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ABSTRACT

Humans can naturally learn new and varying tasks in a sequential manner. Contin-
ual learning is a class of learning algorithms that updates its learned model as it sees
new data (on potentially new tasks) in a sequence. A key challenge in continual
learning is that as the model is updated to learn new tasks, it becomes susceptible
to catastrophic forgetting, where knowledge of previously learned tasks is lost. A
popular approach to mitigate forgetting during continual learning is to maintain
a small buffer of previously-seen samples, and to replay them during training.
However, this approach is limited by the small buffer size and, while forgetting is
reduced, it is still present. In this paper, we propose a novel loss function STAR that
exploits the worst-case parameter perturbation that reduces the KL-divergence of
model predictions with that of its local parameter neighborhood to promote stability
and alleviate forgetting. STAR can be combined with almost any existing rehearsal-
based methods as a plug-and-play component. We empirically show that STAR
consistently improves performance of existing methods by up to ~ 15% across
varying baselines, and achieves superior or competitive accuracy to that of state-
of-the-art methods aimed at improving rehearsal-based continual learning. Our
implementation is available at ht tps://github.com/Gnomyl7/STAR_CL.

1 INTRODUCTION

Humans are naturally continual learners. They are able to learn different sets of tasks sequentially
without significant forgetting or loss of performance at previous tasks. This allows them to learn
continuously from many sources of knowledge over time.

In contrast, modern machine learning models have been shown to suffer from catastrophic forgetting
(McCloskey & Cohen,|1989) during sequential learning of tasks, where the model’s performance
on previous tasks completely degrades after being trained on a new task. Continual Learning (CL)
seeks to solve this problem and enable models to learn consecutively, akin to humans. A large
body of work tackles this issue from varying perspectives; these are often inspired by balancing the
stability-plasticity dilemma (Mermillod et al.| 2013} |[Mirzadeh et al.,[2020azb)), where plasticity is the
ability to change and learn new knowledge, and stability is the ability to preserve previously learned
knowledge. Intuitively, these two concepts conflict. The goal of CL is to enforce stability without
hindering model plasticity, with limited or no access to the previous training data.

Among different approaches to mitigate catastrophic forgetting, rehearsal-based methods (Aljundi
et al.,|2018; |Chaudhry et al.,[2019; |Buzzega et al., [2020) have gained a lot of attention due to their
simplicity and effectiveness. In rehearsal-based CL, a relatively small buffer of previously seen data is
maintained and used in the training of new tasks to alleviate forgetting of previous tasks. Effectively,
rehearsal-based CL methods induce stability through replay of buffered samples to the model while
training on new data. Many works focus on how to best utilize the limited buffered data effectively to
retain the most information about previous data points with access to a limited number of samples.

An under-explored area, however, is the overall stability of the local parameter space when
it comes to the model output distribution for previously seen samples. That is, if the
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model outputs with respect to previous samples, are stable and unchanging within a local
parameter neighborhood, parameter updates in that neighborhood are not going to result in
forgetting. Thus, in this work, we attempt to bolster the stability of model predictions
in local parameter neighborhoods, so that future parameter updates lead to less forgetting.

We propose a new surrogate measure of forget- )

ting, which is the change in distribution of cor- ’
rect model predictions on buffered samples be-
tween now and the future. As future parameters
are not accessible in the present, we propose
to instead optimize a worst-case version of this
measure over a local parameter neighborhood.
We achieve this by first perturbing network pa-
rameters by a de-stabilizing perturbation, i.e.,

changing the network outputs as much as possi- «— Naive Training, no CL
ble, and then using the gradient of the perturbed Rehearsal CL
parameters to optimize our objective. Intuitively, v
this results in leading model parameters into PIo)

regions where model outputs are more stable

locally, and thus gives more flexibility for pa-  Figyre 1: STAR improves rehearsal-based CL by
rameter updates in the future (Figure [T). Our considering the change in output distribution in a
method does not assume any task boundaries |41 parameter neighborhood. Our regularization
or any specific CL. method and only requires  ,piective promotes convergence to regions of the
a memory buffer of previous samples. Thus, prameter space where the loss is stable over a

we propose our STability Inducing PArameter- |,c4] nejghborhood & around the parameters.
space Regularization (STAR) as a plug-and-play

component to any existing rehearsal-based CL
baseline.

Finally, we perform exhaustive experiments, that show that our method leads to significant empirical
improvements to various baselines, as well as exploratory studies into its different components. To
the best of our knowledge, STAR is the first to exploit worst-case parameter space perturbation for
stability in CL. Our contributions are summarized below:

* We present a novel surrogate measure of forgetting, and propose to optimize this measure in
a local parameter neighborhood, to increase flexibility of future model updates and reduce
forgetting during training.

» STAR assumes no access to task boundaries or task labels during training and only requires
a memory buffer. Our method can be combined with existing CL baseline methods with
minimal changes.

* We empirically validate the benefits of STAR on multiple existing CL baselines. STAR
exhibits significant gains in performance for all evaluated methods across multiple datasets
and buffer sizes. Furthermore, we compare the performance improvement of our method
with existing baseline-enhancement methods and show superior and occasionally closely
competitive performance gain compared to existing methods. Overall we achieve a maximum
of 15.11% increase in average accuracy compared to the baseline across all baselines and
datasets.

* We perform exploratory experiments and ablation studies on the different components of
our methods and demonstrate their contributions, confirming the importance of our design
choices.

