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Abstract

Much work has been devoted to explaining the
recently discovered “grokking” phenomenon,
where a neural network first fits the training loss,
then many iterations later suddenly fits the valida-
tion loss. To explore this puzzling behavior, we
examine the evolution of singular values and vec-
tors of weight matrices inside the neural network.
First we show that the transition to generaliza-
tion in grokking coincides with the discovery of a
low-rank solution in the weights. We then show
that the trend towards rank minimization is much
more general than grokking alone and elucidate
the crucial role that weight decay plays in pro-
moting this trend. Such analysis leads to a deeper
understanding of generalization in practical sys-
tems.

1. Introduction
Chief among the puzzling behaviors of neural networks is
generalization. While only ever seeing a given training set,
they can perform well on unseen data, sometimes even under
distribution shifts, and even when perfect memorization
solves the training objective. This property has led to an
explosion of research and interest in neural networks across
a broad set of domains, yet many fundamental questions
about their learning behavior remain unanswered.

For instance, despite extensive research, we still lack a com-
plete understanding of the implicit biases of neural net-
works trained via stochastic optimization (Neyshabur et al.,
2014). Even basic questions, such as the role of weight
decay (Hanson & Pratt, 1988; Krogh & Hertz, 1991; Zhang
et al., 2018a), have only partial answers (Van Laarhoven,
2017; Andriushchenko et al., 2023; Yaras et al., 2023b).
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Figure 1: Grokking experiment reproduced from Nanda
et al. (2023). Left: Error over time. Middle: Singular
value evolution for a single matrix in the Transformer where
each line is a single singular value and color represents rank.
Right: Normalized effective rank (Eqn. 1) of all matrices
where the y-axis represents the depth of the matrix in the
model. We see that the drop in validation error coincides
with the discovery of low-rank parameters inside the model,
suggesting a connection between rank and generalization.
Large error bars and segmented behavior in the singular
value evolution are due to averaging over seeds that general-
ize at different times.

Perhaps most importantly, we still lack a concrete under-
standing of how neural networks generalize (Zhang et al.,
2021), despite having enough capacity to overfit the training
data completely.

Power et al. (2022) first noticed a phenomenon they named
“grokking”, where a model first fits the training loss while per-
forming poorly on the validation loss but eventually “learns”
to generalize. They propose the setting of this observation as
a test bed to study generalization as it has quite unique prop-
erties and can also be replicated easily with few resources.
Much work has been devoted to explaining the source of
this phenomenon (Lyu et al., 2023; Liu et al., 2022; 2023a;
Davies et al., 2022). In particular, weight decay seems
crucial (Lyu et al., 2023; Liu et al., 2023a), but its precise
contribution is still unclear.

Starting with the grokking phenomenon, we study the spec-
tral dynamics of weight matrices, specifically the evolution
of singular values and singular vectors, and show that such
dynamics are intimately connected to generalization. The
contributions of this work are as follows:
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• In Section 3, we see that the validation loss drop in
grokking coincides with the discovery of low-rank so-
lutions across all of the weight matrices in the network
simultaneously. We observe that, without weight decay,
neither grokking nor the discovery of such a low-rank
solution occurs. But, given enough data, we again find
that low-rank weights and generalization are correlated.

• In Section 4, we provide an empirical overview of the
training dynamics of neural network layers through the
lens of the SVD. We demonstrate effective rank minimiza-
tion across various practical neural networks in complex
settings. We see a trend in the alignment of singular vec-
tors in consecutive layers, which becomes increasingly
strong as training progresses. We also observe early stabi-
lization in the direction of top singular vectors.

• In Section 5, we connect rank minimization to weight
decay, showing that weight decay promotes rank mini-
mization and alignment in consecutive layers, extending
theoretical work on the topic. Small (Frankle et al., 2020)
to large (Biderman et al., 2023) amounts of weight de-
cay are commonly used to improve generalization, so this
further suggests a connection between rank and general-
ization.

• Given the tempting connection between rank and gen-
eralization, Section 6 revisits the classic memorization
experiments of Zhang et al. (2021). We show that training
with random labels leads to high (effective) rank solu-
tions, while with the true labels, the rank is much lower,
strengthening the connection.

