation norms grow monotonically to more than $2\times$ the Adam-
 491 DDP values, whereas DES-LOC Nesterov substantially slows this growth, ending $\approx 32\%$ below
 492 DiLoCo (bottom row). This resembles the stabilization seen for DES-LOC versus FedAvg baselines
 493 without optimizer-state averaging (Fig. 5), where periodic averaging also curbed activation growth.
 494 This supports viewing finite synchronization as a regularizer that limits worker drift and optimizer-
 495 state noise, yielding better-controlled activations while offering Nesterov’s benefits. DES-LOC
 496 Nesterov does incur additional communication costs relative to DiLoCo at fixed K_x , being $\approx 2\%$
 497 slower than DiLoCo under these bandwidth conditions (Fig. 7 bottom left) and K_u, K_v settings while
 498 being $\approx 8\%$ faster than Local Adam. The extra cost can be made arbitrarily small by increasing
 499 the optimizer-state sync periods (K_u, K_v): in the limit $K_u, K_v \rightarrow \infty$ it recovers DiLoCo in both
 500 performance and communication, while any finite sync period partly inherits the robustness and
 501 fault-tolerance benefits of synchronizing optimizer states, modulated by the chosen β ’s.

502 **Takeaway:** At the 1B scale and long horizons, Nesterov-based local-update methods (DiLoCo,
 503 DES-LOC Nesterov) outperform Adam-DDP, consistent with prior scaling-law results. Relative
 504 to DiLoCo, DES-LOC Nesterov matches or improves perplexity while substantially reducing
 505 gradient and activation norms via periodic optimizer-state synchronization, yielding a tunable point on
 506 the communication–performance Pareto frontier.

509 6 RELATED WORK

511 In synchronous data-parallel training, workers exchange full gradients or parameters *every* iteration,
 512 incurring communication costs linear in model size using Ring-AllReduce (Sergeev & Balso,
 513 2018). When hardware is weakly connected or widely distributed, communication significantly
 514 slows wall-clock training time (Sani et al., 2025) as workers need to wait for synchronization to
 515 finish. Federated Averaging (FedAvg) (McMahan et al., 2017) and Local SGD (Stich,
 516 2019) reduce communication by performing K local optimization steps before averaging parameters,
 517 decreasing communication rounds by a factor of K . Ad-hoc extensions to adaptive optimizers either
 518 keep optimizer states local (Douillard et al., 2023; Charles et al., 2025; Liu et al., 2024) or reset them
 519 after each sync (Sani et al., 2024; 2025), both lacking robust convergence guarantees.

520 Adam (Kingma & Ba, 2015) is popular for pre-training as it scales to larger batches than SGD (Kunst-
 521 ner et al., 2023; Dubey et al., 2024). It uses moving averages of gradients and their squares, however,
 522 its convergence is not guaranteed as it requires $\beta_1 < \sqrt{\beta_2} < 1$, with large, problem-specific β_2 (Reddi
 523 et al., 2018; Zhang et al., 2022). Other optimizers also track gradient moments (Sutskever et al.,
 524 2013; Chen et al., 2023; You et al., 2020; Taniguchi et al., 2024). Local Adam (Cheng & Glasgow,
 525 2025) reduces communication with local steps but requires syncing optimizer states, which triples the
 526 communication cost relative to Local SGD/DDP, as sync costs scale with the number of states. For
 527 further related work, including compression/sparsification and structured updates, check Section K.

529 7 CONCLUSION

531 DES-LOC reconciles communication efficiency with rigorous convergence guarantees in distributed
 532 adaptive optimization. By extending theory to the independent synchronization of Adam and SGDM
 533 optimizer states, we empirically demonstrate convergence alongside $170\times$ and $2\times$ communication
 534 reductions over DDP and prior state-of-the-art methods at billion-scale LLM training, even in envi-
 535 ronments prone to system failures. Our findings yield clear guidelines: i) **frequently** synchronize
 536 parameters, and ii) synchronize optimizer states **less often**, proportional to their half-lives. These
 537 insights open avenues for future research, including layer-wise synchronization, adaptive frequencies,
 538 compressed updates, as well as emerging applications, such as worldwide cross-data center training
 539 and collaborative training. As training workloads scale, we envision DES-LOC becoming the standard
 for efficient, resilient foundation-model training in data centers and distributed environments.

540 REPRODUCIBILITY STATEMENT
541542 We are committed to the reproducibility of our work and provide the code, data-processing scripts,
543 and configurations necessary to replicate the results in this paper.
544545 **Code and Environment.** Our complete source code is available in the supplementary material. All
546 dependencies are open-source and can be installed using the provided scripts (`system_setup.sh`,
547 `install_env.sh`), which automate the full environment setup.
548549 **Datasets.** The experiments use publicly available, open-source datasets. We provide the
550 script `convert_hf_dataset_to_mds_smollm_corpus.sh` to replicate our entire data pre-
551 processing pipeline, from downloading raw corpora to converting them into the required format.
552553 **Experimental Protocol.** Reproducing our large-scale experiments requires access to significant
554 computational infrastructure (e.g., multi-GPU servers), as specified in our documentation. All experiments
555 are controlled via a well-defined configuration system using YAML files. Key hyperparameters and al-
556 gorithmic settings, such as the synchronization frequencies for our method (`f1.n_local_steps`,
557 `f1.parameter_scheduler_kwargs`) and the data distribution across workers, are explicitly
558 defined. We include example scripts that execute the main experiments reported in the paper when
559 using the appropriate hyperparameters reported in [Sections A](#) and [4](#), providing a clear path to reproduce
560 our findings.
561562 REFERENCES
563564 Dan Alistarh, Torsten Hoefer, Mikael Johansson, Nikola Konstantinov, Sarit Khirirat, and Cédric
Renggli. The convergence of sparsified gradient methods. In *Conference on Neural Information
Processing Systems (NeurIPS)*, 2018.565 Loubna Ben Allal, Anton Lozhkov, Elie Bakouch, Gabriel Martín Blázquez, Guilherme Penedo, Lewis
566 Tunstall, Andrés Marafioti, Hynek Kydlícek, Agustín Piqueres Lajarín, Vaibhav Srivastav, Joshua
567 Lochner, Caleb Fahlgren, Xuan-Son Nguyen, Clémentine Fourrier, Ben Burtenshaw, Hugo Larcher,
568 Haojun Zhao, Cyril Zakka, Mathieu Morlon, Colin Raffel, and Thomas Wolf. Smollm2: When
569 smol goes big - data-centric training of a small language model. *arXiv preprint arXiv:2502.02737*,
570 2025.571 Yossi Arjevani, Yair Carmon, John C Duchi, Dylan J Foster, Nathan Srebro, and Blake Woodworth.
572 Lower bounds for non-convex stochastic optimization. *Mathematical Programming*, 199(1-
573 2):165–214, 2023.575 Loubna Ben Allal, Anton Lozhkov, Guilherme Penedo, Thomas Wolf, and Leandro von Werra.
576 Cosmopedia, February 2024.
577578 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
579 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
580 Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
581 Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
582 Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
583 and Dario Amodei. Language models are few-shot learners. In *Conference on Neural Information
Processing Systems (NeurIPS)*, 2020.585 Zachary Charles, Gabriel Teston, Lucio Dery, Keith Rush, Nova Fallen, Zachary Garrett, Arthur
586 Szlam, and Arthur Douillard. Communication-efficient language model training scales reliably
587 and robustly: Scaling laws for diloco. *arXiv preprint arXiv:2503.09799*, 2025.
588589 Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Hieu Pham, Xuanyi Dong,
590 Thang Luong, Cho-Jui Hsieh, Yifeng Lu, and Quoc V. Le. Symbolic discovery of optimization
591 algorithms. In *Conference on Neural Information Processing Systems (NeurIPS)*, 2023.592 Ziheng Cheng and Margalit Glasgow. Convergence of distributed adaptive optimization with local
593 updates. In *International Conference on Learning Representations (ICLR)*, 2025.

594 Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
 595 Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh,
 596 Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam
 597 Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James
 598 Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Lev-
 599 skaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin
 600 Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret Zoph,
 601 Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick, Andrew M.
 602 Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, Rewon
 603 Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
 604 Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas Eck, Jeff Dean,
 605 Slav Petrov, and Noah Fiedel. Palm: Scaling language modeling with pathways. *J. Mach. Learn.
 606 Res.*, 24:240:1–240:113, 2023.

607 Arthur Douillard, Qixuang Feng, Andrei A. Rusu, Rachita Chhaparia, Yani Donchev, Adhiguna
 608 Kuncoro, Marc’Aurelio Ranzato, Arthur Szlam, and Jiajun Shen. Diloco: Distributed low-
 609 communication training of language models. *arXiv preprint arXiv:2311.08105*, 2023.

610 Arthur Douillard, Yanislav Donchev, Keith Rush, Satyen Kale, Zachary Charles, Zachary Gar-
 611 rett, Gabriel Teston, Dave Lacey, Ross McIlroy, Jiajun Shen, Alexandre Ramé, Arthur Szlam,
 612 Marc’Aurelio Ranzato, and Paul Barham. Streaming diloco with overlapping communication:
 613 Towards a distributed free lunch. *CoRR*, abs/2501.18512, 2025.

614 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
 615 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn,
 616 Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston
 617 Zhang, Aurélien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Rozière, Bethany Biron,
 618 Bin Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris
 619 McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton
 620 Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, David
 621 Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,
 622 Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip
 623 Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Graeme Nail,
 624 Grégoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo
 625 Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan Misra, Ivan Evtimov,
 626 Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer
 627 van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang,
 628 Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua
 629 Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Kartikeya Upasani, Kate Plawiak,
 630 Ke Li, Kenneth Heafield, Kevin Stone, and et al. The llama 3 herd of models. *arXiv preprint
 631 arXiv:2407.21783*, 2024.

632 Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Personalized federated learning: A meta-
 633 learning approach. *arXiv preprint arXiv:2002.07948*, 2020.

634 Alexander Hägele, Elie Bakouch, Atli Kosson, Loubna Ben Allal, Leandro von Werra, and Martin
 635 Jaggi. Scaling laws and compute-optimal training beyond fixed training durations. In *Conference
 636 on Neural Information Processing Systems (NeurIPS)*, 2024.

637 Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
 638 Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
 639 Hennigan, Eric Noland, Katie Milligan, George van den Driessche, Bogdan Damoc, Aurelia Guy,
 640 Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
 641 Training compute-optimal large language models. *arXiv preprint arXiv:2203.15556*, 2022.

642 Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical data
 643 distribution for federated visual classification. *arXiv preprint arXiv:1909.06335*, 2019.

644 Alex Iacob, Lorenzo Sani, Meghdad Kurmanji, William F. Shen, Xinchi Qiu, Dongqi Cai, Yan Gao,
 645 and Nicholas Donald Lane. DEPT: Decoupled embeddings for pre-training language models. In
 646 *International Conference on Learning Representations (ICLR)*, 2025.

648 Keller Jordan, Yuchen Jin, Vlado Boza, Jiacheng You, Franz Cesista, Laker Newhouse, and Jeremy
 649 Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024. URL <https://kellerjordan.github.io/posts/muon/>.
 650

651 Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
 652 Bhagoji, Kallista A. Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, Rafael
 653 G. L. D’Oliveira, Hubert Eichner, Salim El Rouayheb, David Evans, Josh Gardner, Zachary Garrett,
 654 Adrià Gascón, Badih Ghazi, Phillip B. Gibbons, Marco Gruteser, Zaïd Harchaoui, Chaoyang
 655 He, Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri Joshi,
 656 Mikhail Khodak, Jakub Konečný, Aleksandra Korolova, Farinaz Koushanfar, Sanmi Koyejo,
 657 Tancrède Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock, Ayfer Özgür, Rasmus
 658 Pagh, Hang Qi, Daniel Ramage, Ramesh Raskar, Mariana Raykova, Dawn Song, Weikang Song,
 659 Sebastian Ü. Stich, Ziteng Sun, Ananda Theertha Suresh, Florian Tramèr, Praneeth Vepakomma,
 660 Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu, and Sen Zhao. Advances
 661 and open problems in federated learning. *Found. Trends Mach. Learn.*, 14(1-2):1–210, 2021.

662 Satyen Kale, Arthur Douillard, and Yanislav Donchev. Eager updates for overlapped communication
 663 and computation in diloco. *arXiv preprint arXiv: 2502.12996*, 2025.
 664

665 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
 666 Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
 667 *CoRR*, abs/2001.08361, 2020.

668 Sai Praneeth Karimireddy, Martin Jaggi, Satyen Kale, Mehryar Mohri, Sashank J Reddi, Sebastian U
 669 Stich, and Ananda Theertha Suresh. Mime: Mimicking centralized stochastic algorithms in
 670 federated learning. *arXiv preprint arXiv:2008.03606*, 2020a.
 671

672 Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
 673 Ananda Theertha Suresh. SCAFFOLD: Stochastic controlled averaging for federated learning. In
 674 *International Conference on Machine Learning (ICML)*, 2020b.

675 Ahmed Khaled, Satyen Kale, Arthur Douillard, Chi Jin, Rob Fergus, and Manzil Zaheer. Understanding
 676 outer optimizers in local sgd: Learning rates, momentum, and acceleration. *arXiv preprint
 677 arXiv: 2509.10439*, 2025.

678 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In *International
 679 Conference on Learning Representations (ICLR)*, 2015.
 680

681 Frederik Kunstner, Jacques Chen, Jonathan Wilder Lavington, and Mark Schmidt. Noise is not the
 682 main factor behind the gap between sgd and adam on transformers, but sign descent might be. In
 683 *International Conference on Learning Representations (ICLR)*, 2023.

684 Black Forest Labs, Stephen Batifol, Andreas Blattmann, Frederic Boesel, Saksham Consul, Cyril
 685 Diagne, Tim Dockhorn, Jack English, Zion English, Patrick Esser, Sumith Kulal, Kyle Lacey, Yam
 686 Levi, Cheng Li, Dominik Lorenz, Jonas Müller, Dustin Podell, Robin Rombach, Harry Saini, Axel
 687 Sauer, and Luke Smith. FLUX.1 kontext: Flow matching for in-context image generation and
 688 editing in latent space. *CoRR*, abs/2506.15742, 2025.

689 Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li, Adam Paszke, Jeff
 690 Smith, Brian Vaughan, Pritam Damania, and Soumith Chintala. Pytorch distributed: Experiences
 691 on accelerating data parallel training. *Proc. VLDB Endow.*, 2020a.
 692

693 Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
 694 Federated optimization in heterogeneous networks. In Inderjit S. Dhillon, Dimitris S. Papailiopoulos,
 695 and Vivienne Sze (eds.), *Proceedings of Machine Learning and Systems 2020, MLSys 2020,
 696 Austin, TX, USA, March 2-4, 2020. mlsys.org*, 2020b.

697 Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. Ditto: Fair and robust federated
 698 learning through personalization. In *International Conference on Machine Learning (ICML)*, 2021.
 699

700 Yujun Lin, Song Han, Huizi Mao, Yu Wang, and Bill Dally. Deep gradient compression: Reducing
 701 the communication bandwidth for distributed training. In *International Conference on Learning
 702 Representations (ICLR)*, 2018.

702 Bo Liu, Rachita Chhaparia, Arthur Douillard, Satyen Kale, Andrei A. Rusu, Jiajun Shen, Arthur
 703 Szlam, and Marc'Aurelio Ranzato. Asynchronous local-sgd training for language modeling. *arXiv*
 704 *preprint arXiv:2401.09135*, 2024.

705

706 Jingyuan Liu, Jianlin Su, Xingcheng Yao, Zhejun Jiang, Guokun Lai, Yulun Du, Yidao Qin, Weixin
 707 Xu, Enzhe Lu, Junjie Yan, Yanru Chen, Huabin Zheng, Yibo Liu, Shaowei Liu, Bohong Yin,
 708 Weiran He, Han Zhu, Yuzhi Wang, Jianzhou Wang, Mengnan Dong, Zheng Zhang, Yongsheng
 709 Kang, Hao Zhang, Xinran Xu, Yutao Zhang, Yuxin Wu, Xinyu Zhou, and Zhilin Yang. Muon is
 710 scalable for LLM training. *CoRR*, abs/2502.16982, 2025.

711

712 Yanli Liu, Yuan Gao, and Wotao Yin. An improved analysis of stochastic gradient descent with
 713 momentum. *arXiv preprint arXiv:2007.07989*, 2020.

714

715 Sam McCandlish, Jared Kaplan, Dario Amodei, and OpenAI Dota Team. An empirical model of
 716 large-batch training. *CoRR*, abs/1812.06162, 2018.

717

718 Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
 719 Communication-efficient learning of deep networks from decentralized data. In *International
 Conference on Artificial Intelligence and Statistics (AISTATS)*, 2017.

720

721 Matteo Pagliardini, Pierre Ablin, and David Grangier. The adEMAMix optimizer: Better, faster,
 722 older. In *International Conference on Learning Representations (ICLR)*, 2025.

723

724 Razvan Pascanu, Tomás Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural
 725 networks. In *International Conference on Machine Learning (ICML)*, 2013.

726

727 Guilherme Penedo, Hynek Kydlícek, Loubna Ben Allal, Anton Lozhkov, Margaret Mitchell, Colin A.
 728 Raffel, Leandro von Werra, and Thomas Wolf. The fineweb datasets: Decanting the web for the
 729 finest text data at scale. In *Conference on Neural Information Processing Systems (NeurIPS)*, 2024.

730

731 Bowen Peng, Jeffrey Quesnelle, and Diederik P Kingma. Demo: Decoupled momentum optimization.
 732 *arXiv preprint arXiv:2411.19870*, 2024.

733

734 Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: memory optimizations
 735 toward training trillion parameter models. In *Proceedings of the International Conference for High
 736 Performance Computing, Networking, Storage and Analysis*, 2020.

737

738 Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. In
 739 *International Conference on Learning Representations (ICLR)*, 2018.

740

741 Sashank J. Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečný,
 742 Sanjiv Kumar, and Hugh Brendan McMahan. Adaptive federated optimization. In *9th International
 743 Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021.*
 744 OpenReview.net, 2021.

745

746 Thomas Robert, Mher Safaryan, Ionut-Vlad Modoranu, and Dan Alistarh. Ldadam: Adaptive
 747 optimization from low-dimensional gradient statistics. In *International Conference on Learning
 748 Representations (ICLR)*, 2025.

749

750 Joshua Romero, Junqi Yin, Nouamane Laanait, Bing Xie, M. Todd Young, Sean Treichler, Vitalii
 751 Starchenko, Albina Y. Borisevich, Alex Sergeev, and Michael A. Matheson. Accelerating collective
 752 communication in data parallel training across deep learning frameworks. In *NSDI*, pp. 1027–1040.
 753 USENIX Association, 2022.

754

755 Lorenzo Sani, Alex Iacob, Zeyu Cao, Bill Marino, Yan Gao, Tomas Paulik, Wanru Zhao, William F.
 756 Shen, Preslav Aleksandrov, Xinchi Qiu, and Nicholas D. Lane. The future of large language model
 757 pre-training is federated. *arXiv preprint arXiv:2405.10853*, 2024.

758

759 Lorenzo Sani, Alex Iacob, Roysen Lee Zeyu Cao, Bill Marino, Yan Gao, Wanru Zhao, Dongqi
 760 Cai, Zexi Li, Xinchi Qiu, and Nicholas D. Lane. Photon: Federated llm pre-training. In *Eighth
 761 Conference on Machine Learning and Systems*, 2025.

756 Nikhil Sardana, Jacob P. Portes, Sasha Doubov, and Jonathan Frankle. Beyond chinchilla-optimal:
 757 Accounting for inference in language model scaling laws. In *International Conference on Machine*
 758 *Learning (ICML)*, 2024.

759

760 Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilic, Daniel Hesslow, Roman
 761 Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, Jonathan Tow, Alexander M.
 762 Rush, Stella Biderman, Albert Webson, Pawan Sasanka Ammanamanchi, Thomas Wang, Benoît
 763 Sagot, Niklas Muennighoff, Albert Villanova del Moral, Olatunji Ruwase, Rachel Bawden, Stas
 764 Bekman, Angelina McMillan-Major, Iz Beltagy, Huu Nguyen, Lucile Saulnier, Samson Tan,
 765 Pedro Ortiz Suarez, Victor Sanh, Hugo Laurençon, Yacine Jernite, Julien Launay, Margaret
 766 Mitchell, Colin Raffel, Aaron Gokaslan, Adi Simhi, Aitor Soroa, Alham Fikri Aji, Amit Alfassy,
 767 Anna Rogers, Ariel Kreisberg Nitzav, Canwen Xu, Chenghao Mou, Chris Emezue, Christopher
 768 Klamm, Colin Leong, Daniel van Strien, David Ifeoluwa Adelani, and et al. BLOOM: A 176b-
 769 parameter open-access multilingual language model. *arXiv preprint arXiv:abs/2211.05100*, 2022.

770

771 Alexander Sergeev and Mike Del Balso. Horovod: fast and easy distributed deep learning in
 772 tensorflow. *arXiv preprint arXiv:1802.05799*, 2018.

773

774 Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan Catan-
 775 zaro. Megatron-lm: Training multi-billion parameter language models using model parallelism.
 776 *CoRR*, abs/1909.08053, 2019.

777

778 Sebastian U. Stich. Local SGD converges fast and communicates little. In *International Conference*
 779 *on Learning Representations (ICLR)*, 2019.

780

781 Jianlin Su, Murtadha H. M. Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer:
 782 Enhanced transformer with rotary position embedding. *Neurocomputing*, 568:127063, 2024.

783

784 Ilya Sutskever, James Martens, George E. Dahl, and Geoffrey E. Hinton. On the importance of
 785 initialization and momentum in deep learning. In *International Conference on Machine Learning*
 786 (*ICML*), 2013.

787

788 Shohei Taniguchi, Keno Harada, Gouki Minegishi, Yuta Oshima, Seong Cheol Jeong, Go Nagahara,
 789 Tomoshi Iiyama, Masahiro Suzuki, Yusuke Iwasawa, and Yutaka Matsuo. ADOPT: modified adam
 790 can converge with any β_2 with the optimal rate. In *Conference on Neural Information Processing*
 791 *Systems (NeurIPS)*, 2024.

792

793 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
 794 Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
 795 tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,
 796 Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
 797 Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
 798 Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
 799 Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
 800 Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
 801 Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
 802 Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
 803 Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
 804 Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
 805 2023.

806

807 Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H. Vincent Poor. Tackling the Objective
 808 Inconsistency Problem in Heterogeneous Federated Optimization. *arXiv preprint arXiv:2007.07481*,
 809 2020.

810

811 Jianyu Wang, Zachary Charles, Zheng Xu, Gauri Joshi, H. Brendan McMahan, Blaise Aguera y Arcas,
 812 Maruan Al-Shedivat, Galen Andrew, Salman Avestimehr, Katharine Daly, Deepesh Data, Suhas
 813 Diggavi, Hubert Eichner, Advait Gadhikar, Zachary Garrett, Antonious M. Giris, Filip Hanzely,
 814 Andrew Hard, Chaoyang He, Samuel Horvath, Zhouyuan Huo, Alex Ingberman, Martin Jaggi, Tara
 815 Javidi, Peter Kairouz, Satyen Kale, Sai Praneeth Karimireddy, Jakub Konecny, Sanmi Koyejo,
 816 Tian Li, Luyang Liu, Mehryar Mohri, Hang Qi, Sashank J. Reddi, Peter Richtarik, Karan Singh, Sebastian U. Stich,
 817 Virginia Smith, Mahdi Soltanolkotabi, Weikang Song, Ananda Theertha Suresh, Sebastian U. Stich,

810 Ameet Talwalkar, Hongyi Wang, Blake Woodworth, Shanshan Wu, Felix X. Yu, Honglin Yuan,
 811 Manzil Zaheer, Mi Zhang, Tong Zhang, Chunxiang Zheng, Chen Zhu, and Wennan Zhu. A field
 812 guide to federated optimization. *arXiv preprint arXiv:2107.06917*, 2021.

