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ABSTRACT

Integrating information while recognizing dependence from multiple data sources
and enhancing the predictive performance of the multi-output regression are chal-
lenging tasks. Multioutput Gaussian Process (MOGP) methods offer outstanding
solutions with tractable predictions and uncertainty quantification. However, their
practical applications are hindered by high computational complexity and storage
demand. Additionally, there exist model mismatches in existing MOGP models
when dealing with non-Gaussian data. To improve the model representation abil-
ity in terms of flexibility, optimality, and scalability, this paper introduces a novel
multi-output regression framework, termed Graphical MOGP (GMOGP), which
is empowered by: (i) Generating flexible Gaussian process priors consolidated
from identified parents, (ii) providing dependent processes with attention-based
graphical representations, and (iii) achieving Pareto optimal solutions of kernel
hyperparameters via a distributed learning framework. Numerical results confirm
that the proposed GMOGP significantly outperforms state-of-the-art MOGP al-
ternatives in predictive performance, as well as in time and memory efficiency,
across various synthetic and real datasets.

1 INTRODUCTION

For inference on functions, the Gaussian Process (GP) serves as the most prominent Bayesian non-
parametric model, offering not only function values but also predictive distributions. Capturing
the input-output relationship with a multivariate Gaussian at finite locations grants tractable pre-
dictions and predictive uncertainty (Rasmussen & Williams, 2006). The scenarios where resource
constraints impede the collection of ample data samples motivate the development of Multioutput
GP (MOGP) models, as the MOGP can correlate data from multiple diverse sources and obtain
better predictive accuracy than isolated models. Practical applications of the existing MOGP meth-
ods are widespread, such as time-series analysis (Dürichen et al., 2014), water resource forecasting
(Pastrana-Cortés et al., 2023), and group-structured data clustering (Leroy et al., 2023).

The popular MOGP models are mainly rooted in the Linear Model of Coregionalization (LMC) pro-
posed by Goulard & Voltz (1992). Modeling all outputs as the linear combinations of shared latent
GPs, the LMC correlates the diverse data by a covariance matrix. There also exist other MOGP
models, such as (1) transformation-based models that treat outputs as augmented inputs, transform-
ing the MOGP into a sequence of single output GPs (Requeima et al., 2019); (2) discrepancy-based
models, which focus on transferring information from low-fidelity outputs to progressively enhance
the performance of high-fidelity target outputs (Perdikaris et al., 2017; Requeima et al., 2019). How-
ever, the challenges of providing understandable output correlations and a probable output hierarchy
have impeded their advancement. To date, improved learning performance of the LMC is achieved
by deriving representative covariance functions (Bonilla et al., 2007; Wilson et al., 2012; Dai et al.,
2020; Chen et al., 2022), by adapting common mean process (Leroy et al., 2022), and by introducing
neural embeddings or efficient frameworks (Liu et al., 2022; Chung & Al Kontar, 2023). However,
the predictive performance of the LMC-based models may be inferior to that of isolated GPs when
sufficient training data exists for each output (Bruinsma et al., 2020). See the results in Section 5.

∗The corresponding author is Feng Yin. Our code is available at https://github.com/Blspdianna/GMOGP.
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In this paper, we propose a novel multi-output regression framework, termed graphical MOGP
(GMOGP). Unlike the LMC, which interprets the output correlations by covariance based on a set
of shared GPs, the GMOGP, built upon a probability graphical model, can directly learn the condi-
tional dependence and imply graphical representations of the multiple outputs. Moreover, learning
the kernel hyperparameters of the GMOGP can be formulated as a multi-objective optimization
(MOO) problem with Pareto optimal solutions. Further extensions by non-linear transformations
make the transformed GMOGP (TGMOGP) available to fit non-Gaussian data. Enhanced predictive
accuracy and efficiency validate the efficacy of the GMOGP across various synthetic/real datasets.

2 BACKGROUND

This section concludes basic concepts and notations in Gaussian process regression (GPR), serving
as the bedrock of the upcoming GMOGP framework detailed in Section 3.

2.1 GAUSSIAN PROCESS REGRESSION

A GP characterizes a distribution over functions fully by a mean functionm(x) and a kernel function
k(x,x′;θ), i.e.,

f(x) ∼ GP (m(x), k(x,x′;θ)) . (1)

The commonly used squared exponential (SE) kernel, kSE(x,x′; l, σ2
f ) = σ2

f ·exp(−‖x− x′‖2 /l2),
is parametrized by a length-scale l and a signal variance σ2

f (Rasmussen & Williams, 2006). Given
a dataset D : {X,y} = {xn, yn}Nn=1, the GPR model can be described as:

yn = f(xn) + εn, n = 1, 2, . . . , N, (2)

where xn ∈ Rd denotes an input location, and the noise εn is assumed i.i.d with εn ∼ N (0, σ2). In
particular, the scalar-valued observations {yn ∈ R}Nn=1 direct single-output GP (SOGP) models.

2.1.1 MULTIOUTPUT GAUSSIAN PROCESS

For multi-output regression, an MOGP can be derived as:

f(x) ∼ GP(mM (x),KM (x,x′;θM )), (3)

where the vector-valued function f(x) = [f (1)(x), f (2)(x), . . . , f (S)(x)](S>1) is determined by the
mean functionmM (x) ∈ RS and the matrix-valued kernel function KM (x,x′) ∈ RS×S . Note that
the hyperparameters θM are searched in a vector-valued reproducing kernel Hilbert space (RKHS).

At finite locations X ∈ RN×d, the prior and the likelihood of the MOGP has the following forms:

(Prior): p(f(X)) = N (mM (X),KM (X,X;θM )) (4)
(Likelihood): p(Y |f, X,Σ) = N (f(X),Σ⊗ IN ), (5)

where Y =[y(1), . . .y(i), . . . ,y(S)] ∈ RNS , and y(i)={y(i)
n ∈R}Nn=1 are the labels of the ith output.

The noise terms are assumed to have zero mean and a covariance matrix Σ = diag{σ2
1 , σ

2
2 , . . . , σ

2
S}.

The kernel function for the MOGP prior evaluated at X is derived as follows:

KM (X,X;θM ) =

 K11(X,X;θ
11

) · · · K1S(X,X;θ
1S

)
...

. . .
...

