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ABSTRACT

The Segment Anything Model (SAM), with its remarkable zero-shot capability,
has the potential to be a foundation model for multi-task learning. However,
adopting SAM to multi-task learning faces two challenges: (a) SAM has difficulty
generating task-specific outputs with different channel numbers, and (b) how to
fine-tune SAM to adapt multiple downstream tasks simultaneously remains unex-
plored. To address these two challenges, in this paper, we propose the Multi-Task
SAM (MTSAM) framework, which enables SAM to work as a foundation model
for multi-task learning. MTSAM modifies SAM’s architecture by removing the
prompt encoder and implementing task-specific no-mask embeddings and mask
decoders, enabling the generation of task-specific outputs. Furthermore, we intro-
duce Tensorized low-Rank Adaptation (ToRA) to perform multi-task fine-tuning
on SAM. Specifically, ToRA injects an update parameter tensor into each layer
of the encoder in SAM and leverages a low-rank tensor decomposition method
to incorporate both task-shared and task-specific information. Extensive experi-
ments conducted on benchmark datasets substantiate the efficacy of MTSAM in
enhancing the performance of multi-task learning.

1 INTRODUCTION

Empowered by large-scale datasets and computational advancements, large foundation models have
revolutionized natural language processing and multi-modal learning, exhibiting remarkable zero-
shot capabilities (Kenton & Toutanova, 2019; Lewis et al., 2020; Radford et al., 2018; 2019; Brown
et al., 2020; Radford et al., 2021). Recently, the Segment Anything Model (SAM) (Kirillov et al.,
2023), a foundation model in computer vision for image segmentation, achieves exceptional zero-
shot performance through training on a large-scale dataset of 11 million samples. Efforts have been
dedicated to expanding the zero-shot capability of SAM to various tasks, including high-quality seg-
mentation (Ke et al., 2023), 3D reconstruction (Cen et al., 2023), object tracking (Yang et al., 2023),
medical image processing (Ma et al., 2024; Huang et al., 2024), personalize segmentation (Zhang
et al., 2023), and remote sensing (Shankar et al., 2023).

Though SAM has achieved remarkable performance in diverse tasks in previous studies, those stud-
ies only adopt SAM to a specific downstream task by single-task learning, while overlooking the
potential of employing SAM as the foundation model for multi-task learning. In many real-world
computer vision applications, there is usually more than one task that can be considered simultane-
ously, such as depth estimation and surface normal estimation tasks in dense scene understanding.
Previous works on multi-task learning (Misra et al., 2016; Liu et al., 2019; Ye & Xu, 2022; 2023;
Zamir et al., 2018; Liu et al., 2022) have shown that these tasks are relevant and can benefit each
other during the training process. This insight motivates us to adopt SAM as a foundation model
for multi-tasking learning to enhance the performance of different tasks. However, adopting SAM
to multi-task learning presents two challenges: (a) how to generate outputs with varying dimensions
for each task by SAM; and (b) how to fine-tune SAM to adapt multiple tasks simultaneously.

To tackle the above challenges, we propose the Multi-Task SAM (MTSAM) framework to leverage
the rich knowledge from SAM for multi-task learning. Our approach includes two key modifica-
tions: (a) adapting the architecture of SAM to accommodate varying channel numbers for each task
and (b) introducing a novel multi-task parameter-efficient fine-tuning method named Tensorized
low-Rank Adaption (ToRA) for fine-tuning the SAM encoder.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Mask 1
1 × 𝐻 ×𝑊

Mask 2
1 × 𝐻 ×𝑊

Mask 3
1 × 𝐻 ×𝑊

Input
3 × 𝐻 ×𝑊

(a) Outputs of Original SAM.

Depth
1 × 𝐻 ×𝑊

Segmentation
13 × 𝐻 ×𝑊

Surface Normal
3 × 𝐻 ×𝑊

Input
3 × 𝐻 ×𝑊

(b) Outputs of MTSAM for multiple tasks.

Figure 1: Comparison between the outputs of (a) the original SAM and (b) the MTSAM proposed
in this paper. The original SAM generates segmentation results at three distinct levels, all featuring
an identical number of channels. In contrast, the MTSAM can simultaneously produce outputs for
multiple tasks, utilizing varying numbers of channels.

Specifically, we incorporate task embeddings and remove the prompt encoder from the mask de-
coder, enabling the generation of the outputs with dimensions tailored to each task. As illustrated
in Figure 1, this modification enhances the flexibility of SAM, allowing it to adapt to various tasks
within a unified architecture. For multi-task fine-tuning, ToRA injects an update parameter tensor
into each layer of the SAM encoder, with each slice of the tensor serving as an update parameter
matrix for the corresponding task. Inspired by Low-Rank Adaptation (LoRA) (Hu et al., 2021), we
assume a low-rank structure for each update parameter tensor and apply a low-rank tensor decompo-
sition to capture both task-shared and task-specific information. Theoretically, we prove that ToRA’s
expressive power in multi-task learning surpasses that of LoRA. ToRA exhibits superior parameter
efficiency, with sublinear growth in learnable parameters with respect to the number of tasks, in
contrast to the linear growth in the original LoRA method when applied directly to multiple tasks.

The main contributions of this paper are three-fold.

• We propose MTSAM, a novel multi-task learning framework that extends the capabilities
of SAM to perform multi-task learning. Specifically, we modify the original architecture
of SAM by removing the prompt encoder and adding task embeddings. This modification
enhances the flexibility of the original SAM.

• We introduce ToRA, a novel multi-task PEFT method, that applies low-rank decomposi-
tion to the update parameter tensor, effectively learning both task-shared and task-specific
information simultaneously, with theoretical analysis of its strong expressive power.

• We conduct comprehensive experiments on benchmark datasets, demonstrating the excep-
tional performance of the proposed MTSAM framework.

