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Abstract

We propose a novel neural sequence predic-
tion method based on error-correcting codes
that avoids exact softmax normalization and
allows for a tradeoff between speed and perfor-
mance. Error-correcting codes represent predic-
tions and targets as a binary code where each
bit is represented by a logit. The codebook is
arranged such that similar tokens are close to
each other using word embedding similarity, en-
suring that incorrect predictions are at least se-
mantically close to the target. We also address
the well-established problem of compounding
errors by mixing the latent codes of past predic-
tions and past targets in one of two ways: (1)
according to a predefined sampling schedule or
(2) a differentiable sampling procedure that re-
places the argmax operation. Low dimensional
codes show similar performance to models that
use the full softmax and outperform alternative
approximate methods for language modeling
and text generation, while generation further
benefits from our mixture sampling.

1 Introduction

Unconditional and conditional language modeling
(CLM) are fundamental tasks that underlie vari-
ous tasks in natural language processing (Sunder-
meyer et al., 2012; Ghosh et al., 2016; Vaswani
et al.,, 2017; Devlin et al., 2018). The goal is
to learn a joint probability distribution for a se-
quence of length T containing words from a vo-
cabulary V where joint distribution can be decom-
posed into the conditional distributions of current
tokens given past tokens using the chain rule as
P(wy,...,wp) = H;f:l P(wi|wi—1,...,w1). A
Recurrent Neural Network (RNN) fy(-), parameter-
ized by 6, can be used to encode the information at
each timestep ¢ into the last L-th hidden state vector
h{ which is followed by a decoder g4(hL) which
outputs a probability distribution pg(y¢|zs, hi—1).
However, (1) training autoregressive models can
be slow when |V] is large, while also leaving a

large memory footprint for the respective input
and output layers; and (2) sequence predictors suf-
fer from exposure bias (EB), which refers to the
compounding errors at test time due to the discrep-
ancy between train and test time behavior i.e model
is trained with maximum likelihood and assumes
inputs are i.i.d, whereas at test time the model
depends on previous predictions as input. Error-
correcting codes (Hamming, 1950) address the two
aforementioned challenges by (1) having the flex-
ibility to trade-off between output dimensionality
and performance via the code length and allocated
error-checks (e.g Hierarchical Softmax (Morin and
Bengio, 2005) does not allocate more dimensions
for difficult to predict tokens) and (2) the latent er-
ror codes enable us to mix discrete latent factors be-
tween predictions and targets that can improve the
mitigation of exposure bias (such granularity in the
mixing process is not possible with current meth-
ods such as Scheduled Sampling (Bengio et al.,
2015) and variants thereof (Goyal et al., 2017)).
Hence, we propose an error-correcting output code
(ECOC) based Neural Sequence Prediction (ECOC-
NSP) model that addresses the two aforementioned
challenges. We show that when given sufficient er-
ror codes (|V| > |c| > log,y(|V])), while the code-
word dimensionality |c| < |V], accuracy is close
to the full softmax (SM). Additionally, we create
well-separated codes by rank ordering the code-
book using pretrained embedding similarity where
the number of error-correcting codes assigned to
a token in the codebook is proportional to the co-
sine similarity between the tokens corresponding
pretrained word embedding and the most frequent
tokens word embedding. Lastly, ECOC-NSP can
be improved for CLM by mitigating compounding
errors using our proposed Latent Variable Mixture
Sampling (LVMS). ECOC-NSP with LVMS out-
performs the Hierarchical Softmax-based NSP that
uses Scheduled Sampling (Bengio et al., 2015) and
other related baselines.



Figure 1: Curriculum Mixture Sampling
2 Methodology

A challenging aspect of assigning codewords is
ordering the codes such that even if incorrect pre-
dictions are made, that the codeword is at least
semantically closer to that of the codewords that
are less related, while ensuring good separation
between codes. Additionally, we have to consider
the amount of error-checking bits to use. In theory,
log, (k) /k is sufficient to account for all & classes.
However, lower bit codes can bottleneck the de-
coder and lack expressivity when modeling the de-
pendencies between the output distribution. Hence,
we also consider a large amount of error-checking
bits. The most naive way to create the codebook
is to assign binary codes to each word in random
order. However, it is preferable to order codes corre-
sponding to tokens w € V proportional to their sim-
ilarity while maximizing the separability between
codewords that are more likely to be incorrectly
predicted. Apart from this row separability require-
ment, we must choose the dimensionality of C' e.g
|logy (V)| < d < |V] bits to represent all classes
with the remaining error-checking bits. We pro-
pose to reorder C' € C such that the Hamming dis-
tance between any two codewords is proportional
to the embedding similarity and thus assigning the
amount of error-checking bits for a given token pro-
portional to the rank ordered similarity for a chosen
query word embedding. In our experiments we use
pretrained GoogleNews sk ipgram embeddings.!
Words with high similarity have codes that have
lower Hamming distance H(, -). This ensures that
even when codes are correlated, incorrect latent
predictions are semantically closer to the targets.