2 RELATED WORKS

Continual Learning Existing CL methods can generally be categorized as regularization-based,
architecture-based, or rehearsal-based approaches. Architecture-based methods (Rusu et al., [2016;
Mallya & Lazebnikl 2018;Wang et al.l 2020) modify the model architecture by compartmentalizing
and expanding the network parameters, keeping the information from new tasks from interfering
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catastrophically with the previously learned tasks. Rehearsal-based methods keep a memory buffer of
data during training and replay these buffered samples to prevent the model from forgetting previous
task knowledge. Rehearsal offers a simple and powerful framework to tackle CL and is leveraged in
many state-of-the-art methods (Chaudhry et al.l | 2019; |Buzzega et al.|[2020). Moreover, an alternative
category of CL methods called Regularization-based methods (Kirkpatrick et al.,[2017; Zenke et al.,
2017; L1 & Hoiem| [2017) seeks to ensure model stability through regularization on the weights during
optimization. Such methods mainly focus on identifying model weights that are more important to
the performance of previous tasks, and impose a penalty on changes to those weights.

In this paper, we focus on improving rehearsal-based methods through regularization using buffered
samples. We present STAR, a plug-and-play loss term that can be combined with any general rehearsal-
based CL baseline. Among other methods aimed at improving rehearsal-based CL, DualHSIC (Wang
et al., 2023) adds a Kernel-based information bottleneck as well as feature alignment to motivate
learning of more general and task-invariant features, LiDER (Bonicelli et al.,[2022) seeks to induce
smoothness through optimization of layer-wise Lipschitz constants of the network, and OCM (Guo
et al.| 2022) use mutual information maximization to learn task-specific features while keeping the
information from previous tasks. In contrast to STAR, OCM and DualHSIC do not consider the
change in model outputs in the local parameter neighbourhood and LiDER only considers model
Lipschitz constants which can be implicitly related to the landscape of model outputs in a local region
but does not consider the input data.

Weight Perturbation Weight perturbation methods have been used in the past to perform variational
inference (Khan et al.| 2018)), speed up training (Wen et al., [2018)), and increase generalization of
neural networks (Wu et al., 2020; Foret et al., 2021; Lee et al.,[2024)). The generalization properties
and convergence of worst-case weight perturbations has also been studied (Andriushchenko &
Flammarion} 2022)). In this work, we adopt a worst-case weight perturbation approach in the context
of CL as a means to regularize parameter updates across tasks and reduce forgetting. One more
related work utilizing weight perturbation is DPCL (Lee et al., 2024), which uses weight perturbation
to perform online CL. However, in contrast to our work, DPCL uses random noise perturbations by
way of stochastic classifiers and does not draw strict relationships to forgetting.

3  BACKGROUND AND PRELIMINARIES

Let fp denote a classifier parameterized by 6 € R, where P is the number of network parameters,
and 6 represents all network parameters concatenated together. Let /() denote the parameters
of the [th layer of the classifier, with a total of L layers. As such, we denote fy,s as a network
whose parameters have been perturbed by some § € R”. Given an input  belonging to one of
K classes, fg(x) denotes the predicted label while gy (x) denotes the output probabilities of said
classifier, i.e. fo(x) = argmaxyeq1, .k} go(2)r. Subsequently, as gg(x) represents a categorical
probability distribution, we can measure the KL-Divergence between two model output distributions
as KL(qo(x),qo () = > q6(x)1 log %. We denote the parameters at training timestamp
t € {0,...,7} by 0;; 0:4 s denotes the parameters at timestep t+s for s € {0, ..., 7—t}. Throughout
the paper, we conceptually consider time ¢ to be the present timestamp and ¢ + s to be representative
of a timestamp in the future. Finally, the notation 1(c,,qiti0n) denotes the indicator function, which is

equal to 1 if the condition holds, and 0 otherwise.

3.1 CONTINUAL LEARNING AND REHEARSAL-BASED METHODS

We assume a general supervised CL scenario. Formally, at any given training timestamp ¢ &
{0,...,7}, we are given a batch of input-label pairs (z,y:) ~ X:, where X; is the training data
distribution at time ¢t. We do not make any assumptions on explicit task boundaries, therefore A} can
change at any time.

The objective is to minimize the classification error on all seen data streams by the end of training.
As such, let Xp.; denote a uniform mixture of distributions {X; };<¢, i.e. any sample drawn from Xy,
is equally likely to be drawn from any X;. Intuitively, Xy.; is the distribution of all observed data at
and before time ¢. Hence, we can write the CL objective as follows:
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min B )~ ., (1150 @)01] W

The primary challenge of CL is that the training data distribution X; may change over time. Modern
learning methods which use stochastic gradient descent often assume no change in data distribution
across time; as such, they can encounter catastrophic forgetting when faced with the CL scenario,
causing performance to deteriorate significantly on previous data distributions.

More formally, we can quantify forgetting as the difference in error between two timestamps, ¢ and
t 4+ s during training (Chaudhry et al.[(2019)):

Forgetting(t, s) := E(z,y)nio [Lifo, . 2)20] = Lifo, (2)2u]] @)

Rehearsal-based Methods. Rehearsal-based methods (e.g. (Chaudhry et al.|(2019); |Aljundi et al.
(2018)); Buzzega et al.|(2020)) have been shown to help reduce the effects of catastrophic forgetting.
These methods maintain a relatively small buffer of previously-seen data samples, and then train
jointly on new data samples and buffer samples. We denote the buffer at time ¢ as M. It is imperative
to note that since the data distribution X; changes, so does the buffer, which is why, unlike most
previous works, we index it with time .