2 RELATED WORKS

Application of Segment Anything Model (SAM). The remarkable zero-shot generalization ability
exhibited by SAM showcases its immense potential for both research and industrial applications.
This potential has captured the attention of researchers, leading to numerous attempts to explore
and harness its capabilities for various downstream tasks, including all-purpose matching (Liu et al.,
2023b), high-quality segmentation (Ke et al., 2023), 3D reconstruction (Cen et al., 2023), object
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tracking (Yang et al., 2023), medical image processing (Ma et al., 2024; Huang et al., 2024), per-
sonalize segmentation (Zhang et al., 2023), and remote sensing (Shankar et al., 2023). In contrast to
those modifications targeted at a single downstream task, the proposed MTSAM aims to simultane-
ously learn multiple downstream tasks and extract semantic knowledge from SAM to enhance the
performance of multi-task learning.

Parameter-Efficient Fine-Tuning (PEFT). To address the parameter and computational efficiency
concerns during fine-tuning of large-scale pre-trained foundation models, various PEFT methods
have been proposed, including adapter-based methods (Houlsby et al., 2019; Lin et al., 2020),
prompt tuning methods (Li & Liang, 2021; Lester et al., 2021), and LoRA-based methods (Zhong
et al., 2023; Kopiczko et al., 2023; Wu et al., 2023; Hu et al., 2021; Ding et al., 2023; Valipour
et al., 2023). Specially, LoRA (Hu et al., 2021) introduces trainable low-rank matrices into trans-
former layers to approximate update parameter matrix, Conv-LoRA (Zhong et al., 2023) inserts
Mixture of Experts (MoE) (Jacobs et al., 1991) inside the bottleneck of LoRA, VeRA (Kopiczko
et al., 2023) fixes the low-rank matrices and only tunes two vectors, MoLE (Wu et al., 2023) directly
uses multiple LoRA which combined by a gating function, SoRA (Ding et al., 2023) enables dy-
namic adjustments of the rank by using a gate unit, and DyLoRA (Valipour et al., 2023) follows the
idea of nested dropout to train LoRA in a wide range of ranks. Those methods achieve competitive
performance and high parameter efficiency in single-task fine-tuning. However, those methods are
not suitable for multi-task learning settings, since they do not consider shared information between
multiple tasks. In contrast, the proposed ToRA method can leverage task-shared information to
enhance fine-tuning performance across various tasks.

Multi-Task Learning (MTL). As a widely used paradigm, MTL aims to improve the average per-
formance of a model by simultaneously learning multiple downstream tasks. To enhance the efficacy
of learning multiple tasks simultaneously, some studies focus on decoupling task-shared and task-
specific information through manual design (Misra et al., 2016; Liu et al., 2019; Ye & Xu, 2022;
2023; Gao et al., 2019) or automatic architecture learning (Guo et al., 2020; Huang et al., 2018;
Raychaudhuri et al., 2022; Sun et al., 2020). Other approaches propose balancing the losses or gra-
dients of different tasks during training to avoid conflicts between them (Chen et al., 2018; Yu et al.,
2020; Liu et al., 2021b;a; Navon et al., 2022). Additionally, some works employ task grouping tech-
niques to select related tasks for joint model training (Fifty et al., 2021; Song et al., 2022; Standley
et al., 2020; Zamir et al., 2018). With the impressive generalization capability of large-scale pre-
trained foundation models on downstream tasks, various multi-task parameter-efficient fine-tuning
methods (Liu et al., 2022; 2023a) have been proposed. For example, Polyhistor (Liu et al., 2022) de-
signs a lightweight hyper-networks for hierarchical vision transformer, and HiPro (Liu et al., 2023a)
uses hierarchical prompt tuning to adapt pre-trained vision-language models. Different from the
previous works on multi-task learning, we leverage the powerful SAM and propose the MTSAM
framework which use ToRA to fine-tune encoder and .

3 METHODOLOGY

In this section, we introduce the proposed MTSAM framework and ToRA method.

3.1 PRELIMINARIES

SAM. The original SAM consists of three main modules: a heavyweight image encoder, a prompt
encoder, and a lightweight mask decoder. Given an image I ∈ R3×H×W , where H and W denote
the height and width of the image I , respectively. SAM first utilizes the image encoder EI to extract
image features FI ∈ RD× H

16×
W
16 as

FI = EI(I), (1)
where D denotes the dimension of the hidden state. Then the prompt encoder, which consists of a
dense mask encoder EM and a sparse prompt encoder EP , encodes dense masks M ∈ R1×H

4 ×W
4

and different types of sparse prompts P (i.e., points, box, and text) into mask features FM and
prompt features FP as

FM = EM (M), FP = EP (P ), (2)

where FM , FP ∈ RD× H
16×

W
16 . After that, the image features are summed with the mask features,

and the prompt features are concatenated with some learnable prompt features FL. Finally, the

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

mask decoder DM will predict the final segmentation mask output O ∈ R3×H
4 ×W

4 by performing
attention-based feature interactions on image features and prompt features as

O = DM (FI + FM , [FL, FP ]). (3)

LoRA. The LoRA method (Hu et al., 2022) assumes that each update parameter matrix has a low in-
trinsic rank and fine-tunes them by freezing the pre-trained model. Formally, for a given task, LoRA
parameterizes an update parameter matrix ∆W ∈ Rd×k corresponding to a pre-trained parameter
matrix W0 ∈ Rd×k by the product of two low-rank matrices, i.e., ∆W = BA, where B ∈ Rd×r

and A ∈ Rr×k with r ≪ min(d, k). Thus, for an input x, the output h can be calculated by

h = W ′x = W0x+∆Wx = W0x+BAx, (4)

where the W ′ ∈ Rd×k denotes the parameter matrix after the update. LoRA has been proven as
an efficient and effective approach in fine-tuning large pre-trained models for specific downstream
tasks. Therefore, we consider LoRA as an important baseline method in our experiments. There are
two different approaches to directly applying LoRA to the multi-task fine-tuning setting for SAM.
One approach uses a hard parameter sharing strategy, where all tasks use one shared LoRA matrix
∆W , and we call it LoRA-HPS. However, this hard parameter-sharing strategy may lead to imbal-
anced performance on all the tasks due to the competition among tasks for the shared LoRA (Zhang
& Yang, 2022). Another approach is to train a task-specific LoRA for each task and hence each task
t uses its own ∆Wt, and we call it LoRA-STL. However, this approach cannot harness the inter-task
shared information necessary for fine-tuning across multiple tasks.