813

814 Jue Wang, Yucheng Lu, Binhang Yuan, Beidi Chen, Percy Liang, Christopher De Sa, Christopher
 815 Re, and Ce Zhang. Cocktailsdg: Fine-tuning foundation models over 500mbps networks. In
 816 *International Conference on Machine Learning (ICML)*, 2023.

817 Mitchell Wortsman, Tim Dettmers, Luke Zettlemoyer, Ari Morcos, Ali Farhadi, and Ludwig Schmidt.
 818 Stable and low-precision training for large-scale vision-language models. In *NeurIPS*, 2023.

819

820 Yang You, Jing Li, Sashank J. Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
 821 Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep
 822 learning: Training BERT in 76 minutes. In *International Conference on Learning Representations
 (ICLR)*, 2020.

823

824 Hao Yu, Rong Jin, and Sen Yang. On the linear speedup analysis of communication efficient
 825 momentum sgd for distributed non-convex optimization. *arXiv preprint arXiv:1905.03817*, 2019.

826

827 Kun Yuan, Xinneng Huang, Yiming Chen, Xiaohan Zhang, Yingya Zhang, and Pan Pan. Revisiting
 828 optimal convergence rate for smooth and non-convex stochastic decentralized optimization. *arXiv
 preprint arXiv:2210.07863*, 2022.

829

830 Hanlin Zhang, Depen Morwani, Nikhil Vyas, Jingfeng Wu, Difan Zou, Udaya Ghai, Dean Foster,
 831 and Sham M. Kakade. How does critical batch size scale in pre-training? In *The Thirteenth
 832 International Conference on Learning Representations*, 2025.

833

834 Yushun Zhang, Congliang Chen, Naichen Shi, Ruoyu Sun, and Zhi-Quan Luo. Adam can converge
 835 without any modification on update rules. In *Conference on Neural Information Processing Systems
 (NeurIPS)*, 2022.

836

837 Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu, Less Wright, Hamid
 838 Shojanazeri, Myle Ott, Sam Shleifer, Alban Desmaison, Can Balioglu, Pritam Damania, Bernard
 839 Nguyen, Geeta Chauhan, Yuchen Hao, Ajit Mathews, and Shen Li. Pytorch FSDP: experiences on
 840 scaling fully sharded data parallel. *Proc. VLDB Endow.*, 2023.

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

Appendix

A Table of Contents

A Experimental Details and Optimizer Hyperparameter Sweeps (See Section 4.1)	18
A.1 Architecture Details and Hyperparameters	18
A.2 Optimizer Parameters Sweeping Procedure	18
B Complementary Results to Sections 2.1 and 5	20
B.1 Toy Problem on Non-IID Data (See Section 2.1)	20
B.2 RQ2: Independent Sync Frequencies	21
B.3 RQ3: Communication Reduction And Baseline Comparisons	23
B.4 RQ4: Additional Metrics and Training Instabilities of FAVG+OPT (See Fig. 5.b)	26
B.5 Very low bandwidth experiments	26
B.6 Muon as the inner optimizer	27
B.7 Experiments on the Flux Vision Model	28
B.8 Throughput at 7B Scale	28
C Further Algorithmic Details of DES-LOC	29
C.1 Extension to FedOpt	29
C.2 Deterministic Optimizer-specific Variants of Algorithm 1	30
DES-LOC-Adam	30
DES-LOC-ADOPT	30
D Convergence Analysis of DES-LOC-SGDM (in expectation bounds)	31
D.1 Extension to Adam optimizer	34
D.2 Key Lemmas	39
E Convergence Analysis of DES-LOC-Adam (high-probability bounds)	43
F Derivation of Eqs. (1) and (2): Maximum Momentum Change With Clipping	45
G Wall-Clock Time Modeling	46
G.1 Estimating Total Wall-Clock Time	47
G.2 Modeling Results	49
H Checkpointing vs. Periodic State Synchronization	50
I Choosing Synchronization Frequencies	50
J Critical Batch Size and Regime Positioning	51
K Extended Related Work	52
L LLM Usage Declaration	53
M Limitations	53

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918 **A EXPERIMENTAL DETAILS AND OPTIMIZER HYPERPARAMETER**
919 **SWEEPS (SEE SECTION 4.1)**
920

921
922
923 Here we provide additional experimental details complementing those in Section 4.1, including: a)
924 model architecture details and hyperparameters independent of optimizer choice (Section A.1), b)
925 our hyperparameter sweep procedure to select optimizer-specific settings (Section A.2), and c) the
926 optimal hyperparameters with those used in Section 5 highlighted in bold.
927

928 **A.1 ARCHITECTURE DETAILS AND HYPERPARAMETERS**
929

930 Table 3: Model architecture and training parameters. We denote the number of transformer blocks by
931 #Blocks, number of attention heads by #Heads, embedding dimension by d_{model} , vocabulary size by
932 $|\mathcal{V}|$, and feedforward-layer expansion by Exp. Ratio. All models use positional embeddings (Su et al.,
933 2024), the `silu` activation function, and norm-based gradient clipping with clip-bound ρ . Global
934 batch size (summed across all workers) is $|\mathcal{B}_G|$, and sequence length is standard for models at these
935 scales. For model initialization we use $\sigma = 1/\sqrt{d_{\text{model}}}$. The total number of steps is denoted by T .
936

937

Model Size	Blocks	d_{model}	$ \mathcal{V} $	#Heads	Exp. Ratio	ROPE θ	ACT	Init σ	ρ	Seq Len	$ \mathcal{B}_G $	T
135M	30	576	50K	9	4	10000	<code>silu</code>	0.04	1.0	2048	1024	1536, 3072
720M	12	2048	50K	16	4	10000	<code>SiLU</code>	0.02	1.0	2048	512	38912
1.7B	24	2048	50K	16	4	10000	<code>silu</code>	0.02	1.0	2048	1024	20480

940
941 **Table 3** summarizes the architectural details of our models, following established practices for large
942 language models at their respective scales. Unless otherwise stated, we adopt the hyperparameters
943 recommended by Allal et al. (2025) for both the 135M and the 1.7B models. We operate at a
944 batch size of 2M tokens, which is very large for the 135M model at the length of training we
945 perform (Zhang et al., 2025) and industry-standard for the 1.7B model (Touvron et al., 2023), we
946 chose to operate at large batch sizes because adaptive optimizers provide benefits primarily in large-
947 batch training regimes (Kunstner et al., 2023). Moreover, we intend DES-LOC for use in cross
948 data-center scenarios, where effectively utilizing available accelerators naturally demands large batch
949 sizes and/or model scales. For both model sizes, we train for approximately $2 \times$ the compute-optimal
950 token budget (Hoffmann et al., 2022), placing our evaluations within the context of extended-duration
951 foundation model training (Allal et al., 2025). Our chosen token budget is conservative due to
952 resource constraints; for comparison, Allal et al. (2025) used 11 trillion tokens which is over $4000 \times$
953 compute-optimal for the 135M model, and $300 \times$ for the 1.7B.
954

955 We select warmup and decay schedules following recommendations from Zhang et al. (2025); Hägele
956 et al. (2024); Allal et al. (2025). For the 135M model, the warmup period is set to $T_{\text{WARM}} = 512$
957 steps, corresponding to the roughly 40% of the compute-optimal training tokens recommended by
958 Zhang et al. (2025). For the 1.7B model, we use the recommended $T_{\text{WARM}} = 2048$ steps from Allal
959 et al. (2025), roughly 10% of total training. The stable-decay period uses a $1 - \text{SQRT}$ schedule over
960 the final $T_{\text{DECAY}} = 10\% \times T$ steps (Hägele et al., 2024). For shorter runs, such as $T = 1536$ during
961 heterogeneous-data evaluations, we keep the warmup fixed and proportionally scale the decay to
962 ensure well-conditioned parameter updates during the stable learning rate period. The seeds we use
963 for data sampling and for controlling the training algorithms and model are provided in the code
964 accompanying the appendix.
965

966 **A.2 OPTIMIZER PARAMETERS SWEEPING PROCEDURE**
967

968 As detailed in Section 2 and verified empirically in Section 5.2, the choice of decay rates β_1, β_2
969 strongly influences the effective synchronization frequencies achievable by both DES-LOC and
970 Local Adam. This relationship arises directly from the half-life of optimizer states, given by
971 $\tau_{0.5} = \frac{\ln(0.5)}{\ln(\beta)}$.
972

973 For Adam, prior studies such as Wortsman et al. (2023) have demonstrated a critical interplay between
974 the learning rate (η), batch size, and the second-momentum decay β_2 . Specifically, increasing either
975

the learning rate or batch size typically demands a lower β_2 to maintain training stability and avoid loss spikes. Conversely, higher β_2 values constrain the learning rate and batch size. Such dynamics have also been recently observed between the learning rate and the first-momentum decay β_1 in [Pagliardini et al. \(2025\)](#). Given that all our experiments use a fixed large batch size of roughly 2 million tokens (appropriate for billion-scale training), we systematically tune the learning rate η in response to changes in β_1, β_2 . We try values of β_1, β_2 based on previous works ([Zhang et al., 2025](#)) and follow the theoretical convergence requirement of [Zhang et al. \(2022\)](#) setting $\beta_1 \leq \sqrt{\beta_2}$.

Due to computational constraints, we cannot jointly optimize synchronization periods, data distributions, and decay parameters, and instead adopt a structured two-stage tuning approach:

1. **Stage 1: Tuning η for DDP.** Starting from the recommended baseline learning rate (η_0) from [Allal et al. \(2025\)](#), we conduct a grid search as outlined by [Charles et al. \(2025\)](#): $\{\dots, \sqrt{2}^{-2} \eta_0, \sqrt{2}^{-1} \eta_0, \eta_0, \sqrt{2} \eta_0, \sqrt{2}^2 \eta_0, \dots\}$ We expand this search until perplexity stops improving, identifying an optimal learning rate η_{DDP}^* for each (β_1, β_2) configuration.
2. **Stage 2: Tuning η for Local Adam.** We then repeat this procedure for Local Adam, using η_{DDP}^* as the new baseline. To balance generalizability and computational cost, we set the synchronization period to an intermediate value of $K = 64$, between high-frequency ($K = 16$) and low-frequency ($K = 256$) scenarios.

Additionally, following [Zhang et al. \(2025\)](#), we omit weight decay (set to zero) to simplify the hyperparameter tuning process, as it directly affects only model parameters, not optimizer states.

For experiments using Nesterov, we follow the hyperparamtere sweeping procedure of [Charles et al. \(2025\)](#), starting with a server learning rate of 1.0 and a momentum of 0.9 and only lowering it if it fails to converge

A.2.1 OPTIMIZERS’ HYPERPARAMETER CONFIGURATIONS

Table 4: Optimal learning rates η^* for β_1, β_2 configurations of ADOPT/Adam. The hyperparameter sweep procedure (see [Section A.2](#)) involves incrementally adjusting the learning rate by factors of $\sqrt{2}$ around the initial value from [Allal et al. \(2025\)](#) until performance stops improving.

Optimizer	β_1	β_2	η^*
ADOPT	0.9	0.9999	0.0021
	0.95	0.9999	0.0021
	0.99	0.9999	0.0014
	0.995	0.9999	0.0007
Adam	0.9	0.95	0.0042
	0.95	0.95	0.003
	0.9	0.99	0.003
	0.95	0.99	0.003
	0.99	0.99	0.0021

Our hyperparameter sweep (Table 4) indicates that the optimal learning rate η^* under the warmup-stable-decay scheduler ([Hägele et al., 2024](#)) strongly depends on both optimizer type and the chosen β_1, β_2 values. For Adam, optimal learning rates and second-momentum decay (β_2) align closely with recommendations from [Allal et al. \(2025\)](#), though a slightly higher first-momentum decay (β_1) consistently performs better, in agreement with prior findings ([Zhang et al., 2025](#)). For ADOPT (default β_2), we observe a lower optimal learning rate compared to Adam, but similar best-performing β_1 values. We also find that the optimal learning rate does not differ between DDP and Local Adam for given β_1, β_2 when $K = 64$ and using a $\sqrt{2}$ sweep, higher learning rates either do not provide a benefit or diverge while lower learning rates are only necessary when pushing K far closer to the complete training duration.

We find that increasing β_1 for ADOPT, and β_1, β_2 for Adam, leads to rapid performance degradation, particularly at or above 0.99. Since the half-life at $\beta = 0.99$ ($\tau_{0.5} \approx 69$) is not sufficiently longer than at $\beta = 0.95$ ($\tau_{0.5} \approx 13.5$) to justify the observed performance drop, we select $\beta_1 = 0.95$ for all experiments, along with the default β_2 for ADOPT and $\beta_2 = 0.95$ for Adam.

1026
1027
1028
1029

Takeaway: Increasing an optimizer state’s β significantly affects performance. Since linear increases in β cause only logarithmic changes in half-life $\tau_{0.5}$, raising β beyond the optimal value degrades performance without substantially improving the achievable synchronization frequency (Section 5.2).

1030
1031
1032
1033

B COMPLEMENTARY RESULTS TO SECTIONS 2.1 AND 5

1034
1035
1036
1037

We now provide additional results supplementing those presented in the main text. Specifically:

1038
1039
1040
1041
1042
1043

1. **Section B.1** complements Section 2.1 by including results on the heterogeneous data distribution described in Section 4.1. This highlights DES-LOC’s robustness under imperfect sampling or strongly Non-IID federated scenarios (see Kairouz et al., 2021, Sec 3.1).
2. **Section B.2.1** complements Fig. 3 by showing the separate impact of varying synchronization frequencies for parameters and the second momentum when the base frequency is $K_b = 16$. It supports our claim that parameters and second momentum exhibit similar behavior across different synchronization regimes, unlike the first momentum.
3. **Section B.2.2** extends Fig. 3 by evaluating DES-LOC-Adam. We confirm that the parameter synchronization frequency is the most important, as predicted by our theory. In contrast, the momenta sync frequency is far less impactful, especially for low parameter sync frequencies.
4. **Section B.3.2** complements Fig. 4 by showing DES-LOC-ADOPT’s perplexity against baseline methods on heterogeneous data (as defined in Section 4.1). This validates our claim from Contribution 2 regarding DES-LOC’s effectiveness on heterogeneous datasets.
5. **Section B.3.3** presents an ablation study examining alternative low-communication configurations of DES-LOC, justifying our choice of $K_u = 3K_x, K_v = 6K_x$ used in Fig. 4.
6. **Section B.3.4** repeats the baseline comparison from Fig. 4 for DES-LOC-Adam, demonstrating that DES-LOC achieves similar communication reductions and performance when using Adam instead of ADOPT.
7. **Section B.4** provides additional metrics illustrating training instabilities for the FAVG+OPT baseline, including rapidly growing parameter norms, supporting observations in Fig. 5.b.

1050
1051
1052
1053
10541055
1056
1057
1058

B.1 TOY PROBLEM ON NON-IID DATA (SEE SECTION 2.1)

1060
1061
1062
1063
1064
1065
1066
10671068
1069
1070
1071
1072
10731074
1075
1076
1077
1078
1079

Toy Example Non-IID: Fig. 8 simulates the scenario from Section 3, where each worker m optimizes a distinct loss f_m on heterogeneous data. Both DES-LOC and Local Adam show more stable convergence and get closer to the optimum than heuristic baselines.

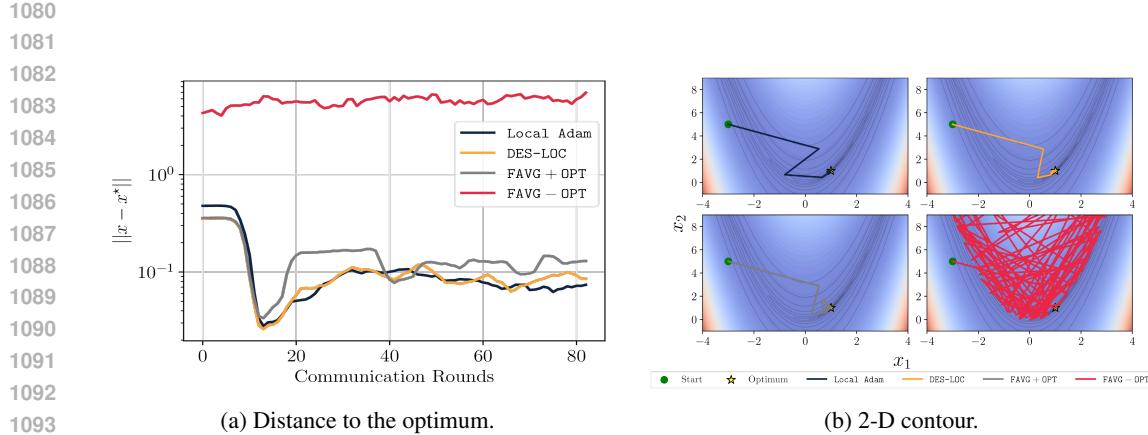


Figure 8: We present a toy problem in a Non-IID setting, where DES-LOC (with synchronization periods $K_x = 192$, $K_u = 192$, $K_v = 692$) and Local Adam (with $K = K_x$) converge to a superior solution compared to methods that keep optimizer states local (Douillard et al., 2023; Sani et al., 2025) or periodically reset them (Sani et al., 2024; Iacob et al., 2025). Like the IID scenario, resetting optimizer states prevents convergence due to repeated oscillations caused by reinitializations. Additionally, as seen in panel (a) between rounds 15 and 40, methods keeping optimizer states local suffer from larger oscillations further away from the optimum. The function optimized is $f(x_1, x_2) = (1 - x_1)^2 + 100(x_2 - x_1^2)^2$, and we simulate $M = 256$ workers, each adding Gaussian noise with worker-specific standard deviation $\sigma^m \sim \mathcal{N}(0, 3)$.

B.2 RQ2: INDEPENDENT SYNC FREQUENCIES

This section provides supplementary results for **RQ2**, complementing [Section 5.2](#). [Section B.2.1](#) shows that perplexity has similar sensitivity to the first and second momentum synchronization frequencies at both high and low base synchronization frequencies. Additionally, [Section B.2.2](#) repeats the comparison from [Fig. 3](#) for DES-LOC-Adam, revealing similar trends regarding the importance of the parameters, with a reduced importance for the momenta due to lower β_2 .

B.2.1 PARAMETER AND SECOND MOMENTUM AT $K_b = 16$ (SEE [FIG. 3.A](#), [FIG. 3.B](#))

[Figure 9](#) examines the effects of independently varying synchronization periods (K_x, K_v) for parameters and second momentum under DES-LOC-ADOPT in the high-frequency regime ($K_b = 16$), chosen based on the first momentum's half-life ($\tau_{0.5} \approx 13.5$). Similar to the low-frequency results in [Fig. 3.a](#), parameter synchronization frequency (K_x) strongly influences perplexity, while the second momentum (K_v) has minimal impact due to its long half-life. This contrasts with the first momentum, whose half-life closely matches the high-frequency period.

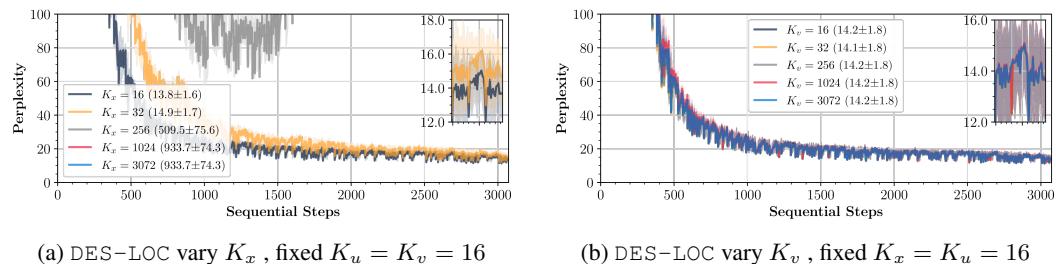
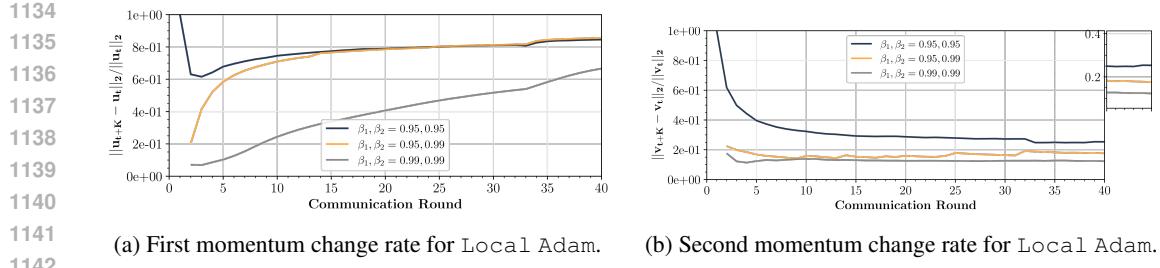
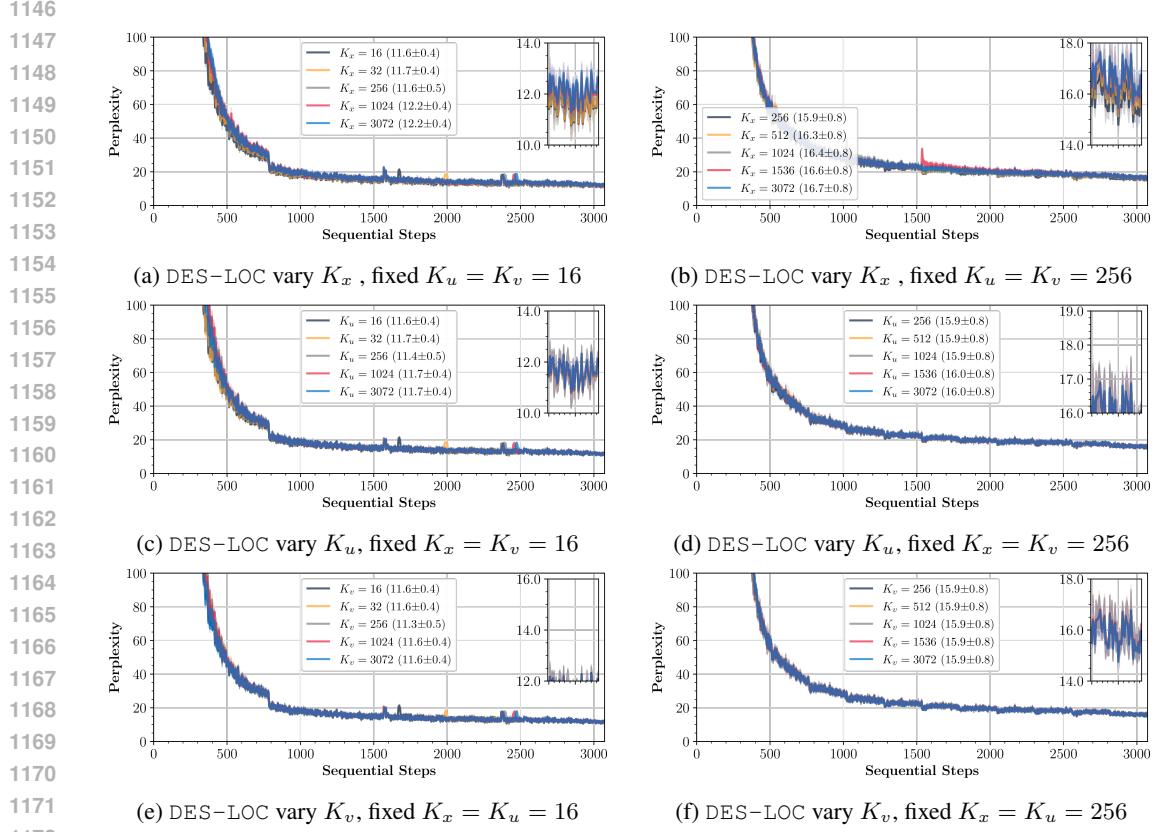


Figure 9: Model perplexity for DES-LOC (ADOPT, $\beta_1 = 0.95$, $\beta_2 = 0.9999$), independently varying synchronization periods at a high baseline frequency ($K_b = 16$). Similar to [Fig. 3](#), parameter synchronization (a) is critical, with performance sharply degrading at higher periods, while second-momentum synchronization (b) has minimal impact due to its large half-life ($\tau_{0.5}(\beta_2) \gg K_b$).



