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Abstract

We propose a novel neural sequence predic-001
tion method based on error-correcting codes002
that avoids exact softmax normalization and003
allows for a tradeoff between speed and perfor-004
mance. Error-correcting codes represent predic-005
tions and targets as a binary code where each006
bit is represented by a logit. The codebook is007
arranged such that similar tokens are close to008
each other using word embedding similarity, en-009
suring that incorrect predictions are at least se-010
mantically close to the target. We also address011
the well-established problem of compounding012
errors by mixing the latent codes of past predic-013
tions and past targets in one of two ways: (1)014
according to a predefined sampling schedule or015
(2) a differentiable sampling procedure that re-016
places the argmax operation. Low dimensional017
codes show similar performance to models that018
use the full softmax and outperform alternative019
approximate methods for language modeling020
and text generation, while generation further021
benefits from our mixture sampling.022

1 Introduction023

Unconditional and conditional language modeling024

(CLM) are fundamental tasks that underlie vari-025

ous tasks in natural language processing (Sunder-026

meyer et al., 2012; Ghosh et al., 2016; Vaswani027

et al., 2017; Devlin et al., 2018). The goal is028

to learn a joint probability distribution for a se-029

quence of length T containing words from a vo-030

cabulary V where joint distribution can be decom-031

posed into the conditional distributions of current032

tokens given past tokens using the chain rule as033

P (w1, . . . , wT ) =
∏T

t=1 P (wt|wt−1, . . . , w1). A034

Recurrent Neural Network (RNN) fθ(·), parameter-035

ized by θ, can be used to encode the information at036

each timestep t into the last L-th hidden state vector037

hL
t which is followed by a decoder gϕ(hL

t ) which038

outputs a probability distribution p̂θ(yt|xt, ht−1).039

However, (1) training autoregressive models can040

be slow when |V| is large, while also leaving a041

large memory footprint for the respective input 042

and output layers; and (2) sequence predictors suf- 043

fer from exposure bias (EB), which refers to the 044

compounding errors at test time due to the discrep- 045

ancy between train and test time behavior i.e model 046

is trained with maximum likelihood and assumes 047

inputs are i.i.d, whereas at test time the model 048

depends on previous predictions as input. Error- 049

correcting codes (Hamming, 1950) address the two 050

aforementioned challenges by (1) having the flex- 051

ibility to trade-off between output dimensionality 052

and performance via the code length and allocated 053

error-checks (e.g Hierarchical Softmax (Morin and 054

Bengio, 2005) does not allocate more dimensions 055

for difficult to predict tokens) and (2) the latent er- 056

ror codes enable us to mix discrete latent factors be- 057

tween predictions and targets that can improve the 058

mitigation of exposure bias (such granularity in the 059

mixing process is not possible with current meth- 060

ods such as Scheduled Sampling (Bengio et al., 061

2015) and variants thereof (Goyal et al., 2017)). 062

Hence, we propose an error-correcting output code 063

(ECOC) based Neural Sequence Prediction (ECOC- 064

NSP) model that addresses the two aforementioned 065

challenges. We show that when given sufficient er- 066

ror codes (|V| ≫ |c| ≫ log2(|V|)), while the code- 067

word dimensionality |c| < |V|, accuracy is close 068

to the full softmax (SM). Additionally, we create 069

well-separated codes by rank ordering the code- 070

book using pretrained embedding similarity where 071

the number of error-correcting codes assigned to 072

a token in the codebook is proportional to the co- 073

sine similarity between the tokens corresponding 074

pretrained word embedding and the most frequent 075

tokens word embedding. Lastly, ECOC-NSP can 076

be improved for CLM by mitigating compounding 077

errors using our proposed Latent Variable Mixture 078

Sampling (LVMS). ECOC-NSP with LVMS out- 079

performs the Hierarchical Softmax-based NSP that 080

uses Scheduled Sampling (Bengio et al., 2015) and 081

other related baselines. 082
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Figure 1: Curriculum Mixture Sampling