3.2 ARCHITECTURE

Mask Decoder𝟏Mask Decoder𝟏 𝑶𝟏

𝑁1 ×
𝐻

4
×
𝑊

4

Mask DecoderTMask DecoderT

𝑁𝑇 ×
𝐻

4
×
𝑊

4

...

𝑶𝑻

𝑭𝑰,𝟏
Image 

Encoder

Image 

Encoder

...

𝑭𝑰,𝑻𝑊0𝑊0 ⨁

... ...

Δ𝑊

ToRA

Figure 2: An overview of the proposed MTSAM. The proposed ToRA is used to fine-tune the
heavyweight image encoder and generate task-specific image embeddings for each task. MTSAM
does not utilize the prompt encoder of the original SAM and modifies the mask decoder of SAM to
generate outputs with varying numbers of output channels (denoted by Ni for task i).

Despite the tremendous potential exhibited by SAM as a fundamental visual model, its reliance on
prompt-guided mask generation presents challenges in achieving end-to-end adaptability to down-
stream tasks with varying numbers of output channels. Therefore, we propose the MTSAM to enable
end-to-end multi-task fine-tuning for SAM.

As shown in Figure 2, MTSAM follows the standard encoder-decoder architecture of SAM, includ-
ing a heavyweight image encoder and several task-specific lightweight mask decoders. Different
from SAM, MTSAM removes the prompt encoder in the original SAM and modifies the architec-
ture of the mask decoder.

To fully leverage the rich semantic knowledge acquired by SAM during pre-training, we froze the
pre-trained parameters in the heavyweight image encoder and employ multi-task fine-tuning, which
will be introduced in the next section, to update parameter tensors in the self-attention module (i.e.,
the query, key, and the value) of the image encoder. Moreover, we perform fine-tuning on the scale
and bias parameters within the layer normalization layers of the image encoder.

To adapt the entire model to various tasks, MTSAM introduces separate mask decoders for each task,
generating task-specific outputs. Specifically, as detailed in Figure 3, we introduce trainable task
embeddings with distinct numbers of output channels and consequently discard the dense mask en-
coder and the sparse prompt encoder in SAM. Formally, the task embeddings Et ∈ RNt×D for task
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Figure 3: The mask decoder of MTSAM for task t, which has Nt output channels.

t, where Nt denotes the number of output channels for task t, is expanded to E′
t ∈ RNt×D× H

16×
W
16

by copying Et for H
16 × W

16 times. Then, we perform the broadcast sum between the image em-
bedding FI,t ∈ RD× H

16×
W
16 of task t and the expanded task embeddings E′

t, i.e., (FI,t ⊕ E′
t) ∈

RNt×D× H
16×

W
16 . Another input to the mask decoder is a learnable token FP,t ∈ RNt×D. Then

the two types of input are fed into a two-way Transformer (Kirillov et al., 2023) and the outputs
consist of a hidden image feature representation and a hidden token feature, which are fed into an
upscaling layer and an MLP layer, respectively. In particular, the upscaling layer uses the transposed
convolution operator. Thus, the decoder generates the prediction Ot ∈ RNt×H

4 ×W
4 for task t as

Ot = Dt(FI,t ⊕ E′
t, FP,t). (5)

3.3 TENSORIZED LOW-RANK ADAPTATION FOR MULTI-TASK FINE-TUNING

𝑇

𝐴0

𝐵0
Pre-trained 

Weights

Pre-trained 

Weights
⨁

(a) LoRA for multiple tasks.

Pre-trained 

Weights

Pre-trained 

Weights
⨁

𝒢𝒢
𝑈1𝑈1

𝑈3

𝑈2

(b) ToRA for multiple tasks.

Figure 4: Comparison between (a) LoRA and (b) ToRA. LoRA uses separate low-rank matrices for
the update parameter matrix of each task, while ToRA aggregates the update parameter matrices of
all the tasks into an update parameter tensor and applies low-rank tensor decomposition.

To efficiently fine-tune the computationally intensive image encoder in MTSAM, we propose Ten-
sorized low-Rank Adaptation (ToRA), a novel parameter-efficient multi-task fine-tuning method.
The comparison between LoRA and ToRA is shown in Figure 4.

Suppose we are given T tasks. For simplicity, we consider the case where each task involves fine-
tuning only one layer using a PEFT approach, although this can be easily extend to multiple layers.
For task t, we denote its update parameter matrix as ∆Wt ∈ Rd×k. Consider all the T tasks, it is
natural to aggregate the update parameter matrices of all the tasks into an update parameter tensor
∆W = {∆W1, . . . ,∆WT } ∈ Rd×k×T . Inspired by LoRA, we impose a low-rank assumption on
∆W. This assumption is plausible due to both inter-task relatedness and intra-task low rank in each
∆Wt, as observed in LoRA. Specifically, since different tasks in multi-task learning are typically
assumed to be related, the update parameter matrices {∆Wt}Tt=1 may be correlated, making ∆W
likely to be low-rank along the task axis (i.e., the last axis). In this sense, this low-rank assumption
on ∆W could be viewed as a generalization of the low-rank assumption on the parameter matrix of
linear models (Zhang & Yang, 2022).

To achieve a low-rank ∆W, we parameterize it via tensor decomposition (Papalexakis et al., 2016),
which is a technique to decompose a tensor into several low-rank factors. There are several tensor
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decomposition methods (e.g., CP decomposition (Hitchcock, 1927; Carroll & Chang, 1970) and
Tucker decomposition (Tucker, 1966)) and we choose the Tucker decomposition as it has a good
representation ability (Papalexakis et al., 2016). Specifically, we decompose the three-mode update
parameter tensor ∆W ∈ Rd×k×T into a core tensor G ∈ Rp×q×v and three factor matrices U1 ∈
Rd×p, U2 ∈ Rk×q and U3 ∈ RT×v , where p, q, and v denote the dimensions of factor matrices,
typically p, q, v ≪ min(d, k). Formally, this can be expressed as

∆W = G ×1 U1 ×2 U2 ×3 U3, (6)

where ×n denotes the n-mode product. Accordingly, the (i, j, t)-th entry in ∆W can be written as

∆W(i, j, t) =

p∑
m=1

q∑
n=1

v∑
l=1

G(m,n, l)U1(i,m)U2(j, n)U3(t, l), (7)

where i ∈ {1, 2, . . . , d}, j ∈ {1, 2, . . . , k}, and t ∈ {1, 2, . . . , T} denote the indices of three mode,
respectively. For the three-mode update parameter tensor ∆W, the first mode represents the output
feature dimension, the second mode denotes the input feature dimension, and the third mode is for
the task dimension. Hence, according to Tucker decompositionTucker (1966), U1 and U2 reflect
the main subspace variation of task-shared information corresponding to the first two modes in
∆W, while U3 reflects the task-specific subspace structure corresponding to the last mode of ∆W.
Hence, through the Tucker tensor decomposition, the ToRA method could capture both task-shared
and task-specific information.