KS1(X,X;θ
S1

) · · · KSS(X,X;θ
SS

)

 ∈ RSN×SN . (6)

Generally, we train the MOGP models by minimizing their negative log marginal likelihood (NLL):

L{θM ,Σ} ∝ Ỹ
T (KM (X,X;θM ) + Σ)−1Ỹ + log |KM (X,X;θM ) + Σ| , (7)

with Ỹ = Y −mM (X), and Σ = Σ ⊗ IN . Integrating over the parameter space differentiates the
marginal likelihood methods from other non-Bayesian counterparts. The automatic incorporation
of a trade-off between model fit and model complexity renders the marginal likelihood a valuable
metric for model selection (Schölkopf et al., 2002; Micchelli & Pontil, 2005). Conditioning the joint
Gaussian prior on the observations, the predictive distribution for a test input x∗ turns out to be:

p(f∗|x∗, X, Y,θM ) = N (̄f∗,V∗) (8)
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with (omitting kernel hyperparameters){
f̄∗ = KM (x∗, X)(KM (X,X) + Σ)−1Y (9)

V∗ = KM (x∗,x∗)−KM (x∗, X)(KM (X,X) + Σ)−1KM (X,x∗). (10)
In order to infer the underlying functions and correlate the multiple outputs, the LMC models tailor
distinct coefficients to each output via Q shared independent GPs. The elements of their kernel
functions (Eq.(6)) are formulated as (Ki,i′(x,x

′)) =
∑Q
q=1 aiqai′qkq(x,x

′), where i, i′ ∈ I, I :=

{1, 2, . . . , S}, and different modes of the coefficients aiqai′q correspond to varied LMC variants
(Alvarez et al., 2012; Liu et al., 2018). Although the LMC can generate dependent processes and
measure output correlation, their applications are narrowed by two significant impediments: (i) The
computational and storage burdens associated with the SN -dimensional correlation matrix, and
(ii) model mismatch/inflexibility when the underlying likelihood (Eq.(5)) deviates from Gaussian
distributions. Given these challenges, an alternative framework that can leverage the advantages of
MOGPs, generate flexible prior/predictive distributions, and freely accommodate various efficient
learning methods is considered in Section 3.

3 GRAPHICAL MULTIOUTPUT GAUSSIAN PROCESS

Ubiquitously, there exists interplay among the multiple outputs, giving rise to varied research, e.g.,
graph construction, transfer learning, and multi-task learning (Qiao et al., 2018; Vandenhende et al.,
2021). For instance, the dependence (denoted by arrows) between a target output (marked in yellow)
and the other six outputs can be described by a graphical representation shown in Figure 1(a). In the
multi-output regression, the strong bond between the trend of the target CO2 and Temperature has
been well discovered (solid link), while the other bonds are vague (dashed link) and worth exploring.
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Figure 1: Illustrations of: (a) a graphical representation among the target CO2 and the other outputs,
(b) an example of a directed acyclic graph (the cross means that there are no directed cycles).

As directed graphical models (a.k.a. Bayesian network) can express the conditional dependence
structure among random variables and make probabilistic statements for a broad class of distribu-
tions based on a specific graph (Koller & Friedman, 2009), we propose a graphical MOGP model to
learn the output dependence jointly with the regression task.

Mathematically, a graph is built with nodes and links. In the directed graphical model, each node can
represent random variables, while the links convey probabilistic dependence and have directionality
indicated by arrows. For example, given nodes {v1, v2, . . . , v6} and graph Gv shown in Figure 1(b),
the joint distribution can be decomposed by repeatedly applying the product rule of probability:

p(v1, v2, . . . , v6) = p(v6|v1, v2, v3, v4, v5)p(v5|v1, v2, v3, v4) . . . p(v2|v1)p(v1) (11)
Gv= p(v6|v1, v2, v3, v5)p(v5|v2, v4)p(v4|v1, v3)p(v3|v2)p(v2)p(v1). (12)

The Eq.(12) is derived according to the conditional independence, e.g., p(v6|v1, v2, v3, v4, v5) =
p(v6|v1, v2, v3, v5), as there is no link from node v4 to v6 in the graph Gv . In more general terms,
the joint distribution of multiple nodes v = {vi}i∈I defined by a graph can be expressed as:

p(v) =

S∏
i=1

p(vi|pai), (13)

where pai denotes the parents1 of vi, e.g., pa6 = {v1, v2, v3, v5} in Eq.(12). Note that the joint
distribution only admits directed acyclic graphs; see more details in (Bishop & Nasrabadi, 2006).

1If there exists a link going from a node i to a node j, the node i is regarded as the parent of the node j.
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Accordingly, for S > 1 outputs, we can model each output as an SOGP, and generate multivariate
Gaussian random variables evaluated at X (represented by node f (j)

X , j ∈ I). Following the result
in Eq. (13), the joint distribution defined by the specific graph structure, with the target node f (i)

X
(representing theCO2) connected to the heads of arrows (see Figure 1(a)), can be derived as follows:

p(f
(1)
X , f

(2)
X , . . . , f

(S)
X ) = p(f

(i)
X

∣∣pai)
∏
j∈pai

p(f
(j)
X ). (14)

Since the links are unknown in practice, the parents of the target node are assumed to contain all
other nodes (except the target one) at first, i.e., pai = {f (1)

X , f
(2)
X , . . . , f

(S)
X }/{f

(i)
X }, and can be

adjusted via an attention mechanism detailed in Section 3.2. Alternately, we can treat each output
as the target node (represented by f (i)

X , i ∈ I), and learn the conditional dependence on the other
nodes. The diagrammatic illustration of the output bonds and the graph with respect to different
target at the first stage (all vague) is given in Figure 2. Moreover, conditioning on the target node,
the parents are dependent (see Remark 3.1), which paves the way to generate dependent processes.
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Figure 2: Illustration of the bonds among six outputs and the dependence structure between the
different target (marked in yellow) and its parents (marked in purple) at the first stage.

Remark 3.1 (Conditional Dependence). Defined by the specific graph with joint distribution form:
p(f

(i)
X , f

(j)
X , f

(k)
X ) = p(f

(i)
X |f

(j)
X , f

(k)
X )p(f

(j)
X )p(f

(k)
X ), if conditioning on the target f (i)

X , the condi-
tional distribution p(f (j)

X , f
(k)
X |f

(i)
X ) = p(f

(j)
X )p(f

(k)
X )p(f

(i)
X |f

(j)
X , f

(k)
X )/p(f

(i)
X ), yielding the par-

ents f (j)
X and f (k)

X are dependent, i.e., f (j)
X 6⊥⊥ f (k)

X |f
(i)
X .

3.1 GRAPHICAL MULTIOUTPUT GAUSSIAN PROCESS PRIOR

Bayesian methods are invaluable within the machine learning community due to the ability to in-
corporate prior knowledge. Appropriate prior beliefs can represent detailed inductive bias, improve
interpretability, and prevent overfitting (Theodoridis, 2015; Lotfi et al., 2022). In the GMOGP, we
model the conditional distribution in Eq.(14) as Gaussian with aggregated information, namely,

p(f
(i)
X |pai) = N

(
f

(i)
X

∣∣∣ ∑
j∈pai

αi,jf
(j)
X +mi, kθi(X,X)

)
, i ∈ I, (15)

where αi,j ∈ R and mi are bias parameters added into the mean, and kθi(X,X) ∈ RN×N is a
covariance function. Conditioning on the states of its parents, each target node is of the form:

f
(i)
X =

∑
j∈pai

αi,jf
(j)
X +mi +ψi, (16)

withmi and ψi∼N (0, kθi(X,X)) characterizing the ith output. Given the parents with p(f (j)
X ) =

N (mj , kθj (X,X)) , we can derive the GMOGP prior via E(f
(i)
X ) =

∑
j∈pai

αi,jE(f
(j)
X ) +mi and

cov(f
(i)
X , f

(i)
X )=E

[
(f

(i)
X − E[f

(i)
X ])

{∑
j∈pai

αi,j(f
(j)
X − E[f

(j)
X ]) +ψi

}]
(see Proposition 3.1).

