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Abstract
In control applications where finding a model of the plant is the most costly and time consuming
task, Virtual Reference Feedback Tuning (VRFT) represents a valid - purely data-driven - alter-
native for the design of model reference controllers. However, the selection of a proper reference
model within a model-free setting is known to be a critical task, with this model typically playing
the role of a hyper-parameter. In this work, we extend the VRFT methodology to compute both a
proper reference model and the corresponding optimal controller parameters from data by means
of Particle Swarm optimization. The effectiveness of the proposed approach is illustrated on a
benchmark simulation example.
Keywords: VRFT, model reference control, data-driven control

1. Introduction

Virtual Reference Feedback Tuning (VRFT) is a model-reference control design technique, in which
a parametric controller is tuned directly using a set of experimental data, see Campi et al. (2002);
Formentin et al. (2019). As compared to more traditional model-based methodologies, pure data-
driven approaches have many advantages, e.g., specific system expertise is no longer required, the
time needed for control design is largely reduced, as efforts are usually mainly dedicated to system
modeling, to cite a few, and, under some conditions, the obtained performance might be significantly
better than the one achieved with model-based alternatives, e.g., see Formentin et al. (2014).

Nevertheless, like all model-reference approaches, VRFT requires the definition of a reference
model to compute the controller parameters. Such a model should be achievable when closing the
loop with a controller within the considered parametric class, since a bad choice of the desired
closed-loop would lead to poor performance or instabilities, as illustrated in Nijmeijer and Savaresi
(1998); van Heusden et al. (2011). It follows that, if the best achievable performance is not easily
computable (which is likely to happen especially when a model of the system is not available), the
reference model becomes a tuning knob or a hyper-parameter, which may need significant addi-
tional effort to be selected. For the above reasons, some techniques have already been proposed
in the literature to properly select a suitable reference model from data. In Selvi et al. (2018), this
model is selected as the one that leads to the controller that best tracks a pre-defined reference tra-
jectory. Instead, in Kergus et al. (2019), a set of proper reference models is selected via interpolation
constraints in the Lowner framework for data-driven control of Kergus et al. (2017, 2018).

Similarly to Selvi et al. (2018), we set an optimization problem for the joint design of the
reference model and the controller. However, unlike Selvi et al. (2018), in our approach we do
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not stick to a specific reference signal, as we exploit the VRFT rationale also for reference model
selection. Particle swarm optimization (see Poli et al. (2007)) will be used as a tool to find the
optimal solution. The advantages over the existing techniques will be illustrated on a benchmark
numerical example.

The paper is structured as follows. Section 2 introduces the considered problem, setting the
ground for the proposed solution for combined reference model and controller design presented
in Section 3. The performance attained with the proposed data-driven approach are illustrated in
Section 4, by means of a numerical case study. The paper is ended by some concluding remarks.

2. Problem setting

Let P be an (unknown) single-input single-output (SISO) system. When the plant is fed with an
input u, we assume that the (noisy) output y can be measured. This allows us to construct a dataset
DT = {u(t), y(t)}Tt=1 of input/output measurements that, under the assumption that can be used
to directly estimate a controller C for the system, rather than first identifying a model P and then
devising a model-based controller, under the assumption that the input sequence {u(t)}Tt=1 is per-
sistently exciting.

Throughout the rest of the paper, we focus on designing a linear discrete-time control law with
fixed structure and embedded integral action, namely

uc(θ, t) = C(θ, q)(r(t)− y(t)), (1)
where q is the forward shift operator (i.e., qu(t) = u(t + 1)), r(t) ∈ R is a reference signal to be
tracked and θ ∈ Rnθ is a set of (unknown) parameters to be learned from data. The controller is
designed so as to optimize the following performance criterion

J (θ) =
1

T

T∑
t=1

We(r(t)− y(t))2 +W∆u∆2uc(θ) +Wu(u(t)− uc(θ, t))2, (2)

with ∆uc being the difference between two consecutive inputs and the positive weights We,W∆u

and Wu tuned to trade off between three concurrent goals, namely the reduction of (i) the track-
ing error, (ii) the actuator effort and (iii) the error between the training input u and the recon-
structed control action uc. Note that this performance index resembles the one typically used for
performance-driven control (see Bemporad et al. (2004)), with the last term introduced to account
for the data-driven nature of our solution. Since we do not want to identify a model of the plant,
we will study how to find a controller with the specified parameterization by exploiting the VRFT
approach of Campi et al. (2002).

3. VRFT with data-driven reference model selection

The VRFT approach relies on the definition of a reference model M(ϕ, q) describing the desired
closed-loop behavior, whose parameters ϕ ∈ Rnϕ are usually fixed by the user beforehand. How-
ever, the selected reference model might heavily impact the actual performance measured by (2),
especially if the user-defined desired behavior is too demanding. Instead of fixing the reference
model a priori, in this paper we propose to look at it as a hyper-parameter and learn its parameters
ϕ so to optimize the more general criterion in (2).