2.1 Latent Variable Mixture Sampling

To mitigate EB for latent code models we propose
a sampling strategy that interpolates between pre-
dicted and target codewords. We refer to this as
Latent Variable Mixture Sampling (LVMS) and its
application to ECOC as Codeword Mixture Sam-
pling (CMS). In Curriculum-Based Latent Variable
Mixture Sampling (CLVMS), the mixture probabil-

Isee here: https://code.google.com/archive/p/word2vec/

ity is p. = 0 Ve € C at epoch € =0 and throughout
training the probability monotonically increases
pe = 0. Ve € C, where . is the threshold for
the c-th bit after € epochs. A Bernoulli sample
C =B(C,,C,) Ve € [0,C]is carried out for t € T
in each minibatch. The probabilities per dimension
p. are independent of keeping a prediction ;1 .
instead of the c-th bit in the target codeword ;1 .
at timestep t-1. The reason for having individual
mixture probabilities per bits is because when we
consider a default order in C, this results in tokens
being assigned codewords ranked by frequency.
Therefore, the leftmost bit predictions are more
significant than bit errors near the beginning (e.g
20 = 1 only 1 bit difference). We report results
for a sigmoidal schedule as shown in Equation 1
where 7,4, represents the temperature at the last
epoch, § is a scaling factor controlling the slope
and Ve € [-N/2,N/2].

[:&t—17 yt—l] ~ Tmaac/(l + eXp<_€/5)) (D

Unlike scheduled sampling, we can sample a mix-
ture of the predicted and target factored distribu-

tions that represents the posterior (i.e not only pre-
diction or target but a mix of their latent codes).
This is illustrated in Figure 1 where the color
strength illustrates the activation between [0, 1].

Latent Soft-Mixture Sampling In standard
CMS, we pass the token index wy, which is con-
verted to an input embedding e,, based on the
most probable bit predictions at the last time step,
argmaxy p(yi—1|ri—1; 0). We can instead replace
the argmax operator with a soft argmax that uses
a weighted average of embeddings e € E where
weights are assigned from the previous predicted
output via the softmax normalization ¢(zi—1,7),
where 7 controls the kurtosis of the probability dis-
tribution (7 — 0 tends to argmax) in Equation 2.
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In the ECOC-NSP, we consider binary codewords
and therefore choose the top & least probable bits
to flip according to the curriculum schedule. Hence,
this results in k codewords where each C' has at
least Hamming distance H(C',C)) = 1 (2°). Con-
cretely, this is a soft interpolation between past
targets and a weighted sum of the £ most probable
codewords Cx = argmax;, (o(hLW)) such that

= Bg (C, YK qﬁ(ék)) where By samples one
or the other for each kth dimension of C.


https://code.google.com/archive/p/word2vec/

2.2 Differentiable Latent Variable Sampling

To directly differentiate through the origin of cas-
cading errors (unlike scheduled sampling), we
extend the use of differentiable scheduled sam-
pling (Goyal et al., 2017) to mixture sampling by
replacing the argmax operation with the Concrete
distribution (Maddison et al., 2016) to adjust gradi-
ents where prior predictions changed value through-
out training. This not only identifies at which time-
step the error occurs, but what latent variables (i.e.
output codes) had the most influence in generating
the error. We sample latent codes inversely pro-
portional to the errors from a Gumbel distribution,
as this distribution has shown to resemble the er-
rors of logistic regression models, similar to the
logits corresponding to each bit in the code. Simi-
larly, instead of passing the most likely predicted
word ;**,, we can sample from g1 ~ ¢(hi—1, w)
and then pass this index as Z;. This is an alterna-
tive to always acting greedily and allow the model
to seek other likely actions. However, to compute
derivatives through samples from the softmax, we
need to avoid discontinuities such as the argmax
operation. The Gumbel-Softmax (Maddison et al.,
2016; Jang et al., 2016) allows us to sample and
differentiate through the softmax by providing a
continuous relaxation that results in probabilities
instead of a step function (i.e. argmax). As shown
in Equation 3, for each componentwise Gumbel
noise k € [1..,n] for latent variable given by h7,
we find £ that maximizes log o, — log(— log Uy)
and then set D, = 1 and D—k = 0, where
Uy ~ Uniform(0, 1) and «y is drawn from a dis-
crete distribution D ~ Discrete(a).

exp((log ay + Gi) /1)
izy exp((log a; + Gi) /7)

P(yt|ee; 0) = 5 3)

For ECOC, we instead consider Bernoulli random
variables for which the Concrete distribution can

be expressed by means of two arbitrary Gumbel
distributions (G1 and G2. Sampling a Binary Con-
crete random variable involves sampling Z, sample
L ~ Logistic and set Z as shown in Equation 4,
where o, 7 € (0,00) and Z € (0,1).