Proposition 3.1 (GMOGP Prior). In the multi-output regression, defined by the specific graph with
a target node and given its parents, the GMOGP prior for each target node (i ∈ I) follows p(f (i)

X ) =

N
(∑

j∈pai
αi,jmj+mi,

∑
j∈pai

α2
i,jkθj (X,X)+kθi(X,X)

)
. The proof is given in Appendix A.1.

Following the noise setting in Section 2.1.1, the posterior of the ith output is proportional to the
product of the prior and the likelihood, with hyperparameters Θ := {θj}j∈I and αi := {αi,j}j∈pai ,

p(y(i), f
(i)
X ; Θ,αi, σi) = p(f

(i)
X ; Θ,αi)p(y

(i)|f (i)
X ;σi). (17)

4



Published as a conference paper at ICLR 2024

Enhanced representation ability provided by the graph structure in the input space has been demon-
strated in recent graph GP methods, such as Ng et al. (2018) and Fang et al. (2021), in which the
graph structures among the input features are well discovered. For the multiple outputs, the graph
structure is unclear and intriguing. To learn the graph while improving the performance of the multi-
output regression, we propose to incorporate the attention mechanism into the GMOGP to modify
the parents, as the attention-based graph construction methods have shown impressive performance,
such as (Vaswani et al., 2017; Veličković et al., 2018; Kim & Oh, 2022).

3.2 LEARNING PARENTS WITH ATTENTION

Centering on theCO2 level (Figure 1(a)), the dependence on the number of vehicles, GDP level, and
the degree of education is obscured. Intuitively, highly conditional dependent parents deserve large
coefficients {αi,j}j∈pai . Without knowing the graph adjacency, such coefficients can be learned by
using an attention mechanism αi,j = exp(ei,j)/(1 +

∑
j∈pai

exp(ei,j)) and a scoring function:

ei,j = LeakyReLU
(
〈f (i)
X , f

(j)
X 〉wij + cij

)
, (18)

where the weights wij and bias cij are learning parameters. The inner product-based scoring func-
tion is widely used, as seen in works such as Vaswani et al. (2017) and Devlin et al. (2018), and
can reveal geometric constructions involving angles, lengths, and distances (Schölkopf et al., 2002).
An alternative scoring function employs the concatenation of inputs (Veličković et al., 2018; Brody
et al., 2022). However, existing scoring functions parametrized by common parameter matrices
showed static attention – a fixed node consistently achieves the highest attention (Brody et al., 2022).

In Eq.(18), we introduce a modified scoring function, which can achieve dynamic attention with the
aid of disparate learning parameters and non-linear function. The learned coefficients of various
real datasets are listed in Section 5 and Appendix B. In practice, we substitute the observation
values 〈y(i),y(j)〉 at the initial learning phase. When αi,j ≈ 0, the parents set pai is adjusted
by unlinking the node j (j ∈ I, j 6= i). For classic MOGPs, the dependence between outputs is
measured by symmetric covariance matrices. In comparison, our GMOGP can not only learn a more
flexible asymmetric dependence measure but also capture the covariance from cov(f

(j)
X , f

(i)
X ) =∑

j′∈pai
αi,j′cov(f

(j)
X , f

(j′)
X ) + Iijkθi(X,X), where Iij is the i, j element of the identity matrix

(see Appendix A.1). In addition, the GMOGP can handle heterotopic data (X(1) 6= X(2) 6=, . . . , 6=
X(S) 6= X) by introducing an extra weight matrix to Eq.(18) for aligning extracted input features.

3.3 MODEL LEARNING AND INFERENCE

In Section 2.1.1, all kernel hyperparameters are learned through the marginal likelihood L{θM ,Σ}.
Both computational/storage requirements and learning challenges, brought about by the high-
dimensional covariance matrix and multiple vector-valued RKHSs, impede the practical implemen-
tation of classic MOGPs (Yang et al., 2020). For the GMOGP model, each target node i, i ∈ I has its
own prior and likelihood (Eq.(17)). Accordingly, the type II maximum likelihood can be conducted
for every output, and the parameters corresponding to the ith output, i.e., γ(i) := {Θ,αi, σi}, can
be updated via minimizing:

L(i)

γ(i) ∝
{

(ỹ(i))T
(
k

(i)
G (X,X) + σ2

i IN

)−1

ỹ(i) + log
∣∣∣k(i)
G (X,X) + σ2

i IN

∣∣∣ }, (19)

where ỹ(i) = y(i)− (
∑
j∈pai

αi,jmj+mi), and k(i)
G (X,X)=

∑
j∈pai

α2
i,jkθj (X,X) +kθi(X,X).

Note that the size of the correlation matrix k
(i)
G (X,X) is much smaller than the KM (X,X) in

Eq.(6), and the hyperparameters Θ are shared among the multiple outputs for information exchange.
Instead of solving with a high-dimensional problem, the separate objective with the shared kernel
hyperparameters can be modeled by a multi-objective optimization (MOO) problem, i.e., F (Θ) =
[L(1)(Θ),L(2)(Θ), . . . ,L(S)(Θ)]T .Moreover, applying the weighted sum method with the objective
function:

∑S
i=1 wiL(i)(Θ), wi > 0, to solve the MOO problem provides a sufficient condition for

Pareto optimality2 of the kernel hyperparameters (Marler & Arora, 2010). In the GMOGP, the
2A solution point is Pareto optimal if it is not possible to move from that point and improve at least one

objective function without causing detriment to any other objective function (see details in Appendix A.5) .
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weights can be set equal, since there is no priority among the outputs, and each marginal likelihood
L(i)

γ(i) , i ∈ I follows a Gaussian that can be normalized so that no one dominates the objective.

To summarize, the proposed GMOGP empowers the vanilla MOGPs with: (i) The attention-based
asymmetric dependence measure (αij 6= αji), (ii) less computational and storage requirements,
and (iii) Pareto optimal solutions of the kernel hyperparameters and extra graphical representations.
Figure 3 presents the detailed workflow of the GMOGP hyperparameter optimization scheme. As a
separable model, each target node possesses distinct training samples and parents, undergoing an in-
dependent inference procedure (O(N3)). It contributes individual information via θi and aggregates
dependent information through shared θj, j∈pai , prompting the application of diverse distributed
learning schemes. Key distinctions between the distributed GMOGP and the classic distributed GP
(DGP) (Deisenroth & Ng, 2015) are summarized in Remark 3.2.

Global update step for

⋯ ⋯

𝑓∗
" (𝐱∗) 𝑓∗

# (𝐱∗) 𝑓∗
$ (𝐱∗)

pa!: pa": pa#:

Inference

Prediction

⋯

Figure 3: Illustrating the GMOGP workflow, each target output transmits individual knowledge
while aggregating optimized information from its parents, enabling separable training and inference.