Thus, the training loss for most rehearsal based CL methods takes the following form
LCL(at) :E(fﬁt(xt)ayt) +‘€Mt(f9t(th)7yMt) (3)

where x;, y; is the current task data, x o¢,, Yr, are drawn from the buffer, and ¢, £,14, are typically
loss functions, such as cross entropy or mean squared error.

Buffer Management. The buffer M, serves as a surrogate for the distribution Xjy.;. Since M has
limited capacity, sampling strategies are used to balance its distribution. In order to avoid the need for
usage of task boundaries during training, mainstream methods such as|Aljundi et al.| (2018)); Buzzega
et al. (2020) use the reservoir sampling strategy (Vitter, |I985) to constantly update the buffer while
keeping the distribution of data balanced. While we do not make any assumption about the buffer
sampling strategy in our method, most state of the art rehearsal methods use the reservoir sampling
strategy. We reiterate that although this eliminates the need for task boundaries, it does not result in a
static buffer distribution M. Not only do new samples get added and old samples are removed, the
distribution of the newly added samples changes with the incoming data distribution.

In this work, we improve the general rehearsal-based loss function L¢ 7, (Equation (3)) by adding a
regularization term to improve the stability of previously-learned parameters and further mitigate
catastrophic forgetting. Our method can be combined with any rehearsal-based CL method to improve
its performance; as such we assume L1, to be the loss function of some underlying baseline method.

4  STABILITY-INDUCING PARAMETER REGULARIZATION

In this section, we propose STAR, a general loss term that can be used to regularize any rehearsal-
based CL loss function.

4.1 STABILITY LOSS FUNCTION

While Forgetting (eq. 2)) is a useful post-hoc evaluation metric for a trained model, it is impractical
to be used during training. In particular, to evaluate Forgetting(t, s) at time ¢ requires access to
“future” model parameters at time ¢ 4 s. Instead, in this section we propose a tractable surrogate for
estimating forgetting without having access to future parameters 6, s or data samples, by way of
regularizing the local change in model output distribution with respect to samples and parameters at
time ¢. That is, if the model output distribution is unchanging locally (in a neighborhood around 6;),
then parameter updates in any arbitrary direction within this local region will not cause forgetting.

We start with the formulation in eq. (Z)). For samples on which both of the classifiers are incorrect (i.e.
Jo.(x) #y A fo,.,(x) # y) the two indicator functions cancel out. Hence, we are left with
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Figure 2: Conceptual illustration of STAR. Vanilla rehearsal-based CL approaches do not consider
consistency of output distribution in the local parameter neighborhood (a). By leveraging the gradient
of our proposed loss Ls74r (b), we navigate towards parameter regions where the model prediction
of previously seen data is consistent (c), reducing forgetting during training due to future parameter
updates leading to lower divergence of model output distribution (d).

Forgetting(t, s) = E(z y)~o. [ Lifo, @)=y A fo, . @#0] = Lfo, (02 A o, )= ] @

Forgotten samples Newly-learned samples

The difference in error is comprised of forgotten samples, minus the newly-learned samples. This is
why the empirical measure of forgetting in eq. (2) can technically be negative. In this work, we focus
on reducing the first term, i.e. the error due to the forgotten samples.

Inspired by this decomposition, we propose the change in the distribution of network output probabil-
ities gg () over correctly classified samples x s.t. fy(z) = y as a surrogate measure for forgotten
samples (first term in eq. (4)). In order to measure the change in distribution, we propose measuring
the KL-divergence between output probabilities at time ¢ and ¢ + s.

E(z,y)~ous {1[@ (@)=y] - L (g0, ()]0, (x)) )

In order to optimize eq. (5), we first need access to samples from all previous data distributions.
However, we can use the buffer M, as a surrogate for Xj.;. Therefore, the empirical loss function
corresponding to eq. (§) is as follows

Lra(0n0ip) = Y KL(q0,(2)lgs,,.(x)) (6)
(z,y)EM;

M:‘k = {(:c,y) € Mt|f0t($) = y}
The loss function £ seeks to promote the prediction of correctly classified samples to stay the
same in the future. However, the main issue remains: we do not have access to future parameters
0 s at time t. We propose to approximate 6 , with a local, worst-case perturbation §; +J, § € R”,
to reduce forgetting regardless of the direction of future parameter updates. We present our novel
stability loss function STAR as follows

CSTAR(gt) = mgxﬁpg(Gt,Qt +5) (7)

st 0]l < d
where d is an arbitrary positive number that controls the magnitude of the perturbation neighborhood.

Intuitively, the STAR loss function promotes consistency of model prediction distribution w.r.t.
correctly classified samples in a local parameter neighborhood. This gives future model updates
more flexibility and robustness in the parameter space, making forgetting in the future less likely.
A conceptual illustration of this is present in Figure [2f a generic CL gradient update may lead to
a point where some current buffer samples are still correctly classified, but are forgotten easily in
future parameter updates due to the noise in SGD or samples being replaced in the buffer. In contrast,
STAR promotes parameter regions where the output w.r.t. correctly classified samples is consistent.
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4.2 COMBINED OBJECTIVE FUNCTION

The STAR loss function (eq. (7)) can be combined with any CL method that uses a rehearsal-based
loss function in order to reduce forgetting and improve performance. Given some rehearsal-based
loss L1, such as ER (Chaudhry et al} 2019) or its variants, we can use Lg7 4 as a plug-and-play
component and optimize the combined final objective:

Lfinal = Lor(0:) + AMsTar(0:) (8

where ) is a hyperparameter to control the importance of each objective.