2 Methodology083

A challenging aspect of assigning codewords is084

ordering the codes such that even if incorrect pre-085

dictions are made, that the codeword is at least086

semantically closer to that of the codewords that087

are less related, while ensuring good separation088

between codes. Additionally, we have to consider089

the amount of error-checking bits to use. In theory,090

log2(k)/k is sufficient to account for all k classes.091

However, lower bit codes can bottleneck the de-092

coder and lack expressivity when modeling the de-093

pendencies between the output distribution. Hence,094

we also consider a large amount of error-checking095

bits. The most naive way to create the codebook096

is to assign binary codes to each word in random097

order. However, it is preferable to order codes corre-098

sponding to tokens w ∈ V proportional to their sim-099

ilarity while maximizing the separability between100

codewords that are more likely to be incorrectly101

predicted. Apart from this row separability require-102

ment, we must choose the dimensionality of C e.g103

| log2(V)| ≤ d ≤ |V| bits to represent all classes104

with the remaining error-checking bits. We pro-105

pose to reorder C ∈ C such that the Hamming dis-106

tance between any two codewords is proportional107

to the embedding similarity and thus assigning the108

amount of error-checking bits for a given token pro-109

portional to the rank ordered similarity for a chosen110

query word embedding. In our experiments we use111

pretrained GoogleNews skipgram embeddings.1112

Words with high similarity have codes that have113

lower Hamming distance H(·, ·). This ensures that114

even when codes are correlated, incorrect latent115

predictions are semantically closer to the targets.116

2.1 Latent Variable Mixture Sampling117

To mitigate EB for latent code models we propose118

a sampling strategy that interpolates between pre-119

dicted and target codewords. We refer to this as120

Latent Variable Mixture Sampling (LVMS) and its121

application to ECOC as Codeword Mixture Sam-122

pling (CMS). In Curriculum-Based Latent Variable123

Mixture Sampling (CLVMS), the mixture probabil-124

1see here: https://code.google.com/archive/p/word2vec/

ity is pc = 0 ∀c ∈ C at epoch ϵ=0 and throughout 125

training the probability monotonically increases 126

pc = δc ∀c ∈ C, where δc is the threshold for 127

the c-th bit after ϵ epochs. A Bernoulli sample 128

C̃ = B(Ĉc, Cc) ∀c ∈ [0, C] is carried out for t ∈ T 129

in each minibatch. The probabilities per dimension 130

pc are independent of keeping a prediction ŷt−1,c 131

instead of the c-th bit in the target codeword yt−1,c 132

at timestep t-1. The reason for having individual 133

mixture probabilities per bits is because when we 134

consider a default order in C, this results in tokens 135

being assigned codewords ranked by frequency. 136

Therefore, the leftmost bit predictions are more 137

significant than bit errors near the beginning (e.g 138

20 = 1 only 1 bit difference). We report results 139

for a sigmoidal schedule as shown in Equation 1 140

where τmax represents the temperature at the last 141

epoch, δ is a scaling factor controlling the slope 142

and ∀ϵ ∈ [−N/2,N/2]. 143

[ŷt−1, yt−1] ∼ τmax/
(
1 + exp(−ϵ/δ)

)
(1) 144

Unlike scheduled sampling, we can sample a mix- 145
ture of the predicted and target factored distribu- 146

tions that represents the posterior (i.e not only pre- 147

diction or target but a mix of their latent codes). 148

This is illustrated in Figure 1 where the color 149

strength illustrates the activation between [0, 1]. 150

Latent Soft-Mixture Sampling In standard 151

CMS, we pass the token index wt, which is con- 152

verted to an input embedding ew based on the 153

most probable bit predictions at the last time step, 154

argmaxθ p(yt−1|xt−1; θ). We can instead replace 155

the argmax operator with a soft argmax that uses 156

a weighted average of embeddings e ∈ E where 157

weights are assigned from the previous predicted 158

output via the softmax normalization ϕ(xt−1, τ), 159

where τ controls the kurtosis of the probability dis- 160

tribution (τ → 0 tends to argmax) in Equation 2. 161

162

xt =
∑
w∈V

ew

( exp(hTwθ/τ)∑
w∈V exp(hTwθ/τ)