Remark 3.2 (Distributed scheme). The distributed framework can learn all parameters jointly and
does not require adjustments, such as (i) simplifying approximations, e.g., the block diagonal ap-
proximation commonly employed in DGP approaches; (ii) extra prediction fusion methods, as the
prediction at x∗ can be separately inferred from k

(i)
G (x∗, X)(k

(i)
G (X,X) + σ2

i IN )−1y(i); (iii) data
segmentation and (iv) additional client selection methods, as we can apply the identified parents.

3.4 NON-GAUSSIAN GMOGP PRIOR

The Gaussian priors on functions are widely used in Bayesian machine learning literature, benefiting
from posterior consistency, tractable inference, and closed-form solutions (Rasmussen & Williams,
2006). Whereas, the case of non-Gaussian prior/likelihood is often overlooked and ubiquitous in
reality, e.g., heavy-tailed, bounded, and multimodal data (Snelson et al., 2003; Sendera et al., 2021).

Typical remedies include deep GP (DGP) (Damianou & Lawrence, 2013) and transformed GP (TGP)
(Rios & Tobar, 2019). The performance of the TGP, transformed by marginal flows, was tested
in (Maroñas et al., 2021) and demonstrated competitiveness with the DGP while incurring lower
computational costs. However, the naive application of marginal flows to MOGP models involves
untraceable learning procedures and inefficient high-dimensional approximation approaches, as 1D
quadrature cannot be utilized. Lately, a TGP model, tailored for multi-class classification, has been
proposed. It can generate dependent processes with different marginal flows from a single sample of
a latent process (Maroñas & Hernández-Lobato, 2023). In the context of the multi-output regression
problem addressed in this paper, the single latent function is neither sufficiently flexible nor accom-
modating distinct prior beliefs. Also, the strong dependence imposed by the single GP sample can
degrade regression performance, especially when dealing with low-quality or biased outputs.

In contrast, the GMOGP model is unconstrained in applying non-linear transformations (termed
flow). Concretely, extra model flexibility can be extended by compositing K element-wise invert-
ible transformations {Gφk : F 7→ F}K−1

k=0 . Correspondingly, each target node defined in Eq.(16)

aggregates non-linear relations, i.e., G
φ
(i)
k

(f
(i)
X ) = G

φ
(i)
k

(∑
j∈pai

αi,jf
(j)
X +mi +ψi

)
. Applying
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the inverse function theorem and the change of variable formula iteratively (Rezende & Mohamed,
2015), we can derive the transformed GMOGP prior as:

p
γ(i),Φi

(
f

(i)
K
X
|G, X

)
= p

γ(i)

(
f

(i)
0
X

)K−1∏
k=0

∣∣∣∣∣∣det
∂G

φ
(i)
k

(
f

(i)
k
X

)
∂f

(i)
k
X

∣∣∣∣∣∣
−1

,∀k ∈ {0, 1, . . . ,K − 1}, (20)

where f (i)
0
X

= f
(i)
X , and f (i)

k+1
X

= G
φ
(i)
k

(f
(i)
k
X

) with parameters Φi = {φ(i)
0 , φ

(i)
1 , . . . , φ

(i)
K−1}, such

as φ(i)
k = {ζk, ρk, λk} in Sinh-Archsinh (SAL) flow: G

φ
(i)
k

(xk) = ζk · sinh(ρk · arcsinh(xk)− λk).
We refer readers to Rios (2020) and Maroñas et al. (2021) for available flows and validity analysis.

Consolidating with the non-Gaussian prior, the transformed GMOGP (TGMOGP) can be easily
implemented by adapting the off-the-shelf sparse variational inference algorithms in Hensman et al.
(2015) or Maroñas et al. (2021) through optimizing the negative evidence lower bound (NELBO):

min
{γ(i),Φi,u

(i)
0 ,m(i)

u ,K(i)
u };

i=1,2,...,S

−

(
S∑
i=1

E
q
(
f
(i)
0
X

)[log p
(
y(i)|GΦi(f

(i)
0
X

)
)]

+ E
q
(
u

(i)
0

)
[

log
p(u

(i)
0 )

q(u
(i)
0 )

])
(21)

with inducing points u(i)
0 ∈RM ,M <<N and q(u(i)

0 ) = N (m
(i)
u ,K

(i)
u ). The detailed derivation

of the NELBO and variational gap are elaborated in Appendix A.2. For inference, by the law of the
unconscious statistician (LOTUS), the predictions of output i, i∈I can be estimated from the first
moment of predictive distribution: p(y(i)

∗ )=
∫
p
(
y

(i)
∗ |GΦi(f

(i)
0
X

)
)
q(f

(i)
0
X

)df
(i)
0
X

(Snelson et al., 2003).
In total, the dependencies of the variables in the GMOGP are concluded in the following Figure 4.
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Figure 4: Visualizing variable dependencies in the GMOGP. Each target output has their own par-
ents, transformations, and samples with knowledge exchanged by kernel hyperparameters θj, j∈pai .

4 RELATED WORK

The graph-based GP models have been widely developed in local structured feature spaces and rela-
tional learning discipline, resulting in the development of graph GP (Ng et al., 2018) and relational
GP (Chu et al., 2006; Silva et al., 2007). Without knowing neighbor graph structures or a com-
plete Laplacian matrix, attention-based graph construction methods have sprung up and have been
shown to be successful in supervised learning problems (Veličković et al., 2018). The idea of finding
neighborhoods using non-negative kernel (NNK) regression (Shekkizhar & Ortega, 2020) explores
geometric understanding and connections to the classic matching pursuit approach (Tropp & Gilbert,
2007). In the GMOGP framework, we can draw parallels with the kernel matching pursuit objec-
tive (Vincent & Bengio, 2002), where y

(i)
∗ = β̃k

(i)
G (X∗, X) can be regarded as matching through

constructed kernel dictionary and coefficient β̃ = (k
(i)
G (X,X) + σ2

i IN )−1y(i). Moreover, attention
mechanisms have been utilized in the multi-task learning community, such as the multi-task atten-
tion networks (MTAN) in (Liu et al., 2019). In addition, the weighted sum objective function has
been well-established for balancing task contributions (Vandenhende et al., 2021).

Regarding to the graph among the multiple outputs, the GMOGP introduces the probability graph-
ical model to the MOGP regression, leading to an efficient MOGP alternative with attention-based
flexible/non-Gaussian priors and various graphical representations.
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Table 1: The average test RMSE of the synthetic experiments described in Section 5.1. All metrics
are compared against the baselines: [1] Isolated SOGPs, [2] LMC (de Wolff et al., 2021), [3] free-
form task similarity model (FICM) (Bonilla et al., 2007), [4] Gaussian process regression network
(GPRN) (Wilson et al., 2012), and [5] convolution process (CMOGP) (Alvarez & Lawrence, 2011).
(lNF : The flow parameters, Vm : The variational parameters.)