1143 Figure 10: Relative rates of change for first and second momenta across rounds using standard Local
1144 Adam ($K = 64$). Increasing β_1 substantially reduces the rate of change of the first momentum, while
1145 increasing either β_1, β_2 decreases the rate of change of the second.



1173 Figure 11: Model perplexity for DES-LOC-Adam ($\beta_1 = \beta_2 = 0.95$) when independently varying
1174 sync periods (K_x, K_u, K_v) while fixing others at baseline K_b . Parameter synchronization (a,b)
1175 influences performance in both high ($K_b = 16$) and low ($K_b = 256$) frequency regimes. Momenta
1176 synchronization minimally impacts perplexity due to both states' high adaptivity (low β), with
1177 potentially minor effects during the early stages of training in high-frequency regimes (c,e).

1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
22210
22211
22212
22213
22214
22215
22216
22217
22218
22219
22220
22221
22222
22223
22224
22225
22226
22227
22228
22229
22230
22231
22232
22233
22234
22235
22236
22237
22238
22239
22240
22241
22242
22243
22244
22245
22246
22247
22248
22249
22250
22251
22252
22253
22254
22255
22256
22257
22258
22259
22260
22261
22262
22263
22264
22265
22266
22267
22268
22269
22270
22271
22272
22273
22274
22275
22276
22277
22278
22279
22280
22281
22282
22283
22284
22285
22286
22287
22288
22289
22290
22291
22292
22293
22294
22295
22296
22297
22298
22299
222100
222101
222102
222103
222104
222105
222106
222107
222108
222109
222110
222111
222112
222113
222114
222115
222116
222117
222118
222119
222120
222121
222122
222123
222124
222125
222126
222127
222128
222129
222130
222131
222132
222133
222134
222135
222136
222137
222138
222139
222140
222141
222142
222143
222144
222145
222146
222147
222148
222149
222150
222151
222152
222153
222154
222155
222156
222157
222158
222159
222160
222161
222162
222163
222164
222165
222166
222167
222168
222169
222170
222171
222172
222173
222174
222175
222176
222177
222178
222179
222180
222181
222182
222183
222184
222185
222186
222187
222188
222189
222190
222191
222192
222193
222194
222195
222196
222197
222198
222199
222200
222201
222202
222203
222204
222205
222206
222207
222208
222209
222210
222211
222212
222213
222214
222215
222216
222217
222218
222219
222220
222221
222222
222223
222224
222225
222226
222227
222228
222229
222230
222231
222232
222233
222234
222235
222236
222237
222238
222239
222240
222241
222242
222243
222244
222245
222246
222247
222248
222249
222250
222251
222252
222253
222254
222255
222256
222257
222258
222259
222260
222261
222262
222263
222264
222265
222266
222267
222268
222269
222270
222271
222272
222273
222274
222275
222276
222277
222278
222279
222280
222281
222282
222283
222284
222285
222286
222287
222288
222289
222290
222291
222292
222293
222294
222295
222296
222297
222298
222299
222300
222301
222302
222303
222304
222305
222306
222307
222308
222309
222310
222311
222312
222313
222314
222315
222316
222317
222318
222319
222320
222321
222322
222323
222324
222325
222326
222327
222328
222329
222330
222331
222332
222333
222334
222335
222336
222337
222338
222339
222340
222341
222342
222343
222344
222345
222346
222347
222348
222349
222350
222351
222352
222353
222354
222355
222356
222357
222358
222359
222360
222361
222362
222363
222364
222365
222366
222367
222368
222369
222370
222371
222372
222373
222374
222375
222376
222377
222378
222379
222380
222381
222382
222383
222384
222385
222386
222387
222388
222389
222390
222391
222392
222393
222394
222395
222396
222397
222398
222399
222400
222401
222402
222403
222404
222405
222406
222407
222408
222409
222410
222411
222412
222413
222414
222415
222416
222417
222418
222419
222420
222421
222422
222423
222424
222425
222426
222427
222428
222429
222430
222431
222432
222433
222434
222435
222436
222437
222438
222439
222440
222441
222442
222443
222444
222445
222446
222447
222448
222449
222450
222451
222452
222453
222454
222455
222456
222457
222458
222459
222460
222461
222462
222463
222464
222465
222466
222467
222468
222469
222470
222471
222472
222473
222474
222475
222476
222477
222478
222479
22248

1188
1189
1190
1191
1192

Takeaway: For DES-LOC-Adam, parameter synchronization remains critical, consistent with theory. However, due to reduced β_2 , momenta synchronization is less impactful since both the numerator and denominator of Adam updates are driven by local worker gradients after a few initial steps.

1193
1194

B.3 RQ3: COMMUNICATION REDUCTION AND BASELINE COMPARISONS

1195
1196
1197
1198
1199

This section provides supplementary results for **RQ3**, complementing [Section 5.3](#). [Section B.3.3](#) shows the perplexity of different configurations providing a $2\times$ communication reduction over Local Adam. Additionally, [Section B.3.4](#) repeats the comparison against baselines from [Section 5.3](#) for DES-LOC-Adam, showing similar communication reductions relative to Local Adam.

1200
1201

B.3.1 STEPWISE PLOTS FOR BASELINE COMPARISON

1202
1203

[Figures 12](#) and [13](#) show stepwise plots for wall-clock results in the main text, they are the counterparts to [Figs. 4](#) and [5](#).

1204
1205
1206
1207
1208
1209
1210
12111212
1213
1214
1215
1216
1217

Figure 12: Setting $K_x = K$, $K_u = 3K_x$, and $K_v = 6K_x$, DES-LOC achieves a $2\times$ communication reduction over Local Adam, matching performance at high (a) and low (b) frequencies for Local Adam and heuristic baselines (see [Section 4.1](#)). Using stepwise converges shows that DES-LOC matches Local Adam on a per-step basis.

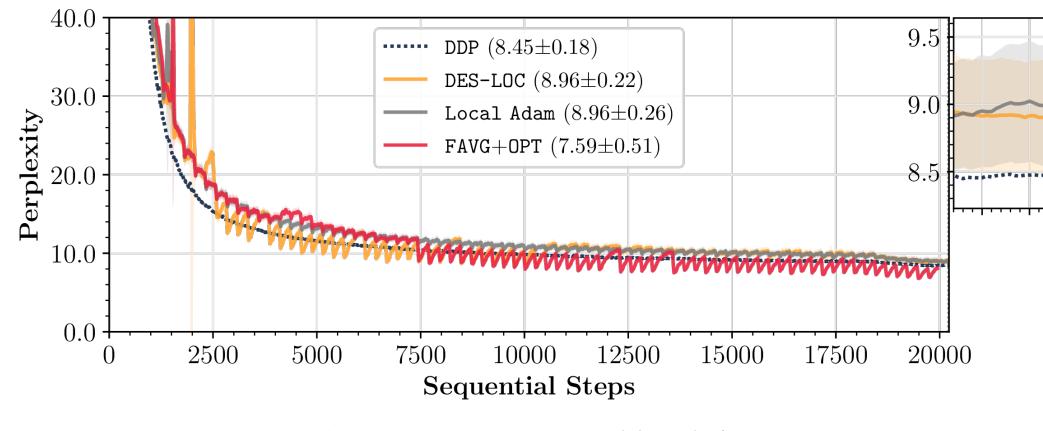
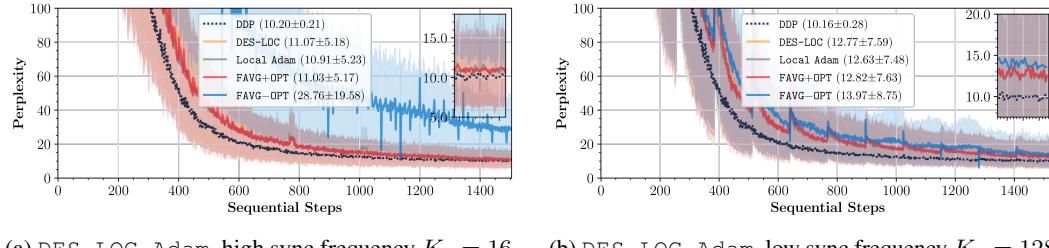
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
12341235
1236
1237
1238
1239

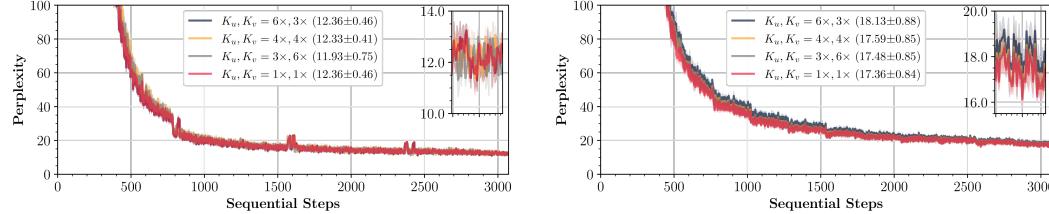
Figure 13: DES-LOC matches Local Adam perplexity for billion-scale model training at half the communication cost ($K_x = 256$, $K_u = 3K_x$, $K_v = 6K_x$), representing a $170\times$ reduction over DDP. Plot shows that stepwise convergence matches between Local Adam and DES-LOC.

1240
1241

Takeaway: DES-LOC matches the stepwise convergence of Local Adam and approaches the convergence speed of DDP.

1242 B.3.2 DES-LOC ON HETEROGENEOUS DATA (SEE CONTRIBUTION 2)
12431244 Figure 14 evaluates the robustness of DES-LOC against baselines under heterogeneous (Non-IID)
1245 data distributions as described in Section 4.1. We set synchronization periods to $K_x = K$, $K_u = 3K_x$,
1246 and $K_v = 6K_x$ to achieve a targeted $2\times$ communication reduction over Local Adam.
12471255 (a) DES-LOC-Adam, high sync frequency $K_x = 16$. (b) DES-LOC-Adam, low sync frequency $K_x = 128$.
12561257 Figure 14: Comparison of perplexity under Non-IID conditions for DES-LOC, Local Adam
1258 ($K_x = K_u = K_v$), and heuristic baselines (defined in Section 4.1) at high (a) and low (b) sync-
1259 ro-
1260 nization frequencies. Due to higher cross-worker variance caused by heterogeneous data, parameters
1261 require slightly more frequent synchronization in the low-frequency regime ($K_x = 128 < 256$).
1262 Experiments are limited to $T = 1536$ steps (\sim compute-optimal) for computational feasibility.
1263

Takeaway: DES-LOC effectively converges on heterogeneous data distributions, maintaining the $2\times$ communication reduction observed in homogeneous settings. This aligns with our theoretical convergence results for heterogeneous losses (Section 3) and shows applicability in federated scenarios.

1264 B.3.3 DES-LOC LOW COMMUNICATION CONFIGURATIONS ABLATION (SEE FIG. 4)
12651266 Figure 15 explores alternative synchronization configurations enabling DES-LOC to achieve im-
1267 proved communication efficiency over Local Adam. Motivated by theoretical insights (Sections 2
1268 and 3) and empirical evidence (Sections 5.1 and 5.2), we only consider settings where parameter
1269 synchronization is most frequent ($K_x \leq \min(K_u, K_v)$). This constraint follows from experiments in
1270 Section 5.2, which show that infrequent parameter synchronization significantly degrades perplexity,
1271 while momentum synchronization frequency has a smaller impact. For a fixed $2\times$ communication
1272 reduction over Local Adam, our findings confirm that synchronizing the first momentum more
1273 frequently than the second aligns with their respective half-lives and maintains performance close to
1274 Local Adam.
12751276 (a) DES-LOC-ADOPT, high sync frequency $K_x = 16$. (b) DES-LOC-ADOPT, low sync frequency $K_x = 256$.
12771278 Figure 15: Configurations of DES-LOC targeting $2\times$ lower communication than Local Adam
1279 ($K_x = K_u = K_v$), setting K_u, K_v as multiples of K_x . In both high (a) and low-frequency (b)
1280 regimes, performance depends on how communication is split between momenta for $\beta_1 \ll \beta_2$.
1281 Syncing the first momentum less often ($K_u = 6K_x, K_v = 3K_x$) degrades performance, wasting
1282 communication on the slow second momentum. Conversely, syncing it frequently ($K_u = 3K_x, K_v =$
1283 $6K_x$) yields performance comparable to Local Adam. Setting $K_u = K_v = 4K_x$ produces
1284 intermediate results.
1285

1296
1297
1298
1299
1300

Takeaway: For a given parameter synchronization period K_x determined by bandwidth constraints, choose momentum synchronization periods K_u, K_v as multiples of K_x . When $\beta_1 \ll \beta_2$, set $K_u < K_v$, with $K_u = 3 \times K_x$ and $K_v = 6 \times K_x$ providing robust default choices.

1301
1302

B.3.4 ADAM RESULTS (SEE FIG. 4)

1303
1304
1305
1306
1307
1308
1309

We now present results for DES-LOC-Adam with $\beta_1 = \beta_2 = 0.95$. DES-LOC-Adam achieves similar communication reductions over Local Adam and DDP as ADOPT. However, due to the lower β_2 , the second-momentum half-life ($\tau_{0.5}(0.95) \approx 13.5$) is significantly shorter than for ADOPT ($\tau_{0.5}(0.9999) \approx 6931$). Figure 16 shows that with both momenta evolving at similar rates, the benefit of selecting $K_u < K_v$ diminishes. For consistency and due to meaningful empirical differences in rates of change (Section 5.1), we keep $K_u = 3 \times K_x$ and $K_v = 6 \times K_x$ in subsequent comparisons.

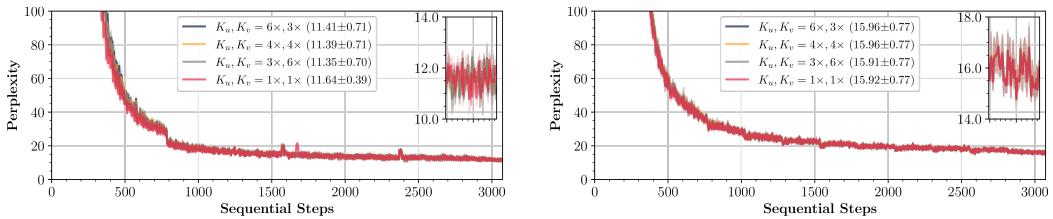
1310
1311
1312
1313
1314
1315
13161317 (a) DES-LOC-Adam, high sync frequency $K_x = 16$. (b) DES-LOC-Adam, low sync frequency $K_x = 256$.1318
1319
1320
1321
1322
1323

Figure 16: Configurations of DES-LOC targeting $2 \times$ lower communication than Local Adam ($K_x = K_u = K_v$), using Adam ($\beta_1 = \beta_2 = 0.95$). In contrast to DES-LOC-ADOPT (where $\beta_1 \ll \beta_2$ yields an advantage for $K_u < K_v$ as shown in Fig. 15), the similar half-lives in Adam make perplexity insensitive to how communication is split between momenta for high (a) and low-frequencies (b).

1324
1325

Figure 17 shows DES-LOC-Adam achieves a $2 \times$ communication reduction over the prior state-of-the-art Local Adam (Cheng & Glasgow, 2025) without significant perplexity degradation. Due to the much faster evolution of the optimizer states using Adam compared to ADOPT, local worker gradients drive the optimization reducing the benefit of allocating more of the communication budget to the first momentum.

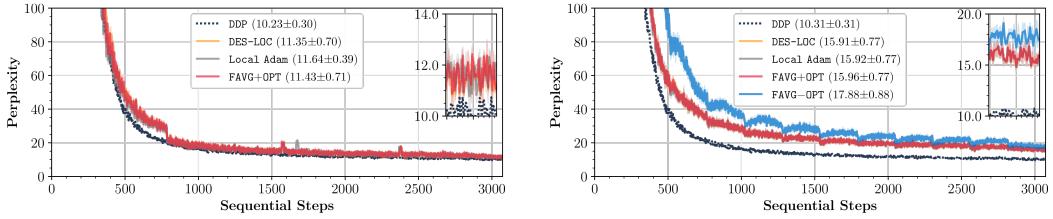
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
13371338 (a) DES-LOC-Adam, high sync frequency $K_x = 16$. (b) DES-LOC-Adam, low sync frequency $K_x = 256$.1339
1340
1341
1342
1343

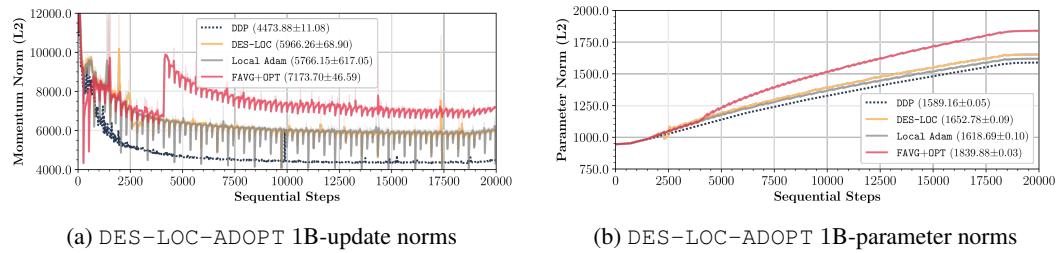
Figure 17: Setting $K_x = K$, $K_u = 3K_x$, and $K_v = 6K_x$, DES-LOC-Adam achieves a $2 \times$ communication reduction over Local Adam, matching performance at high (a) and low (b) frequencies for Local Adam and heuristic baselines (see Section 4.1).

1344
1345
1346
1347
1348
1349

Takeaway: DES-LOC-Adam achieves a similar $2 \times$ communication reduction over Local Adam as DES-LOC-ADOPT by exploiting the reduced importance of optimizer-state synchronization relative to parameters. However, due to the smaller β_2 in Adam, there is limited benefit from assigning different synchronization frequencies to the first and second momenta compared to ADOPT.

1350 **B.4 RQ4: ADDITIONAL METRICS AND TRAINING INSTABILITIES OF FAVG+OPT (SEE
 1351 FIG. 5.B)**

1353 Figure 18 complements Fig. 5.b by showing parameter and update norms for DES-LOC and baseline
 1354 methods when training billion-scale models. Both DES-LOC and Local Adam regularize updates
 1355 by synchronizing optimizer states, effectively reducing update norms due to averaging across workers
 1356 (triangle inequality). In contrast, the heuristic baseline (Sani et al., 2025) experiences large updates,
 1357 leading to uncontrolled parameter growth, increased activations (Fig. 5.b), and degraded performance
 1358 on downstream ICL tasks (Table 1) relative to its perplexity (Fig. 5.a).



1359
 1360 Figure 18: Comparison of update (a) and parameter norms (b) for billion-scale models trained with
 1361 DES-LOC ($K_x = 256, K_u = 768, K_v = 1536$), Local Adam ($K = 256$), DDP, and Federated
 1362 Averaging with persistent optimizer states (FAVG+OPT). Frequent synchronization in Local Adam
 1363 and DDP consistently reduces update and parameter norms. Similarly, DES-LOC achieves comparable
 1364 reductions at intervals corresponding to multiples of $1cm(K_x, K_u, K_v)$, with smaller intermediate
 1365 drops. Conversely, FAVG+OPT, which does not synchronize optimizer states, experiences persistently
 1366 larger and noisier updates, becoming vulnerable to spikes (notably before step 5000). This leads to
 1367 uncontrolled parameter growth (b).
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382

1377 Table 5: Throughput (batches/sec) for 1B-13B models to reach 2 \times compute-optimal tokens at high
 1378 ($K = 16$) and low ($K = 256$) frequencies with a 2M token batch size. All local methods achieve
 1379 significant throughput gains over the DDP baseline. At high frequency ($K = 16$), DES-LOC boosts
 1380 throughput by over 1.7 \times on the 13B model. At low frequency ($K = 256$), this advantage grows to
 1381 over 2.1 \times versus DDP.
 1382

Method	1B Model		7B Model		13B Model	
	$K_x = 16$	$K_x = 256$	$K_x = 16$	$K_x = 256$	$K_x = 16$	$K_x = 256$
DDP (Baseline)	171.9 ± 0.94	171.9 ± 0.9	25.1 ± 0.10	25.1 ± 0.10	11.1 ± 0.03	11.1 ± 0.03
FAVG+OPT	304.9 ± 2.51	385.4 ± 3.7	34.0 ± 0.11	40.4 ± 0.15	19.4 ± 0.11	23.5 ± 0.15
Local Adam	253.1 ± 1.59	380.1 ± 3.6	30.9 ± 0.09	40.2 ± 0.15	16.7 ± 0.07	23.3 ± 0.14
DES-LOC ($K_u, K_v = 3K_x, 6K_x$)	299.2 ± 2.39	384.1 ± 3.7	33.7 ± 0.11	40.4 ± 0.15	19.0 ± 0.10	23.5 ± 0.15

1389 **Takeaway:** Unlike heuristic methods, which maintain purely local optimizer states leading to un-
 1390 stable, noisy updates, DES-LOC provides stable regularization similar to Local Adam and DDP by
 1391 periodically synchronizing parameters and momenta, reducing training instabilities.
 1392

1394 **B.5 VERY LOW BANDWIDTH EXPERIMENTS**

1396 While perplexity is invariant to network bandwidth, wall-clock time is highly sensitive to it. To
 1397 practically showcase this, we perform a benchmark with a 1B model to measure time under extremely
 1398 low bandwidth conditions (10 Gbit/s). This setup simulates a scenario with affordable, consumer-
 1399 grade interconnects rather than data-centers. Due to the extreme gradient synchronization delay
 1400 inherent to DDP in this regime, the benchmark was limited to a 10,240 step horizon to remain feasible.

1401 As shown in Figure 19, DES-LOC Nesterov dramatically reduces training time by $\approx 9.42 \times$
 1402 compared to DDP, completing the run in 8.99 hours versus 84.73 hours (3.5 days) for DDP, even with
 1403 the constant overheads of our unoptimized implementation. Furthermore, DES-LOC Nesterov
 is more efficient than Local Adam, finishing $\approx 7\%$ faster (8.99h vs. 9.62h) while achieving

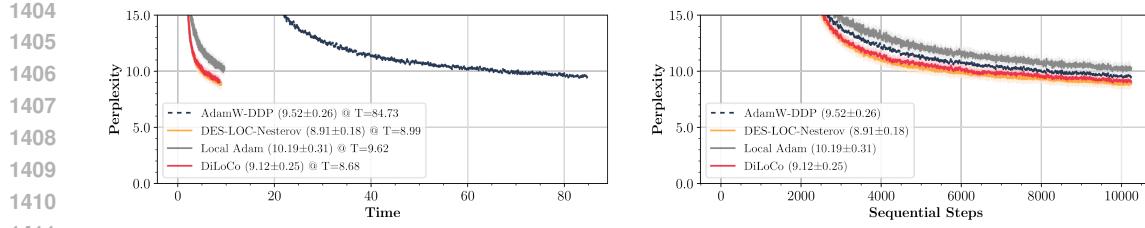


Figure 19: Training efficiency benchmark on a 1B model under restricted bandwidth (10 Gbit/s). **Left:** Perplexity versus wall-clock time. DES-LOC Nesterov effectively decouples training time from bandwidth, finishing in ≈ 9 hours compared to the projected ≈ 3.5 days for DDP (dashed blue). **Right:** Perplexity versus sequential steps. While step-wise convergence is comparable, the communication overhead of DDP creates a massive bottleneck in the time domain.

significantly lower perplexity (8.91 vs. 10.19). When compared to the ultra-lightweight DiLoCo baseline (8.68), DES-LOC Nesterov incurs a time penalty of $\approx 3.6\%$ due to the additional optimizer state synchronization. However, this yields performance gains, improving final perplexity by $\approx 2.3\%$ (8.91 vs. 9.12) over DiLoCo.