2. Related Work
2.1. Grokking

Power et al. (2022) first notice a fascinating phenomenon
they call ”grokking” where models quickly fit the train-
ing loss on toy tasks, then after a long period of training
very quickly generalize on the validation loss. Kumar et al.
(2023) find that a relaxed definition of grokking for 2-layer
MLPs can be observed, even without weight decay, and
claim that the transition from kernel (Jacot et al., 2018)
to rich (Atanasov et al., 2023) regime is responsible for
grokking. Mohamadi et al. (2023) have a similar explana-
tion, and prove sample complexity bounds on generalization
for 2-layer networks. Gromov (2023) find grokking for
simple 2-layer networks with gradient descent and show
the solutions found by GD and Adam agree with a priori
implementations. Davies et al. (2022) hypothesize a connec-
tion between double descent and grokking, where simple
patterns are learned quickly, and generalizing patterns are
learned more slowly. Thilak et al. (2022) show a “slingshot”
effect with adaptive optimizers, where loss oscillates and

flings the parameters into a better generalizing solution, re-
sulting in grokking without weight decay dependent on the
epsilon parameter of Adam (Kingma & Ba, 2014). Liu et al.
(2023b) find that grokking behavior correlates with a metric
that generalizes the number of partitions a network splits
the space into. Tan & Huang (2023) prove in a simplified
case that weight norm decrease is sufficient for grokking
behavior, and find tighter metrics for prediction. Xu et al.
(2023) prove grokking behavior for 2-layer ReLU networks
on nearly-orthogonal XOR data. Merrill et al. (2023) show
that for a simple 1-layer ReLU network, grokking corre-
sponds to finding a sparse model that exactly agrees with
the predictions. Notsawo Jr et al. (2023) show that oscillat-
ing loss curves in early epochs predict grokking behavior
later. Lyu et al. (2023) proved that grokking occurs when a
small amount of weight decay is used for simplified settings.
Liu et al. (2022) study grokking in a toy system, develop
a qualitative picture, and demonstrate grokking on MNIST.
Liu et al. (2023a) propose a norm-regularization explana-
tion for grokking, where small norm controls generalizing
solutions. None of these works have explicitly examined
the connection with rank, which we do in Section 3.

2.2. Singular Value Dynamics

Prior work (Arora et al., 2019; Milanesi et al., 2021) shows
that implicit regularization in deep matrix factorization may
not necessarily be captured by the matrix norm and rather
might be better described as rank regularization. For the
full argument, see Arora et al. (2018, Appendix A), but
in particular, one critical assumption is “balanced initial-
ization”, namely that at initialization, for two consecutive
matrices Wi and Wi+1 in a product matrix

∏
j Wj , we have

W⊤
i+1Wi+1 = WiW

⊤
i . When substituting the SVDs of

these matrices and simplifying through orthogonality, this
results in the condition Vi+1Σ

2
i+1V

⊤
i+1 = UiΣ

2
iU

⊤
i where

Ui and Vi+1 are orthogonal matrices. Now, because these
are two orthogonal decompositions of the same matrix, the
diagonals must be equivalent up to a permutation of el-
ements with the same value. Thus, Ui = Vi+1O up to
signs, where O is a block diagonal matrix that may permute
the rows of equivalent diagonal elements. In particular, if
all the diagonal elements are distinct and Ui and Vi+1 are
square, then we have Ui = Vi+1 up to signs. As the product
matrices are all aligned with the assumption of balanced
initialization, the product of the diagonals will evolve in a
closed-form fashion, where larger singular values evolve
faster than smaller ones. As Arora et al. (2019) demonstrate,
the result is a rank-minimizing behavior with deeper and
deeper matrix products. The formula is also empirically
confirmed for linear matrix factorization problems. Similar
results are derived in tensor products and other structured
settings (Saxe et al., 2014; Yaras et al., 2023a). In Sec-
tion 4, we examine the conclusions and assumptions of the
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developed theory on much larger, practical neural networks.