4.3 STAR IMPLEMENTATION

We propose to optimize eq. using Stochastic Gradient Descent (SGD). However, optimizing
LsTar is not trivial due to the maximization over ¢. In particular, there are two main challenges:
1) calculating the weight perturbation 4, and 2) calculating the gradient with respect to the original
parameters ¢, while the loss depends on J. Fortunately, these challenges can be addressed by adapting
existing works, which leverage worst case weight perturbations in robustness (Wu et al.,[2020) and
generalization (Foret et al., [2021]).

Optimizing for the Perturbation §. Calculating eq. (7)) requires computation of §, which is the
locally-maximizing perturbation with respect to the parameters . We propose to calculate ¢ using
gradient ascent, i.e., taking gradient steps to increase the KL-Divergence in eq. (3). Calculating the
exact local maximum can be challenging, as gy is typically non-convex. However, as in the case with
existing works (Foret et al.l 2021; Wu et al., 2020), we find that taking a single maximizing gradient
step is sufficient to improve performance in practice. We experiment with multiple gradient steps
and present the details in appendix@} Following|L1 et al.| (2018)); 'Wu et al.| (2020), instead of using a
single constant 7 as a norm constraint (as shown in eq. (7)), we normalize the gradients of the model
layer-by-layer. This is due to the different numeric distributions of the weights of each layer, as well
as the scale invariance of the weights; i.e., multiplying by 10 at one layer and dividing by 10 the next
layer will lead to the same network.

Therefore, to calculate §, we take a normalized gradient step (detailed below) towards increasing the
KL-Divergence term in eq. (7).

Since & = 0 is the global minimizer of the KL term, and thus has zero gradient, we initialize § as dg
with small noise proportional to the layer norm as follows:

5 ~ N(0, €60 1) )

where [ is the lth layer index, € is a small, positive scalar, and [ is the identity matrix with appropriate
dimensions.

Let g be the gradient of the inner KL term in eq. (7):
g = V9+5oﬁpg(9,9+50) (10)
Subsequently, we calculate ¢ for each layer [ in the following manner:

||9<”||zg(z>
lg® 1l

where 1 < 1 < L, §® is the perturbation to layer [ parameters "), and 0 <  is a hyper-parameter

. . . . )
to control the perturbation ratio (i.e., §) is normalized such that Hg( 5 HZ = ).

50 =68 + (11)

Updating the Parameters 6. To perform SGD using L£g74r with the 6 calculated in eq. (TI)), we
must now compute the gradient descent step of minimizing Ls74r W.r.t. the original parameters 6;.
With the formulation in eq. (IT)), calculating the gradient of £p¢ in eq. (7) with respect to model
parameters requires computing the Hessian, or at the very least Hessian-vector products (Foret et al.,
2021). However, following [Wu et al.|(2020); [Foret et al.| (2021)), we approximate the gradient via the
gradient measured at the perturbed parameter point, i.e. VoLrg (0,0 4+ 0) =~ VosLrc (6,0 + 0),
to accelerate computation. It is important to note that this is an approximation, and that £ ¢ is in
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practice non-linear. Otherwise, the minimizing gradient step would be equal to the negative of the
maximizing gradient step in eq. (IT)).

Intuitively, model parameters are first perturbed to a parameter point which results in outputs with
high KL-Divergence with outputs of the unperturbed parameters, with respect to correctly classified
samples. Subsequently, the value of the STAR loss is equal to the KL-Divergence of the outputs of
the perturbed model with the outputs of the unperturbed model. We then compute the gradient of
the STAR loss at the perturbed parameter point and use it for SGD. A detailed pseudocode of our
training algorithm can be found in Algorithm

Algorithm 1 STAR Enhanced Rehearsal-Based CL Pseudocode

Require: Data stream X}, parameters 6 with L layers, scalar A, perturbation coefficient -, learning
rate o, memory buffer M, CL loss function Lo,
Mo < {}
Initialize 6,
for0<t< 7 do

Ty, Yy ~ Xy
Ty YmMm, — My
x* — {zpm, | fo,(Tr,) = Um, } > Correctly classified buffer samples
for1 <! < Ldo > Calculate perturbation for each layer
08 ~ N (0, €6 [21)
g(l) — v9t+50 Kﬁ(qet (33*), 46,+6o (Z‘*)) > Lpg Gradient
50 50 4 ,YHGE”\Izg(z)
lg®1l2
end for
U < )\V@tJr(;K:E(qtgt (CL'*), q9t+5(:10*)) > STAR gradient
us < ur + Vo, Lo (@, yt, fo,, Mt) > Generic CL method gradient
0111 < 0y — auy > Update parameters with both gradients
Mt+1 <~ Sample(Mt7 Lt yt)
end for
return 6,

5 EXPERIMENTS

To evaluate the effectiveness of our method, we conduct comprehensive experiments on various CL
benchmarks. We adhere to the challenging class-incremental CL scenario, where the task identity
of samples is not known during inference, and the model uses a single classification head for all
tasks. We incorporate STAR as a plug-and-play component into various SOTA CL frameworks to
demonstrate significant improvement, and also compare against existing plug-and-play SOTA CL
methods. Additionally, we perform exploratory experiments and an ablation study on the different
components of our method.