Let yd(ϕ, t) ∈ R being the output of M(ϕ, q) when fed with the reference r(t), i.e.,

yd(ϕ, t) = M(ϕ, q)r(t). (3)
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C(θ, q) P

M−1(ϕ, q)

rv(t) + ev(t) u(t) y(t)

-

Figure 1: VRFT scheme, with the unknown plant highlighted in gray.

For a fixed model M(ϕ, q), suppose we have designed a control law as in (1) with parameters θ(ϕ)
through VRFT. Let ud(θ(ϕ), t) be the input resulting from the designed controller when fed with
the reference tracking error r(t)− yd(ϕ, t), namely

ud(θ(ϕ), t) = C(θ(ϕ), q)(r(t)− yd(ϕ, t)), (4)

and define as uc(θ(ϕ), t) the input resulting from the open-loop simulation of the controller based
on the available data. Similarly to Selvi et al. (2018), the control design problem can be recast as
follows

min
θ,ϕ

J̃ (θ, ϕ), (5a)

where the objective is given by

J̃ (θ, ϕ) =
1

T

T∑
t=1

We(r(t)− y(t))2 +W∆u∆2ud(θ(ϕ)) +Wu(u(t)− uc(θ(ϕ), t))2, (5b)

with ∆ud(θ(ϕ)) being the difference between two consecutive values of the reference input ud.
Note that the cost in (5b) depends on the unknowns of both the controller and the reference model.

By looking at (5b), it can be seen that the objective function still depends on the reference to be
tracked r, thus implying that this signal has to be chosen beforehand, at the cost of possible over-
fitting specific scenarios. This somehow diverges from the philosophy behind the VRFT method,
where M(ϕ, q) is exploited to construct a virtual reference rv such that

y(t) = M(ϕ, q)rv(t), (6)

where y(t) is the output measured at time t (see Figure 1). This fictitious set point is introduced not
to fix the reference to be tracked beforehand, thus avoiding over-fitting, and it is indeed a function
of the (unknown) parameters ϕ. By replacing the fixed reference r with the virtual one rv(ϕ, t), the
cost function is thus modified as follows

J̃v(θ, ϕ) =
1

T

T∑
t=1

We(rv(ϕ, t)− y(t))2 +W∆u∆ud,v(θ(ϕ))2 +Wu(u(t)− uc,v(θ(ϕ), t))2, (7a)

where ud,v(θ(ϕ), t) is the input given by the estimated controller C(θ(ϕ), q) when considering the
virtual reference and closing the loop on the reference model, i.e.,

ud,v(θ(ϕ), t) = C(θ(ϕ), q)(rv(t)− yd,v(ϕ, t)), (7b)

with
yd,v(ϕ, t) = M(ϕ, q)rv(ϕ, t), (7c)

and uc,v(θ(ϕ), t) is the control input computed from the available data, namely
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uc,v(θ(ϕ, )t) = C(θ(ϕ), q)(rv(ϕ, t)− y(t)). (7d)

By the definition of the virtual reference rv(ϕ, t), note that yd,v(t) corresponds to the available
output measurements and, as a consequence, ud,v(θ(ϕ, )t) = uc,v(θ(ϕ, )t). in our setting we thus
weight the variations of the controller input. Differently from Selvi et al. (2018), the objective in
(7a) depends only on the available data and on the chosen parametrization of the controller and the
reference model, since the virtual reference is constructed based on data.

Note that the derivation of the virtual reference from (6) requires the computation of the left
inverse M−1(ϕ, q) of M(ϕ, q) (such that M−1(ϕ, q)M(ϕ, q) = 1), since it holds that

rv(ϕ, t) = M−1(ϕ, q)y(t). (8)

This operation might be particularly involved for nonlinear reference models, e.g., when considering
linear parameter varying reference models Formentin et al. (2016). To overcome this limitation and
to ease the extension of the approach to more complex settings, we propose to learn directly the left
inverse M−1(ϕ, q). In this work we assume the reference model to be parametrized according to
the following zero-pole-gain representation

M(ϕ, q) = KM

Π
nrz
i=1(q − zri )Π

ncz
j=1

(
q − zc,rej ± jzc,imj

)
Π
nrp
i=1(q − pri )Π

ncp
j=1

(
q − pc,rej ± jpc,imj

) , (9)

so that ϕ stacks all the (unknown) poles and zeros of the reference model, and the corresponding
left inverse is given by