)
(2) 163

In the ECOC-NSP, we consider binary codewords 164
and therefore choose the top k least probable bits 165

to flip according to the curriculum schedule. Hence, 166

this results in k codewords where each Ĉ has at 167

least Hamming distance H(Ĉ, C) = 1 (20). Con- 168

cretely, this is a soft interpolation between past 169

targets and a weighted sum of the k most probable 170

codewords ĈK = argmaxk
(
σ(hTwW )

)
such that 171

xt = BK

(
C,

∑K
k ϕ(Ĉk)

)
where BK samples one 172

or the other for each kth dimension of C. 173
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2.2 Differentiable Latent Variable Sampling174

To directly differentiate through the origin of cas-175

cading errors (unlike scheduled sampling), we176

extend the use of differentiable scheduled sam-177

pling (Goyal et al., 2017) to mixture sampling by178

replacing the argmax operation with the Concrete179

distribution (Maddison et al., 2016) to adjust gradi-180

ents where prior predictions changed value through-181

out training. This not only identifies at which time-182

step the error occurs, but what latent variables (i.e.183

output codes) had the most influence in generating184

the error. We sample latent codes inversely pro-185

portional to the errors from a Gumbel distribution,186

as this distribution has shown to resemble the er-187

rors of logistic regression models, similar to the188

logits corresponding to each bit in the code. Simi-189

larly, instead of passing the most likely predicted190

word ŷw∗
t−1, we can sample from ŷt−1 ∼ ϕ(ht−1, w)191

and then pass this index as x̂t. This is an alterna-192

tive to always acting greedily and allow the model193

to seek other likely actions. However, to compute194

derivatives through samples from the softmax, we195

need to avoid discontinuities such as the argmax196

operation. The Gumbel-Softmax (Maddison et al.,197

2016; Jang et al., 2016) allows us to sample and198

differentiate through the softmax by providing a199

continuous relaxation that results in probabilities200

instead of a step function (i.e. argmax). As shown201

in Equation 3, for each componentwise Gumbel202

noise k ∈ [1.., n] for latent variable given by hT θ,203

we find k that maximizes logαk − log(− logUk)204

and then set Dk = 1 and D¬k = 0, where205

Uk ∼ Uniform(0, 1) and αk is drawn from a dis-206

crete distribution D ∼ Discrete(α).207

p̂(yt|xt; θ) =
exp((logαk +Gk)/τ)∑n
i=1 exp((logαi +Gi)/τ)

(3)208

For ECOC, we instead consider Bernoulli random209
variables for which the Concrete distribution can210

be expressed by means of two arbitrary Gumbel211

distributions G1 and G2. Sampling a Binary Con-212

crete random variable involves sampling Z, sample213

L ∼ Logistic and set Z as shown in Equation 4,214

where α, τ ∈ (0,∞) and Z ∈ (0, 1).215

Z ≡ 1/
(
1 + exp(−(logα+ L)/τ)

)
(4)216

This is used for ECOC and other latent variable-217

based models, such as Hierarchical Softmax (HS;218

Mnih and Hinton, 2009), to propagate through past219

decisions and make corrective updates that back-220

propagate to where errors originated from along221

the sequence. Hence, we also carry out experi- 222

ments with BinConcrete (Equation 4) and Gumbel- 223

Softmax(Equation 3) for HS and ECOC respec- 224

tively. In this work, we consider using an annealed 225

τ , similar to Equation 1 where τ → 2.5 and starts 226

with τ = 0.01. This allows the model to avoid 227

large gradient variance early in training. For the 228

Gumbel-Softmax in LVMS, this corresponds to the 229

model becoming more robust to non-greedy actions 230

gradually throughout training. 231

Experimental Details. Experiments are carried 232

out for a 2-hidden layer Long-Short Term Memory 233

(LSTM) model with embedding size |e| = 400, 234

Backpropogation Through Time (BPTT) length 235

35 and variational dropout (Gal and Ghahramani, 236

2016) with rate pd = 0.2 for input, hidden and out- 237

put layers. The ECOC-NSP model is trained using 238

the loss shown in Equation 5, where k is a group 239

of error-checking codewords corresponding to a 240

codeword C and ŷ = σc(h
⊤θ). 241

Lθ=max
k

C∏
c

[
yc log ŷc+(1-yc) log(1− ŷc))