5.1 EXPERIMENTAL SETTING

Datasets. We evaluate STAR on three mainstream CL benchmark datasets. Split-CIFAR10 and
Split-CIFAR100 are the CIFAR10/100 datasets (Krizhevsky et al.,[2009), split into 5 disjoint tasks
of 2 and 20 classes respectively. Split-minilmagenet is a subsampled version of the Imagenet dataset
(Deng et al.,|2009), split into 20 disjoint tasks of 5 classes each. Both CIFAR10 and CIFAR100 are
comprised of 32x32 input images, while Minilmagenet uses 84x84 input sizes. Following previous
works (Bonicelli et al., 2022 [Wang et al.;2023)), for CIFAR10-100 we use a batch size of 32 and 50
epochs per task. For minilmagenet we use a batch size of 128 and 80 epochs per task. For a full list
of hyperparameters, see appendix [F|

Comparing Baselines. STAR is a plug-and-play CL framework that can be combined with any
rehearsal-based CL method. We combine STAR with ER(Chaudhry et al.|[2019), ER-ACE Caccia
et al.| (2022), X-DER-RPC (Boschini et al., [2022) and DER++ (Buzzega et al., [2020) as SOTA
rehearsal-based methods, to demonstrate the gains in performance.
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Additionally, following Bonicelli et al.| (2022), we compare with existing SOTA regularization-based
methods applied as enhancements to rehearsal-based methods. We use ER-ACE and DER++ as
representative baselines and add each method to both and compare the performance improvements.
We compare to sSSGD (Mirzadeh et al., 2020b), oEwC (Schwarz et al., 2018)), OCM(Guo et al., [2022),
LiDER (Bonicelli et al.} [2022) and DualHSIC (Wang et al.,|2023). Naturally, we would prefer to
also compare against DPCL (Lee et al., [2024). However, the experimental setting in their paper
is the online CL setting (which is different than ours). Furthermore, they do not open-source their
implementation, thus we cannot compare against DPCL in a fair and reasonable fashion.

Finally, for reference, we include the Sequential baseline which consists of performing CL training
without any enhancements to facilitate CL, such as rehearsal or regularization. We also include a
potential upper bound on performance, termed Joint, which consists of training with access to the all
of the training data in an i.i.d. manner.

Evaluation Metrics. Following previous works |(Chaudhry et al.| (2019)); |Lopez-Paz & Ranzato
(2017);|Wang et al.| (2023)), we report average accuracy in all tables, and refer readers to appendix
for final forgetting values. The formal definitions of these metrics, as well as information about error
bars and number of runs are presented in appendix

5.2 INTEGRATING STAR WITH REHEARSAL-BASED CL BASELINES

In this section, we empirically evaluate the effect of integrating STAR with various rehearsal-based
CL baselines. STAR can be combined with most SOTA baselines to improve their performance.
We present the results in Table|l|and observe that STAR consistently improves performance across
different methods and rehearsal buffer sizes. Notably, even simple baselines like ER benefit from
integrating STAR, as well as more complex methods like X-DER, which incorporates numerous
enhancements to the baseline rehearsal method. Therefore, including the STAR regularization
improves performance for a wide range of rehearsal-based methods.

Table 1: Comparison of adding STAR to baseline rehearsal-based CL methods in terms of average
accuracy.

Method || Split-Cifar10 | Split-Cifar100 | Split-minilmageNet

Sequential 19.67 9.29 4.51
Joint 92.38 73.29 53.55

Buffer Size || 100 | 200 | 500 | 200 | 500 | 2000 | 1000 | 2000 | 5000

ER 36.39 | 44.79 | 57.74 | 1435 | 19.66 | 36.76 | 8.37 16.49 | 24.17

+ STAR (ours) 51.5 59.3 | 70.70 | 19.64 | 29.64 | 44.65 | 11.83 | 16.64 | 25.83

ER-ACE 5295 | 61.25 | 71.16 | 29.22 | 38.01 | 49.95 | 17.95 | 22.60 | 27.92

+ STAR (ours) || 60.69 | 67.58 | 75.44 | 30.38 | 40.20 | 51.67 | 21.06 | 249 | 31.01

DER++ 57.65 | 64.88 | 72.70 | 25.11 | 37.13 | 52.08 | 18.02 | 23.44 | 30.43

+ STAR (ours) || 61.76 | 68.60 | 76.52 | 27.64 | 39.77 | 53.24 | 224 | 28.19 | 33.36

X-DER (RPC) 5275 | 58.48 | 64.77 | 37.23 | 48.53 | 57.00 | 23.19 | 26.38 | 29.91

+ STAR (ours) || 58.85 | 6594 | 69.19 | 38.15 | 47.56 | 57.55 | 24.6 | 27.95 | 32.6

5.3 COMPARISON WITH OTHER ENHANCEMENTS OF REHEARSAL-BASED METHODS

Having established that STAR can be combined with various baselines to improve performance, we
now evaluate STAR against existing approaches that seek to enhance rehearsal-based baselines. The
results are presented in Table[2] STAR achieves superior performance in most scenarios and is closely
competitive in all other settings. In particular, STAR performs exceptionally well with smaller buffer
sizes. This is in line with our intuition: With smaller buffer sizes, fewer samples are retained in the
buffer and replayed in future time steps. However, STAR promotes stability in the output distribution
across future updates regardless of whether or not a sample is still in the buffer in the future. Hence,
it is able to achieve considerable performance boosts.
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Table 2: Comparison with other regularization methods in average accuracy, our results are high-
lighted. The best results are bold, and second-best are underlined.