Takeaway: In extremely low bandwidth settings (10 Gbit/s), DES-LOC Nesterov eliminates the communication bottleneck, reducing training time by $9.42\times$ over DDP. It strikes a balance on the Pareto frontier: its wall-clock time is in-between those of Local Adam and DiLoCo while outperforming them both in perplexity.

B.6 MUON AS THE INNER OPTIMIZER

To assess the versatility of our framework beyond Adam and ADOPt, we integrate DES-LOC with Muon (Jordan et al., 2024), a novel optimizer utilizing Newton-Schulz iterations for orthogonalization. Distinct from standard adaptive algorithms that track second-moment variances, Muon preconditions only the momentum term directly. This architectural difference reduces the relevant synchronization periods to just two: the parameters (K_x) and the first momentum (K_u). Although a comprehensive theoretical treatment of preconditioned local updates is outside the scope of this work, the DES-LOC design is inherently compatible with such structures. Here, we provide empirical evidence of DES-LOC’s efficacy when wrapping Muon as the inner optimizer.

Experimental Details. We utilize the standard PyTorch implementation of Muon with Nesterov momentum enabled and a weight decay of 0.1. Following the recommendations of Liu et al. (2025), we apply the `match_rms_norm` adjustment to learning rates. We adopt the conventional split optimization strategy for Muon: AdamW handles embeddings and layer normalizations, while Muon optimizes all 2D matrices (Jordan et al., 2024). The momentum parameter for Muon is set to $\beta = 0.9$, while the Adam component retains the $\beta_1 = 0.9, \beta_2 = 0.999$ settings used elsewhere. Gradient clipping thresholds are scaled by model size: 1.0 for 16M, 0.5 for 125M, and 0.25 for 360M. For the Local Muon baseline, all optimizer states (Muon momentum; Adam first/second momenta) synchronize every 32 steps. In contrast, DES-LOC delays state synchronization: the first momentum (for both optimizers) synchronizes every 96 steps ($3\times$ reduction), and Adam’s second momentum synchronizes every 192 steps ($6\times$ reduction).

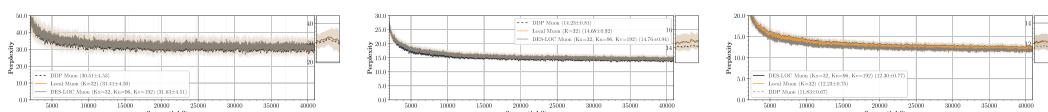


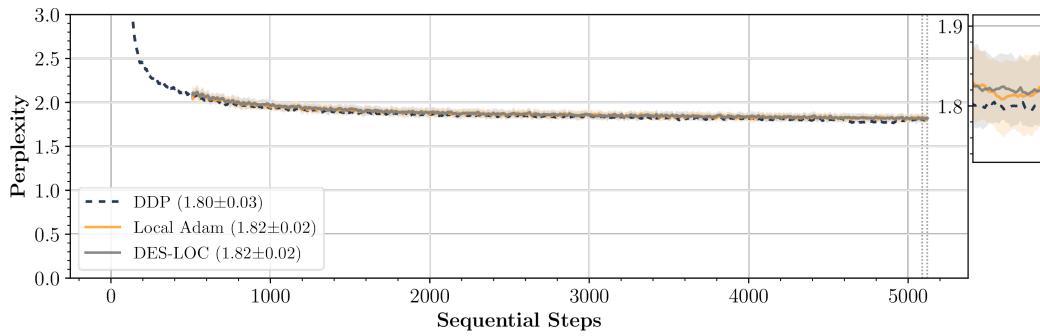
Figure 20: Training loss comparison between Local Muon ($K = 32$) and DES-LOC-Muon ($K_x = 32, K_u = 96, K_v = 192$) across model scales (16M, 125M, 360M). DES-LOC provides a perplexity matching the Local Muon baseline across all scales. Crucially, by decoupling the synchronization frequencies, DES-LOC communicates more than $1.5\times$ less bytes than the baseline.

1458
 1459 **Takeaway:** DES-LOC is compatible with optimizers that rely on Newton-Schulz preconditioning,
 1460 such as Muon. By reducing the synchronization frequency of the momentum buffer, DES-LOC
 1461 maintains solution quality while significantly lowering communication volume.
 1462

1463 B.7 EXPERIMENTS ON THE FLUX VISION MODEL

1464
 1465 To demonstrate the universality of DES-LOC across different modalities and architectures beyond
 1466 standard decoder-only LLMs, we evaluate its performance on Flux (Labs et al., 2025), a Rectified
 1467 Flow Transformer designed for text-to-image generation. This architecture differs significantly
 1468 from the causal language models evaluated in previous sections, serving as a robust test for the
 1469 generalizability of our decoupled synchronization approach.
 1470

1471 **Experimental Setup.** We utilize the 280M parameter variant of Flux provided by `torchtitan`,
 1472 training with a global batch size of 256. The inner optimizer is AdamW with $\beta_1 = 0.9, \beta_2 = 0.999$.
 1473 We compare three settings: (1) DDP, (2) Local Adam with a synchronization period of $K = 32$, and
 1474 (3) DES-LOC with a parameter sync period of $K_x = 32$. For DES-LOC, we decouple the momentum
 1475 synchronization significantly, setting $K_u = 3K_x$ and $K_v = 6K_x$ (192 steps).
 1476



1477
 1478 Figure 21: Training loss comparison on the 280M parameter Flux model (Rectified Flow Trans-
 1479 former). DES-LOC ($K_x = 32, K_u = 192, K_v = 192$) effectively matches the convergence trajectory
 1480 of both the fully synchronous DDP baseline and Local Adam ($K = 32$).
 1481

1482
 1483 Our results, visualized in Fig. 21, indicate that DES-LOC generally matches the performance of
 1484 Local Adam and approaches the DDP upper bound.
 1485

1486 **Takeaway:** The efficacy of DES-LOC extends beyond LLMs to Rectified Flow Transformers (Flux).
 1487 The method generally matches the performance of DDP and Local Adam while reducing communi-
 1488 cation by 2 \times over Local Adam, demonstrating the universality of the approach. We leave the scaling
 1489 of this result to larger vision models for future work.
 1490

1501 B.8 THROUGHPUT AT 7B SCALE

1502
 1503 To assess the practical scalability of our method on state-of-the-art hardware and at large model
 1504 scales, we measure the training throughput of a 7B parameter model distributed across 8 independent
 1505 NVIDIA B200 GPUs.
 1506

1507 **Throughput Analysis.** As illustrated in Fig. 22, during the local update phases, each GPU operates
 1508 at the peak efficiency of a fully isolated local run, achieving identical tokens-per-second throughput
 1509 as a single B200 with zero synchronization overhead. Distinct drops in throughput are observed only
 1510 at the sparse synchronization boundaries ($K_x = 32, K_u = 96, K_v = 192$), where the system pauses
 1511 to aggregate model parameters and optimizer states.
 1512

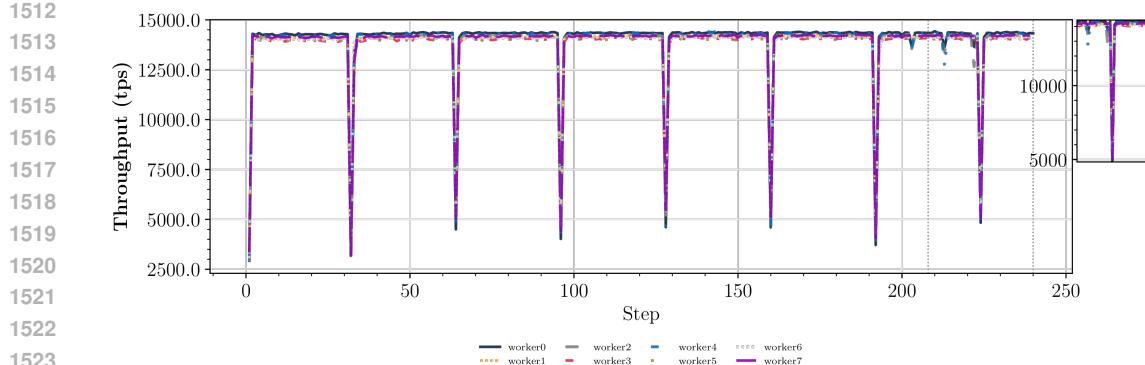


Figure 22: Instantaneous throughput (tokens/sec) for a 7B model on 8x B200s. DES-LOC maintains peak "local-only" speed for the vast majority of steps, with throughput dips occurring only at synchronization intervals (32, 96, 192). In contrast, standard DDP would incur a synchronization penalty at *every* step, permanently depressing the throughput curve.

Crucially, standard DDP incurs this communication penalty at *every single training step*, significantly lowering the average tokens/sec. Even with our current unoptimized "stop-the-world" implementation—which explicitly pauses computation to communicate and does not leverage computation-communication overlap—DES-LOC significantly increases aggregate throughput by amortizing these costs over long local training windows.

Takeaway: On high-performance B200 hardware, DES-LOC enables near-linear scaling by keeping workers in a high-throughput local regime for the majority of training. By restricting communication overhead to sparse intervals, it delivers significant wall-clock speedups over DDP, even without low-level implementation optimizations like communication overlap.

C FURTHER ALGORITHMIC DETAILS OF DES-LOC

C.1 EXTENSION TO FEDOPT

Although Cheng & Glasgow (2025) show provable convergence for adaptive inner optimizers in a federated optimization framework, their result rests on the assumption that after a period of local work, the new global model is created by averaging the local client models. In relation to the larger FedOpt literature (Reddi et al., 2021), the scheme chosen by Cheng & Glasgow (2025) resembles that of FedAvg, or where the server optimizer is SGD with the outer learning rate set to one (Reddi et al., 2021). Naturally, the question of whether alternate server optimizers than have been used in prior works can also be implemented for Local Adam, and thus DES-LOC, arises.

We argue that indeed DES-LOC's principles can be effectively applied to any FedOpt method and not just FedAvg. While using an alternate server optimizer does not have proven convergence guarantees as yet, we show in Algorithm 1 that the choice of the ServerOpt is not constrained from a practical point-of-view. However, the improvements that DES-LOC provide are related to the local optimization procedure, which is orthogonal to the outer optimizer choice. Choosing the correct, and most effective, outer optimizer is an open research area (Khaled et al., 2025), and we leave the investigations of the interactions between DES-LOC and outer optimizers to future work.

1566 C.2 DETERMINISTIC OPTIMIZER-SPECIFIC VARIANTS OF ALGORITHM 1
15671568 **Algorithm 2** DES-LOC-Adam1569 **Require:** Model tensors, Hyper-parameters

```

1:    $x_0, u_{-1}, v_{-1} \in \mathbb{R}^d$  — initial parameter vector, seeds for first and second moments
2:    $\{\eta_t\}_{t=0}^{T-1} \subset \mathbb{R}_{>0}$  — step-size schedule
3:    $\beta_1, \beta_2 \in [0, 1]$  — Adam decay factors
4:    $\rho, \lambda \in \mathbb{R}_{>0}$  — gradient clipping term,  $\ell_2$  stability term
5:    $T, M \in \mathbb{N}_+$  — total iterations, number of workers
6:    $K_x, K_u, K_v \in \mathbb{N}_+$  — sync periods for parameters, first and second moments

Ensure:  $x_T, u_{T-1}, v_{T-1}$ 
7: for each worker  $m$ :  $x_0^m = x_0, u_0^m = v_0^m = 0$                                 local init ( $t = -1$  seeds)
8: for  $t = 0, \dots, T - 1$  do                                                 training loop
9:   for all workers  $m = 0, \dots, M - 1$  in parallel do
10:     $g_t^m \leftarrow \nabla F(x_t^m; \xi_t^m)$                                          stochastic gradient
11:     $\hat{g}_t^m \leftarrow \text{clip}(g_t^m, \rho)$                                          clip to radius  $\rho$ 
12:    if  $t \bmod K_u = 0$  then                                                 sync  $u$ 
13:       $u_t^m \leftarrow \beta_1 \mathbb{E}_m[u_{t-1}^m] + (1 - \beta_1)\hat{g}_t^m$ 
14:    else
15:       $u_t^m \leftarrow \beta_1 u_{t-1}^m + (1 - \beta_1)\hat{g}_t^m$ 
16:    if  $t \bmod K_v = 0$  then                                                 sync  $v$ 
17:       $v_t^m \leftarrow \beta_2 \mathbb{E}_m[v_{t-1}^m] + (1 - \beta_2)(\hat{g}_t^m \odot \hat{g}_t^m)$ 
18:    else
19:       $v_t^m \leftarrow \beta_2 v_{t-1}^m + (1 - \beta_2)(\hat{g}_t^m \odot \hat{g}_t^m)$ 
20:       $d_t^m \leftarrow \frac{\eta_t}{\sqrt{v_t^m + \lambda^2}} \odot u_t^m$                                 bias-corrected step
21:    if  $t \bmod K_x = 0$  then                                                 sync  $x$ 
22:       $x_{t+1}^m \leftarrow \mathbb{E}_m[x_t^m] - d_t^m$ 
23:    else
24:       $x_{t+1}^m \leftarrow x_t^m - d_t^m$ 

```

1593

1594

1595 **Algorithm 3** DES-LOC-ADOPT1596 **Require:** Model tensors, Hyper-parameters

```

1:    $x_0, m_{-1}, v_{-1} \in \mathbb{R}^d$  — initial parameter vector and momenta
2:    $\{\eta_t\}_{t=0}^{T-1} \subset \mathbb{R}_{>0}$  — learning rate schedule
3:    $\beta_1, \beta_2 \in [0, 1]$  — decay factors
4:    $\rho, \epsilon \in \mathbb{R}_{>0}$  — gradient clipping term, small stability constant
5:    $T, M \in \mathbb{N}_+$  — total iterations, number of workers
6:    $K_x, K_m, K_v \in \mathbb{N}_+$  — sync periods for parameters, first and second moments

Ensure:  $x_T, m_{T-1}, v_{T-1}$ 
7: for each worker  $m$ :  $x_0^m = x_0, m_{-1}^m = v_{-1}^m = 0$                                 local initialization
8: for  $t = 0, \dots, T - 1$  do
9:   for all workers  $m = 0, \dots, M - 1$  in parallel do
10:     $g_t^m \leftarrow \nabla F(x_t^m; \xi_t^m)$                                          stochastic gradient
11:     $\hat{g}_t^m \leftarrow \text{clip}(g_t^m, \rho)$                                          gradient clipping
12:    if  $t \bmod K_v = 0$  then
13:       $v_t^m \leftarrow \beta_2 \mathbb{E}_m[v_{t-1}^m] + (1 - \beta_2)(\hat{g}_t^m \odot \hat{g}_t^m)$ 
14:    else
15:       $v_t^m \leftarrow \beta_2 v_{t-1}^m + (1 - \beta_2)(\hat{g}_t^m \odot \hat{g}_t^m)$ 
16:    if  $t \bmod K_m = 0$  then
17:       $m_t^m \leftarrow \beta_1 \mathbb{E}_m[m_{t-1}^m] + (1 - \beta_1) \frac{\hat{g}_t^m}{\max\{\sqrt{v_{t-1}^m}, \epsilon\}}$ 
18:    else
19:       $m_t^m \leftarrow \beta_1 m_{t-1}^m + (1 - \beta_1) \frac{\hat{g}_t^m}{\max\{\sqrt{v_{t-1}^m}, \epsilon\}}$ 
20:       $d_t^m \leftarrow \eta_t m_t^m$                                          ADOPT update
21:    if  $t \bmod K_x = 0$  then
22:       $x_{t+1}^m \leftarrow \mathbb{E}_m[x_t^m] - d_t^m$ 
23:    else
24:       $x_{t+1}^m \leftarrow x_t^m - d_t^m$ 

```

1620 **D CONVERGENCE ANALYSIS OF DES-LOC-SGDM (IN EXPECTATION**
 1621 **BOUNDS)**

1623
 1624 Here we provide a non-convex convergence analysis of the proposed DES-LOC approach applied to
 1625 the SGDM optimizer which has a single state ($N = 1$, momentum). The complete description of the
 1626 algorithm can be found in Algorithm 4.

1627 **Algorithm 4** DES-LOC-SGDM

1629 **Require: Model tensors**

1630 1: $x_0 \in \mathbb{R}^d$ — initial parameter vector
 1631 2: $u_{-1} \in \mathbb{R}^d$ — seed for the momentum, initialised to $\mathbf{0}$

1632 **Require: Hyper-parameters**

1633 3: $\{\eta_t\}_{t=0}^{T-1} \subset \mathbb{R}_{>0}$ — step-size schedule
 1634 4: $\beta \in [0, 1)$ — Momentum decay factor
 1635 5: $T \in \mathbb{N}_+$ — total optimisation iterations
 1636 6: $M \in \mathbb{N}_+$ — number of workers
 1637 7: $p_x = \frac{1}{K_x}, p_u = \frac{1}{K_u} \in [0, 1]$ — synchronization probabilities for parameters and momentum

1638 **Ensure:** x_T, u_{T-1}, v_{T-1}

1639 8: **for each worker** m : $x_0^m = x_0, u_{-1}^m = v_{-1}^m = 0$ local init ($t = -1$ seeds)
 1640 9: **for** $t = 0, \dots, T - 1$ **do** training loop
 1641 10: **for all workers** $m = 0, \dots, M - 1$ **in parallel do** stochastic gradient
 1642 11: $g_t^m \leftarrow \nabla F_m(x_t^m; \xi_t^m)$
 1643 12: $u_t^m \leftarrow \begin{cases} \mathbb{E}_m[\beta u_{t-1}^m + (1 - \beta)g_t^m], & \text{with probability } p_u \\ \beta u_{t-1}^m + (1 - \beta)g_t^m, & \text{with probability } 1 - p_u \end{cases}$ sync u
 1644 13: $x_{t+1}^m \leftarrow \begin{cases} \mathbb{E}_m[x_t^m - \eta_t u_t^m], & \text{with probability } p_x \\ x_t^m - \eta_t u_t^m, & \text{with probability } 1 - p_x \end{cases}$ sync x

1648 In order to facilitate the technical presentation, we model synchronization frequencies by assigning
 1649 probabilities to each averaging event. For example, the parameters x_t^m are synchronized with the
 1650 probability $p_x = \frac{1}{K_x}$, which is statistically equivalent to performing the averaging in every $\frac{1}{p_x} = K_x$
 1651 iteration. Similarly, momentum u_t^m synchronization happens with probability $p_u = \frac{1}{K_u}$, which can
 1652 differ from p_x .

1653 **Step 1 (virtual iterates).** For each step $t \geq 0$, denote the average parameters, momentum and gradient
 1654 as follows:

1655
$$x_t \stackrel{\text{def}}{=} \mathbb{E}_m[x_t^m], \quad u_t \stackrel{\text{def}}{=} \mathbb{E}_m[u_t^m], \quad g_t \stackrel{\text{def}}{=} \mathbb{E}_m[g_t^m].$$

1656 Then these averaged variables follow the “standard” centralized SGDM dynamics:

1657
 1658
$$\begin{aligned} u_t &= \beta u_{t-1} + (1 - \beta)g_t \\ x_{t+1} &= x_t - \eta u_t. \end{aligned}$$

1659 Letting $x_{-1} = x_0$, define the global virtual iterations as follows

1660
$$z_t \stackrel{\text{def}}{=} \frac{1}{1 - \beta}x_t - \frac{\beta}{1 - \beta}x_{t-1}, \quad t \geq 0.$$

1661 The key property of this virtual iterates we are going to exploit in the next steps is that they follow
 1662 averaged gradients, namely for any $t \geq 0$ we have

1663
 1664
$$\begin{aligned} z_{t+1} - z_t &= \frac{1}{1 - \beta}(x_{t+1} - x_t) - \frac{\beta}{1 - \beta}(x_t - x_{t-1}) \\ 1665 &= -\frac{\eta}{1 - \beta}u_t + \frac{\eta\beta}{1 - \beta}u_{t-1} = -\frac{\eta}{1 - \beta}(u_t - \beta u_{t-1}) = -\eta g_t. \end{aligned}$$

1674
 1675 **Step 2 (smoothness over virtual iterates).** Then we apply smoothness of the global loss function f
 1676 over these global virtual iterates.

$$1677 \quad f(z_{t+1}) \leq f(z_t) + \langle \nabla f(z_t), z_{t+1} - z_t \rangle + \frac{L}{2} \|z_{t+1} - z_t\|^2 \\ 1678 \\ 1679 = f(z_t) + \underbrace{\langle \nabla f(x_t), z_{t+1} - z_t \rangle}_I + \underbrace{\langle \nabla f(z_t) - \nabla f(x_t), z_{t+1} - z_t \rangle}_{II} + \underbrace{\frac{L}{2} \|z_{t+1} - z_t\|^2}_{III}.$$

1682
 1683 In the next step, we separately bound each term appearing in the above bound.