]
(5) 242

The gradients can then be expressed as δL
δθ = (y − 243

σ(h⊤θ))h⊤. For prediction, we then choose the 244

most probable code (some of which may be error- 245

checks) and predict its corresponding token. We 246

first compare our proposed ECOC-NSP to methods 247

that approximate softmax normalization, using bi- 248

nary trees and latent codes that are ordered accord- 249

ing to unigram frequency (Uni-Hierarchical-SM 250

and Uni-ECOC). These baselines are the Sample- 251

Softmax (Bengio et al., 2003; Bengio and Senécal, 252

2008), HS, AS (Grave et al., 2016) and NCE (Mnih 253

and Teh, 2012)) to our ECOC-NSP approach. For 254

text generation, we also include SS and soft-SS 255

with SM (Soft-SS-SM) as the baselines, to compare 256

against the proposed mixture sampling techniques. 257

3 Results 258

Language Modeling Results. Table 1 shows that 259

overall ECOC with a rank ordered embedding sim- 260

ilarity C (Embedding-ECOC) almost performs 261

as well as the full-softmax (8.02M parameters) 262

while only using 1000 bits for PTB (|V|/20 and ) 263

and 5K bits for WikiText-2 (|V|/25) and WikiText- 264

103 (|V|/30). The HS-based models use a 2-hidden 265

layer tree with 10 tokens per class, resulting in 266

4.4M parameters for PTB, 22.05M parameters for 267

WikiText-2 (full softmax - 40.1M) and WikiText- 268

103. Moreover, we find there is a consistent im- 269
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Model PTB WikiText-2 WikiText-103
Val. Test Val. Test Val. Test

Full SM Gal and Ghahramani 86.19 79.24 124.01 119.30 56.72 49.35
Rand-Sample-SM Bengio and Senécal 92.14 81.82 136.47 129.29 68.95 59.34
Uni-Sample-SM Bengio and Senécal 90.37 81.36 133.08 127.19 66.23 57.09
Rand-Hierarchical-SM Morin and Bengio 94.31 88.50 133.69 127.12 62.29 54.28
Uni-Hierarchical-SM Morin and Bengio 92.38 86.70 130.26 124.83 62.02 54.11
Adaptive-SM Grave et al. 91.38 85.29 118.89 120.92 60.27 52.63
NCE Mnih and Teh 96.79 89.30 131.20 126.82 61.11 54.52

Random-ECOC 91.00 87.19 131.01 123.29 56.12 52.43
Uni-ECOC 86.44 82.29 129.76 120.51 52.71 48.37
Embedding-ECOC 84.40 77.53 125.06 120.34 57.37 49.09

Table 1: LSTM Language Modeling Test Perplexities.