Z=1/(1+exp(—(loga+L)/7)) (4

This is used for ECOC and other latent variable-
based models, such as Hierarchical Softmax (HS;
Mnih and Hinton, 2009), to propagate through past
decisions and make corrective updates that back-
propagate to where errors originated from along

the sequence. Hence, we also carry out experi-
ments with BinConcrete (Equation 4) and Gumbel-
Softmax(Equation 3) for HS and ECOC respec-
tively. In this work, we consider using an annealed
T, similar to Equation 1 where 7 — 2.5 and starts
with 7 = 0.01. This allows the model to avoid
large gradient variance early in training. For the
Gumbel-Softmax in LVMS, this corresponds to the
model becoming more robust to non-greedy actions
gradually throughout training.

Experimental Details. Experiments are carried
out for a 2-hidden layer Long-Short Term Memory
(LSTM) model with embedding size |e| = 400,
Backpropogation Through Time (BPTT) length
35 and variational dropout (Gal and Ghahramani,
2016) with rate p; = 0.2 for input, hidden and out-
put layers. The ECOC-NSP model is trained using
the loss shown in Equation 5, where £ is a group
of error-checking codewords corresponding to a
codeword C’Cand §=0o.(h'0).

Lo=max [] [yelog ge+(1-y.) log(1 = )] (5)

The gradients can then be expressed as % = (y —
o(h"0))h". For prediction, we then choose the
most probable code (some of which may be error-
checks) and predict its corresponding token. We
first compare our proposed ECOC-NSP to methods
that approximate softmax normalization, using bi-
nary trees and latent codes that are ordered accord-
ing to unigram frequency (Uni-Hierarchical-SM
and Uni-ECOC). These baselines are the Sample-
Softmax (Bengio et al., 2003; Bengio and Senécal,
2008), HS, AS (Grave et al., 2016) and NCE (Mnih
and Teh, 2012)) to our ECOC-NSP approach. For
text generation, we also include SS and soft-SS
with SM (Soft-SS-SM) as the baselines, to compare
against the proposed mixture sampling techniques.

3 Results

Language Modeling Results. Table 1 shows that
overall ECOC with a rank ordered embedding sim-
ilarity C (Embedding-ECOC) almost performs
as well as the full-softmax (8.02M parameters)
while only using 1000 bits for PTB (|)|/20 and )
and 5K bits for WikiText-2 (|V|/25) and WikiText-
103 (]V|/30). The HS-based models use a 2-hidden
layer tree with 10 tokens per class, resulting in
4.4M parameters for PTB, 22.05M parameters for
WikiText-2 (full softmax - 40.1M) and WikiText-
103. Moreover, we find there is a consistent im-



Model PTB WikiText-2 WikiText-103

Val.  Test Val. Test Val.  Test ‘ B1 B2 B3 B4 R-L. MET
Full SM Gal and Ghahramani 86.19 79.24 | 124.01 119.30 | 56.72 49.35 Full-SM Gal and Ghahramani | 71.09 51.33 | 32.85 24.67 | 50.28 52.70
Rand-Sample-SM Bengio and Senécal 92.14 81.82 | 13647 129.29 | 68.95 59.34 SS-SM Bengio et al 7323 52.81 | 3337 26.11 | 52.60 5451
Uni-Sample-SM Bengio and Senécal 90.37 81.36 | 133.08 127.19 | 66.23  57.09 o . — PO ; ’ :
Rand-Hierarchical-SM Morin and Bengio | 94.31 88.50 | 133.69 127.12 | 62.29 54.28 Soft-SS-SM Goyal et al. 73.54 53.01 | 33.26 27.13 | 5449 54.83

Uni-Hierarchical-SM Morin and Bengio | 92.38 86.70 | 130.26 124.83 | 62.02 54.11

Adaptive-SM Grave et al. 91.38 85.29 | 118.89 120.92 | 60.27 52.63
NCE Mnih and Teh 96.79 89.30 | 131.20 126.82 | 61.11 54.52
Random-ECOC 91.00 87.19 | 131.01 123.29 | 56.12 52.43
Uni-ECOC 86.44 8229 | 129.76 120.51 | 52.71 48.37
Embedding-ECOC 84.40 77.53 | 125.06 120.34 | 57.37 49.09

Table 1: LSTM Language Modeling Test Perplexities.

provement in using Embedding-ECOC over us-
ing a random codebook (Random-ECOC) and
a slight improvement over using a unigram or-
dered codebook (Uni-ECOC). Note that in both
Embedding-ECOC and Uni-ECOC, the number
of error-checking bits are assigned inversely pro-
portional to the rank position when ordering em-
bedding similarities and unigram frequency re-
spectively. We also found that too many bits (e.g.
|C| = |V]) take much longer (¢ € [20-30] more
for PTB) to converge with negligible perplexity re-
ductions. Hence, the advantage of ECOC-NLVMS
is the large compression rate while maintaining
performance e.g when using a codebook dimen-
sionality of |C| = 40 for PTB, we observe test
perplexity that is within 2 perplexity points for the
same model that uses the full softmax.