Initialization. For the proposed ToRA method, the core tensor G is initialized as 0, while factor
matrices U1, U2, and U3 are randomly initialized from the standard Gaussian distribution. Thus, for
each task t, the update parameter matrix ∆Wt is 0 at the beginning of training.

Training and inference. During training, we utilize Eq. (6) to obtain the update parameter tensor
W based on U1, U2, U3, and G and employ h = W ′

tx = W0x + ∆W(:, :, t)x on the forward
process for task t. During the back-propagation process, we freeze the pre-trained matrix W0 and
only update U1, U2, U3, and G. During inference, we can store the updated parameter matrix of task
t as Wt = W0 +∆W(:, :, t)x. Thus, there is no additional latency introduced during inference.

Parameter complexity. We present a comparison of parameter complexity between LoRA and the
proposed ToRA under the multi-task learning setting. To fine-tune the pre-trained matrix W0 ∈
Rd×k, the LoRA method decomposes each update parameter matrix ∆Wt as BtAt, where Bt ∈
Rd×r and At ∈ Rr×k. Therefore, for T tasks, the parameter complexity of LoRA is O(Trd+Trk).
For the proposed ToRA method, we decompose the update parameter tensor ∆W ∈ Rd×k×T as
G ×1 U1×2 U2×3 U3. Therefore, the parameter complexity of the proposed ToRA method is pqv+
dp+kq+Tv ∼ O(dp+kq) since T, p, q, v ≪ min(d, k). This implies that the parameter complexity
of LoRA increases linearly with the number of tasks T , while the proposed ToRA method exhibits a
sublinear complexity, thereby demonstrating the parameter efficiency of the proposed ToRA method.

3.4 TRAINING OBJECTIVE

Under the multi-task learning setting, the training objective function of MTSAM is defined as

LMTL =
1∑
wi

T∑
i=1

wiLi, where Li =
1

ni

ni∑
j=1

ℓi(y
j
i , f(x

j
i )). (8)

In this formulation, Li represents the loss for task i and wi denotes the corresponding loss weight,
xj
i is the j-th training sample for task i, yji is the ground truth label, f(·) is the MTSAM model, and

ℓi denotes the loss function specific to task i.

According to the High-Order Singular Value Decomposition (HOSVD) (De Lathauwer et al., 2000)
used in the analysis shown in the next section, every high-order tensor can be decomposed into
a core tensor G and orthogonal (or unitary) matrices. Inspired by this, we utilize the orthogonal
regularization to enforce the orthogonality of U1, U2 and core tensor G through the final dimension
to reduce the redundancy. Consequently, this can be formulated as a regularization term:

R(U1, U2,G) = ∥UT
1 U1 − I∥2F + ∥UT

2 U2 − I∥2F +

v∑
l=1

∥G(:, :, l)TG(:, :, l)− I∥2F , (9)
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where ∥ · ∥F denotes the Frobenius norm for matrices and I denotes the identity matrix with an
appropriate size. Therefore, the overall objective function of the MTSAM is formulated as

Ltotal = LMTL + λR(U1, U2,G), (10)

where λ is the hyper-parameter that controls the impact of orthogonal regularization.

3.5 ANALYSIS

In this section, we analyze the advantages of ToRA over LoRA in terms of the expressive power.
For LoRA, Zeng & Lee (2024) apply the best low-rank approximation (Eckart & Young, 1936) of
the error matrix under the spectral norm. For the parameter matrix in a single layer, let W t denote
the target parameter matrix for task t, and define the error matrix as Et = W t − W . When using
LoRA, the update parameter is denoted by ∆Wt, and the minimum difference between the adapted
and target models is given by

min
∆Wt

∥∥(W +∆Wt)−W t

∥∥
2
= σr+1(Et), (11)

where σr(Et) denotes the r-th largest singular value of Et. For ToRA, the optimal approximation
is formulated as

min ∥E− G ×1 U1 ×2 U2 ×3 U3∥2F
s.t. U⊤

k Uk = I, rank (Uk) ≤ rk,
(12)

where the objective is inherently complex, and the best approximation may not always exist (Kolda
& Bader, 2009). Therefore, measuring the expressive power of ToRA can be challenging. However,
as proven in Theorem 1 below, we demonstrate that for any multi-task learning problem solvable
by multiple LoRAs, ToRA can also solve the problem by using fewer parameters. This implies that
ToRA has superior expressive power for multi-task learning when compared with multiple LoRAs.

Theorem 1. (ToRA’s Superiority over Multiple LoRAs in Expressive Power) Assume there are T
LoRAs, whose update parameter matrix is denoted by ∆Wt, designed to solve each task t with a rank
rt. Let ∆W represent the update parameter tensor and ∆W(1), ∆W(2) denote the flattened tensor
corresponding to the vertical and horizontal concatenation of {∆Wt}Tt=1. Define p and q as the
rank of ∆W(1) and ∆W(2), respectively. Then, there exists a ToRA with core tensor G ∈ Rp×q×T ,
and factor matrices U1 ∈ Rd×p, U2 ∈ Rk×q , U3 ∈ RT×T such that the Tucker decomposition
G ×1 U1 ×2 U2 ×3 U3 reconstructs ∆W. Furthermore, ToRA utilizes fewer parameters, satisfying
(dp+ kq) ≤

∑
t(d+ k)rt.

4 EXPERIMENTS

In this section, we empirically evaluate the proposed MTSAM on three benchmark datasets, in-
cluding NYUv2 (Silberman et al., 2012), CityScapes (Cordts et al., 2016), and PASCAL-Context
(Everingham et al., 2010).