Average RMSE Test NLL Kdim Number of Parameters

[1] SOGP 0.5653±0.0023 0.4891±0.0043 N 4S
[2] LMC 0.5917±0.0096 0.5543±0.0506 S ×N (2 + S)Q+ 2S + 1
[3] FICM 0.5544±0.0046 0.4798±0.0176 S ×N (S(S + 5) + 4)/2
[4] GPRN 0.5819±0.0207 0.5787±0.0445 S ×N 2(S +Q) + 3
[5] CMOGP 0.5539±0.0089 0.4689±0.0143 S ×N (2 + S)Q+ 2S + 1

[6] GMOGP 0.5541±0.0054 0.1636±0.0143 N S(S + 5) + 1

[7] TGMOGP 0.5343±0.0023 -0.6354±0.0023 N S(S + 5) + 1 + 3lNF + Vm

5 EXPERIMENTS

In this section, we benchmark the predictive performance of the proposed (transformed) GMOGP
against baseline MOGP methods and isolated SOGP using various synthetic and real-world datasets.

5.1 SYNTHETIC DATA EXPERIMENTS

A multi-output regression task with non-Gaussian noise and different function compositions is eval-
uated. Five outputs (S = 5) are generated by the following functions specialized at X ∈ R1800×2:

y(1) = f1(X) + ε1, (22)
y(2) = f1(X) + f2(X) + ε2, (23)
y(3) = sinh(2arcsinh(f1(X) + f2(X)) + ε3), (24)
y(4) = 3 tanh(f3(X)f4(X) + f1(X) + ε4), (25)
y(5) = 5f3(X)f4(X) + ε5, (26)

where f1(x) = 2 cos(x1 +x2), f2(x) = (x1 +x2)2, f3(x) = exp(|x1x2|+1), f4(x) = log(x1 +3),
and ε1, ε2, . . . , ε5 are i.i.d. Gaussian noise with a common standard deviation 0.2. The detailed
experiment settings and available marginal flows are elaborated in Appendix B.

Table 1 shows the compared predictive performance at 600 test points. The GMOGP is competitive
with the FICM but exhibits a smaller test NLL, and surpasses other baselines in both test RMSE and
NLL. Given the test error for each output shown in Figure 5(c), the TGMOGP achieves improved
performance, especially in the 3rd output, confirming the enhanced representation ability w.r.t. the
non-Gaussian data. The inferior performance of the classic MOGP methods (even worse than the
isolated SOGP) indicates inefficient model learning and correlation measures in high-dimensional
space. Moreover, increasing the number of independent latent processes Q in LMC variants yields
little performance gain (shown in Figure 5(b)). Other results are obtained with Q = S. By contrast,
our TGMOGP achieves superior results constantly among all different training sizes (Figure 5(a)).
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Figure 5: The sub-figures show (a) the average RMSE changes with the number of training samples,
(b) the RMSE versus the number of latent independent GPs, and (c) the test error of each output.
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Table 2: Comparison of test RMSE on real datasets, where SGPRN (Li et al., 2021) and variational
LMC (V-LMC) are tested. The shadowed results are learned with two distributed computing units.

Datasets SOGP V-LMC100 FICM SGPRN GMOGP TGMOGP100

JURA 0.605±0.01 0.443±0.01 0.394±0.05 0.438±0.02 0.376±0.01 0.382±0.01
ECG 0.245±0.01 0.229±0.01 0.222±0.01 0.232±0.02 0.219±0.00 0.217±0.00
EEG 0.343±0.05 0.207±0.03 0.147±0.03 0.261±0.03 0.082±0.01 0.117±0.00

SARCOS1 1.139±0.01 1.063±0.01 0.792±0.04 0.844±0.04 0.643±0.03 0.558±0.00

KUKA 0.05±0.01 0.14±0.01 0.03±0.01 0.12±0.02 0.02/ 0.02 ±0.00 0.04/ 0.04 ±0.01
Test NLL -0.25±0.01 -0.51±0.01 -0.65 ±0.02 -0.55±0.01 -1.81/ -1.76 ±0.02 -3.49/ -3.48 ±0.01

SARCOS2 0.26±0.05 0.29±0.04 0.33±0.03 - 0.21/ 0.22 ±0.02 0.16/ 0.16 ±0.01
Time/Iter 20.75(s) 370.2(s) 419.3(s) >2400(s) 32.41/ 21.07 (s) 4.65/ 3.43 (s)

Table 3: Instances of the learned attention coefficients values from the GMOGP (αjj = 1).
Coefficient α1,2 α1,3 α1,4 α2,1 α2,3 α2,4 α3,1 α3,2 α3,4 α4,1 α4,2 α4,3

SARCOS2 1.9e-4 0.998 2.9e-4 5.4e-4 6.9e-4 0.898 7.3e-5 5.1e-5 0.989 1.3e-3 0.966 6.7e-4

5.2 REAL-WORLD DATA EXPERIMENTS

In this section, we evaluate the predictive performance of the GMOGP alongside scalable MOGP
models in real-world applications. The data description and tasks are detailed in Appendix B.3,
where we select the first 2k/20k training samples (denoted as SARCOS1/2) from the SARCOS
dataset to investigate how performance varies with different training sizes. The results in Table 2
show that our GMOGP outperforms baseline models on all real datasets in accuracy and efficiency.
For variational inference with 100 inducing points, the TGMOGP100 achieves lower predictive error
than the V-LMC100 with largely reduced time cost, and even surpasses the models trained with full
data. One probable reason is that the variational distribution generated from a free-form Gaussian in
the TGMOGP100 is also transformed by the SAL flow, which improves the possibility of learning a
sufficient statistic. Another reason is that the TGMOGP transformed by the SAL flow can describe
asymmetry and non-Gaussian tailed distributions (Jones & Pewsey, 2019), and the SARCOS data
is negatively-skewed with mean < median < mode. The trend illustrated in the Figure 5(a) is
also shown by the different rankings across the two SARCOS data. As for the two larger datasets
(KUKA (12k) and SARCOS2), we learn the GMOGP-based models through the distributed learning
framework using two distributed computing units (the shadowed results), where comparable results
are achieved with reduced time consumption. In a comparison of the test negative log-likelihood,
the outstanding result of the TGMOGP model implies it has a more appropriate model complexity.

The graphical representations learned along with the improved predictive performance on the multi-
output regression tasks (KUKA and SARCOS2) can be indicated by the attention coefficients (Table
3). In the SARCOS (4-outputs), we can identify the parent of the node representing the 2nd output
is the node corresponding to the 4th output (α2,4 = 0.8978), since we unlink the other two nodes
with coefficients approaching 0. Similarly, the dependence between the 3rd and 4th outputs can be
implied by α3,4 = 0.9998. To understand the graphical representations, we calculate the Pearson
correlation coefficients between the 2nd/3rd and 4th outputs, which give high values of 0.7744 and
0.9657 coincidently. Other interpretations of a traffic prediction task are explored in Appendix B.3.