provement in using Embedding-ECOC over us-270

ing a random codebook (Random-ECOC) and271

a slight improvement over using a unigram or-272

dered codebook (Uni-ECOC). Note that in both273

Embedding-ECOC and Uni-ECOC, the number274

of error-checking bits are assigned inversely pro-275

portional to the rank position when ordering em-276

bedding similarities and unigram frequency re-277

spectively. We also found that too many bits (e.g.278

|C| = |V|) take much longer (ϵ ∈ [20-30] more279

for PTB) to converge with negligible perplexity re-280

ductions. Hence, the advantage of ECOC-NLVMS281

is the large compression rate while maintaining282

performance e.g when using a codebook dimen-283

sionality of |C| = 40 for PTB, we observe test284

perplexity that is within 2 perplexity points for the285

same model that uses the full softmax.286

Code Length vs Performance. Figure 2 shows287

the reduction in perplexity with the increase in288

bits in ECOC-LSTM decoder parameters. For PTB,289

large perplexity reductions are made between 14-290

100 codebits, while between 100-1000 codebits291

there is a gradual decrease. In contrast, we see that292

there is more gained from increasing codeword293

size for WikiText-2 and WikiText-103 (which pre-294

serve the words that fall within the long-tail of the295

unigram distribution). Intuitively, increasing code296

length and error-checks reduces test perplexity.297

Latent Variable Mixture Sampling Text Genera-298
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Figure 2: ECOC-NSP Perplexity vs. Decoder Parameters
(corresponding to 14/20/40 codeword bits for Penn-TreeBank
and 17/40/100 codeword bits for WikiText-2/103)

B1 B2 B3 B4 R-L MET

Full-SM Gal and Ghahramani 71.09 51.33 32.85 24.67 50.28 52.70
SS-SM Bengio et al. 73.23 52.81 33.37 26.11 52.60 54.51
Soft-SS-SM Goyal et al. 73.54 53.01 33.26 27.13 54.49 54.83

SS-Adaptive-SM Grave et al. 70.45 50.22 31.38 23.59 51.88 51.83

SS-Hierarchical-SM 67.89 48.42 30.37 22.91 49.39 50.48
CLVMS-Hierarchical-SM 69.70 49.52 31.91 24.19 51.35 51.20
DLVMS-Hierarchical-SM 71.04 50.61 32.26 24.72 52.83 52.36

SS-ECOC 72.02 52.03 32.57 25.42 51.39 53.51
Soft-SS-ECOC 72.78 53.29 33.15 25.93 52.07 54.22

CLVMS-ECOC 74.70 53.09 34.28 27.05 53.67 55.62
DLVMS-ECOC 74.92 53.56 34.70 27.81 54.02 55.85

Table 2: MSCOCO Test Results on BLEU (B), ROUGE-L
(R-L) & METEOR (MET) Evaluation Metrics.

tion Results. Table 2 shows all results of LVMS 299

when used in HS and ECOC-based NSP models for 300

the MSCOCO image captioning dataset (Lin et al., 301

2014) with |c| = 200 to account for vocabulary size 302

|V | = 103, leaving |c| − log2(|V |) = 186 error- 303

check bits leftover ∀C ∈ C. The HS uses the Cate- 304

gorical Concrete distribution for DLVMS-HS and 305

Binary Concrete Distribution for DCMS-ECOC. 306

Both HS and ECOC use an Embedding ordered 307

decoder matrix (we omit the -Embedding exten- 308

sion). This is baselined against both SS and the 309

soft-argmax version of SS, the most related sample- 310

based supervised learning approach to LVMS. Ad- 311

ditionally, we report results on CLVMS-ECOC 312

(Curriculum-LVMS ECOC) that mixes prediction 313

and target codewords using the schedule in Equa- 314

tion 1 and a differentiable extension of LVMS 315

via samples from the Gumbel-Softmax (DCMS- 316

ECOC). DCMS-ECOC and DLVMS-Hierarchical- 317

SM both sample from each softmax along the tree 318

branch to the target code at training time. We find 319

that using a curriculum in CLVMS-ECOC with a 320

semantically ordered codebook outperforms the 321

full softmax with scheduled sampling (SS-SM) 322

and its weighted-variant (Soft-SS-SM). Moreover, 323

DLVMS-ECOC further improves over CLVMS- 324

ECOC on MSCOCO and LVMS make a consis- 325

tent improvement over SS, suggesting LVMS is 326

an effective NSP alternative. 327

4 Conclusion 328

We proposed an error-correcting neural language 329

model to approximate the softmax and a novel La- 330

tent Variable Mixture Sampling method to mitigate 331

exposure bias. Performance is maintained close to 332

models that use the full softmax and related approx- 333

imate methods with drastically lower code lengths. 334

Lastly, mixture sampling and its differentiable vari- 335

ants are complementary to error-correcting codes 336

and effectively mitigate exposure bias. In future 337
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work, we extend error codes to Transformers.338
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