Baselines. We compare the proposed MTSAM with several baselines, including CNN-based
methods (i.e., Single-Task Learning (STL), Hard-Parameter Sharing (HPS), Cross-Stitch (Misra
et al., 2016), Multi-Task Attention Network (MTAN) (Liu et al., 2019), and NDDR-CNN (Gao
et al., 2019)), Transformer-based approaches (i.e., VTAGML (Bhattacharjee et al., 2023) and Swin-
MTL (Taghavi et al., 2024)), and the method using cross-attention (i.e. DenseMTL (Lopes et al.,
2023)). To evaluate the effectiveness of the proposed ToRA method, we also compare with LoRA-
STL, LoRA-HPS, and MultiLoRA (Wang et al., 2023) that all fine-tune the MTSAM.

Evaluation metric. For the three datasets, we use multiple metrics to evaluate the performance
on each task and we put the introduction of them in Appendix B.1. Moreover, following (Maninis
et al., 2019), we use the average of the relative improvement of each task over the HPS architecture
as another evaluation metric, which is formulated as

∆b =
1

T

T∑
i=1

1

Ki

Ki∑
j=1

(−1)si,j (M b
i,j −MHPS

i,j )

MHPS
i,j

,
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Table 1: Performance on three tasks (i.e., 13-class semantic segmentation, depth estimation, and
surface normal prediction) of the NYUv2 dataset. The best results for each task are shown in bold.
↑(↓) means that the higher (lower) the value, the better the performance. The number of trainable
parameters (i.e., Params.) is calculated in MB.

Method

Segmentation Depth Surface Normal

Param. (M)↓ ∆b ↑mIoU↑ Pix Acc↑ Abs Err ↓ Rel Err↓
Angle Distance Within t◦

Mean ↓ Median ↓ 11.25 ↑ 22.5 ↑ 30 ↑
HPS 54.48 75.82 0.3839 0.1548 23.50 17.06 35.31 61.10 72.14 71.89 +0.00%
STL 53.98 75.38 0.3945 0.1631 22.25 15.63 38.12 64.38 74.81 118.91 +0.45%
Cross-Stitch 53.46 75.49 0.3804 0.1555 23.01 16.33 37.01 62.42 73.02 118.89 +0.66%
MTAN 54.74 75.78 0.3796 0.1549 22.97 16.30 36.91 62.63 73.32 92.35 +0.77%
NDDR-CNN 53.84 75.23 0.3871 0.1560 22.60 16.07 37.67 63.43 73.92 169.10 +0.91%
VTAGML 58.60 78.63 0.3716 0.1525 22.05 15.70 38.14 64.28 74.50 314.15 +4.70%
DenseMTL 56.65 77.68 0.3569 0.1391 22.03 15.87 37.25 64.67 75.47 423.45 +5.88%
SwinMTL 64.23 82.78 0.2841 0.1129 18.94 13.34 43.35 71.32 80.89 333.91 +19.55%

LoRA-HPS (r=32) 56.77 78.37 0.3470 0.1412 18.97 13.41 44.56 71.20 80.68 58.84 +10.67%
LoRA-STL (r=16) 62.06 81.72 0.3124 0.1233 16.44 11.39 51.04 77.01 85.31 64.83 +20.25%
LoRA-STL (r=32) 58.34 78.61 0.3330 0.1335 16.54 11.42 51.08 76.65 84.99 82.84 +16.34%
MultiLoRA 64.85 83.07 0.3113 0.1220 17.26 12.19 48.28 74.65 83.58 65.12 +20.11%

MTSAM 65.98 83.42 0.2898 0.1140 16.34 11.33 51.22 77.20 85.51 59.59 +23.93%

Table 2: Performance on two tasks (i.e., 7-class semantic segmentation and depth estimation) in the
CityScapes dataset. The best results for each task are shown in bold. ↑(↓) means that the higher
(lower) the value, the better the performance. The number of trainable parameters (i.e., Params.) is
calculated in MB.

Method
Segmentation Depth

Param. (M)↓ ∆b ↑mIoU↑ Pix Acc ↑ Abs Err ↓ Rel Err↓
HPS 67.40 90.92 0.0142 45.4262 55.76 +0.00%
STL 68.13 91.28 0.0133 45.0390 79.27 +2.17%
Cross-Stitch 68.01 91.29 0.0135 44.4246 79.27 +2.11%
MTAN 68.97 91.59 0.0136 43.7508 72.04 +2.74%
NDDR-CNN 68.02 91.25 0.0137 44.8662 101.58 +1.51%
VTAGML 73.70 93.23 0.0138 42.8304 288.35 +5.10%
DenseMTL 69.75 91.45 0.0152 52.1401 333.40 −4.44%
SwinMTL 73.33 92.87 0.0132 38.0720 333.31 +8.54%

LoRA-HPS (r=16) 86.23 96.30 0.0123 34.2000 37.35 +17.98%
LoRA-STL (r=8) 85.86 96.26 0.0110 34.3000 37.35 +20.07%
LoRA-STL (r=16) 82.64 95.28 0.0107 33.4312 43.35 +19.62%
MultiLoRA 87.23 96.67 0.0127 31.0091 46.81 +19.51%

MTSAM 87.45 96.80 0.0113 33.0086 37.44 +20.99%

where T denotes the number of tasks, Ki denotes the number of metrics for task i, M b
i,j and MHPS

i,j
denote the performance of the method b and the HPS architecture for the jth metric in task i, respec-
tively, and si,j is set to 1 if a lower value indicates better performance in terms of the jth metric in
task i and otherwise 0.