Method || Split-Cifar10 | Split-Cifar100 |  Split-minilmageNet
Buffer Size ‘ ‘ 100 ‘ 200 ‘ 500 ‘ 200 ‘ 500 ‘ 2000 ‘ 1000 ‘ 2000 ‘ 5000
ER-ACE 53.90 | 63.41 | 70.53 | 26.28 | 36.48 | 48.41 | 17.95 | 22.60 | 27.92
+sSGD 56.26 | 64.73 | 71.45 | 28.07 | 39.59 | 49.70 | 18.11 | 22.43 | 24.12
+ oEWC 52.36 | 61.09 | 68.70 | 24.93 | 35.06 | 45.59 | 19.04 | 24.32 | 29.46
+OCM 57.18 | 64.65 | 70.86 | 28.18 | 37.74 | 49.03 | 20.32 | 24.32 | 28.57
+LiDER 56.08 | 65.32 | 71.75 | 27.94 | 38.43 | 50.32 | 19.69 | 24.13 | 30.00

+DualHSIC 57.03 | 64.05 | 72.35 | 30.97 | 39.73 | 49.94 | 20.75 | 25.65 | 31.16
+ STAR (ours) || 60.69 | 67.58 | 75.44 | 30.38 | 40.20 | 51.67 | 21.06 | 249 | 31.01

DER++ 57.65 | 64.88 | 72770 | 25.11 | 37.13 | 52.08 | 18.02 | 23.44 | 30.43
+sSGD 55.81 | 64.44 | 72.05 | 2476 | 38.48 | 50.74 | 1631 | 19.29 | 24.24
+oEWC 5578 | 63.02 | 71.64 | 2451 | 35.22 | 51.53 | 18.87 | 24.53 | 3191
+0OCM 59.25 | 65.81 | 73.53 | 27.46 | 38.94 | 5225 | 2093 | 24.75 | 31.16
+LiDER 58.43 | 66.02 | 73.39 | 27.32 | 39.25 | 53.27 | 21.58 | 28.33 | 35.04

+DualHSIC 5890 | 67.11 | 74.34 | 22.44 | 39.16 | 54.07 | 21.73 | 27.42 | 33.74
+ STAR (ours) || 61.76 | 68.60 | 76.52 | 27.64 | 39.77 | 53.24 | 224 | 28.19 | 33.36

5.4 ABLATION AND EXPLORATORY EXPERIMENTS

Ablation Study. We explore the contributions of different components of STAR towards the overall
performance. Specifically, we study the effect of two key components of our loss function eq. (7):

* z* vs. x: Using only correctly classified buffer samples * versus using all buffer samples
x in the STAR loss function.

* V vs. z: Perturbing the weights by the gradient of our forgetting surrogate in eq. (3) V
versus a random perturbation of the same magnitude by replacing ¢ in eq. with Gaussian

W),
noise z, i.e., 8V = v%z(”, 20~ N(0,T).

We study the contribution of each component towards the final performance by conducting a series of
experiments adding one component at a time while keeping other hyper-parameters fixed. The results
on the S-CIFAR10 dataset are presented in Table [3|and show that each component is important to the
final performance increase across different buffer sizes.

Notably, the biggest gain in performance corresponds to using the gradient of the stability loss for
weight perturbation, as opposed to a random perturbation of the same magnitude (Table [3]rows two
and three vs the last two rows). This aligns with our intuition, as using the gradient corresponds to
optimizing the worst-case scenario which acts as an upper bound on the local neighborhood. This
increases the flexibility for future parameter updates. On the other hand, a random perturbation only
improves the average in the local neighborhood.

Visualizing our Forgetting Surrogate. In this section we perform an experiment to validate our
claim that our proposed STAR loss function eq. is indeed optimizing our forgetting surrogate
eq. (B) in the local neighborhood. In section 4] we noted that eq. (5 relies on parameters from the
future and thus cannot be optimized directly during training. However, we can conduct a post-hoc
exploratory experiment and directly measure Lp¢ (eq. (3))) empirically after training is complete
as we have access to parameters across training. For this purpose, let 6, be the model parameters
immediately after training on the ith task in the S-CIFAR10 dataset. For each task i, we measure
L (04, 0:) fort > t; on the test set for task . Moreover, to verify we are optimizing the worst-case
of our surrogate as well, we measure Lpg(6y,, 0;) as well, where 6] is 6, after 5 gradient ascent steps
as detailed in section We repeat the experiment with and without including STAR and plot the
results in Figure [3] The results show a significant decrease in divergence of future model output
distributions when using STAR, as expected.

Choice of Buffer Data or Current Task Data. Ineq. @), we use data from the buffer as a surrogate
for all past distributions. However, one can argue that adding incoming current task data to the mix
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can improve the consistency of model predictions for the current task and further reduce forgetting.
In Table 4] we experiment with using current task data in the STAR loss function. We find that
combining both buffer and current task data does not lead to any significant improvements, and using
only current task data causes a significant increase in forgetting. We hypothesize two reasons as to
why. Firstly, if we only use current task data and not buffer data, once the data distribution shift
occurs, the consistency of predictions for previous data is no longer considered. This shift in objective
leads to a shift in the corresponding minima for the rehearsal loss, reducing stability significantly.
Secondly, our objective seeks to keep the overall output distribution of already learned samples
consistent. However, in contrast to buffered samples, the output distribution of current samples are
not fully trained and therefore keeping them consistent does not necessarily benefit performance.

— ER+STAR - ER + STAR (Worst) ~—— ER - ER (Worst)
Task 1 Task 2 Task 3 Task 4

10] Lo

KL Divergence (£rs(6¢]6:))

w

50 100 T|m1201t) 200 250 100 150 Time (8 200 250 150 leigﬂm 250 200 Time (8 250
Figure 3: KL Divergence of the correctly classified samples of the test set of each task for the
S-CIFAR10 Dataset, between model predictions immediately after training on that task, and future
parameter points during training. ”Worst” indicates the KL Divergence after multiple gradient ascent
steps as detailed in section@

Table 3: Effect of method components on av-  Table 4: Effect of using current task data for
erage accuracy. The second column represents  Lg74pr as measured in average accuracy. The
whether only correctly classified samples (z*)  highlighted row represents the proposed setting
or all samples (x) were used in STAR, the third  for STAR.

column represents whether the weight perturba-
tion for calculating the loss is VL g or random Method | Buffer | Current | 100 | 200 | 500
noise (z). All other hyper-parameters are fixed.