M−1(ϕ, q) = KM−1

Π
nrp
i=1(q − pri )Π

ncp
j=1

(
q − pc,rej ± jpc,imj

)
Π
nrz
i=1(q − zri )Π

ncz
j=1

(
q − zc,rej ± jzc,imj

) , (10)

with KM−1 = K−1
M . Let

nz = nrz + ncz, np = nrp + ncp,

be the fixed numbers of overall zeros and poles of the reference model. ForM(ϕ, q) to be physically
meaningful, the number of poles and zeros is selected so that np ≥ nz . However, when the reference
model is strictly proper, the left inverse defined as in (10) is no longer realizable. To overcome this
limitation, we introduce the filter

Lr(q) =
1

qnp−nz
, (11)

which is used to properly modify the first term in the cost, that, in turns, depends on the left inverse
M−1(ϕ, q) explicitly. The final design problem is thus given by

min
θ,ϕ

J̃v,Lr(θ, ϕ), (12a)

with

J̃v,Lr(θ, ϕ)=
1

T

T∑
t=1

We(rv,Lr(ϕ, t)−yLr(t))2+W∆u∆2uc,v(θ(ϕ))+Wu(u(t)−uc,v(θ(ϕ), t))2

(12b)
and

rv,Lr(ϕ, t) = Lr(q) ·M−1(ϕ, q)y(t), (12c)

yLr(t) = Lr(q)y(t), (12d)
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being the filtered virtual reference and output, respectively.
Similarly to what is done in Selvi et al. (2018), the gain KM−1 is not optimized, but it is tuned

once the parameters ϕ are chosen so that M−1(ϕ, 1) = 1. To enforce stability on both the reference
model and its left inverse, the cost in (12b) is further augmented with a set of barrier function
penalizing instable reference configurations. As in Selvi et al. (2018), we introduce

hpj (θ) = |pj |2 − 1 < 0, j = 1, . . . , np, (13a)

hzi (θ) = |zi|2 − 1 < 0, i = 1, . . . , nz, (13b)

with |pj | and |zi| indicating the modulus of the j-th pole and i-th zero of M−1(ϕ, q), respectively,
and we consider the piecewise polynomial barrier functions b : R→ R,

b(h) =


0, if h < 0,

kh, if 0 ≤ h < 1,

kh2, otherwise,

(13c)

with k ∈ R>0 fixed by the user. The overall cost is thus given by

J̃ bv,Lr(θ, ϕ) = J̃v,Lr(θ, ϕ) +

np∑
i=1

b(hpi (θ)) +

nz∑
j=1

b(hzi (θ)), (13d)

with J̃v,Lr(θ, ϕ) defined as in (12b). We stress that, in case of complex numbers, the barrier function
acts on both the real and the complex part of the singularity.

Algorithm 1 summarizes the whole procedure. Note that the controller is trained by using par-
ticle swarm optimization (PSO) as described in Poli et al. (2007), due to the nested dependence
between the unknown parameters of the controller, the ones of the reference model and the virtual
reference. The proposed approach involves the alternate minimization of the cost function in (13d)
with respect to the parameters ϕ of M−1 (for a fixed controller C(θ, q)), and the optimization of
J̃ bv,Lr(θ, ϕ) with respect to θ for a fixed reference model. Although ∆ud,v(ϕ(θ)) depends on the
designed controller, the term weighting variations in the input over two consecutive steps is intro-
duced to trade-off between the reference model performance and its actual attainability. Therefore,
this term will be neglected when optimizing the cost J̃ bv (θ, ϕ) with respect to θ. The only term left
in the cost is the one weighting the error in the reconstruction of the input, which correspond to the
objective traditionally minimized in VRFT (see step 2.1.3).

Remark 1 The weights We, W∆u and Wu have to be tuned by the user. Although this choice might
be as challenging as a trial-and-error selection of M , by looking at (10) it becomes clear that the
more complex is the reference model, the easier for the user is to select the (at most) two weights in
the cost (13d), as compared to the selection of all the parameters ϕ of M .

4. Numerical example

The performance attained with the presented approach is assessed by designing a data-driven control
law for the system shown in Figure 2 taken from Caré et al. (2019). The relationship between the
force u applied to the system and the position y of m2 is given by

P (s) =
m1s

2+(c1+c2)s+(k1+k2)

(m1s2+(c1+c2)s+k1+k2)(m2s2+c2s+k2)−(c2s+k2)2
, (15)
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Algorithm 1 [VRFT with data-driven reference model selection]
Input: Dataset DT = {u(t), y(t)}Tt=1; number of particles Np; barrier function b; weights We,

W∆u and Wu; maximum number of iterations imax.

1. populate particle swarms {ϕ(n)}Npn=1, so that the constraints in (13a) are satisfied.