Implementation details. The batch size is set to 4 for NYUv2 and 8 for CityScapes and PASCAL-
Context. The cross-entropy loss, L1 loss, and cosine similarity loss are used as the loss functions of
the semantic segmentation, depth estimation, and surface normal prediction tasks, respectively. The
Adam optimizer is used to update fine-tuned parameters. In the Adam optimizer, an initial learning
rate is set to 10−3, the linear learning rate scheduler with warmup is adopted while the warmup rate
is set to 0.05, and the weight decay is set to 10−6. The dropout rate is set to 0.1. For the proposed
ToRA, we set p = q = 32, v = 8 on the NYUv2 and PASCAL-Context datasets, and p = q = 16,
v = 4 on the CityScapes dataset. The hyper-parameter λ is set to 1. The total number of fine-
tuned epochs is set to 200, 50, and 30 for the NYUv2, CityScapes, and PASCAL-Context datasets,
respectively. For CityScapes and PASCAL-Context datasets, we use equal weights for each task (i.e.,
wi equals 1 in Eq. (8)), while for the NYUv2 dataset, we follow (Lopes et al., 2023) to set the weights
of semantic segmentation, depth estimation, and surface normal prediction tasks to be 1, 1, and 4,
respectively.
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Table 3: Performance on four tasks (i.e., 21-class semantic segmentation, 7-class human parts seg-
mentation, saliency estimation, and surface normal estimation) in the PASCAL-Context dataset. The
best results for each task are shown in bold. ↑(↓) means that the higher (lower) the value, the better
the performance. The number of trainable parameters (i.e., Params.) is calculated in MB.

Method Seg.↑ H.Parts↑ Sal.↑ Normal↓ Param. (M) ∆b ↑
HPS 64.77 57.91 64.10 14.21 30.07 +0.00%
STL 65.14 58.58 65.02 15.94 63.60 −2.25%
Cross-Stitch 64.97 58.63 64.46 15.32 79.46 −1.42%
MTAN 64.56 59.08 64.57 14.74 36.61 −0.33%
NDDR-CNN 65.28 59.18 65.09 15.57 69.25 −1.26%

Hyperformer 71.43 60.73 65.54 17.77 287.32 −1.91%
Polyhistor 70.87 59.54 65.47 17.47 34.18 −2.14%
Polyhistor-Lite 70.24 59.12 64.75 17.40 11.29 −2.72%
LoRA-HPS (r=32) 48.19 46.73 69.50 20.38 74.33 −19.97%
LoRA-STL (r=16) 55.25 71.33 75.72 17.05 86.33 +1.65%
LoRA-STL (r=32) 65.07 72.05 76.41 16.82 110.33 +6.42%
MultiLoRA 72.39 67.78 71.66 20.07 92.80 −0.16%

MTSAM 74.13 71.04 76.28 17.10 74.71 +8.95%

Table 4: Ablation studies on the impact of rank on the NYUv2 dataset. The best results for each task
are shown in bold. ↑(↓) means that the higher (lower) the value, the better the performance. The
number of trainable parameters (i.e., Params.) is calculated in MB.

Method

Segmentation Depth Surface Normal

Param. (M)↓ ∆b ↑mIoU↑ Pix Acc ↑ Abs Err ↓ Rel Err↓
Angle Distance Within t◦

Mean ↓ Median ↓ 11.25 ↑ 22.5 ↑ 30 ↑
MTSAM (p = q = 16, v = 8) 64.66 83.15 0.2966 0.1153 16.40 11.42 50.89 76.85 85.25 53.03 +22.85%
MTSAM (p = q = 32, v = 4) 65.57 83.29 0.2888 0.1149 16.29 11.32 51.22 77.40 85.64 59.21 +23.77%
MTSAM (p = q = 32, v = 8) 65.98 83.42 0.2898 0.1140 16.34 11.33 51.22 77.20 85.51 59.59 +23.93%

Table 5: Ablation studies on the impact of orthogonal regularization on the NYUv2 dataset. Best
results are shown in bold. ↑(↓) means that the higher (lower) the value, the better the performance.

Method

Segmentation Depth Surface Normal

∆b ↑mIoU↑ Pix Acc ↑ Abs Err ↓ Rel Err↓
Angle Distance Within t◦

Mean ↓ Median ↓ 11.25 ↑ 22.5 ↑ 30 ↑
MTSAM (w/o U1, U2,G) 58.71 80.01 0.3309 0.1305 16.88 11.66 50.17 76.05 84.48 +17.01%
MTSAM (w/o G) 65.22 83.11 0.2984 0.1195 16.56 11.53 50.59 76.63 85.03 +22.30%
MTSAM 65.98 83.42 0.2898 0.1140 16.34 11.33 51.22 77.20 85.51 +23.93%

4.1 RESULTS

The results on the NYUv2, CityScapes, and PASCAL-Context datasets are presented in Tables 1,
2, and 3, respectively. As can be seen, MTSAM achieves the best average performance across
all datasets in terms of ∆b compared to all baselines. Furthermore, MTSAM demonstrates better
parameter efficiency, offering advantages in storage and enhancing its practical application value.
Moreover, LoRA-STL, which employs separate LoRAs for each task, possesses better perfor-
mance than LoRA-HPS with a shared LoRA. This demonstrates the importance of utilizing task-
specific components. The superior performance of MTSAM with ToRA over both LoRA-STL and
LoRA-HPS suggests that ToRA effectively leverages both task-shared and task-specific information,
thereby improving overall performance.

4.2 ABLATION STUDY

Sensitivity w.r.t. rank. We conduct sensitivity analysis to evaluate the impact of ranks of ToRA
(i.e., p, q, and v) to the performance of MTSAM while keeping the remaining hyper-parameters
consistent with previous experiments. According to the results shown in Table 4, we can see that the
proposed ToRA method consistently outperforms the LoRA-STL and LoRA-HPS methods across
different combinations of ranks, demonstrating the effectiveness of the proposed ToRA method.
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Table 6: The performance of MTSAM with varying λ on the NYUv2 dataset. The best results for
each task are shown in bold. ↑(↓) means that the higher (lower) the value, the better the performance.
The number of trainable parameters (i.e., Params.) is calculated in MB.

Method

Segmentation Depth Surface Normal

∆b ↑mIoU↑ Pix Acc ↑ Abs Err ↓ Rel Err↓
Angle Distance Within t◦

Mean ↓ Median ↓ 11.25 ↑ 22.5 ↑ 30 ↑
λ = 0.5 66.05 83.82 0.2898 0.1137 16.70 11.73 49.81 76.39 84.92 +23.410%
λ = 1.0 65.98 83.42 0.2898 0.1140 16.34 11.33 51.22 77.20 85.51 +23.931%
λ = 1.5 66.11 83.50 0.2872 0.1135 16.47 11.48 50.68 77.05 85.39 +23.933%

De
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Ground Truth ToRALoRA-HPS LoRA-STLInput MultiLoRA

Figure 5: Comparison among predictions of LoRA-HPS, LoRA-STL, MultiLoRA, and ToRA to
fine-tune MTSAM on the NYUv2 dataset.