1684 **Step 3a (one step progress).** Bounding term I.

$$1686 \quad \mathbb{E} \langle \nabla f(x_t), z_{t+1} - z_t \rangle \\ 1687 = -\eta \mathbb{E} \left\langle \nabla f(x_t), \frac{1}{M} \sum_{m=1}^M g_t^m \right\rangle = -\eta \mathbb{E} \left\langle \nabla f(x_t), \frac{1}{M} \sum_{m=1}^M \nabla f_m(x_t^m) \right\rangle \\ 1688 \\ 1689 = -\frac{\eta}{2} \mathbb{E} \|\nabla f(x_t)\|^2 - \frac{\eta}{2} \mathbb{E} \left\| \frac{1}{M} \sum_{m=1}^M \nabla f_m(x_t^m) \right\|^2 + \frac{\eta}{2} \mathbb{E} \left\| \nabla f(x_t) - \frac{1}{M} \sum_{m=1}^M \nabla f_m(x_t^m) \right\|^2 \\ 1690 \\ 1691 = -\frac{\eta}{2} \mathbb{E} \|\nabla f(x_t)\|^2 - \frac{\eta}{2} \mathbb{E} \left\| \frac{1}{M} \sum_{m=1}^M \nabla f_m(x_t^m) \right\|^2 + \frac{\eta}{2} \mathbb{E} \left\| \frac{1}{M} \sum_{m=1}^M \nabla f_m(x_t) - \nabla f_m(x_t^m) \right\|^2 \\ 1692 \\ 1693 = -\frac{\eta}{2} \mathbb{E} \|\nabla f(x_t)\|^2 - \frac{\eta}{2} \mathbb{E} \left\| \frac{1}{M} \sum_{m=1}^M \nabla f_m(x_t^m) \right\|^2 + \frac{\eta}{2M} \sum_{m=1}^M \mathbb{E} \|\nabla f_m(x_t) - \nabla f_m(x_t^m)\|^2 \\ 1694 \\ 1695 \leq -\frac{\eta}{2} \mathbb{E} \|\nabla f(x_t)\|^2 - \frac{\eta}{2} \mathbb{E} \left\| \frac{1}{M} \sum_{m=1}^M \nabla f_m(x_t^m) \right\|^2 + \frac{\eta}{2M} \sum_{m=1}^M \mathbb{E} \|\nabla f_m(x_t) - \nabla f_m(x_t^m)\|^2 \\ 1696 \\ 1697 \leq -\frac{\eta}{2} \mathbb{E} \|\nabla f(x_t)\|^2 - \frac{\eta}{2} \mathbb{E} \left\| \frac{1}{M} \sum_{m=1}^M \nabla f_m(x_t^m) \right\|^2 + \frac{\eta L^2}{2M} \sum_{m=1}^M \mathbb{E} \|x_t - x_t^m\|^2. \\ 1698 \\ 1699 \\ 1700 \\ 1701 \quad \text{Lemma 3}$$

1702
 1703 **Step 3b (one step progress).** Bounding term II.

$$1705 \quad \mathbb{E} \langle \nabla f(z_t) - \nabla f(x_t), z_{t+1} - z_t \rangle = -\eta \mathbb{E} \left\langle \nabla f(z_t) - \nabla f(x_t), \frac{1}{M} \sum_{m=1}^M \nabla f_m(x_t^m) \right\rangle \\ 1706 \\ 1707 \\ 1708 \leq \frac{\eta \rho}{2} \mathbb{E} \|\nabla f(z_t) - \nabla f(x_t)\|^2 + \frac{\eta}{2\rho} \mathbb{E} \left\| \frac{1}{M} \sum_{m=1}^M \nabla f_m(x_t^m) \right\|^2 \\ 1709 \\ 1710 \\ 1711 \leq \frac{\eta \rho L^2}{2} \underbrace{\mathbb{E} \|z_t - x_t\|^2}_{\text{Lemma 2}} + \frac{\eta}{2\rho} \left\| \frac{1}{M} \sum_{m=1}^M \nabla f_m(x_t^m) \right\|^2. \\ 1712 \\ 1713 \\ 1714$$

1715 **Step 3c (one step progress).** Bounding term III.

$$1716 \quad \frac{L}{2} \mathbb{E} \|z_{t+1} - z_t\|^2 = \frac{\eta^2 L}{2} \mathbb{E} \left\| \frac{1}{M} \sum_{m=1}^M g_t^m \right\|^2 \\ 1717 \\ 1718 = \frac{\eta^2 L}{2} \mathbb{E} \left\| \frac{1}{M} \sum_{m=1}^M g_t^m - \nabla f_m(x_t^m) \right\|^2 + \frac{\eta^2 L}{2} \mathbb{E} \left\| \frac{1}{M} \sum_{m=1}^M \nabla f_m(x_t^m) \right\|^2 \\ 1719 \\ 1720 \\ 1721 = \frac{\eta^2 L}{2M^2} \sum_{m=1}^M \mathbb{E} \|g_t^m - \nabla f_m(x_t^m)\|^2 + \frac{\eta^2 L}{2} \mathbb{E} \left\| \frac{1}{M} \sum_{m=1}^M \nabla f_m(x_t^m) \right\|^2 \\ 1722 \\ 1723 \\ 1724 \\ 1725 \leq \frac{\eta^2 L}{2M} \sigma^2 + \frac{\eta^2 L}{2} \mathbb{E} \left\| \frac{1}{M} \sum_{m=1}^M \nabla f_m(x_t^m) \right\|^2. \\ 1726 \\ 1727$$

1728 Step 3abc (one step progress). Combining previous bounds.
 1729

$$\begin{aligned}
 \mathbb{E}f(z_{t+1}) - \mathbb{E}f(z_t) &\leq \underbrace{\mathbb{E}\langle \nabla f(x_t), z_{t+1} - z_t \rangle}_{I} + \underbrace{\mathbb{E}\langle \nabla f(z_t) - \nabla f(x_t), z_{t+1} - z_t \rangle}_{II} + \underbrace{\mathbb{E}\frac{L}{2}\|z_{t+1} - z_t\|^2}_{III} \\
 &\leq -\frac{\eta}{2}\mathbb{E}\|\nabla f(x_t)\|^2 - \frac{\eta}{2}\mathbb{E}\left\|\frac{1}{M}\sum_{m=1}^M \nabla f_m(x_t^m)\right\|^2 + \frac{\eta L^2}{2M}\sum_{m=1}^M \underbrace{\mathbb{E}\|x_t - x_t^m\|^2}_{\text{Lemma 3}} \\
 &\quad + \frac{\eta\rho L^2}{2}\underbrace{\mathbb{E}\|z_t - x_t\|^2}_{\text{Lemma 2}} + \frac{\eta}{2\rho}\mathbb{E}\left\|\frac{1}{M}\sum_{m=1}^M \nabla f_m(x_t^m)\right\|^2 \\
 &\quad + \frac{\eta^2 L}{2K}\sigma^2 + \frac{\eta^2 L}{2}\mathbb{E}\left\|\frac{1}{M}\sum_{m=1}^M \nabla f_m(x_t^m)\right\|^2 \\
 &\leq -\frac{\eta}{2}\mathbb{E}\|\nabla f(x_t)\|^2 - \frac{\eta}{2}\left(1 - \frac{1}{\rho} - \eta L\right)\mathbb{E}\left\|\frac{1}{M}\sum_{m=1}^M \nabla f_m(x_t^m)\right\|^2 \\
 &\quad + \frac{\eta\rho L^2}{2}\underbrace{\mathbb{E}\|z_t - x_t\|^2}_{\text{Lemma 2}} + \frac{\eta L^2}{2M}\sum_{m=1}^M \underbrace{\mathbb{E}\|x_t - x_t^m\|^2}_{\text{Lemma 3}} + \frac{\eta^2 L}{2M}\sigma^2.
 \end{aligned}$$

1750
 1751 Step 4 (final). Now we average over the iterates and apply the bounds derived in Lemmas 1,2.
 1752

$$\begin{aligned}
 \frac{\mathbb{E}[f(z_T) - f(z_0)]}{T} &= \frac{1}{T}\sum_{t=0}^{T-1} \mathbb{E}[f(z_{t+1}) - f(z_t)] \\
 &\leq -\frac{\eta}{2T}\sum_{t=0}^{T-1} \mathbb{E}\|\nabla f(x_t)\|^2 - \frac{\eta}{2}\left(1 - \frac{1}{\rho} - \eta L\right)\frac{1}{T}\sum_{t=0}^{T-1} \mathbb{E}\left\|\frac{1}{M}\sum_{m=1}^M \nabla f_m(x_t^m)\right\|^2 \\
 &\quad + \frac{\eta\rho L^2}{2}\underbrace{\frac{1}{T}\sum_{t=0}^{T-1} \mathbb{E}\|z_t - x_t\|^2}_{\text{Lemma 1}} + \frac{\eta L^2}{2}\underbrace{\frac{1}{TM}\sum_{t=0}^{T-1} \sum_{m=1}^M \mathbb{E}\|x_t - x_t^m\|^2}_{\text{Lemma 2}} + \frac{\eta^2 L}{2M}\sigma^2 \\
 &\leq -\frac{\eta}{2T}\sum_{t=0}^{T-1} \mathbb{E}\|\nabla f(x_t)\|^2 - \frac{\eta}{2}\left(1 - \frac{1}{\rho} - \eta L\right)\frac{1}{T}\sum_{t=0}^{T-1} \mathbb{E}\left\|\frac{1}{M}\sum_{m=1}^M \nabla f_m(x_t^m)\right\|^2 + \frac{\eta^2 L}{2M}\sigma^2 \\
 &\quad + \frac{\eta\rho L^2}{2}\left(\frac{\eta^2\beta^2}{(1-\beta)^2M}\sigma^2 + \frac{\eta^2\beta^2}{(1-\beta)^2}\frac{1}{T}\sum_{\tau=0}^{T-1} \mathbb{E}\left\|\frac{1}{M}\sum_{m=1}^M \nabla f_m(x_{\tau}^m)\right\|^2\right) \\
 &\quad + \frac{\eta L^2}{2}\left(12\eta^2(B^2-1)\psi \cdot \frac{1}{T}\sum_{t=0}^{T-1} \mathbb{E}\|\nabla f(\theta^t)\|^2 + 4\eta^2\psi(\sigma^2 + 3G^2)\right) \\
 &\leq -\frac{\eta}{2}(1 - 12\eta^2L^2(B^2-1)\psi)\frac{1}{T}\sum_{t=0}^{T-1} \mathbb{E}\|\nabla f(x_t)\|^2 \\
 &\quad - \frac{\eta}{2}\left(1 - \frac{1}{\rho} - \eta L - \frac{\eta^2\beta^2\rho L^2}{(1-\beta)^2}\right)\frac{1}{T}\sum_{t=0}^{T-1} \mathbb{E}\left\|\frac{1}{M}\sum_{m=1}^M \nabla f_m(x_t^m)\right\|^2 \\
 &\quad + \frac{\eta^2 L}{2M}\sigma^2 + \frac{\eta^3\rho L^2\beta^2}{2(1-\beta)^2M}\sigma^2 + 2\eta^3 L^2\psi(\sigma^2 + 3G^2).
 \end{aligned}$$

1782 Next, we choose $\rho = 2$ and step size η such that
 1783

$$1784 \quad 12\eta^2 L^2(B^2 - 1)\psi \leq \frac{1}{2} \iff \text{to bound the first term}$$

$$1786 \quad \eta L + \frac{2\eta^2\beta^2 L^2}{(1-\beta)^2} \leq \frac{1}{2} \iff \text{to bound the second term}$$

$$1788 \quad 12\eta^2 L^2\psi \leq \frac{1}{2} \iff \text{from Lemma 3}$$

1790 Note that

$$1791 \quad \eta_0 \stackrel{\text{def}}{=} \frac{1}{4L} \min \left(1 - \beta, \frac{1}{6\sqrt{\psi \max(1, B^2 - 1)}} \right)$$

1794 satisfies all three bounds. Then, with any $\eta \leq \eta_0$ we get

$$1795 \quad \frac{\mathbb{E}[f(z_T) - f(z_0)]}{T} \leq -\frac{\eta}{4T} \sum_{t=0}^{T-1} \mathbb{E}\|\nabla f(x_t)\|^2$$

$$1796 \quad + \frac{\eta^2 L}{2M} \sigma^2 + \frac{\eta^3 \rho L^2 \beta^2}{2(1-\beta)^2 M} \sigma^2 + 2\eta^3 L^2 \psi(\sigma^2 + 3G^2).$$

1800 Noticing that $z_0 = x_0$ and $f^* \leq f(z_T)$, we have

$$1802 \quad \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}\|\nabla f(x_t)\|^2 \leq \frac{4(f(x_0) - f^*)}{\eta T} + \frac{2\eta L}{M} \sigma^2 + \frac{4\eta^2 L^2 \beta^2}{(1-\beta)^2 M} \sigma^2 + 8\eta^2 L^2 \psi(\sigma^2 + 3G^2).$$

1805 Furthermore, choosing $\eta = \min(\eta_0, \frac{1}{\sqrt{T}})$, we get the following rate:

$$1807 \quad \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}\|\nabla f(x_t)\|^2$$

$$1808 \quad \leq \max \left(1, \frac{1}{\eta_0 \sqrt{T}} \right) \frac{4(f(x_0) - f^*)}{\sqrt{T}} + \frac{2L\sigma^2}{M\sqrt{T}} + \frac{4L^2\beta^2\sigma^2}{(1-\beta)^2 MT} + \frac{8L^2\psi(\sigma^2 + 3G^2)}{T}$$

$$1810 \quad \leq \frac{4(f(x_0) - f^*)}{\sqrt{T}} + \frac{2L\sigma^2}{M\sqrt{T}} + \frac{4(f(x_0) - f^*)}{\eta_0 T} + \frac{4L^2\beta^2\sigma^2}{(1-\beta)^2 MT} + \frac{8L^2\psi(\sigma^2 + 3G^2)}{T}$$

$$1812 \quad = \frac{4}{\sqrt{T}} \left(f(x_0) - f^* + \frac{L\sigma^2}{2M} \right) + \mathcal{O} \left(\frac{1+\psi}{T} \right).$$

1817 D.1 EXTENSION TO ADAM OPTIMIZER

1819 Here we discuss extension of the previous analysis for the Adam optimizer including the second-
 1820 order momentum in the analysis. The addition is similar to the first-order momentum while the
 1821 synchronization probability p_v can differ from other probabilities p_u and p_u . The complete description
 1822 of the algorithm can be found in Algorithm 5. Instead of bounded heterogeneity Assumption 3, in
 1823 this analysis we use stronger condition mentioned below:

1824 **Assumption 4** (Bounded gradient). *For any iterate $t \geq 0$ and worker m , the local stochastic gradient
 1825 is bounded, namely $\|g_t^m\|_2 \leq G$.*

1827 This condition facilitates the analysis by providing uniform upper bounds for gradients/momenta
 1828 variables and is commonly used in the analysis of adaptive optimization.

1829 **Step 1 (preconditioning and virtual iterates).** Let $\Gamma_t^m \stackrel{\text{def}}{=} \text{diag}^{-1/2}(\tilde{v}_t^m + \lambda^2)$ be the preconditioning
 1830 matrix and for each step $t \geq 0$, denote the averaged variables

$$1832 \quad x_t \stackrel{\text{def}}{=} \mathbb{E}_m[x_t^m], \quad u_t \stackrel{\text{def}}{=} \mathbb{E}_m[u_t^m], \quad v_t \stackrel{\text{def}}{=} \mathbb{E}_m[v_t^m], \quad \tilde{v}_t \stackrel{\text{def}}{=} \mathbb{E}_m[\tilde{v}_t^m], \quad g_t \stackrel{\text{def}}{=} \mathbb{E}_m[g_t^m].$$

1833 Then

$$1834 \quad u_t = \beta_1 u_{t-1} + (1 - \beta_1) g_t$$

$$1835 \quad x_{t+1} = x_t - d_t = x_t - \eta \mathbb{E}_m[\Gamma_t^m u_t^m].$$

1836 **Algorithm 5** DES-LOC-Adam (with probabilistic synchronization)

1837 **Require: Model tensors**

1838 1: $x_0 \in \mathbb{R}^d$ — initial parameter vector

1839 2: $u_{-1}, v_{-1} \in \mathbb{R}^d$ — seeds for first and second moments, initialised to $\mathbf{0}$

1840 **Require: Hyper-parameters**

1841 3: $\{\eta_t\}_{t=0}^{T-1} \subset \mathbb{R}_{>0}$ — step-size schedule

1842 4: $\beta_1, \beta_2 \in [0, 1]$ — Adam decay factors

1843 5: $\lambda \in \mathbb{R}_{\geq 0}$ — ℓ_2 stability term

1844 6: $T \in \mathbb{N}_+$ — total optimisation iterations

1845 7: $M \in \mathbb{N}_+$ — number of workers

1845 8: $p_x = \frac{1}{K_x}, p_u = \frac{1}{K_u}, p_v = \frac{1}{K_v} \in [0, 1]$ — synchronization probabilities for parameters and momentums

1846 **Ensure:** x_T, u_{T-1}, v_{T-1}

1847 9: **for each worker** m : $x_0^m = x_0, u_{-1}^m = v_{-1}^m = 0$ local init ($t = -1$ seeds)

1848 10: **for** $t = 0, \dots, T-1$ **do** training loop

1849 11: **for all workers** $m = 0, \dots, M-1$ **in parallel do**

1850 12: $g_t^m \leftarrow \nabla F(x_t^m; \xi_t^m)$ stochastic gradient

1851 13: $u_t^m \leftarrow \begin{cases} \mathbb{E}_m[\beta_1 u_{t-1}^m + (1 - \beta_1)g_t^m], & \text{with probability } p_u \\ \beta_1 u_{t-1}^m + (1 - \beta_1)g_t^m, & \text{with probability } 1 - p_u \end{cases}$ sync u

1852 14: $v_t^m \leftarrow \begin{cases} \mathbb{E}_m[\beta_2 v_{t-1}^m + (1 - \beta_2)(g_t^m \odot g_t^m)], & \text{with probability } p_v \\ \beta_2 v_{t-1}^m + (1 - \beta_2)(g_t^m \odot g_t^m), & \text{with probability } 1 - p_v \end{cases}$ sync u

1853 15: $\tilde{v}_t^m \leftarrow \max(v_t^m, \tilde{v}_{t-1}^m)$ AMSGrad Normalization, $\tilde{v}_{-1} = v_{-1}$

1854 16: $d_t^m \leftarrow \frac{\eta_t}{\sqrt{\tilde{v}_t^m + \lambda^2}} \odot u_t^m$ bias-corrected update

1855 17: $x_{t+1}^m \leftarrow \begin{cases} \mathbb{E}_m[x_t^m - d_t^m], & \text{with probability } p_x \\ x_t^m - d_t^m, & \text{with probability } 1 - p_x \end{cases}$ sync x

1860

1861

1862

1863 Consider the same averaged iterates x_t and virtual iterates z_t as before:

1864

$$z_t = \frac{1}{1 - \beta_1} x_t - \frac{\beta_1}{1 - \beta_1} x_{t-1}.$$

1868

1869 In particular, $z_0 = x_0$. Then,

1870

$$\begin{aligned} z_{t+1} - z_t &= \frac{1}{1 - \beta_1} (x_{t+1} - x_t) - \frac{\beta_1}{1 - \beta_1} (x_t - x_{t-1}) \\ &= -\frac{\eta}{1 - \beta_1} \mathbb{E}_m[\Gamma_t^m u_t^m] + \frac{\eta \beta_1}{1 - \beta_1} \mathbb{E}_m[\Gamma_{t-1}^m u_{t-1}^m] \\ &= -\frac{\eta}{1 - \beta_1} \mathbb{E}_m[\Gamma_t^m u_t^m] + \frac{\eta \beta_1}{1 - \beta_1} \mathbb{E}_m[\Gamma_{t-1}^m u_{t-1}^m] \pm \frac{\eta \beta_1}{1 - \beta_1} \mathbb{E}_m[\Gamma_t^m u_{t-1}^m] \\ &= -\frac{\eta}{1 - \beta_1} \mathbb{E}_m[\Gamma_t^m (u_t^m - \beta_1 u_{t-1}^m)] + \frac{\eta \beta_1}{1 - \beta_1} \mathbb{E}_m[(\Gamma_{t-1}^m - \Gamma_t^m) u_{t-1}^m] \\ &= -\eta \mathbb{E}_m[\Gamma_t^m \tilde{g}_t^m] + \frac{\eta \beta_1}{1 - \beta_1} \mathbb{E}_m[(\Gamma_{t-1}^m - \Gamma_t^m) u_{t-1}^m] \\ &= -\eta \mathbb{E}_m[\Gamma_t^m g_t] + \eta \mathbb{E}_m[\Gamma_t^m (g_t - \tilde{g}_t^m)] + \frac{\eta \beta_1}{1 - \beta_1} \mathbb{E}_m[(\Gamma_{t-1}^m - \Gamma_t^m) u_{t-1}^m] \\ &= -\eta \Gamma_t g_t + \eta \cdot \underbrace{\mathbb{E}_m[\Gamma_t^m (g_t - \tilde{g}_t^m)]}_{\stackrel{\text{def}}{=} U_t} + \eta \cdot \underbrace{\frac{\beta_1}{1 - \beta_1} \mathbb{E}_m[(\Gamma_{t-1}^m - \Gamma_t^m) u_{t-1}^m]}_{\stackrel{\text{def}}{=} V_t}, \end{aligned}$$

1888

1889

where $\Gamma_t \stackrel{\text{def}}{=} \mathbb{E}_m[\Gamma_t^m]$ and $\tilde{g}_t^m \stackrel{\text{def}}{=} \frac{u_t^m - \beta_1 u_{t-1}^m}{1 - \beta_1}$ for which, $\mathbb{E}_m[\tilde{g}_t^m] = \mathbb{E}_m[g_t^m] = g_t$.

1890
 1891 **Step 2 (smoothness over virtual iterates).** Then we apply smoothness of the global loss function f
 1892 over these global virtual iterates.

$$\begin{aligned}
 1893 \quad f(z_{t+1}) - f(z_t) &\leq \langle \nabla f(z_t), z_{t+1} - z_t \rangle + \frac{L}{2} \|z_{t+1} - z_t\|^2 \\
 1894 &= -\eta \langle \nabla f(z_t), \Gamma_t g_t \rangle + \eta \langle \nabla f(z_t), U_t \rangle + \eta \langle \nabla f(z_t), V_t \rangle + \frac{L}{2} \|z_{t+1} - z_t\|^2 \\
 1895 &= \underbrace{-\eta \langle \nabla f(x_t), \Gamma_t g_t \rangle}_{I} + \underbrace{\eta \langle \nabla f(z_t), U_t \rangle}_{II} + \underbrace{\eta \langle \nabla f(z_t), V_t \rangle}_{III} \\
 1896 &\quad + \underbrace{\frac{\eta^2 L}{2} \|\Gamma_t g_t - U_t - V_t\|^2}_{IV} + \underbrace{\eta \langle \nabla f(x_t) - \nabla f(z_t), \Gamma_t g_t \rangle}_{V}.
 \end{aligned}$$

1903
 1904 In the next step, we separately bound each term appearing in the above bound. For clarity, we are
 1905 also going to use $\|\nabla f(x_t)\| \leq G$ and $\|\nabla f(z_t)\| \leq G$. However, these conditions can be avoided
 1906 through linking $\nabla f(z_t)$ term to $\nabla f(x_t)$, and $\nabla f(x_t)$ term to $\mathbb{E}_m \nabla f_m(x_t^m)$ with the bound for
 1907 $\mathbb{E}[\|x_t - x_t^m\|^2]$.