Code Length vs Performance. Figure 2 shows
the reduction in perplexity with the increase in
bits in ECOC-LSTM decoder parameters. For PTB,
large perplexity reductions are made between 14-
100 codebits, while between 100-1000 codebits
there is a gradual decrease. In contrast, we see that
there is more gained from increasing codeword
size for WikiText-2 and WikiText-103 (which pre-
serve the words that fall within the long-tail of the
unigram distribution). Intuitively, increasing code
length and error-checks reduces test perplexity.
Latent Variable Mixture Sampling Text Genera-

-@- ccoc-random val =@+ ecoc-unigram val
—8— ccoc-random test

=@ - ecoc-embed val

—8— ccoc-unigram test ~ —@— ccoc-embed test

4{Penn Treebank

6 x 10° 104

104 2 x 10* 3x10* 4 x 10

Validation & Test Perplexity

50 TWikiText-103

T
104 2 x 10" 3 x 10" 4 x 10
Number of Decoder Parameters

Figure 2: ECOC-NSP Perplexity vs. Decoder Parameters
(corresponding to 14/20/40 codeword bits for Penn-TreeBank
and 17/40/100 codeword bits for WikiText-2/103)

SS-Adaptive-SM Grave etal. | 7045 5022 | 3138 23.59 | 51.88 51.83
SS-Hierarchical-SM 67.89 4842|3037 2291|4939 50.48
CLVMS-Hierarchical-SM 69.70 4952 | 31.91 24.19 | 51.35 5120
DLVMS-Hierarchical-SM 7104 5061 | 3226 2472 | 52.83 5236

SS-ECOC ‘ 7202 52.03 ‘ 32.57 2542 ‘ 51.39 5351

Soft-SS-ECOC 72.78 5329 | 33.15 2593 | 52.07 54.22
CLVMS-ECOC 74.70 53.09 | 34.28 27.05 | 53.67 55.62
DLVMS-ECOC 74.92 53.56 | 34.70 27.81 | 54.02 55.85

Table 2: MSCOCO Test Results on BLEU (B), ROUGE-L
(R-L) & METEOR (MET) Evaluation Metrics.

tion Results. Table 2 shows all results of LVMS
when used in HS and ECOC-based NSP models for
the MSCOCO image captioning dataset (Lin et al.,
2014) with |¢| = 200 to account for vocabulary size
|V| = 103, leaving |c| — logy(|V'|) = 186 error-
check bits leftover VC' € C. The HS uses the Cate-
gorical Concrete distribution for DLVMS-HS and
Binary Concrete Distribution for DCMS-ECOC.
Both HS and ECOC use an Embedding ordered
decoder matrix (we omit the -Embedding exten-
sion). This is baselined against both SS and the
soft-argmax version of SS, the most related sample-
based supervised learning approach to LVMS. Ad-
ditionally, we report results on CLVMS-ECOC
(Curriculum-LVMS ECOC) that mixes prediction
and target codewords using the schedule in Equa-
tion 1 and a differentiable extension of LVMS
via samples from the Gumbel-Softmax (DCMS-
ECOC). DCMS-ECOC and DLVMS-Hierarchical-
SM both sample from each softmax along the tree
branch to the target code at training time. We find
that using a curriculum in CLVMS-ECOC with a
semantically ordered codebook outperforms the
full softmax with scheduled sampling (SS-SM)
and its weighted-variant (Soft-SS-SM). Moreover,
DLVMS-ECOC further improves over CLVMS-
ECOC on MSCOCO and LVMS make a consis-
tent improvement over SS, suggesting LVMS is
an effective NSP alternative.

4 Conclusion

We proposed an error-correcting neural language
model to approximate the softmax and a novel La-
tent Variable Mixture Sampling method to mitigate
exposure bias. Performance is maintained close to
models that use the full softmax and related approx-
imate methods with drastically lower code lengths.
Lastly, mixture sampling and its differentiable vari-
ants are complementary to error-correcting codes
and effectively mitigate exposure bias. In future



work, we extend error codes to Transformers.
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