Impact of orthogonal regularization. We conduct ablation studies on NYUv2 dataset to evalu-
ate the impact of the orthogonal regularization on U1, U2 and the core tensor G by employing the
same hyper-parameter settings as previous experiments. We compare MTSAM with that without the
orthogonal regularization on G (denoted by MTSAM (w/o G)) and without the orthogonal regular-
ization on U1, U2 and G (denoted by MTSAM (w/o U1, U2,G)). According to the results shown in
Table 5, we can see that the orthogonality regularization on G effectively improves the performance
across various tasks, demonstrating the effectiveness of the orthogonal regularization.

Sensitivity w.r.t. hyper-parameter λ. We explore the sensitivity of the performance of ToRA with
respect to hyper-parameter λ. According to the results shown in Table 6, we can see that MTSAM
is not so sensitive to the hyper-parameter λ over [0.5, 1.5], making the setting of λ not so difficult.

4.3 QUALITATIVE EVALUATION

Figure 5 shows the predictions of the MTSAM fine-tuned with LoRA-STL, LoRA-HPS, Multi-
LoRA, and ToRA on the NYUv2 dataset, respectively. More qualitative results are shown in Figures
6-11 in Appendix D. As can be seen, the prediction results of ToRA are better than the baselines
for different tasks. As shown in the white boxes, the proposed ToRA method generates more accu-
rate results than the baseline methods given the ground truth when dealing with vague and slender
objects. Therefore, the proposed MTSAM fine-tuned with ToRA achieves the best performance in
both qualitative and quantitative evaluations.

5 CONCLUSION

In this paper, we propose the MTSAM, which modifies the architecture of SAM and leverages a
low-rank tensor decomposition method to fine-tune the encoder of MTSAM. MTSAM introduces
task embeddings to generate outputs with the corresponding number of channels, enabling the model
can be adapted to different tasks. The proposed ToRA can use both task-shared and task-specific
information during the multi-task fine-tuning process. The experimental results demonstrate the ef-
fectiveness of MTSAM. In future work, we are interested in applying MTSAM to more applications.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES
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A PROOFS

In this section, we present the proof of Thereom 1, demonstrating the superiority of ToRA over
multiple LoRAs. We begin by introducing higher-order singular value decomposition (HOSVD)
proposed by De Lathauwer et al. (2000) as our Lemma 1.

Lemma 1. (HOSVD) Every tensor A ∈ Rd1×d2×d3 can be decomposed into a core tensor G ∈
Rd1×d2×d3 and the left singular vectors Uk ∈ Rdk×dk of k-mode flattened matrix A(k), as follows

A = A×1 (U1U
⊤
1 )×2 (U2U

⊤
2 )×3 (U3U

⊤
3 )

=
(
A×1 U

⊤
1 ×2 U

⊤
2 ×3 U

⊤
3

)
×1 U1 ×2 U2 ×3 U3

= G ×1 U1 ×2 U2 ×3 U3.

According to Property 10 of (De Lathauwer et al., 2000), we can achieve a low-rank approximation
of tensor through compact HOSVD. Let the rank of A(k) be Rk, and define a tensor Â by discard-

ing the smallest singular values σ
(k)
I′
k+1, σ

(k)
I′
k+2, . . . , σ

(k)
Rk

for given values of I ′k, that is, we set the
corresponding parts of the core tensor G to zero. Then we can get

∥A − Â∥2 ≤
R1∑

i1=I′
1+1

σ
(1)2

i1
+

R2∑
i2=I′

2+1

σ
(2)2

i2
+ · · ·+

RN∑
iN=I′

N+1

σ
(N)2

iN
.

Lemma 2. Given K matrices Ak ∈ Rm×n, let Rank denote the rank of a matrix. It follows trivially
that Rank([A1 A2 . . . AK ]) ≤

∑
k Rank(Ak) and Rank([A⊤

1 A⊤
2 . . . A⊤

K ]) ≤
∑

k Rank(Ak).

Theorem 1. (ToRA’s Superiority over Multiple LoRAs in Expressive Power) Assume there are T
LoRAs, whose update parameter matrix is denoted by ∆Wt, designed to solve each task t with a rank
rt. Let ∆W represent the update parameter tensor and ∆W(1), ∆W(2) denote the flattened tensor
corresponding to the vertical and horizontal concatenation of {∆Wt}Tt=1. Define p and q as the
rank of ∆W(1) and ∆W(2), respectively. Then, there exists a ToRA with core tensor G ∈ Rp×q×T ,
and factor matrices U1 ∈ Rd×p, U2 ∈ Rk×q , U3 ∈ RT×T such that the Tucker decomposition
G ×1 U1 ×2 U2 ×3 U3 reconstructs ∆W. Furthermore, ToRA utilizes fewer parameters, satisfying
(dp+ kq) ≤

∑
t(d+ k)rt.

Proof. The weight updates ∆W of multiple LoRAs across T tasks can be organized into two flat-
tened forms: ∆W(1) and ∆W(2). Specially, we define these as follows

∆W(1) = [∆W1 ∆W2 . . . ∆WT ],

∆W⊤
(2) = [∆W⊤

1 ∆W⊤
2 . . . ∆W⊤

T ].

According to Lemma 1, we can express ∆W using a core tensor G ∈ Rp×q×T with three unitary
matrices U1 ∈ Rd×p, U2 ∈ Rk×q , U3 ∈ RT×T . These unitary matrices represent the left singular
vectors corresponding to the three flatten matrices of ∆W and G = ∆W ×1 U

⊤
1 ×2 U

⊤
2 ×3 U

⊤
3 .

From Lemma 2, we have the inequalities p ≤
∑

t rt and q ≤
∑

t rt. Consequently, we deduce that
dp+ kq ≤

∑
t(d+ k)rt. Given that T, p, q, v are significantly smaller than min(d, k), we conclude

that ToRA can achieve the same weight updates with fewer parameters. In particular, this theorem
constructs a specific instance, indicating that the expressive power of ToRA will be greater.