1908 **Step 3a (one step progress). Bounding term I.**

$$\begin{aligned}
 1911 \quad I &= -\eta \langle \nabla f(x_t), \Gamma_t g_t \rangle \\
 1912 &= -\eta \mathbb{E}[\langle \nabla f(x_t), \Gamma_{t-1} g_t \rangle] + \eta \mathbb{E}[\langle \nabla f(x_t), (\Gamma_{t-1} - \Gamma_t) g_t \rangle] \\
 1913 &\leq -\eta \mathbb{E} \left[\left\langle \nabla f(x_t), \frac{1}{M} \sum_{m=1}^M \nabla f_m(x_t^m) \right\rangle_{\Gamma_{t-1}} \right] + \eta G^2 \mathbb{E}[\|\Gamma_{t-1} - \Gamma_t\|] \\
 1914 &\leq -\frac{\eta}{2} \mathbb{E} \left[\|\nabla f(x_t)\|_{\Gamma_{t-1}}^2 \right] - \frac{\eta}{2} \mathbb{E} \left[\left\| \frac{1}{M} \sum_{m=1}^M \nabla f_m(x_t^m) \right\|_{\Gamma_{t-1}}^2 \right] \\
 1915 &\quad + \frac{\eta}{2} \mathbb{E} \left[\left\| \nabla f(x_t) - \frac{1}{M} \sum_{m=1}^M \nabla f_m(x_t^m) \right\|_{\Gamma_{t-1}}^2 \right] + \eta G^2 \mathbb{E}[\|\Gamma_{t-1} - \Gamma_t\|] \\
 1916 &\leq -\frac{\eta}{2} \|\Gamma_{t-1}\|_{\min} \mathbb{E} \|\nabla f(x_t)\|^2 - \frac{\eta}{2} \mathbb{E} \left[\left\| \frac{1}{M} \sum_{m=1}^M \nabla f_m(x_t^m) \right\|_{\Gamma_{t-1}}^2 \right] \\
 1917 &\quad + \frac{\eta}{2} \|\Gamma_{t-1}\|_{\max} \mathbb{E} \left[\left\| \frac{1}{M} \sum_{m=1}^M \nabla f_m(x_t) - \nabla f_m(x_t^m) \right\|_{\Gamma_{t-1}}^2 \right] + \eta G^2 \mathbb{E}[\|\Gamma_{t-1} - \Gamma_t\|] \\
 1918 &\leq -\frac{\eta}{2C_0} \mathbb{E} \|\nabla f(x_t)\|^2 - \frac{\eta}{2} \mathbb{E} \left[\left\| \frac{1}{M} \sum_{m=1}^M \nabla f_m(x_t^m) \right\|_{\Gamma_{t-1}}^2 \right] \\
 1919 &\quad + \frac{\eta}{2\lambda M} \sum_{m=1}^M \mathbb{E} \left[\|\nabla f_m(x_t) - \nabla f_m(x_t^m)\|^2 \right] + \eta G^2 \mathbb{E}[\|\Gamma_{t-1} - \Gamma_t\|] \\
 1920 &\leq -\frac{\eta}{2C_0} \mathbb{E} \|\nabla f(x_t)\|^2 + \frac{\eta L^2}{2\lambda M} \sum_{m=1}^M \mathbb{E} [\|x_t - x_t^m\|^2] + \eta G^2 \mathbb{E}[\|\Gamma_{t-1} - \Gamma_t\|],
 \end{aligned}$$

1921 where $\|\cdot\|$ indicates the spectral norm for matrices, and we used the following inequalities:

$$1922 \quad \|\Gamma_{t-1}\|_{\min} = \left\| \frac{1}{M} \sum_{m=1}^M \Gamma_{t-1}^m \right\|_{\min} = \frac{1}{M} \sum_{m=1}^M \Gamma_{t-1}^m[i, i] = \frac{1}{M} \sum_{m=1}^M \frac{1}{\sqrt{\tilde{v}_{t-1}[i] + \lambda^2}} \geq \frac{1}{\sqrt{G^2 + \lambda^2}} \stackrel{\text{def}}{=} \frac{1}{C_0}.$$

1944 Step 3b (one step progress). Bounding term II.

$$\begin{aligned}
 1946 \quad II &= \eta \langle \nabla f(z_t), U_t \rangle \leq \eta \|\nabla f(z_t)\| \|U_t\| \leq \frac{\eta G}{M} \sum_{m=1}^M \|\Gamma_t^m(g_t - \tilde{g}_t^m)\| \\
 1947 \\
 1948 \quad &\leq \frac{\eta G}{\lambda M} \sum_{m=1}^M \|g_t - \tilde{g}_t^m\|.
 \end{aligned}$$

1952 Step 3c (one step progress). Bounding term III.

$$\begin{aligned}
 1954 \quad III &= \eta \langle \nabla f(z_t), V_t \rangle \leq \eta \|\nabla f(z_t)\| \|V_t\| \leq \frac{\eta \beta_1}{1 - \beta_1} \frac{G}{M} \sum_{m=1}^M \|(\Gamma_{t-1}^m - \Gamma_t^m) u_{t-1}^m\| \\
 1955 \\
 1956 \quad &\leq \frac{\eta \beta_1}{1 - \beta_1} \frac{G^2}{M} \sum_{m=1}^M \|\Gamma_{t-1}^m - \Gamma_t^m\|.
 \end{aligned}$$

1959 Step 3d (one step progress). Bounding term IV.

$$\begin{aligned}
 1961 \quad IV &= \frac{\eta^2 L}{2} \|\Gamma_t g_t - U_t - V_t\|^2 \\
 1962 \\
 1963 \quad &\leq \frac{3\eta^2 L}{2} \|\Gamma_t g_t\|^2 + \frac{3\eta^2 L}{2} \|U_t\|^2 + \frac{3\eta^2 L}{2} \|V_t\|^2 \\
 1964 \\
 1965 \quad &\leq \frac{3\eta^2 L G^2}{2\lambda^2} + \frac{3\eta^2 L}{2\lambda^2 M} \sum_{m=1}^M \|g_t - \tilde{g}_t^m\|^2 + \frac{3\eta^2 \beta_1 L G}{2(1 - \beta_1) M} \sum_{m=1}^M \|\Gamma_{t-1}^m - \Gamma_t^m\|^2
 \end{aligned}$$

1969 Step 3e (one step progress). Bounding term V.

$$\begin{aligned}
 1972 \quad V &= \eta \langle \nabla f(x_t) - \nabla f(z_t), \Gamma_t g_t \rangle \\
 1973 \quad &= \eta \mathbb{E} [\langle \nabla f(x_t) - \nabla f(z_t), \Gamma_{t-1} g_t \rangle] + \eta \mathbb{E} [\langle \nabla f(x_t) - \nabla f(z_t), (\Gamma_t - \Gamma_{t-1}) g_t \rangle] \\
 1974 \\
 1975 \quad &\leq \eta \mathbb{E} \left[\left\langle \nabla f(x_t) - \nabla f(z_t), \frac{1}{M} \sum_{m=1}^M \nabla f_m(x_t^m) \right\rangle_{\Gamma_{t-1}} \right] + \frac{\eta^2 L \beta_1}{1 - \beta_1} \mathbb{E} [\|\mathbb{E}_m[\Gamma_{t-1}^m u_{t-1}^m]\| \|(\Gamma_t - \Gamma_{t-1}) g_t\|] \\
 1976 \\
 1977 \quad &\leq \eta \mathbb{E} [\langle \nabla f(x_t) - \nabla f(z_t), \nabla f(x_t) \rangle_{\Gamma_{t-1}}] \\
 1978 \\
 1979 \quad &\quad + \eta \mathbb{E} \left[\left\langle \nabla f(x_t) - \nabla f(z_t), \frac{1}{M} \sum_{m=1}^M \nabla f_m(x_t^m) - \nabla f_m(x_t) \right\rangle_{\Gamma_{t-1}} \right] + \frac{\eta^2 L \beta_1 G^2}{(1 - \beta_1) \lambda} \mathbb{E} [\|\Gamma_t - \Gamma_{t-1}\|] \\
 1980 \\
 1981 \quad &\leq \frac{\eta}{\lambda} \mathbb{E} [\|\nabla f(x_t) - \nabla f(z_t)\| \|\nabla f(x_t)\|] \\
 1982 \\
 1983 \quad &\quad + \frac{\eta}{\lambda} \mathbb{E} \left[\|\nabla f(x_t) - \nabla f(z_t)\| \cdot \frac{1}{M} \sum_{m=1}^M \|\nabla f_m(x_t^m) - \nabla f_m(x_t)\| \right] + \frac{\eta^2 L \beta_1 G^2}{(1 - \beta_1) \lambda} \mathbb{E} [\|\Gamma_t - \Gamma_{t-1}\|] \\
 1984 \\
 1985 \quad &\leq \frac{\eta}{\lambda} \mathbb{E} \left[\frac{1}{2\rho} \|\nabla f(x_t) - \nabla f(z_t)\|^2 + \frac{\rho}{2} \|\nabla f(x_t)\|^2 \right] \\
 1986 \\
 1987 \quad &\quad + \frac{\eta}{\lambda} \mathbb{E} \left[\frac{1}{2} \|\nabla f(x_t) - \nabla f(z_t)\|^2 + \frac{1}{2} \frac{L^2}{M} \sum_{m=1}^M \|x_t^m - x_t\|^2 \right] + \frac{\eta^2 L \beta_1 G^2}{(1 - \beta_1) \lambda} \mathbb{E} [\|\Gamma_t - \Gamma_{t-1}\|],
 \end{aligned}$$

1993 where we used the following uniform bound on $\|\nabla f(x_t) - \nabla f(z_t)\|$:

$$\begin{aligned}
 1995 \quad \|\nabla f(x_t) - \nabla f(z_t)\| &\leq L \|x_t - z_t\| \leq \frac{\beta_1 L}{1 - \beta_1} \|x_t - x_{t-1}\| = \frac{\eta \beta_1 L}{1 - \beta_1} \|\mathbb{E}_m[\Gamma_{t-1}^m u_{t-1}^m]\| \\
 1996 \\
 1997 \quad &\leq \frac{\eta \beta_1 L}{1 - \beta_1} \mathbb{E}_m [\|\Gamma_{t-1}^m\| \|u_{t-1}^m\|] \leq \frac{\eta \beta_1 L}{1 - \beta_1} \frac{G}{\lambda}.
 \end{aligned}$$

1998
1999

Therefore, ignoring the constants, we have the following bounds:

2000
2001

$$V \leq \mathcal{O}\left(\frac{\eta^2}{\rho}\right) + \frac{\eta\rho}{2\lambda} \cdot \mathbb{E}[\|\nabla f(x_t)\|^2] + \mathcal{O}(\eta) \cdot \frac{1}{M} \sum_{m=1}^M \mathbb{E}[\|x_t^m - x_t\|^2] + \mathcal{O}(\eta^2)$$

2002

$$IV \leq \mathcal{O}(\eta^2)$$

2003

$$III \leq \mathcal{O}(\eta) \cdot \frac{1}{M} \sum_{m=1}^M \mathbb{E}[\|\Gamma_{t-1}^m - \Gamma_t^m\|]$$

2004

$$II \leq \mathcal{O}(\eta) \cdot \frac{1}{M} \sum_{m=1}^M \mathbb{E}[\|g_t - \tilde{g}_t^m\|]$$

2005

$$I \leq -\frac{\eta}{2C_0} \mathbb{E}[\|\nabla f(x_t)\|^2] + \mathcal{O}(\eta) \cdot \frac{1}{M} \sum_{m=1}^M \mathbb{E}[\|x_t - x_t^m\|^2] + \mathcal{O}(\eta) \cdot \frac{1}{M} \sum_{m=1}^M \mathbb{E}[\|\Gamma_{t-1}^m - \Gamma_t^m\|]$$

2006

2007

2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051To get the $\mathcal{O}\left(\frac{1}{\sqrt{T}}\right)$ bound for the averaged gradients $\mathbb{E}[\|\nabla f(x_t)\|^2]$, note that we are left to choose small value for $\rho = \frac{\lambda}{2C_0}$ and show the following bounds:

$$\frac{1}{TM} \sum_{t=0}^{T-1} \sum_{m=1}^M \mathbb{E}[\|x_t^m - x_t\|^2] = \mathcal{O}(\eta^2), \quad (\text{extension of Lemma 3})$$

$$\sum_{t=0}^{T-1} \mathbb{E}[\|\Gamma_{t-1}^m - \Gamma_t^m\|] = \mathcal{O}(1), \quad (\text{follows from AMSGrad normalization})$$

$$\frac{1}{M} \sum_{t=0}^{T-1} \sum_{m=1}^M \mathbb{E}[\|g_t - \tilde{g}_t^m\|] = \mathcal{O}(1), \quad (\text{see below}).$$

For the last bound, we can use similar steps as in Lemma 3, namely

$$\begin{aligned} \mathbb{E}[\|u_t - u_t^m\|] &= p_u \cdot 0 + (1 - p_u) \mathbb{E}[\|\beta_1 u_{t-1} + (1 - \beta_1) g_t - (\beta_1 u_{t-1}^m + (1 - \beta_1) g_t^m)\|] \\ &\leq (1 - p_u) \beta_1 \mathbb{E}[\|u_{t-1} - u_{t-1}^m\|] + (1 - p_u) (1 - \beta_1) \mathbb{E}[\|g_t - g_t^m\|] \\ &\leq (1 - p_u) (1 - \beta_1) \sum_{\tau=0}^t ((1 - p_u) \beta_1)^{t-\tau} \mathbb{E}[\|g_\tau - g_\tau^m\|]. \\ \mathbb{E}[\|g_t - \tilde{g}_t^m\|] &= \mathbb{E} \left\| \frac{u_t - \beta_1 u_{t-1}}{1 - \beta_1} - \frac{u_t^m - \beta_1 u_{t-1}^m}{1 - \beta_1} \right\| \\ &\leq \frac{\beta_1}{1 - \beta_1} \mathbb{E}[\|u_{t-1} - u_{t-1}^m\|] + \frac{1}{1 - \beta_1} \mathbb{E}[\|u_t - u_t^m\|] \\ &= \frac{1}{1 - \beta_1} \sum_{\tau=t-1}^t \beta_1^{t-\tau} \mathbb{E}[\|u_\tau - u_\tau^m\|] \\ &= (1 - p_u) \sum_{\tau=t-1}^t \sum_{\nu=0}^\tau \beta_1^{t-\tau} ((1 - p_u) \beta_1)^{\tau-\nu} \mathbb{E}[\|g_\nu - g_\nu^m\|] \\ &= \sum_{\tau=t}^{t+1} \sum_{\nu=0}^{\tau-1} \beta_1^{t-\tau} (\underbrace{(1 - p_u) \beta_1}_{=q_2})^{\tau-\nu} \mathbb{E}[\|g_\nu - g_\nu^m\|], \end{aligned}$$

which has the same double geometric sum structure as (7).

2052
2053

D.2 KEY LEMMAS

2054

Lemma 2. For all $T \geq 1$, we have

2055

2056
$$\sum_{t=0}^{T-1} \|z_t - x_t\|^2 \leq \frac{\eta^2 \beta^2}{(1-\beta)^2 M} T \sigma^2 + \frac{\eta^2 \beta^2}{(1-\beta)^2} \sum_{t=0}^{T-1} \mathbb{E} \left\| \frac{1}{M} \sum_{m=1}^M \nabla f_m(x_t^m) \right\|^2. \quad (6)$$
 2057
2058

2059

Proof. Since $u_{-1} = 0$, unrolling the update rule of momentum, for any $t \geq 0$ we get

2060

2061
$$u_t = \beta u_{t-1} + (1-\beta) g_t = (1-\beta) \sum_{\tau=0}^t \beta^{t-\tau} g_\tau.$$
 2062
2063

2064

Using this and the definition of the average iterates, we have

2065

2066
$$z_t - x_t = \frac{\beta}{1-\beta} (x_t - x_{t-1}) = -\frac{\beta \eta}{1-\beta} u_t = -\beta \eta \sum_{\tau=0}^t \beta^{t-\tau} g_\tau.$$
 2067
2068

2069

Using convexity of squared norm function and letting $s_t \stackrel{\text{def}}{=} \sum_{\tau=0}^t \beta^{t-\tau} = \frac{1-\beta^{t+1}}{1-\beta}$, for all $t \geq 0$, we have

2070

2071
$$\|z_t - x_t\|^2 = \eta^2 \beta^2 s_t^2 \left\| \sum_{\tau=0}^t \frac{\beta^{t-\tau}}{s_t} g_\tau \right\|^2 \leq \eta^2 \beta^2 s_t^2 \sum_{\tau=0}^t \frac{\beta^{t-\tau}}{s_t} \|g_\tau\|^2 \leq \frac{\eta^2 \beta^2}{1-\beta} \sum_{\tau=0}^t \beta^{t-\tau} \|g_\tau\|^2.$$
 2072
2073
2074

2075

Summing over the iterates yields

2076

2077
$$\begin{aligned} \sum_{t=0}^{T-1} \mathbb{E} \|z_t - x_t\|^2 &\leq \frac{\eta^2 \beta^2}{1-\beta} \sum_{t=0}^{T-1} \sum_{\tau=0}^t \beta^{t-\tau} \mathbb{E} \|g_\tau\|^2 \\ 2078 &= \frac{\eta^2 \beta^2}{1-\beta} \sum_{\tau=0}^{T-1} \sum_{t=\tau}^{T-1} \beta^{t-\tau} \mathbb{E} \|g_\tau\|^2 \\ 2079 &= \frac{\eta^2 \beta^2}{1-\beta} \sum_{\tau=0}^{T-1} \frac{1-\beta^{T-\tau}}{1-\beta} \mathbb{E} \|g_\tau\|^2 \\ 2080 &\leq \frac{\eta^2 \beta^2}{(1-\beta)^2} \sum_{\tau=0}^{T-1} \mathbb{E} \|g_\tau\|^2 \\ 2081 &= \frac{\eta^2 \beta^2}{(1-\beta)^2} \sum_{\tau=0}^{T-1} \mathbb{E} \left\| \frac{1}{M} \sum_{m=1}^M g_\tau^m - \nabla f_m(x_\tau^m) \right\|^2 + \frac{\eta^2 \beta^2}{(1-\beta)^2} \sum_{\tau=0}^{T-1} \mathbb{E} \left\| \frac{1}{M} \sum_{m=1}^M \nabla f_m(x_\tau^m) \right\|^2 \\ 2082 &= \frac{\eta^2 \beta^2}{(1-\beta)^2 M^2} \sum_{\tau=0}^{T-1} \sum_{m=1}^M \mathbb{E} \|g_\tau^m - \nabla f_m(x_\tau^m)\|^2 + \frac{\eta^2 \beta^2}{(1-\beta)^2} \sum_{\tau=0}^{T-1} \mathbb{E} \left\| \frac{1}{M} \sum_{m=1}^M \nabla f_m(x_\tau^m) \right\|^2 \\ 2083 &= \frac{\eta^2 \beta^2}{(1-\beta)^2 M} T \sigma^2 + \frac{\eta^2 \beta^2}{(1-\beta)^2} \sum_{\tau=0}^{T-1} \mathbb{E} \left\| \frac{1}{M} \sum_{m=1}^M \nabla f_m(x_\tau^m) \right\|^2. \end{aligned}$$
 2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097

□

2098

2099

Lemma 3. If $24\eta^2 L^2 \psi \leq 1$, then

2100

2101
$$\frac{1}{MT} \sum_{t=0}^{T-1} \sum_{m=1}^M \mathbb{E} \|x_t - x_t^m\|^2 \leq 12\eta^2 (B^2 - 1) \psi \cdot \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \|\nabla f(x_t)\|^2 + 4\eta^2 \psi (\sigma^2 + 3G^2),$$
 2102
2103

2104

where

2105

$$\psi = \frac{4(1-p_x)}{p_x^2} \cdot \frac{(1-\beta)(1-p_u)}{1-(1-p_u)\beta}$$

2106 *Proof.* Let us expand the term $\mathbb{E}\|x_{t+1} - x_{t+1}^m\|^2$ using x_{t+1}^m 's probabilistic update rule:

$$\begin{aligned}
 2110 \mathbb{E}\|x_{t+1} - x_{t+1}^m\|^2 &= p_x \cdot 0 + (1 - p_x) \cdot \mathbb{E}\|x_t - \eta u_t - (x_t^m - \eta u_t^m)\|^2 \\
 2111 &= (1 - p_x) \cdot \mathbb{E}\|x_t - x_t^m - \eta(u_t^t - u_t^m)\|^2 \\
 2112 &\leq (1 - p_x)(1 + s)\mathbb{E}\|x_t - x_t^m\|^2 + \eta^2(1 - p_x)(1 + 1/s)\mathbb{E}\|u_t - u_t^m\|^2 \\
 2113 &\leq \eta^2(1 - p_x)(1 + 1/s) \sum_{\tau=1}^t ((1 - p_x)(1 + s))^{t-\tau} \mathbb{E}\|u_\tau - u_\tau^m\|^2.
 \end{aligned}$$

2118 where $s > 0$ will be chosen later. Next we expand the term $\mathbb{E}\|u_t - u_t^m\|^2$ using u_t^m 's probabilistic
 2119 update rule:

$$\begin{aligned}
 2123 \mathbb{E}\|u_t - u_t^m\|^2 &= p_u \cdot 0 + (1 - p_u) \cdot \mathbb{E} \left\| \frac{1}{M} \sum_{m=1}^M (\beta u_{t-1}^m + (1 - \beta)g_{t-1}^m) - (\beta u_{t-1}^m + (1 - \beta)g_{t-1}^m) \right\|^2 \\
 2124 &= (1 - p_u)\mathbb{E}\|\beta(u_{t-1} - u_{t-1}^m) + (1 - \beta)(g_{t-1} - g_{t-1}^m)\|^2 \\
 2125 &\leq (1 - p_u)\beta\mathbb{E}\|(u_{t-1} - u_{t-1}^m)\|^2 + (1 - p_u)(1 - \beta)\mathbb{E}\|g_{t-1} - g_{t-1}^m\|^2 \\
 2126 &\leq (1 - p_u)(1 - \beta) \sum_{\tau=0}^{t-1} ((1 - p_u)\beta)^{t-1-\tau} \mathbb{E}\|g_\tau - g_\tau^m\|^2 \\
 2127 &\leq \frac{1 - \beta}{\beta} \sum_{\tau=0}^{t-1} ((1 - p_u)\beta)^{t-\tau} \mathbb{E}\|g_\tau - g_\tau^m\|^2
 \end{aligned}$$

2135 Denote $q_1 = (1 - p_x)(1 + s)$ and $q_2 = (1 - p_u)\beta$. Combining the previous two bounds, we get

$$\begin{aligned}
 2140 \frac{1}{M} \sum_{m=1}^M \mathbb{E}\|x_t - x_t^m\|^2 & \\
 2141 &\leq \eta^2(1 - p_x)(1 + 1/s) \sum_{\tau=1}^t ((1 - p_x)(1 + s))^{t-\tau} \frac{1}{M} \sum_{m=1}^M \mathbb{E}\|u_\tau - u_\tau^m\|^2 \tag{7} \\
 2142 &\leq \eta^2(1 - p_x)(1 + 1/s) \sum_{\tau=1}^t ((1 - p_u)(1 + s))^{t-\tau} \frac{1}{M} \sum_{m=1}^M \left[\frac{1 - \beta}{\beta} \sum_{\nu=0}^{\tau-1} ((1 - p_u)\beta)^{\tau-\nu} \mathbb{E}\|g_\nu - g_\nu^m\|^2 \right] \\
 2143 &= \eta^2(1 - p_x)(1 + 1/s) \frac{1 - \beta}{\beta} \sum_{\tau=1}^t \sum_{\nu=0}^{\tau-1} q_1^{t-\tau} q_2^{\tau-\nu} \left[\frac{1}{M} \sum_{m=1}^M \mathbb{E}\|g_\nu - g_\nu^m\|^2 \right] \\
 2144 &= \eta^2(1 - p_x)(1 + 1/s) \frac{1 - \beta}{\beta} \sum_{\nu=0}^{t-1} \sum_{\tau=\nu+1}^t q_1^{t-\tau} q_2^{\tau-\nu} \left[\frac{1}{M} \sum_{m=1}^M \mathbb{E}\|g_\nu - g_\nu^m\|^2 \right] \\
 2145 &= \eta^2(1 - p_x)(1 + 1/s) \frac{1 - \beta}{\beta} \sum_{\nu=0}^{t-1} q_2 \frac{q_1^{t-\nu} - q_2^{t-\nu}}{q_1 - q_2} \left[\frac{1}{M} \sum_{m=1}^M \mathbb{E}\|g_\nu - g_\nu^m\|^2 \right], \\
 2146 &= \eta^2 \underbrace{(1 - p_x)(1 + 1/s)(1 - \beta)(1 - p_u)}_{\phi} \sum_{\nu=0}^{t-1} \frac{q_1^{t-\nu} - q_2^{t-\nu}}{q_1 - q_2} \left[\frac{1}{M} \sum_{m=1}^M \mathbb{E}\|g_\nu - g_\nu^m\|^2 \right].
 \end{aligned}$$

2160 Next, we bound the gradient term above.
 2161
 2162

$$\begin{aligned}
 \frac{1}{M} \sum_{m=1}^M \mathbb{E} \|g_t^m - g_t\|^2 &= \frac{1}{M} \sum_{m=1}^M \mathbb{E} \left\| g_t^m - \frac{1}{M} \sum_{i=1}^K g_i^t \right\|^2 \\
 &\leq \frac{2}{K} \sum_{m=1}^M \mathbb{E} \left\| g_t^m - \nabla f_m(x_t^m) - \frac{1}{M} \sum_{m=1}^M (g_t^m - \nabla f_m(x_t^m)) \right\|^2 \\
 &\quad + \frac{2}{M} \sum_{m=1}^M \mathbb{E} \left\| \nabla f_m(x_t^m) - \frac{1}{M} \sum_{m=1}^M \nabla f_m(x_t^m) \right\|^2 \\
 \text{(Lemma 4)} &\leq \frac{2}{M} \sum_{m=1}^M \mathbb{E} \|g_t^m - \nabla f_m(x_t^m)\|^2 - 2\mathbb{E} \left\| \frac{1}{M} \sum_{m=1}^M (g_t^m - \nabla f_m(x_t^m)) \right\|^2 \\
 &\quad + \frac{12L^2}{M} \sum_{m=1}^M \mathbb{E} \|x_t - x_t^m\|^2 + 6(B^2 - 1)\mathbb{E} \|\nabla f(x_t)\|^2 + 6G^2 \\
 &\leq 2\sigma^2 + \frac{12L^2}{M} \sum_{m=1}^M \mathbb{E} \|x_t - x_t^m\|^2 + 6(B^2 - 1)\mathbb{E} \|\nabla f(x_t)\|^2 + 6G^2.
 \end{aligned}$$