6 CONCLUSION

We propose a graphical multioutput Gaussian process (GMOGP) model, an innovative framework
tailored for efficient multi-output regression and graphical representation learning. Noteworthy
model flexibility and optimality are verified by superior predictive performance achieved across
various synthetic and real datasets. Distributed learning frameworks and sparse variational infer-
ence methods can be directly applied to the proposed GMOGP framework, giving a chance to deal
with large datasets and a great number of outputs. Moreover, varied graphical representations and
conditional dependence empower the vanilla MOGP models with more representation ability.
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A MATHEMATICAL APPENDIX

In the part A, we will give some insights and detailed derivation of the graphical multioutput Gaus-
sian process (GMOGP) prior, the evidence lower bound (ELBO) of the transformed GMOGP, etc.

A.1 GMOGP PRIOR DERIVATION

In the main paper, we can derive the target node i in the GMOGP as the following aggregated form,
i.e.,

f
(i)
X =

∑
j∈pai

αi,jf
(j)
X +mi +ψi. (27)

Recalling that each node represents the random variables generated by a single output Gaussian pro-
cess, i.e., we have p(f (j)

X ) = N (mj , kθj (X,X)), j ∈ pai and ψi∼N (0, kθi(X,X)). Therefore,
the GMOGP prior of target node p(f (i)

X ) follows Gaussian with mean:

E(f
(i)
X ) =

∑
j∈pai

αi,jE(f
(j)
X ) +mi (28)

=
∑
j∈pai

αi,jmj +mi (29)

and covariance:

cov(f
(i)
X , f

(i)
X ) = E

[(
f

(i)
X − E[f

(i)
X ]
)(
f

(i)
X − E[f

(i)
X ]
)T]

(30)

= E
[(
f

(i)
X − E[f

(i)
X ]
){ ∑

j∈pai

αi,j

(
f

(j)
X − E[f

(j)
X ]
)

+ψi

}]
(31)

=
∑
j∈pai

αi,jcov(f
(i)
X , f

(j)
X ) + kθi(X,X), (32)

where,

cov(f
(i)
X , f

(j)
X ) = cov(f

(j)
X , f

(i)
X ) (33)

= E
[(
f

(j)
X − E[f

(j)
X ]
)(
f

(i)
X − E[f

(i)
X ]
)T]

(34)

= E
[(
f

(j)
X − E[f

(j)
X ]
){ ∑

k∈pai

αi,k

(
f

(k)
X − E[f

(k)
X ]
)

+ψi

}]
(35)

=
∑
k∈pai

αi,kcov(f
(j)
X , f

(k)
X ) (i 6= j). (36)

Notably, under the specific graphical representation (such as the decomposition in Figure 2), there
are no parents of other nodes j, i.e., paj,j 6=i = {∅}. Then, we have

∑
k∈pai

αi,kcov(f
(j)
X , f

(k)
X ) =

αi,jcov(f
(j)
X , f

(j)
X ) = αi,jkθj (X,X). As a result, substituting this result to the above Eq.(32), we

can derive the covariance form for our target node i, i.e.

k
(i)
G (X,X) := cov(f

(i)
X , f

(i)
X ) =

∑
j∈pai

α2
i,jkθj (X,X) + kθi(X,X). (37)

Remark A.1. In the context of the probabilistic graphic model, only directed acyclic graphs (DAGs)
can be generated and represented. Given a well-defined ordering w.r.t. the joint distribution (see
Remark A.2), the covariance can be evaluated recursively starting from the lowest numbered node.
Remark A.2 (Ordering). The decomposed product term of the joint distribution is asymmetrical,
i.e., an implicit order must be chosen, such as (v1, v2, . . . , v6) in Eq.(12). Following a different
ordering, we can obtain a different decomposition and hence a different graphical representation.
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A.2 ELBO OF THE TRANSFORMED GMOGP

Following a similar derivation as (Titsias, 2009) and (Maroñas et al., 2021), the log marginal like-
lihood of output i, i = 1, 2, . . . , S admits the following inequality: (We denote specific locations n
with additional subscripts, such that f (i)

K
Xn

= GΦi
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0
Xn
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= G

φ
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K−1

◦ · · · ◦ G
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1
◦ G
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0
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0
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)
,
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0
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(i)
X )
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(40)

where we define the approximate posterior as:
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Here,
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evaluated to zero for marginal flows
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Moreover, applying marginal flows (coordinate-wise), we can derive a more simplified form:

det
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, (47)
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and we suppose

q(u
(i)
0 ) = N (m(i)

u ,K(i)
u ) (48)

with m(i)
u ∈ RM and K(i)

u ∈ RM×M being the variational parameters. The detailed derivation
and simplification of the expected log-likelihood (ELL) and KL divergence in Eq.(40) are specified
separately in the next subsections.

A.2.1 KL DIVERGENCE FOR A TARGET OUTPUT

Following the approximate posterior in Eq.(42), the conditional term in the KL(i) can be canceled,
namely:
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 (50)
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(52)

where we first marginalized f (i)
K
X

and then applied the law of the unconscious statistician (LOTUS).
Concretely, given an invertible transformation G(·) (any transformation implies valid stochastic
processes, we refer the readers to (Rios, 2020) for more details), the expectation of any function g(·)
under the distribution p(u(i)

K ) admits:

E
p(u

(i)
K )

[
g(u

(i)
K )
]

= E
p(u

(i)
0 )

[
g(GΦi(u

(i)
0 ))

]
. (53)

A.2.2 EXPECTED LOG-LIKELIHOOD UNDER MARGINAL FLOWS

After integrating out the u(i)
K and applying the LOTUS rule over the expectation with regard to

q(f
(i)
K
X

), we can simplify the ELL(i) term in Eq.(40) as:
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The distribution q
(
f

(i)
0
X

) can be calculated by:

q
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where Z ∈ RM×d denotes the inducing points locations, and X ∈ RN×d are data inputs.

In conclusion, the resulting ELBO of the log marginal in Eq.(40) for output i is given by:

ELBO(i) = ELL(i) −KL(i) (62)

= E
q
(
f
(i)
0
X

) [log p
(
y(i)|GΦi(f

(i)
0
X

)
)]

+ E
q
(
u

(i)
0

)
[

log
p(u

(i)
0 )

q(u
(i)
0 )

]
(63)

=

N∑
n

E
q
(
f
(i)
0
Xn

) [log p
(
y(i)
n | GΦi(f

(i)
0
Xn

)
)]

+ E
q
(
u

(i)
0

)
[

log
p(u

(i)
0 )

q(u
(i)
0 )

]
, (64)

Note that the observation value y
(i)
n only depends on the function evaluation at position n. Therefore,

minimizing the objective function in the main paper (Eq.(19)) with zero mean equals to:

P1 : max
γ(i);

i=1,2,...,S

S∑
i=1

log p(y(i)), (65)

with γ(i) = {Θ,αi, σi}. According to the above inequality in Eq.(40), every output can derive the
corresponding lower bound ELBO(i), i = 1, 2, . . . , S. Applying the following logic:

a < b, c < d : a+ c < b+ d, (a, b, c, d ∈ R), (66)
we can formulate the variational lower bound of the transformed GMOGP as follows:
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Then, instead to solve the optimization P1 in Eq.(65), we can maximizing its lower bound, namely:
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(69)

which recovers the negative ELBO (NELBO) in the main paper, and the objective function can be
further decomposed with locations n as below:
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A.2.3 VARIATIONAL GAP

The gap between the evidence and the ELBO for each output can be measured as follows:
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The gap is yielded as the Kullback-Leibler divergence between q(f (i)
K
X
,u

(i)
K ) and p(f (i)

K
X
,u

(i)
K | y(i)).