B EXPERIMENTAL DETAILS

B.1 METRIC FOR EACH TASK

NYUv2 and CityScapes datasets. For the semantic segmentation task, we use the mean Intersec-
tion over Union (mIoU) and Pixel Accuracy (Pix Acc) to evaluate. For the depth prediction task, we
use the Absolute Error (Abs Err) and Real Error (Rel Err) to evaluate. For the surface normal estima-
tion task, we use the mean and the median of angular error measured in degrees and the percentage
of pixels whose angular error is within 11.25, 22.5, and 30 degrees to evaluate.
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Table 7: Performance on three tasks (i.e., 13-class semantic segmentation, depth estimation, and
surface normal prediction) of the NYUv2 dataset. The best results for each task are shown in bold.
↑(↓) means that the higher (lower) the value, the better the performance. The number of trainable
parameters (i.e., Params.) is calculated in MB.

Method

Segmentation Depth Surface Normal

Param. (M)↓ ∆b ↑mIoU↑ Pix Acc↑ Abs Err ↓ Rel Err↓
Angle Distance Within t◦

Mean ↓ Median ↓ 11.25 ↑ 22.5 ↑ 30 ↑
Full fine-tuning 58.76 80.18 0.3063 0.1223 19.61 13.76 43.14 69.44 79.17 1222.47 +14.57%

MultiLoRA 64.85 83.07 0.3113 0.1220 17.26 12.19 48.28 74.65 83.58 65.12 +20.11%
Terra 60.98 80.93 0.3461 0.1343 18.47 13.27 44.89 71.84 81.48 52.86 +13.70%
HydraLoRA 66.46 83.90 0.3033 0.1202 16.86 11.60 49.47 75.86 84.54 71.30 +22.11%

MTSAM 65.98 83.42 0.2898 0.1140 16.34 11.33 51.22 77.20 85.51 59.59 +23.93%

PASCAL-Context dataset. For the semantic segmentation task, human parts segmentation task,
and saliency estimation task, we use the mean Intersection over Union (mIoU) to evaluate. For the
surface normal estimation task, we use the mean of angular error measured in degrees to evaluate.

C MORE EXPERIMENT

C.1 RESULTS

To evaluate the effectiveness of the proposed ToRA method, we also compare with LoRA-based
methods (i.e., MultiLoRA (Wang et al., 2023), Terra (Zhuang et al., 2024), and HydraLoRA (Tian
et al., 2024)) and the full fine-tuning method that fine-tunes the entire MTSAM. The results are
shown in Table 7. As can be seen, ToRA achieves better performance and parameter efficiency
compared to LoRA-based methods and full fine-tuning.

C.2 ABLATION STUDY

Table 8: The performance of MTSAM with modified MLP layer and task embeddings on NYUv2
dataset.

Method

Segmentation Depth Surface Normal

Param. (M)↓ ∆b ↑mIoU↑ Pix Acc ↑ Abs Err ↓ Rel Err↓
Angle Distance Within t◦

Mean ↓ Median ↓ 11.25 ↑ 22.5 ↑ 30 ↑
MLP 63.50 82.45 0.3294 0.1235 17.93 13.02 45.46 73.28 82.86 65.66 +17.35%
Task embeddings 65.98 83.42 0.2898 0.1140 16.34 11.33 51.22 77.20 85.51 59.59 +23.93%

Impact of task embeddings. To demonstrate the effectiveness of the proposed task embedding,
we compared it with the method of modifying the MLP output dimensions for different tasks on the
NYUv2 dataset. As shown in Table 8, task embedding performs better. This improvement is due to
the interaction between task embeddings and image features through the cross-attention mechanism,
which enables the decoder to better learn the task-specific knowledge and achieve superior results.

D MORE QUALITATIVE EVALUATIONS

Figures 6, 7, 8, 9 and 10 show the predictions of the MTSAM fine-tuned with LoRA-STL, LoRA-
HPS, MultiLoRA, and ToRA on the NYUv2 and CityScapes datasets, respectively. Figure 11 shows
the prediction of MTSAM on high-resolutional images. It can be observed that the predictions of
MTSAM outperform those of other baselines in different tasks and datasets. In the areas highlighted
by the white boxes, MTSAM generates more accurate results. Therefore, using MTSAM with ToRA
yields better performance.

E QUALITATIVE EVALUATIONS ON ZERO-SHOT ABILITY

To evaluate its performance on unseen data as suggested, we applied the model fine-tuned on the
NYUv2 dataset to make depth predictions on CityScapes dataset. Qualitative results are shown in
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Figure 6: (1/3) Comparison among predictions of LoRA-HPS, LoRA-STL, MultiLoRA, and ToRA
to fine-tune MTSAM on the NYUv2 dataset.

Figure 12, and illustrate that MTSAM is capable of handling unseen data distributions to some ex-
tent. However, it is important to note that the NYUv2 dataset consists of indoor images, whereas the
CityScapes dataset comprises of outdoor images, leading to significant differences in depth distribu-
tion and object types. Additionally, the two datasets differ in terms of resolution and the hardware
used for groud-truth depth predictions. Consequently, MTSAM exhibits some inaccuracies, partic-
ularly for distant objects.
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Figure 7: (2/3) Comparison among predictions of LoRA-HPS, LoRA-STL, MultiLoRA, and ToRA
to fine-tune MTSAM on the NYUv2 dataset.
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Figure 8: (3/3) Comparison among predictions of LoRA-HPS, LoRA-STL, MultiLoRA, and ToRA
to fine-tune MTSAM on the NYUv2 dataset.
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Figure 9: (1/2) Comparison among predictions of LoRA-HPS, LoRA-STL, MultiLoRA, and ToRA
to fine-tune MTSAM on the CityScapes dataset.
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Figure 10: (2/2) Comparison among predictions of LoRA-HPS, LoRA-STL, MultiLoRA, and ToRA
to fine-tune MTSAM on the CityScapes dataset.
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Figure 11: Comparison among predictions of LoRA-HPS, LoRA-STL, MultiLoRA, and ToRA to
fine-tune MTSAM on high-quality images.
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Ground TruthInput ToRA

Figure 12: Zero-shot depth estimation of MTSAM which is trained on the NYUv2 dataset and eval-
uated on the CityScapes dataset.
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