2184 Again, plugging this bound to the previous one, we get
 2185
 2186

$$\begin{aligned}
 &\frac{1}{MT} \sum_{t=0}^{T-1} \sum_{m=1}^M \mathbb{E} \|x_t - x_t^m\|^2 \\
 &\leq \frac{1}{MT} \sum_{t=1}^T \sum_{m=1}^M \mathbb{E} \|x_t - x_t^m\|^2 \\
 &\leq \frac{\eta^2 \phi}{T} \sum_{t=1}^T \sum_{\tau=0}^{t-1} \frac{q_1^{t-\tau} - q_2^{t-\tau}}{q_1 - q_2} \left[\frac{1}{M} \sum_{m=1}^M \mathbb{E} \|g_\tau - g_\tau^m\|^2 \right] \\
 &= \frac{\eta^2 \phi}{T} \sum_{\tau=0}^{T-1} \sum_{t=\tau+1}^T \frac{q_1^{t-\tau} - q_2^{t-\tau}}{q_1 - q_2} \left[\frac{1}{M} \sum_{m=1}^M \mathbb{E} \|g_\tau - g_\tau^m\|^2 \right] \\
 &= \frac{\eta^2 \phi}{T} \sum_{\tau=0}^{T-1} \frac{1}{q_1 - q_2} \left(\frac{q_1(1 - q_1^{T-\tau})}{1 - q_1} - \frac{q_2(1 - q_2^{T-\tau})}{1 - q_2} \right) \left[\frac{1}{M} \sum_{m=1}^M \mathbb{E} \|g_\tau - g_\tau^m\|^2 \right] \\
 &\leq \frac{\eta^2 \phi}{T} \sum_{\tau=0}^{T-1} \frac{1}{q_1 - q_2} \left(\frac{q_1}{1 - q_1} - \frac{q_2}{1 - q_2} \right) \left[\frac{1}{M} \sum_{m=1}^M \mathbb{E} \|g_\tau - g_\tau^m\|^2 \right] \\
 &= \frac{\eta^2 \phi}{(1 - q_1)(1 - q_2)T} \sum_{\tau=0}^{T-1} \left[\frac{1}{M} \sum_{m=1}^M \mathbb{E} \|g_\tau - g_\tau^m\|^2 \right].
 \end{aligned}$$

2208
 2209 Now, let us optimize the factor
 2210
 2211

$$\frac{\phi}{(1 - q_1)(1 - q_2)} = \frac{(1 - p_x)(1 + 1/s)(1 - \beta)(1 - p_u)}{(1 - (1 - p_x)(1 + s))(1 - (1 - p_u)\beta)} = \frac{(1 - p_x)(1 + 1/s)}{1 - (1 - p_x)(1 + s)} \cdot \frac{(1 - \beta)(1 - p_u)}{1 - (1 - p_u)\beta}$$

2214 by choosing optimal value for s introduced earlier. By the first order optimality condition, we find
 2215 that the optimal value is $s^* = \frac{1}{\sqrt{1-p_x}} - 1$. Hence, the minimal value of the factor is
 2216

2217

$$\begin{aligned}
 \frac{\phi}{(1-q_1)(1-q_2)} &= \frac{1-p_x}{(1-\sqrt{1-p_x})^2} \cdot \frac{(1-\beta)(1-p_u)}{1-(1-p_u)\beta} \\
 &= \frac{(1-p_x)(1-\sqrt{1-p_x})^2}{(1-\sqrt{1-p_x})^2(1+\sqrt{1-p_x})^2} \cdot \frac{(1-\beta)(1-p_u)}{1-(1-p_u)\beta} \\
 &= \frac{(1-p_x)(1+\sqrt{1-p_x})^2}{p_x^2} \cdot \frac{(1-\beta)(1-p_u)}{1-(1-p_u)\beta} \\
 &\leq \frac{4(1-p_x)}{p_x^2} \cdot \frac{(1-\beta)(1-p_u)}{1-(1-p_u)\beta} \stackrel{\text{def}}{=} \psi.
 \end{aligned}$$

2228

2229

2230

Continuing the chain of bounds

2231

2232

2233

$$\begin{aligned}
 &\frac{1}{MT} \sum_{t=0}^{T-1} \sum_{m=1}^M \mathbb{E} \|x_t - x_t^m\|^2 \\
 &\leq \eta^2 \psi \cdot \frac{1}{T} \sum_{t=0}^{T-1} \left[\frac{1}{K} \sum_{m=1}^M \mathbb{E} \|g_t - g_t^m\|^2 \right] \\
 &\leq \eta^2 \psi \cdot \frac{1}{T} \sum_{t=0}^{T-1} \left[\frac{12L^2}{M} \sum_{m=1}^M \mathbb{E} \|x_t - x_t^m\|^2 + 6(B^2 - 1) \mathbb{E} \|\nabla f(x_t)\|^2 + 2\sigma^2 + 6G^2 \right] \\
 &\leq 12\eta^2 L^2 \psi \cdot \frac{1}{TM} \sum_{t=0}^{T-1} \sum_{m=1}^M \mathbb{E} \|x_t - x_t^m\|^2 \\
 &\quad + 6\eta^2 (B^2 - 1) \psi \cdot \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \|\nabla f(x_t)\|^2 + 2\eta^2 \psi (\sigma^2 + 3G^2).
 \end{aligned}$$

2248

2249

2250

Assuming $12\eta^2 L^2 \psi \leq 1/2$ and reordering the first term in the bound, we arrive

2251

2252

2253

$$\frac{1}{MT} \sum_{t=0}^{T-1} \sum_{m=1}^M \mathbb{E} \|x_t - x_t^m\|^2 \leq 12\eta^2 (B^2 - 1) \psi \cdot \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \|\nabla f(x_t)\|^2 + 4\eta^2 \psi (\sigma^2 + 3G^2).$$

2255

2256

2257

□

2258

2259

2260

2261

2262

2263

Lemma 4. Under smoothness and bounded heterogeneity assumptions 1 and 3, we have

2264

2265

2266

2267

$$\frac{1}{M} \sum_{m=1}^M \left\| \nabla f_m(x_t^m) - \frac{1}{K} \sum_{i=1}^K \nabla f_i(x_t^i) \right\|^2 \leq \frac{6L^2}{M} \sum_{m=1}^M \|x_t - x_t^m\|^2 + 3(B^2 - 1) \|\nabla f(x_t)\|^2 + 3G^2.$$

2268 *Proof.* The bound follows from simple algebraic manipulations and Jensen's inequality.
 2269
 2270

$$\begin{aligned}
 & \frac{1}{K} \sum_{m=1}^M \|\nabla f_m(x_t^m) - \frac{1}{K} \sum_{i=1}^N \nabla f_i(x_t^i)\|^2 \\
 &= \frac{1}{K} \sum_{m=1}^M \left\| \nabla f_m(x_t^m) - \nabla f_m(x_t) + \nabla f_m(x_t) - \nabla f(x_t) + \nabla f(x_t) - \frac{1}{K} \sum_{i=1}^N \nabla f_i(x_t^i) \right\|^2 \\
 &\leq \frac{3}{K} \sum_{m=1}^M \|\nabla f_m(x_t^m) - \nabla f_m(x_t)\|^2 + \frac{3}{K} \sum_{m=1}^M \|\nabla f_m(x_t) - \nabla f(x_t)\|^2 \\
 &\quad + \frac{3}{K} \sum_{m=1}^M \left\| \nabla f(x_t) - \frac{1}{K} \sum_{i=1}^K \nabla f_i(x_t^i) \right\|^2 \\
 &\leq \frac{3L^2}{K} \sum_{m=1}^M \|x_t^m - x_t\|^2 + \frac{3}{K} \sum_{m=1}^M \|\nabla f_m(x_t) - \nabla f(x_t)\|^2 + \frac{3L^2}{K} \sum_{i=1}^K \|x_t - x_t^i\|^2 \\
 &= \frac{6L^2}{K} \sum_{m=1}^M \|x_t^m - x_t\|^2 + \frac{3}{K} \sum_{m=1}^M \|\nabla f_m(x_t) - \nabla f(x_t)\|^2 \\
 &= \frac{6L^2}{K} \sum_{m=1}^M \|x_t^m - x_t\|^2 + 3G^2 + 3(B^2 - 1)\|\nabla f(x_t)\|^2.
 \end{aligned}$$

2291

□

2292
 2293
 2294
 2295
 2296
**E CONVERGENCE ANALYSIS OF DES-LOC-ADAM (HIGH-PROBABILITY
 2297 BOUNDS)**

2300
 2301 For this section, we refer to Algorithm 1 as DES-LOC-OPT(K_x, K_1, \dots, K_N). Let us consider
 2302 the second algorithm DES-LOC-OPT(K, K, \dots, K) with $K = \text{lcm}\{K_x, K_1, \dots, K_N\}$. These two
 2303 algorithms have a property that they both fully synchronize, i.e., all states and current iterates are the
 2304 same, if $T = rK$ for some $r \in \mathbb{N}$.

2305 Commonly, the analysis of DES-LOC-OPT(K, K, \dots, K) proceeds in the following way. In each
 2306 step, construct an ideal update as if you were running DES-LOC-OPT(1, 1, ..., 1) using virtual
 2307 iterates (see the proof in the prior section for the example of analysis with virtual iterates), and
 2308 bound the drift from this idealized scenario. For the case of DES-LOC-OPT(K, K, \dots, K), the
 2309 bound typically depends on the distance of the current iterate from the last full synchroniza-
 2310 tion. Below, we show that the drift of OPT(K_x, K_1, \dots, K_N) is not larger than DES-LOC-
 2311 OPT(K, K, \dots, K), since OPT(K_x, K_1, \dots, K_N) synchronize more often. Therefore, the con-
 2312 vergence rate of OPT(K_x, K_1, \dots, K_N) is not worse than the convergence rate for DES-LOC-
 2313 OPT(K, K, \dots, K) as its analysis also applies to OPT(K_x, K_1, \dots, K_N), i.e., all final upper
 2314 bounds derived for DES-LOC-OPT(K, K, \dots, K) are also valid for OPT(K_x, K_1, \dots, K_N). For
 2315 instance, a typical way to estimate drift is to have an assumption of type $\|s_i^n - s_{i-1}^n\| \leq U$ for
 2316 all $i \in \{1, 2, \dots, k\}$, and $n \in \{1, 2, \dots, M\}$, where s_i^n is some state on client n at step i and
 2317 $s_0 = s_0^1 = \dots = s_0^M$ the synchronized state. Then, drift is usually expressed as $\|s_k^n - s_0\|$. For
 2318 DES-LOC-OPT(K, K, \dots, K), we can simply bound
 2319

$$\|s_k^n - s_0\| = \left\| \sum_{i=1}^k s_i^n - s_{i-1}^n \right\| \leq \sum_{i=1}^k \|s_i^n - s_{i-1}^n\| \leq kU.$$

For DES-LOC-OPT(K_x, K_1, \dots, K_N), we can obtain the same bound, where we for simplicity assume that s is synchronized every K_s steps and $k \in \{K_s + 1, \dots, 2K_s\}$.

$$\begin{aligned}
\|s_k^n - s_0\| &= \left\| \sum_{i=K_s+1}^k (s_i^n - s_{i-1}^n) + s_{K_s} - s_0 \right\| \\
&\leq \sum_{i=K_s+1}^k \|s_i^n - s_{i-1}^n\| + \left\| \frac{1}{M} \sum_{m=1}^M \sum_{i=1}^{K_s} s_i^m - s_{i-1}^m \right\| \\
&\leq \sum_{i=K_s+1}^k \|s_i^n - s_{i-1}^n\| + \frac{1}{M} \sum_{m=1}^M \sum_{i=1}^{K_s} \|s_i^m - s_{i-1}^m\| \\
&\leq kU.
\end{aligned}$$

In a more general case, we would apply the above recursively. Such type of adjustments is the only requirement to adapt analysis of DES-LOC-OPT(K, K, \dots, K) to obtain the same rate for DES-LOC-OPT(K_x, K_1, \dots, K_N) for the type of the analysis described above.

We do not claim any novelty for this analysis. We mainly include these results for completeness, to showcase that our method converges under different settings. The main theoretical results showing that some of the optimizer states can be synchronized less frequently are presented in the prior section above. We would also like to highlight that this result might be relatively weak and not tight since we only show that DES-LOC-OPT(K, K, \dots, K) and DES-LOC-OPT(K_x, K_1, \dots, K_N) have the same worst-case convergence, but DES-LOC-OPT(K, K, \dots, K) requires less communication than DES-LOC-OPT(K_x, K_1, \dots, K_N) under this analysis, which is not the case in practice nor in the analyses presented above.

Finally, detailed inspection of the analysis of DES-LOC-Adam (K, K, \dots, K) Cheng & Glasgow (2025) reveals that this analysis satisfies the above criteria. Thus, we can directly apply their results under the following assumptions and preliminaries.

We aim to optimize a neural network x under the loss function f

$$\min_{x \in \mathbb{R}^d} f(x) := \mathbb{E}_{\xi \sim \mathcal{D}}[F(x; \xi)]. \quad (8)$$

using M workers, each of which has access to the stochastic gradient of f , $\nabla F(x; \xi)$ with ξ independently drawn from the data distribution D . We define the auxiliary sequence,

$$z_{t+1}^m = \begin{cases} \frac{1}{1-\beta_1} x_{t+1}^m - \frac{\beta_1}{1-\beta_1} x_t^m & \text{if } t \bmod K \neq -1, \\ \frac{1}{1-\beta_1} x_{t+1}^m - \frac{\beta_1}{1-\beta_1} \bar{x}_t & \text{otherwise.} \end{cases} \quad (9)$$

where, $\bar{x}_{t+1} = \mathbb{E}_m[x_{t+1}^m]$. We also define $\bar{z}_{t+1} = \mathbb{E}_m[z_{t+1}^m]$.

We make the following standard assumptions.

Assumption 5 (Lower-boundedness). f is closed, twice continuously differentiable and $\inf_{x \in \mathbb{R}^d} f(x) =: f(x_*) =: f_* > -\infty$.

Assumption 6 (Smoothness). There exists some set $\Omega \subset \mathbb{R}^d$ and $L > 0$, such that for any $x, y \in \Omega$,

$$\|\nabla f(x) - \nabla f(y)\| \leq L\|x - y\|, \quad (10)$$

$$\|\nabla f(x)\|^2 \leq 2L(f(x) - f_*). \quad (11)$$

Assumption 7 (Bounded α -moment noise). There exists some set $\Omega \subset \mathbb{R}^d$, $\alpha \geq 4$ and constant vector $\sigma \succeq 0$ such that for any $x \in \Omega$,

$$\mathbb{E}_{\xi \sim \mathcal{D}}|\nabla F(x; \xi) - \nabla f(x)|^\alpha \preceq \sigma^\alpha. \quad (12)$$

Let $\sigma_\infty := \|\sigma\|_\infty = \max_i \{\sigma_i\}$, $\sigma := \|\sigma\| = (\sigma_1^2 + \dots + \sigma_d^2)^{1/2}$.

Assumption 8 (Weak convexity). There exists constant $\tau > 0$ such that f is τ -weakly convex, i.e., for any $x, y \in \mathbb{R}^d$,

$$\langle \nabla f(x) - \nabla f(y), x - y \rangle \geq -\tau\|x - y\|^2, \quad (13)$$

$$f(y) \geq f(x) + \langle \nabla f(x), y - x \rangle - \frac{\tau}{2}\|x - y\|^2, \quad \nabla^2 f(x) \succeq -\tau I_d. \quad (14)$$

2376 Based on these assumptions, the DES-LOC-Adam variant of Adam converges as stated in the
 2377 following theorem.

2378 **Theorem 5.** *Let the Assumptions 5, 6, 7, 8, hold for $\Omega = \text{conv}(\mathbf{B}_{R_0}(\Omega_0))$, where $\Omega_0 := \{x : f(x) -$
 2379 $f_* \leq 4\Delta\}$, $\mathbf{B}_{R_0}(\Omega_0) = \{x \in R^d : \exists y : \|x - y\|_2 \leq R_0\}$, $R_0 = \sqrt{\frac{\Delta}{80L}}$, $K_{\text{lcm}} = \text{lcm}\{K_x, K_u, K_v\}$,
 2380 and the same assumptions as in Theorem D.3 of (Cheng & Glasgow, 2025), then with probability
 2381 $\geq 1 - \delta$, DES-LOC-Adam yields,*

$$2385 \frac{\lambda}{K_{\text{lcm}}R} \sum_{r=0}^{R-1} \sum_{k=0}^{K_{\text{lcm}}-1} \|\nabla f(\bar{z}_{r,k})\|^2 = \tilde{\mathcal{O}} \left(\frac{\tau\Delta}{R} + \frac{L\Delta}{K_{\text{lcm}}R} + \sqrt{\frac{L\Delta\sigma^2}{MK_{\text{lcm}}R}} + \frac{(L\Delta\sigma)^{\frac{2}{3}}}{K_{\text{lcm}}^{\frac{1}{3}}R^{\frac{2}{3}}} + \left(\frac{L\Delta\sigma^{\frac{a}{a-1}}}{K_{\text{lcm}}R} \right)^{\frac{2(a-1)}{3a-2}} \right)$$

2389 *Proof.* The above corresponds to Theorem D.3 of (Cheng & Glasgow, 2025) for DES-LOC-Adam
 2390 ($K_{\text{lcm}}, \dots, K_{\text{lcm}}$). \square

2392 Note that for sufficiently large R , the leading term in the rate is:

$$2395 \frac{1}{K_{\text{lcm}}R} \sum_{r=0}^{R-1} \sum_{k=0}^{K_{\text{lcm}}-1} \|\nabla f(\bar{z}_{r,k})\|^2 = \tilde{\mathcal{O}} \left(\sqrt{\frac{L\Delta\sigma^2}{MK_{\text{lcm}}R}} \right), \quad (15)$$

2398 In both cases, Theorem 5 shows that for the convergence bounds to hold for the high probability
 2399 analysis of DES-LOC-Adam, synchronization needs to be a finite lcm
 2400

2402 F DERIVATION OF EQS. (1) AND (2): MAXIMUM MOMENTUM CHANGE WITH 2403 CLIPPING

2405 **Lemma.** Let the gradient at each step satisfy $\|g_t\|_\infty \leq \rho$ for some constant $\rho > 0$. Assume the
 2406 first-momentum state in Adam is initialized at $u_{-1} = 0$ and updated by
 2407

$$2408 u_t = \beta_1 u_{t-1} + (1 - \beta_1)g_t, \quad \beta_1 \in [0, 1]. \quad (16)$$

2409 Then, for all $t \geq 0$, the momentum is bounded and satisfies

$$2411 \|u_t\|_\infty \leq \rho, \quad \text{and} \quad \|u_{t+K} - u_t\|_\infty \leq 2\rho(1 - \beta_1^K) \quad \forall K \geq 1. \quad (17)$$

2413 Proof.

2415 **STEP 1: BOUND ON $\|u_t\|_\infty$.** We first show by induction that the momentum is always bounded by
 2416 ρ .

2417 **Base Case ($t = 0$):** Since $u_{-1} = 0$, we have:

$$2419 \|u_0\|_\infty = \|\beta_1 u_{-1} + (1 - \beta_1)g_0\|_\infty \leq (1 - \beta_1)\|g_0\|_\infty \leq \rho. \quad (18)$$

2421 **Inductive Hypothesis (I.H.):** Assume $\|u_t\|_\infty \leq \rho$ for some $t \geq 0$.

2422 **Inductive Step ($t \rightarrow t + 1$):** Then,

$$2424 \|u_{t+1}\|_\infty = \|\beta_1 u_t + (1 - \beta_1)g_{t+1}\|_\infty \quad (19)$$

$$2425 \leq \beta_1\|u_t\|_\infty + (1 - \beta_1)\|g_{t+1}\|_\infty \quad (20)$$

$$2426 \leq \beta_1\rho + (1 - \beta_1)\rho = \rho. \quad (21)$$

2428 Thus, by induction, we have the desired result:

$$2429 \|u_t\|_\infty \leq \rho, \quad \forall t \geq 0. \quad (22)$$

2430 **STEP 2: BOUND ON $\|u_{t+K} - u_t\|_\infty$.** Now we bound the change in the momentum over K steps
 2431 explicitly. Unrolling the recursion, we have:

2432

$$2433 \quad u_{t+K} = \beta_1^K u_t + (1 - \beta_1) \sum_{k=0}^{K-1} \beta_1^k g_{t+K-k}. \quad (23)$$

2434

2435 Subtracting u_t from both sides, we obtain:

2436

$$2437 \quad u_{t+K} - u_t = (\beta_1^K - 1)u_t + (1 - \beta_1) \sum_{k=0}^{K-1} \beta_1^k g_{t+K-k}. \quad (24)$$

2438

2439 Applying the triangle inequality gives:

2440

$$2441 \quad \|u_{t+K} - u_t\|_\infty \leq |1 - \beta_1^K| \|u_t\|_\infty + (1 - \beta_1) \sum_{k=0}^{K-1} \beta_1^k \|g_{t+K-k}\|_\infty. \quad (25)$$

2442

2443 Using the bounds $\|u_t\|_\infty \leq \rho$ and $\|g_t\|_\infty \leq \rho$, we simplify to:

2444

$$2445 \quad \|u_{t+K} - u_t\|_\infty \leq (1 - \beta_1^K)\rho + (1 - \beta_1)\rho \sum_{k=0}^{K-1} \beta_1^k. \quad (26)$$

2446

2447 The geometric series simplifies as:

2448

$$2449 \quad \sum_{k=0}^{K-1} \beta_1^k = \frac{1 - \beta_1^K}{1 - \beta_1}. \quad (27)$$

2450

2451 Substituting this back into the expression yields:

2452

$$2453 \quad \|u_{t+K} - u_t\|_\infty \leq (1 - \beta_1^K)\rho + (1 - \beta_1^K)\rho = 2\rho(1 - \beta_1^K). \quad (28)$$

2454

2455 Thus, the momentum difference satisfies:

2456

$$2457 \quad \|u_{t+K} - u_t\|_\infty \leq 2\rho(1 - \beta_1^K), \quad \forall K \geq 1. \quad (29)$$

2458

2459 **SECOND-MOMENT BOUND.** Applying the exact same logic to the second momentum v_t , with β_1
 2460 replaced by β_2 and the bounded gradient squared term $\|g_t \odot g_t\|_\infty \leq \rho^2$, immediately gives:

2461

$$2462 \quad \|v_{t+K} - v_t\|_\infty \leq 2\rho^2(1 - \beta_2^K). \quad (30)$$

2463

2464 This completes the proof. □

2465 G WALL-CLOCK TIME MODELING

2466 Understanding the practical benefits of our proposal beyond the theoretical aspects and empirical
 2467 convergence curves is crucial. This section addresses the practical implications of adopting our
 2468 method for training state-of-the-art (SOTA) large language models (LLMs) in large-scale distributed
 2469 training infrastructures. The most critical metrics are based on total wall-clock time, communication
 2470 time, and resource utilization, i.e., how much of the wall-clock time is spent using the compute
 2471 available instead of waiting for the communication to complete. We provide the following simplified
 2472 model for estimating total wall-clock time (Section G.1), computation time (Section G.1.1), and
 2473 communication time (Section G.1.2) that applies to any method based on distributed data parallelism
 2474 (DDP). The notation used here is consistent with that in Algorithm 1. We conclude this section with
 2475 the results obtained with this modeling and their discussion.

2484
2485

G.1 ESTIMATING TOTAL WALL-CLOCK TIME

2486 The total wall-clock time for completing an LLM pre-training is based on the number of tokens
 2487 processed D (dataset size), the model size d (the number of trainable parameters), the number
 2488 of compute units M (data-parallel/local workers), the floating point operations per second S that
 2489 these compute units can perform, the Model FLOPS Utilization (MFU), the average peer-to-peer
 2490 (P2P) bandwidth B and the latency l between compute units. We separate the total wall-clock time
 2491 discussion into computational time (Section G.1.1) and communication time (Section G.1.2). In our
 2492 modeling, the total wall-clock time is the sum of computational time and communication time:

2493

2494

$$t_{\text{total}} = t_{\text{compute}} + t_{\text{comms}} \quad (31)$$

2495

2496

We next derive t_{compute} and t_{comms} separately, and then instantiate t_{total} for specific training methods.