2. for i = 1, . . . , imaxdo

2.1. for n = 1, . . . , Np do
2.1.1. fix M−1(ϕ(n), q) based on (10);

2.1.2. select K(n)
M−1 so that M−1(ϕ(n), 1) = 1;

2.1.3. design C(θ(ϕ(n))) with VRFT Campi et al. (2002);
2.1.4. compute the cost J̃ bv,Lr(θ

(n), ϕ(n)) as in (13d), with θ(n) = θ(ϕ(n)) obtained at
step 2.1.3;

2.2. end for;

3. choose (θ?, ϕ?) such that

(θ?, ϕ?) = arg minn=1,...,Np J̃
b
v,Lr(θ

(n), ϕ(n)); (14)

4. update the particles as in (Poli et al., 2007, Algorithm 1);

5. end for.

Output: Left inverse parameters ϕ?, controller parameters θ? = θ(ϕ?).

m1 m2

k1

c1

k2

c2

u(t)

y(t)

Figure 2: Scheme of the physical system to be controlled.

Table 1: Parameters of the system P .
m1 [kg] m2 [kg] c1 [N/m2] c2 [N/m2] k1 [N/m] k2 [N/m]

1 0.5 0.2 0.5 1 0.5

where s ∈ C is the Laplace variable and the parameters are reported in Table 1. A set of input/output
samples of length 5000 is generated by exciting the system with a zero-mean normally distributed
input signal u ∼ N (0, 1), with the corresponding measured output corrupted by an additive zero-
mean Gaussian noise with variance 10−4. Let Ts = 0.1 s be the sampling time of the system. As in
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Figure 3: Reference signal (black) vs attained (noiseless) closed-loop output (dashed dotted red).
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Figure 4: Reference signal (black) vs attained (noiseless) closed-loop outputs (detail). Data-driven
model reference tuning+controller design (dashed dotted red), VRFT with fixed reference
model (17) (dashed blue).

Caré et al. (2019), we aim at training a Proportional-Integral-Derivative (PID) controller, namely

CPID(q−1) = Kp +Ki
Ts
2

1 + q−1

1− q−1
+Kd

2

Ts

1− q−1

3− q−1
, (16)

with the left inverse of the reference model parametrized as in (10), with nrp = 2, and ncp = nrz =
ncz = 0. In the cost, the barrier function is defined as in (13c), with k = 10 and the weights
are chosen as We = 0.01, W∆u = 100 and Wu = 0.5. Algorithm 1 is run with Np = 10 and
imax = 200. As in Caré et al. (2019), a first order low-pass filter W (s) with time constant 0.3 is
further used to penalize the mismatch between the desired and the actual closed-loop performance
at frequencies below 2 [rad/s].

The performance attained by considering a square wave set point is reported in Figure 3, show-
ing that the combined tuning of M−1 and the design of the controller with VRFT allows us to
satisfactorily track the considered reference. As shown in Figure 4, we are actually able to outper-
form the result obtained by arbitrarily fixing the reference model as

M(s) =
1

(1 + 0.1s)(1 + 0.7s)
, (17)

despite the quite performing reference model that has been chosen. Finally, we compare the perfor-
mance resulting from the use of the proposed technique with the one achieved with the method in
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Figure 5: Reference signal (dashed black) vs attained (noiseless) closed-loop outputs obtained data-
driven model reference tuning+controller design procedures (detail). Proposed left in-
verse optimization (red), approach described in Selvi et al. (2018) (dashed dotted blue).

Table 2: RMSEr (18) vs reference model
Fixed reference (17) Approach in Selvi et al. (2018) Our method

RMSEr 0.20 0.28 0.15

Selvi et al. (2018). In this second case, we fix the reference r as a square wave, under the assump-
tion that the final user is particularly interested in tracking step references. As shown in Figure 5,
the controller resulting from applying our approach allows one to attain better performance than the
one obtained with Selvi et al. (2018) when considering a square wave set point, despite the second
controller is specifically trained on this class of references. These results are further confirmed by
the values of the Root Mean Square Error (RMSE), namely

RMSEr =

√√√√ 1

T

T∑
t=1

(r(t)− y(t))2, (18)

that are reported in Table 2. The same quality index is used to evaluate the performance of the
proposed with respect to two alternative fixed reference models, namely

M2(s) =
1

(1 + 0.3s)(1 + 0.1s)
, M3(s) =

1

(1 + 0.5s)(1 + 0.05s)
.

The values of RMSEr obtained by considering these prefixed reference models are 0.15 and 0.17
[m], by respectively considering M2 and M3, showing that the proposed approach allows us to
obtain either the same or better tracking performance than to the one attained by carefully fixing the
reference model a priori.

5. Conclusions

In this paper, we have proposed an extension of the VRFT method to tune the left inverse of the
reference model as a hyper-parameter, while jointly designing the feedback controller. Particle
swarm optimization has been used as an effective numerical tool for this purpose. The advantages
over existing data-driven methods have been shown on a benchmark simulation case study. Future
work includes the consideration of different cost functions as well as optimal experiment design.
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