DER++ | - | - | 5752 | 6507 | 73.05
. ) 34.
Method | z*vs.z | Vevs.z | 100 | 200 | 500 + STAR ‘); ‘)/( ?11 32 (35(8) 2(9) 7§ gg
DER++ | - | - | 5536 | 62.97 | 70.48 4 v 58.88 | 52.55 | 75.48
+STAR x z 56.28 | 63.15 | 72.38
x* z 56.20 | 66.82 | 72.51
x Vo 60.83 | 67.03 | 75.11

*

v Vo 61.76 | 68.06 | 76.52

6 CONCLUSION

The principal challenge of Continual Learning is overcoming catastrophic forgetting. Inspired by
stability-plasticity trade-off, we propose using the divergence in model output distribution for correctly
classified samples as a novel surrogate for forgetting. Subsequently, we introduce STAR, which is a
regularizer for boosting the performance of rehearsal-based continual learners. STAR exploits the
worst-case parameter perturbation that reduces the KL-divergence of model predictions with that of
its local parameter neighborhood to promote stability and alleviate forgetting. Our loss function can
be used as a plug-and-play component to improve any rehearsal-based CL method. We demonstrate
the superior performance of STAR through extensive experiments on various CL benchmarks against
state-of-the-art continual learners. Our novel proposed formulation and methodology provides a new
perspective for CL research via optimizing the change in model prediction distribution across the
local parameter-space.

10
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ETHICS STATEMENT

STAR is a plug-and-play enhancement that can be integrated into almost any rehearsal-based CL
method. Therefore, we should address the baseline CL method used for STAR in terms of fairness
and bias (Mehrabi et al.| 2021) as it could extend into the resulting model from STAR. Moreover,
extra measures should be taken when it comes to user data privacy (Al-Rubaie & Chang 2019) or
robustness to adversaries (Madry et al.l 2018)) in safety-critical applications.

REPRODUCIBILITY STATEMENT

We present thorough explainations of implementation details for STAR in section[d.3] as well as a
detailed pseudo-code in algorithm [I| Moreover, we present details of our experimental settings in
section and appendix [A] as well all the used hyper-parameters in table[§] Furthermore, we have
made our implementation publicly available on Githu
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SUPPLEMENTARY MATERIAL

A ADDITIONAL EXPERIMENTAL DETAILS

Definition of Evaluation Metrics Assuming the dataset has & disjoint tasks, average accuracy A,
and final forgetting F’; at final training timestep 7 can be computed as follows

k
1 Z
e k i=1 e (12)
1 k -1
. v 13
k-1 i=1 je{lrﬁr‘l-a.:}lifl}[azvt] ag, } )

where a; ; is the accuracy on the ith task test set evaluated on model parameterized by 6; and ¢; is the
timestamp after training on data from the jth task.

For each experiment, we averaged over 5 runs with different seeds. The error bars are presented in
Table[6] All experiments were run on a single Nvidia RTX A6000 GPU.

Following previous works (Bonicelli et al., [2022), we use the ResNet18 (He et al.| [2016)) archi-
tecture for CIFAR10 and CIFAR100 datasets and the efficient-net b2 (Tanl [2019) architecture for
minilmagenet.

B FORGETTING VALUES

We present forgetting values in Table[5] Consistent with the increase in average accuracy when using
STAR, we observe that the forgetting is comparable or significantly reduced when STAR is integrated
with the baseline CL objectives.

13
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Method || Split-Cifar10 | Split-Cifar100 | Split-minilmageNet
Buffer Size || 100 | 200 | 500 | 200 | 500 | 2000 | 1000 | 2000 | 5000
ER 55.90 | 44.46 | 38.15 | 70.17 | 63.92 | 46.56 | 63.55 | 54.14 | 41.32
+ STAR (ours) || 42.03 | 36.22 | 20.39 | 72.54 | 61.76 | 41.97 | 69.41 | 6297 | 49.76
ER-ACE 2276 | 18.30 | 14.96 | 50.63 | 38.21 | 27.90 | 29.82 | 23.74 | 19.72
+ STAR (ours) || 21.01 | 19.32 | 12.03 | 39.50 | 34.45 | 24.62 | 26.70 | 25.11 | 20.38
DER++ 40.25 | 30.06 | 21.85 | 6292 | 49.80 | 31.10 | 63.40 | 46.69 | 37.11
+ STAR (ours) || 33.87 | 21.29 | 1791 | 52.94 | 40.46 | 27.64 | 36.59 | 26.77 | 27.47
X-DER (RPC) 18.72 | 15.16 | 12.29 | 41.58 | 31.84 | 17.01 | 48.67 | 38.33 | 28.29
+ STAR (ours) || 17.38 | 13.36 | 10.46 | 29.79 | 26.10 | 14.46 | 27.36 | 22.37 | 16.78

Table 5: Final Forgetting (FF) values for Table Lower is better.