2497

2498

G.1.1 ESTIMATING COMPUTATION TIME

2499

2500

2501

2502

2503

2504

2505

The total time spent computing T_{compute} depends on the number of compute units M , their floating point operations per second S , the MFU of the training pipeline, and the total number of FLOPs C that the training pipeline requires. Following the same approach as in [Kaplan et al. \(2020\)](#); [Hoffmann et al. \(2022\)](#), the total number of FLOPs required to train an LLM can be estimated as $C = 6dD$, where d is the number of model parameters and D the total number of tokens (dataset size). Since the MFU can be considered a measure of efficiency, i.e., $\text{MFU} \in [0, 1]$, we can estimate the total time spent computing as:

2506

2507

2508

$$t_{\text{compute}} = \frac{C}{\text{MFU} \cdot S \cdot M} = \frac{6 \cdot d \cdot D}{\text{MFU} \cdot S \cdot M} \quad (32)$$

2509

2510

In other words, if the hardware can perform $S \cdot M$ FLOPs/sec at peak and is utilized at MFU fraction of peak, the training FLOPs C translate to that many seconds of compute.

2511

2512

2513

2514

2515

2516

In practice, MFU strongly depends on how the pipeline’s parallelization is locally configured across the workers M . For the sake of fairness in our comparisons, we can assume that the per-batch MFU of a data-parallel worker is the same as the per-batch MFU of a worker in our proposal and other local adaptive methods. Importantly, this holds in cases where either such workers refer to a single GPU or each worker locally performs more advanced parallelism techniques, such as the ones proposed by [Rajbhandari et al. \(2020\)](#); [Zhao et al. \(2023\)](#).

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

Resources Utilization and MFU. Theoretically estimating the resource utilization in large-scale training of LLMs is very challenging despite prior knowledge of the number of hardware accelerators (GPUs), their theoretical peak FLOPs, and the total amount of FLOPs C required to perform the task is available. Following previous well-established proposals ([Chowdhery et al., 2023](#)), we leverage MFU and the theoretical peak FLOPs of the hardware accelerators we used in our experiments. Recent systems research ([Shoeybi et al., 2019](#)) has shown it is possible to reach 50% of peak FLOPs even for trillion-parameter models by carefully combining data, tensor, and pipeline parallelism. This emphasizes that our model’s assumptions (e.g., each worker sees full d) can be adapted to those scenarios by treating a model-parallel group as one worker with higher S and similar MFU. For the sake of a fair comparison, our analysis in this section compares different methods assuming that the local workers operate with the same theoretical peak FLOPs and the same MFU. The results reported in Section G.2 describe how such values were obtained.

2529

2530

G.1.2 ESTIMATING COMMUNICATION TIME

2531

2532

2533

2534

2535

2536

2537

Communication time is the most critical factor when comparing standard data-parallel approaches to our proposal, since the computation time will be the same, given that they train the same model size on the same number of tokens using the same computing infrastructure. At each communication step, the workers W synchronize a set of parameters M , the amount of which depends on the method used. For example, distributed data-parallel synchronization occurs at every batch step on the complete set of gradients produced by the M workers, each exchanging a payload at batch step i of $P_{\text{DDP},i} = d$ parameters. In our proposal, the synchronization involves model parameters and optimizer states at different frequencies, making such estimation slightly more complex. Since their time costs simply

2538 add up, we treat the parameter sync and momentum sync contributions independently. For instance,
 2539 if parameters are synced every K_x steps and momenta every K_u, K_v steps, we sum the time for each
 2540 series of syncs.

2541 Any of such payloads can be exchanged and averaged using bandwidth-efficient AllReduce methods,
 2542 such as RingAllReduce (Sergeev & Balso, 2018), which scales only with the speed of the slowest
 2543 P2P link. Given the slowest P2P bandwidth B and a latency l , a single communication at timestamp i
 2544 is performed synchronously and in parallel across the M workers, taking a total time of:
 2545

$$2546 \quad 2547 \quad t_{\text{comms},i} = \frac{2P_i}{B} \left(1 - \frac{1}{M}\right) + l, \quad (33)$$

2548 where P_i is the payload size of the communication happening at the timestamp i , which depends on
 2549 the optimization method adopted as described above.

2550 **DDP.** In the DDP training approach, each of the T optimization steps to train on D tokens requires
 2551 communicating at every step for a total training time of:
 2552

$$2554 \quad 2555 \quad t_{\text{total,DDP}} = t_{\text{compute}} + T \cdot \left[\frac{2d}{B} \left(1 - \frac{1}{M}\right) + l \right] \quad (34)$$

2556 **FedAvg.** The approach of the FedAvg method is that of synchronizing with frequency K only the
 2557 model parameters across the M workers. This, the total training time can be estimated as:
 2558

$$2559 \quad 2560 \quad t_{\text{total,FedAvg}} = t_{\text{compute}} + \frac{T}{K} \cdot \left[\frac{2d}{B} \left(1 - \frac{1}{M}\right) + l \right] \quad (35)$$

2561 This optimization procedure will communicate less than DDP when $K < T$.

2562 **Local Adam.** Using a local adaptive optimizer such as Cheng & Glasgow (2025) with a synchro-
 2563 nization frequency of K local steps, requires training for a total training time of:
 2564

$$2565 \quad 2566 \quad t_{\text{total,Local Adam}} = t_{\text{compute}} + \frac{3T}{K} \cdot \left[\frac{2d}{B} \left(1 - \frac{1}{M}\right) + l \right] \quad (36)$$

2567 This means that, as long as $3K < T$, Local Adam will always take less wall clock time than DDP.

2568 **Our Method (DES-LOC).** Adopting our proposal (DES-LOC-Adam and DES-LOC-ADOPT specif-
 2569 ically, which we shall use interchangeably for the purposes of this analysis) requires synchronizing
 2570 model parameters x , fist momentum u and second momentum v with frequencies k_x, K_u, K_v , re-
 2571 spectively. Assuming each of these sets is synchronized independently, we can compose by adding
 2572 their communication time contribution to the total training wall-clock time, which results:
 2573

$$2574 \quad 2575 \quad t_{\text{total,DES-LOC-Adam}} = t_{\text{compute}} + \left(\frac{T}{K_x} + \frac{T}{K_u} + \frac{T}{K_v} \right) \cdot \left[\frac{2d}{B} \left(1 - \frac{1}{M}\right) + l \right] \quad (37)$$

2576 This means that, as long as $\frac{1}{K_x} + \frac{1}{K_u} + \frac{1}{K_v} < \frac{3}{K} \wedge \frac{1}{K_x} + \frac{1}{K_u} + \frac{1}{K_v} < 1$, our method will always
 2577 take less wall-clock time than Local Adam and DDP.

2578 **Limitations.** We critically discuss here the limitations of the proposed modeling in order to shed
 2579 light on their relevance when it comes to deploying such training algorithms in real-world scenarios.

2580 First, our modeling approach adopts constants for several system components, such as computing
 2581 capabilities and interconnects. In particular, MFU in the real world always oscillates around some
 2582 average value depending on the operational performance of high-bandwidth memories (HBM),
 2583 DRAM caches, and processing units in the hardware accelerators. At the same time, the P2P
 2584 bandwidth and latency between accelerators also fluctuate around average values.

2585 Second, most efficient implementations adopted in the field take advantage of the possibility of
 2586 overlapping communication and computation, reducing the communication time. Notably, overlap-
 2587 ping communication with computation can drastically reduce effective communication costs, for
 2588

example, PyTorch’s DDP implementation can overlap 95% of the communication (Romero et al., 2022). Our model currently assumes synchronous communications, but could incorporate such approaches by reducing the effective l or B impact. One extension could be adding a parameter $\alpha \in [0, 1]$ representing the fraction of communication time that is not overlapped, so total time per step i is $t_{\text{total},i} = t_{\text{compute}} + \alpha t_{\text{comm}}$. Setting $\alpha = 0$ would recover the fully overlapped ideal (communication is entirely hidden by computation), and $\alpha = 1$ is the current no-overlap assumption. This would keep the model framework-agnostic but allow tuning to specific training setups.

Techniques in Rajbhandari et al. (2020); Zhao et al. (2023) complement our analysis by reducing memory usage and communication volume, effectively scaling down payload P_i or increasing MFU. Our approach focuses on synchronization timing rather than data partitioning; combining our method with fragmented updates (e.g., ZeRO) could further improve wall-clock time.

Despite limitations, our model was designed so that any gap with real-world performance evenly affects all methods analyzed, assuming thoughtful implementation. Thus, results in Section G.2 illustrate potential improvements from adopting DES-LOC, and our model can help practitioners estimate performance at larger scales.

G.2 MODELING RESULTS

Figures 23 and 24 analyze the wall-clock time, communication overhead, and GPU utilization of DES-LOC compared to DDP, Local Adam, and heuristic baselines for training our 1.7B model. By setting synchronization periods as $K_x = 256$, $K_u = 768$, $K_v = 1536$, DES-LOC significantly reduces communication and improves GPU utilization relative to Local Adam ($K = 256$), closely approaching the efficiency of heuristic methods, especially in bandwidth-constrained settings.

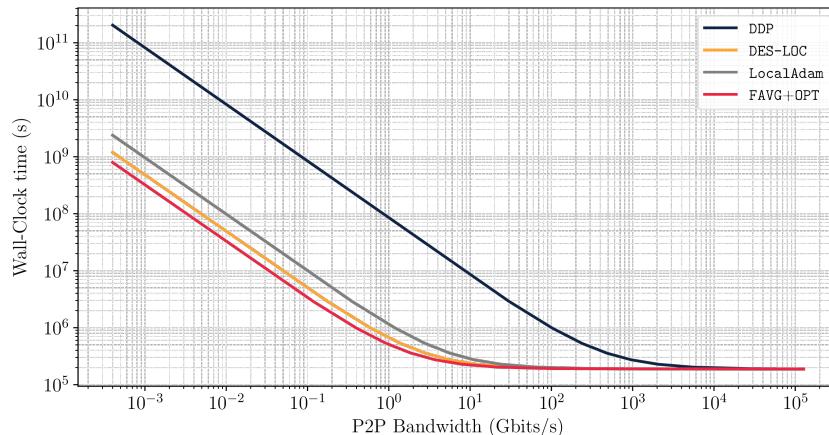


Figure 23: Estimated wall-clock time for training the 1.7B model with DES-LOC ($K_x = 256$, $K_u = 768$, $K_v = 1536$), compared to Local Adam ($K = 256$), DDP, and Federated Averaging with persistent optimizer states (FAVG+OPT, $K = 256$). At low bandwidth ($< 10^3$), all communication-efficient methods substantially reduce wall-clock time compared to DDP. DES-LOC closely approaches the maximum efficiency of FAVG+OPT, significantly outperforming Local Adam, which synchronizes all optimizer states frequently. Moreover, DES-LOC maintains stable and convergent training behavior (Fig. 5). At high bandwidth ($> 10^3$), DDP becomes competitive or preferable.

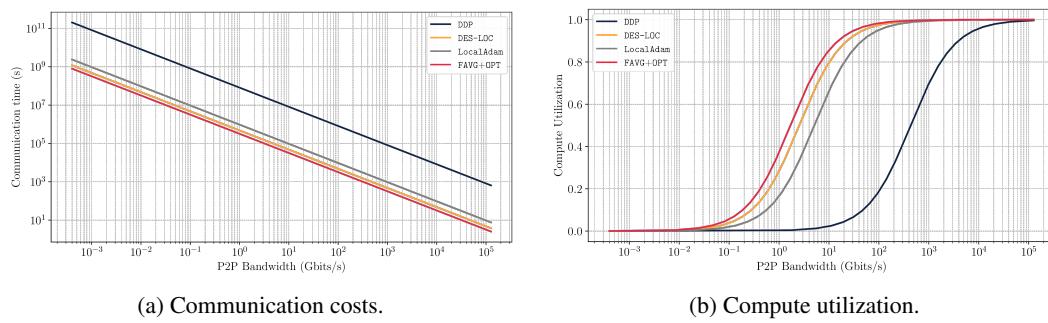


Figure 24: Communication overhead (a) and GPU utilization (b) for training the 1.7B model with synchronization periods $K_x = 256$, $K_u = 768$, $K_v = 1536$. DES-LOC reduces communication costs by $170\times$ compared to DDP, outperforming the $85\times$ reduction achieved by Local Adam while FAVG+OPT, communicating only parameters, achieves a theoretical maximum reduction ($256\times$). The improved communication efficiency of DES-LOC translates to higher GPU utilization at low bandwidths ($< 10^3$), significantly improving over DDP and Local Adam.

Takeaway: By synchronizing optimizer states less frequently, DES-LOC enhances GPU utilization and total wall-clock time compared to DDP and Local Adam, especially under bandwidth constraints.

H CHECKPOINTING VS. PERIODIC STATE SYNCHRONIZATION

A natural question is whether simply checkpointing local optimizer states suffices for dealing with variable or elastic compute. This approach is inadequate for two reasons. *Quality*: Initializing new workers from a single stored state yields worse convergence as shown in Fig. 4.(c) ($\sim 15\%$ higher perplexity in our tests in the follow-up round) compared to DES-LOC’s averaging. *Elasticity*: When the worker count changes from N to M , checkpointing lacks a principled mapping, forcing arbitrary state duplication or sub-selection, which either amplifies outliers or discards information.

A more principled ad-hoc strategy is averaging the N existing states. To formalize the comparison, let the local states θ_i be i.i.d. variables with mean μ (the ideal global state) and variance σ^2 (local drift). The statistical risk is the Mean Squared Error, $\text{Risk}(\hat{\mu}) = \mathbb{E}[(\hat{\mu} - \mu)^2]$.

The **random selection estimator** (checkpointing), $\hat{\mu}_{rand} = \theta_k$, has a risk equal to the full sample variance:

$$\text{Risk}(\hat{\mu}_{rand}) = \sigma^2 \quad (38)$$

The **averaging estimator**, $\hat{\mu}_{avg} = \frac{1}{N} \sum_{i=1}^N \theta_i$, reduces this risk by a factor of N :

$$\text{Risk}(\hat{\mu}_{avg}) = \frac{\sigma^2}{N} \quad (39)$$

Averaging is thus more robust to the divergence of any single worker. However, even this principled ad-hoc approach underperforms DES-LOC. The crucial distinction is that DES-LOC builds periodic averaging into the training loop, treating it as a core mechanism rather than an external recovery tool. This proactively constrains the variance of local drift (σ^2) throughout training, ensuring all workers remain in a low-variance consensus state and making the system inherently robust to elasticity.

I CHOOSING SYNCHRONIZATION FREQUENCIES

Our results suggest a simple and principled rule-of-thumb for setting the synchronization periods (K) for model parameters and optimizer momentum states, grounded in the dynamics of exponential moving averages (EMAs). This methodology provides actionable defaults for practitioners seeking to balance model convergence with communication efficiency.

The core principle is that the synchronization frequency of any given optimizer state should be based on its empirical **half-life**—the time horizon over which its EMA “forgets” half of its past information.

2700 This ensures that states are synchronized before they drift too far apart, maintaining training stability.
 2701 For a state with a decay rate β approaching 1, the half-life can be calculated as:
 2702

$$2703 \quad t_{1/2} \approx \frac{\ln 2}{1 - \beta}$$

$$2704$$

2705 Based on this, we propose the following two-step methodology for setting the synchronization periods
 2706 K_x (for parameters), K_u (for first moments), and K_v (for second moments).
 2707

2708 **Parameters First (K_x).** The synchronization of model parameters is paramount to training
 2709 quality. The period K_x should be chosen to match the end-of-training quality of fully-
 2710 synchronous DDP at a target step budget while still materially reducing communication. In
 2711 practice, starting points like $K_x = 16$ or $K_x = 32$ are effective as shown in our own work
 2712 and in [Charles et al. \(2025\)](#). Parameters should always be synchronized at least as frequently
 2713 as any momentum state.

2714 **Momentum by Half-Life (K_u, K_v).** For any optimizer momentum state with a decay rate
 2715 β , its synchronization period K should be set near its calculated half-life, i.e., $K \approx t_{1/2}$.
 2716 For common optimizers like Adam or ADOPT with well-tuned decay rates β_1 and β_2 , this
 2717 simplifies to setting the sync periods for the first and second moments as: $K_u \approx \frac{\ln 2}{1 - \beta_1}$ and
 2718 $K_v \approx \frac{\ln 2}{1 - \beta_2}$.

2719 Following this heuristic can yield a minimum $5 \times$ reduction in communication cost over DDP for
 2720 $K_x \geq 16$, significantly decreasing wall-clock time while achieving convergence speed and final
 2721 model quality comparable to DDP.
 2722

2723 J CRITICAL BATCH SIZE AND REGIME POSITIONING

2724 To formally contextualize the regimes where DES-LOC is most beneficial, we begin with the statistical
 2725 properties of gradient estimation. Let the true gradient over the full data distribution for a loss function
 2726 $\mathcal{L} : \mathbb{R}^d \rightarrow \mathbb{R}$ be $G(\theta) = \nabla \mathcal{L}(\theta)$. In practice, a mini-batch of size B provides an estimate, $G_{\text{est}}(\theta)$.
 2727 The variance of this estimator scales inversely with the batch size:
 2728

$$2729 \quad \text{cov}(G_{\text{est}}(\theta)) = \frac{1}{B} \Sigma(\theta)$$

$$2730$$

2731 where $\Sigma(\theta)$ is the per-example gradient covariance. This relationship establishes a fundamental
 2732 trade-off: smaller per-worker batch sizes B result in higher-variance, or "noisier," gradient estimates.
 2733

2734 Analyses of large-scale training have formalized the concept of a **critical batch size**, B_{crit} ([McCan-](#)
 2735 [dlish et al., 2018](#); [Zhang et al., 2025](#)). This represents the point at which the benefits of increasing
 2736 batch size begin to diminish.
 2737

2738 When the batch size $B < B_{\text{crit}}$, the gradient estimate $G_{\text{est}}(\theta)$ is noisy, and increasing B
 2739 yields substantial improvements in convergence speed per step.

2740 When $B \gg B_{\text{crit}}$, the gradient estimate $G_{\text{est}}(\theta)$ becomes a highly accurate estimate of the
 2741 true gradient $G(\theta)$, and further increases to B provide negligible returns.
 2742

2743 In modern distributed settings with N workers, the goal is often to operate at a **compute-optimal**
 2744 **global batch size** ($G = N \times B$), which is typically near B_{crit} for the given model and training
 2745 duration. In massively parallel environments where N is large, maintaining an optimal G necessitates
 2746 that the per-worker batch size $B = G/N$ becomes small. Consequently, large-scale, compute-optimal
 2747 training often forces individual workers into a regime where $B \ll B_{\text{crit}}$, thereby exposing them to
 2748 high levels of gradient noise.

2749 For local-update methods (e.g., Local SGD, FedAvg with local optimizers), this high-variance regime
 2750 is particularly challenging. Each worker performs multiple optimization steps using its own noisy
 2751 gradient estimates, causing its local parameter replica θ_i to diverge from the other workers. This
 2752 inter-worker drift can destabilize training and severely degrade final model quality.
 2753

DES-LOC is designed to counteract this divergence precisely in the high-noise, compute-optimal
 2754 regime. By periodically synchronizing not only the model parameters but also the optimizer states

(e.g., Adam’s momentum and variance accumulators), DES-LOC acts as a powerful consensus-enforcing mechanism. This periodic averaging reduces the variance of the distributed state, effectively dampening the destabilizing effects of high-variance local gradients and materially improving stability and final model quality. This allows the system to retain the communication savings of local updates without succumbing to parametric drift.

While the benefit of desynchronized momentum syncing may shrink in very-large-batch regimes where $B > B_{\text{crit}}$ (as local optimization is inherently more stable), DES-LOC remains highly attractive due to a combination of other robust properties:

- **Provable Convergence:** It maintains strong theoretical convergence guarantees under local updates.
- **Graceful Quality-Communication Trade-off:** The synchronization frequencies (K_x, K_u, K_v) provide an explicit and effective mechanism to navigate the trade-off between communication cost and model performance.
- **Inherent Elasticity:** The method is fundamentally robust to dynamic changes in the number of workers. The periodic state averaging provides a principled, low-variance mechanism for initializing new workers, a scenario where naive checkpointing and state redistribution underperform significantly.

K EXTENDED RELATED WORK

Federated Optimization. The DES-LOC framework, as mentioned in Section C.1, belongs to the broader field of federated optimization. A foundational algorithm in this field is FedAvg (McMahan et al., 2017), which established that a central model can be trained from decentralized data by averaging the model weights from clients that have performed local training steps. These findings were later generalized by Reddi et al. (2021) through the FedOpt framework, which re-frames the training loop as a bi-level optimization, allowing the server to employ an optimization strategy more complex than simple averaging. Consequently, Reddi et al. (2021) demonstrated the instantiation of algorithms like FedAdam, FedYogi, and FedAdagrad, which achieve strong empirical performance and provide nonconvex guarantees (Kingma & Ba, 2015) by substituting the server’s averaging step with a corresponding optimizer. In a related approach, Hsu et al. (2019) incorporate server-side momentum to improve the stability of aggregation, particularly when data is skewed. A primary challenge in federated learning involves heterogeneous data distributions, where clients hold non-IID data partitions. To address the problems arising from this heterogeneity, algorithms such as FedProx, which applies a proximal regularizer for stability (Li et al., 2020b), and SCAFFOLD, which uses control variates for robust convergence (Karimireddy et al., 2020b), have been developed. Likewise, FedNova addresses objective function inconsistencies by normalizing local steps (Wang et al., 2020). The Mime algorithm aims to reduce the gap between federated and centralized convergence through the use of control variates and server statistics (Karimireddy et al., 2020a). Lastly, methods such as Per-FedAvg (Fallah et al., 2020) and Ditto (Li et al., 2021) concentrate on personalization to enhance fairness and utility with reduced communication.

Compression of payload. The DES-LOC framework lessens the communication overhead in parallel training by reducing the communication frequency of parameter and momentum states compared to standard data parallel approaches. It is important to note, however, that the communicated payloads—the states themselves—can also be compressed, which would further enhance distributed training efficiency. Specifically, quantization methods can represent (pseudo)gradients in lower precision without a loss of model performance (Douillard et al., 2025; Kale et al., 2025). As an alternative, structured compression can express an update in a lower-rank form, either through SVD-like algorithms (Robert et al., 2025) or by only communicating the fast-moving momentum components (Peng et al., 2024). Sparsification techniques can introduce sparse update structures, which allows for better compression via information redundancy (Lin et al., 2018; Alistarh et al., 2018). Because update periodicity and update compression are orthogonal operations, they are frequently applied together to create highly efficient compression schemes without performance degradation (Douillard et al., 2025; Kale et al., 2025; Wang et al., 2023). Therefore, we anticipate that this would be a fully composable enhancement to the DES-LOC framework, which we leave as a direction for future work.

2808 **L LLM USAGE DECLARATION**
28092810 As noted in our submission, large language models (LLMs) were used throughout to assist with
2811 various aspects of this work. Specifically, we used GPT-5 and Gemini 2.5 Pro to:
28122813

- Improve the clarity and flow of our writing.
- Find relevant related work that would be useful for our extended literature review.
- Assist with plotting code and simple code generations.

2817 Beyond the stated uses above, all work, including but not exclusive to the interpretation of related
2818 work and results, is our own.
28192820 **M LIMITATIONS**
28212822 **Limitations.** First, while our main non-convex convergence result holds for SGDM, for Adam our anal-
2823 ysis uses additional assumptions like bounded gradients and homogeneous data distribution. These
2824 assumptions are common in non-convex adaptive optimization. Second, our hyperparameter search
2825 was extensive yet constrained to smaller models. Lastly, while our analysis uses Adam/AMSGrad,
2826 many experiments use modified Adam (ADOPT) (Taniguchi et al., 2024).
28272828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861