This fact forms the basis of the variational inference algorithm for approximate Bayesian inference.

A.3 GMOGP PREDICTION COMPARISON

For the GMOGP model proposed in Section 3, we can derive the conditional distribution from the
joint Gaussian:

p(y(i), f
(i)
X ;γ(i)) = p(f

(i)
X ; Θ,αi)p(y

(i)|f (i)
X ). (75)

Correspondingly, the estimates of the output i at a test data x∗ can be calculated from:

GMOGP: f̃ (i)(x∗) = k
(i)
G (x∗, X)

(
k

(i)
G (X,X) + σ2

i IN

)−1

y(i)︸ ︷︷ ︸
β̃

. (76)

The counterpart in the classic LMC model admits:

LMC: f̄∗[i] =

S∑
j=1

Q∑
q=1

aiqajqkq(x∗, X) β̄[(j − 1)N + 1 : Nj]︸ ︷︷ ︸
N-dimensional vector

, (77)

where f̄∗[i] denotes the ith element of the LMC prediction vector, and β̄ = (KM (X,X) + Σ)−1Y
represents the NS-dimensional vector calculated via the high-dimensional gram matrix. Regarding
to the output i, the prediction only counts on the elements from index (j − 1)N + 1 to Nj.

In contrast, it is noticeable that the first part on the right-hand side of Equations (76) and (77) are
both derived composite kernel functions of the test point x∗ and support training points. As shown in
the experiments on synthetic data, we find out that little predictive performance gain can be brought
by increasing the number of latent independent processes (see Figure 5(b)). Moreover, the LMC
with constant coefficients aiqajq may lack of flexibility and representation ability.

In the context of kernel methods, the predictions are determined by coefficients and a non-linear
mapping function in a kernel reproducing Hilbert space. For the above two models, the coefficient
β̃ and β̄ both convey the correlated information from other observed output values. Distinct from
the LMC, the GMOGP admits less computational complexity and graph learning.

Another alternative view of GMOGP is that it can remedy the cancellation of inter-output transfer
in the FICM proposed in Bonilla et al. (2007) with noiseless observations. Since in the noiseless
case with a block design, the predictions for output i depend only on the observations y(i). In other
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words, there is a cancellation of information transfer among other outputs. Specifically, given the
kernels, the prediction at a test data x∗ for output i can be concluded as:

[f (x∗)][i] =
[
(KM (x,x)⊗ k(x∗, X)) (KM (x,x)⊗ k(X,X))

−1
Y
]

[i] (78)

=
[{(

KM (x,x) (KM (x,x))
−1
)
⊗
(
k(x∗, X) (k(X,X))

−1
)}

Y
]

[i] (79)

= k(x∗, X) (k(X,X))
−1

y(i). (80)

Here, the [f (x∗)][i] represents the ith element of the vector-valued prediction. Compared with the
GMOGP in Eq.(76) in the noiseless version, the information in other outputs can be implied from
the inner product based attention coefficients enrolled in the aggregated kernel function.

A.4 JOINT DISTRIBUTION OF MULTIPLE OUTPUTS

From the main paper, the joint distribution of all S outputs defined by the specific graph structure
can be formulated as:

p(f
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In the GMOGP model, we model the target output with the following conditional distribution:
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and p(f (j)
X ) = N (mj , kθj (X,X)), j ∈ pai. After the model training, given the learned parameters,

we can obtain the corresponding joint distribution from Eq.(82). While in the TGMOGP, since we
transform the GMOGP prior with the marginal flow, the TGMOGP prior becomes:
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Under the equality derived in Eq.(27), the invertible transformations on the target node i can be
represented as:

GΦi(f
(i)
X ) = GΦi

∑
j∈pai

αi,jf
(j)
X +mi +ψi

 . (85)

Given the parent nodes pai, we have

p(GΦi(f
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. (86)

Therefore, the resulting joint distribution can also be deduced with learned coefficients and hyper-
parameters.

A.5 PARETO OPTIMALITY

Pareto optimality is a foundational concept in the optimization community. In single objective prob-
lems, the Pareto optimal solution is unique. In the context of the multi-objective optimization, the
multiple objectives need to be optimized simultaneously, looking for a set of Pareto optimal so-
lutions. This process is called multi-objective optimization (Censor, 1977). In short, the Pareto
optimal solution is a set of ‘non-inferior’ solutions in the objective space, and defines a boundary
beyond that none of the objectives can be improved without sacrificing at least one of the other
objectives.

18



Published as a conference paper at ICLR 2024

The benefits of solving the multi-output regression in a multi-objective problem (MOO) instead
of the classic high-dimensional optimization considered in the MOGP methods are discussed here.
Since the kernel hyperparameters Θ are shared among all different outputs to achieve information
exchange, we can build an MOO problem,

F (Θ) = [L(1)(Θ),L(2)(Θ), . . . ,L(S)(Θ)]T , (87)
with S objectives in the following form:

L(i)

γ(i) ∝
{

(ỹ(i))T
(
k

(i)
G (X,X) + σ2

i IN

)−1

ỹ(i) + log
∣∣∣k(i)
G (X,X) + σ2

i IN

∣∣∣ }. (88)

There exists competition among the multiple objectives, as the outputs correspond to multiple data
sources and distinct hyperparameters. The illustration of the competition between two objectives is
given in Figure 6, where the Pareto optimal solutions represent the points at the Pareto front.

Without loss of generality, the Pareto optimal solutions of the kernel hyperparameters are better than
other feasible solutions, and can obtain more stable performance compared to those learned by a
high-dimensional optimization problem built in state-of-the-art (SOTA) MOGP methods. Further-
more, the objective functions for target outputs are parameterized by unique attention coefficients,
all of which are simultaneously minimized to zero.

Pareto front

Feasible solutions

Infeasible

Objective 2

O
bj

ec
tiv

e 
1

Figure 6: The description of the Pareto optimal solutions with respect to the multi-objective problem.

B ADDITIONAL DETAILS ON EXPERIMENTS

In this section, we explicit the detailed experiment settings, learning parameters for all competitive
models, and extra experiment results of various real-world datasets.