Method || Split-Cifar10 |  Split-Cifar100 | Split-minilmageNet

Buffer Size || 100 | 200 | 500 | 200 | 500 | 2000 | 1000 | 2000 | 5000

ER * 123 | 1.64 | 097 | 0.64 | 1.56 | 094 | 1.11 | 093 1.46

+ STAR (ours) 6.28 | 490 | 2.16 | 1.01 | 1.13 | 3.52 | 0.28 | 0.56 | 0.16
ER-ACE* 0.88 | 0.79 | 0.99 | 1.12 - - 0.43 - -

+ STAR (ours) 1.64 | 1.41 | 0.54 | 1.69 | 0.57 | 0.14 | 042 | 0.53 | 0.14
DER++%* 1.90 | 091 | 0.53 | 1.32 - - 1.42 - -

+ STAR (ours) 195 | 1.10 | 094 | 0.51 | 059 | 1.22 | 1.77 | 1.07 | 0.55
X-DER (RPC)* 0.76 | 1.49 | 2.07 | 2.26 - - 0.73 - -

+ STAR (ours) 1.66 | 1.15 | 1.22 | 0.61 | 0.46 | 0.27 | 040 | 093 | 0.57

Table 6: Standard deviation of the average accuracies reported in Table[l] **° means the result was
taken from existing works, ’-> means the error bar was not provided in the original work

C RUNNING TIME

STAR uses worst-case weight perturbation to improve rehearsal-based continual learning. While
STAR requires additional computation, namely two extra optimization steps per batch, we believe
this cost is not prohibitive and it is natural to have a trade-off of performance and computation cost.
For the sake of completeness, we report the running time of the experiments of Table |1|in Table
below.

Method || Split-Cifar10 | Split-Cifar100 | Split-minilmageNet

ER * 47 52 142

+ STAR (ours) 106 77 305
ER-ACE* 49 57 146

+ STAR (ours) 87 112 296
DER++* 71 76 259

+ STAR (ours) 124 109 372
X-DER (RPC)* 64 77 241
+ STAR (ours) 107 130 396

Table 7: Running time of methods (mins) for Table

D NUMBER OF STEPS

We experiment with taking multiple gradient steps as opposed to one, for calculating the weight
perturbation in eq. (7). We present the results in fig. [d] and show that taking three gradient steps can
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Figure 4: Effect of Number of Gradient Steps in the Maximization Objective on Performance as
Measured in Average Accuracy
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Figure 5: Contour lines of the cross entropy loss values, on the set of tasks seen so far (darker is
lower). STAR leads to larger low loss regions.

sometimes lead to a slight increase in performance, at the cost of extra computation. Additionally, we
see that beyond that leads to a reduction in the performance gain. We hypothesize that this is due to
the gradient approximation discussed in section[f.3] As we take more and more optimization steps,
the gradient approximation becomes less accurate, leading to less improvements.

E EMPIRICAL VISUALIZATION OF THE L0OSS LANDSCAPE

Figure[I]and Figure 2] are conceptual illustrations meant to convey the intuition of our methodology.
For the sake of completeness, we conduct an empirical visualization of the cross-entropy loss
landscape. While training on the S-CIFAR10 dataset, we record the weights of the network after
training on each task and visualize the loss on the test set of the tasks seen so far. To visualize the loss,
we perturb the network along two random (multivariate standard Gaussian) directions, normalized in
the same scheme as detailed in section[d.3] We repeat the same experiment on ER with and without
applying STAR while starting from the same seed, and present the visualization in Figure[5] We
can see that applying STAR leads to loss minima with a larger low-loss region, leading to more
“flexibility” for future parameter updates.

F HYPER-PARAMETERS FOR STAR

We find our hyperparameters using grid-search on a validation set. We present our hyperparameters in
table[8] For any missing hyperparameters, we refer the readers to the works of Buzzega et al| (2020);
Bonicelli et al| (2022)); Boschini et al.| (2022) as we used the same values.
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Dataset

Seq-CIFAR10

| Seq-CIFAR100

Seq-minilmageNet

Buffer Size | 100 | 200 | 500 | 200 | 500 | 2000 |

1000 | 2000 | 5000

ER + STAR
Ir 0.1 0.1 0.1 0.1 0.1 0.05 0.1 0.1 0.1
YSTAR 0.01 0.01 0.01 | 0.05 | 0.05 | 0.05 0.01 0.05 0.01
ASTAR 0.1 0.1 0.1 0.05 | 0.05 | 0.05 0.1 0.1 0.1
ER-ACE + STAR
Ir 0.03 0.03 0.03 | 0.05 | 0.05 | 0.05 0.1 0.1 0.1
YSTAR 0.01 0.01 0.01 | 0.05 | 0.05 | 0.05 0.01 0.05 0.01
ASTAR 0.1 0.05 0.1 0.05 | 0.05 | 0.05 0.1 0.1 0.1
DER++ + STAR
Ir 0.1 0.1 0.1 0.03 | 0.03 | 0.03 0.1 0.1 0.1
YSTAR 0.05 0.05 0.05 | 0.03 | 0.03 | 0.03 0.01 0.01 | 0.005
ASTAR 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.1
« 0.15 0.15 0.15 0.2 0.4 0.4 0.3 0.2 0.3
I5] 0.15 0.15 0.15 0.3 0.2 0.3 0.1 0.1 0.4
XDER-RPC + STAR
Ir 0.03 0.03 0.03 | 0.03 | 0.03 | 0.03 0.1 0.1 0.1
YSTAR 0.001 | 0.001 | 0.001 | 0.05 | 0.01 | 0.01 | 0.001 | 0.001 | 0.001
ASTAR 0.01 0.01 0.01 | 0.05 | 0.05 | 0.05 0.01 0.01 0.01

Table 8: Choice of hyperparameters for combination of STAR and CL baselines.
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