B.1 LEARNING PARAMETERS

In the competing methods, the primitive kernel function is selected to be the Squared Exponential
(SE). The hyperparameters contain a length-scale l, an output-scale/signal variance c, namely

kSE(x,x′) = c · exp
(
−‖x− x′‖2 /l2

)
. (89)

The detailed learning parameters are specified in Table 4, where lNF denotes the number of stacked
transformations in the flow (specific parameters of the flow are listed in section B.2), and the Vm
represents the quantity of variational parameters (including the inducing points, the mean and covari-
ance in the variational distribution). Also, the Q denotes the number of latent independent Gaussian
processes used in the LMC variants, and the S represents the number of outputs.
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Table 4: The detailed learning parameters for competing models.
Acronym Learning parameters (style and size)

[1] SOGP noise: S, length-scale: S, output-scale: S, mean: S
[2] LMC noise: S+1, mean: S, coefficients: SQ , length-scale: Q, output-scale: Q
[3] FICM noise: S+1, mean: S, raw-variance: S(S + 1)/2 , length-scale: 1
[4] GPRN noise: S+1, mean: S , length-scale: Q+ 1, output-scale: Q+ 1
[5] GMOGP noise: S+1, mean: S, attention: S2 + S, length-scale: S, output-scale: S
[6] TGMOGP noise: S+1, mean: S, attention: S2 + S, length-scale: S, output-scale: S, 4lNF , Vm

B.2 MARGINAL FLOWS

In the experiments, we stack K = 3 or 4 layers of a composite Sinh-Archsinh flow with Affine flow
(SAL), which can be formulated as below:

f
(i)
K
X

= c(i)
(

sinh
(
b(i) · arcsinh

(
f

(i)
K−1

X

)
− a(i)

))
+ d(i). (90)

For the output i, i ∈ I, each layer in the flow has four free parameters, i.e., a(i), b(i), c(i), d(i) ∈ R.
Some commonly used and available formulas of the flow are listed in the following Table 5. More
discussions and validity analysis can be found in (Rios & Tobar, 2019).

Table 5: The list of common marginal flow types with input f (i)
X . The parameters are constrained so

that each individual flow is strictly increasing/decreasing functions.
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B.3 REAL WORLD EXPERIMENTS

This section shows more detailed experiment results of the multi-output regression tasks across
various real datasets. The data descriptions and specified tasks are demonstrated in Table 6.

Table 6: Description of the applied real datasets and multi-output regression tasks.
Dataset Ntrain Ntest DX S Tasks
JURA 249 100 2 3 Cadmium, nickel, and zinc concentration prediction in Jura
EEG 256 100 1 7 Extrapolation of sampled signals from electrodes on scalps

TRAFFIC 500 172 1 6 Traffic time-series prediction for three adjacent cells
ECG 6000 2000 1 5 Extrapolation of signals from electrodes on navel and head

KUKA 12235 5325 21 7 Torques prediction of seven joints for an lightweight arm
SARCOS1 2000 4449 21 4 Torques prediction of the 2,3,4,7 joints for an anthropomorphic armSARCOS2 20000 4449 21 4

B.3.1 EEG DATA FITTING FOR THE FIRST OUTPUT

The main results of the proposed GMOGP models on the EEG dataset are shown in the main paper.
Here, we want to draw the predictions of the output regarding to the electron F0 and show more data
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Figure 7: The predictive performance of the EEG data with respect to the signal of electron F0.
Sub-figures show the fitting results from different methods: (a) GMOGP, (b) FICM, (c) LMC, (d)
SOGP, where the cross items represent the training data points, and the inverted triangles are the
locations of the 100 test points.

fitting details. In Figure 7, we can see the GMOGP outperforms the other competing methods with
lower predictive uncertainty.

B.4 KUKA PREDICTIVE PERFORMANCE FOR THE MULTIPLE OUTPUTS

In Figure 8, we show the test RMSE of each output, and compare the average RMSE on the seven
outputs. The standardized KUKA data has close mean, median, and mode, which may be better
described by the Gaussian predictive distributions.
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Figure 8: The sub-figures show the test RMSE for output 1 to output 7. The last two show the
average RMSE and time cost per iteration.
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B.4.1 TRAFFIC DATA EXTRAPOLATION

In this section, we test our proposed GMOGP models on the real time-series dataset:

Traffic data: The data containing 28 days of traffic measurements of 3 cells are collected by com-
munication base stations in China. For each cell, we gathered two traffic time-series data (the amount
of traffic that has been accumulated per hour in 28 days). Each traffic data contains 672 samples.
We use the first 500 samples for training and the last 172 for testing. This multi-output regression
task can be modeled as a GMOGP with six outputs, and the data are drawn in Figure 9.
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Figure 9: The description of the traffic data from 3 neighbored cells in 28 days. The lines paired with
black and red from top to bottom represent the traffic data in the same cell of different orientations.
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Figure 10: Traffic data predictive results, namely, (a) average RMSE of different methods, and (b)
learned attention coefficient values α.

Figure 10(a) shows the average test RMSE on the traffic dataset over five runs. The results demon-
strate that the GMOGP-based models outperform other MOGP methods and the SOGP model. Since
the real data is non-smooth and contains zero values, the isolated SOGP model can hardly extrapo-
late well with insufficient model flexibility brought by a primitive kernel. According to the attention
coefficients learned by the GMOGP model in Figure 10(b), we can interpret graphical representa-
tions and construct the joint distribution of all nodes. Intuitively, we can find out the output 1 has
strong conditional dependence with the output 2, and it also can be noticed by the coefficient α1,2. In
fact, the 1st and the 2rd outputs are collected in the same cell with similar trends in practice. How-
ever, the other output with different envelope and regularity can provide little useful information
when predicting the first output. Comparing to the classic MOGP models that correlate all outputs
without selection, our GMOGP can provide an efficient alternative for multi-output regression.
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C LIMITATIONS, EXTENSIONS, AND FUTURE WORK

The main limitations of the GMOGP can be mitigated through various avenues:

1. Interpretation of the attention coefficients: The attention coefficients signify the depen-
dence among nodes and graph structures in this paper. However, interpretations of the
coefficients learned by the TGMOGP and SOTA graph attention networks are vagued and
anticipated in Explainable Artificial Intelligence (XAI) field.

2. Dynamic dependence measure: The interaction or dependence dynamically changes with
inputs.

3. Extensions of online learning frameworks and graph construction schemes: Opportunities
exist for extending the GMOGP to online learning frameworks and enhancing graph con-
struction schemes in an online setting.

4. Adaptation of attention mechanism/scoring function/dependence measure for different
tasks: Consideration of diverse attention mechanisms, scoring functions, and dependence
measures tailored to specific tasks in practice.

5. Exploration of different aggregation models (Eq. (16)).
6. Exploration of different objective functions and weighting schemes tailored for varied ap-

plications.

In the future, exploration on the use of GMOGP with various types of adaptive/input-dependent
covariance structures and flows would be instructive. Additionally, extending the GMOGP to equip
data-dependent mean function, model multiple fidelity outputs, and facilitate sequential forecasting
would be of great interest. We hope the GMOGP will inspire further research into explainable
networks, bridging benefits from learning models and statistics.
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