2.3. Low-Rank Properties

Another line of work focuses on more general low-rank
biases. Earlier work looks at norms as an implicit bias (Gu-
nasekar et al., 2017). Theoretical work finds that norms or
closed-form functions of the weights may be insufficient to
explain implicit regularization but do not rule out rank min-
imization (Vardi & Shamir, 2021; Razin & Cohen, 2020).
Many studies explore low-rank biases of different matrices,
like the Jacobian (Pennington et al., 2018), weight matri-
ces (Le & Jegelka, 2021; Frei et al., 2022; Ongie & Willett,
2022; Martin & Mahoney, 2020; 2021), Gram matrix (Huh
et al., 2022), or features (Yu & Wu, 2023; Feng et al., 2022).
Others show that dynamics influence rank decay (Chen et al.,
2023; Wang & Jacot, 2023). Some authors draw a connec-
tion between weight decay and rank minimization in ideal
settings (Ziyin et al., 2022; Galanti et al., 2022; Zangrando
et al., 2024; Ergen & Pilanci, 2023; Parhi & Nowak, 2023;
Shenouda et al., 2023). We are interested in the question of
how far these connections extend and will present evidence
that sometimes agrees and deepens connections suggested
by theory and small-scale experiments. In Section 5, we em-
pirically demonstrate the connection between weight decay
and rank on much larger systems than previously examined.

3. Grokking and Rank Minimization
Motivated by theoretical work that proposes connections
between rank and generalization (Razin & Cohen, 2020;
Vardi & Shamir, 2021; Timor et al., 2023), weight decay
and rank (Galanti et al., 2022; Yaras et al., 2023b; Zan-
grando et al., 2024), and the importance of weight decay
for grokking (Power et al., 2022; Lyu et al., 2023; Liu et al.,
2023a) in simple settings, we evaluate the claim that rank
might be connected to grokking. Such a description in
terms of rank would nicely fit with other descriptions of
grokking in terms of the simplification of linear decision
boundaries (Humayun et al., 2024), the connection to double
descent (Davies et al., 2022), and the discovery of a sparse
solution (Merrill et al., 2023).

We mostly follow the setting of Nanda et al. (2023), opti-
mizing a single-layer Transformer for modular addition (see
Appendix A for exact details), except we use sinusoidal po-
sition embeddings instead of learned. As suggested by work
in the deep linear case (Saxe et al., 2014; Arora et al., 2019;
Milanesi et al., 2021; Yaras et al., 2023b), we plot singular
value evolution for individual weight matrices, and to have a
high-level view of all parameter evolutions we compute the
(normalized) effective rank of a matrix W (Roy & Vetterli,

2007) with rank R as

EffRank(W ) := −
R∑
i=1

σi∑
j σj

log
σi∑
j σj

, (1)

NormEffRank(W ) :=
EffRank(W )

R
, (2)

where σi are the singular values of matrix W and
EffRank(W ) is the entropy of the normalized singular value
distribution. As the probability mass concentrates, the effec-
tive rank decreases. We plot NormEffRank(W ) to compare
across layers and time.

In addition, inspired by the assumptions of balanced-
ness made by prior work (Arora et al., 2018; 2019),
we examine the alignment of consecutive weight ma-
trices in the Transformer. To examine and quantify
this alignment between consecutive matrices in a neu-
ral network Wi =

∑R
j=1 σj(t)uj(t)vj(t)

⊤, Wi+1 =∑R
k=1 σ

′
k(t)u

′
k(t)v

′
k(t)

⊤ at training time t, we compute

A(t)jk = |⟨uj(t), v
′
k(t)⟩|, (3)

where the absolute value is taken to ignore sign flips in
the SVD computation. We then plot the diagonal of this
matrix A(t)ii ∀ i ≤ 100 over time. For exact details on how
alignment is computed for different architectures and layers
that are more complex than the fully connected case, please
see Appendix A.

In Figure 2, we see that the rapid decrease in the validation
loss corresponds perfectly with the onset of the low-rank
behavior from the perspective of the singular values. In
tracking inter-layer alignment over the course of training,
we see that the final low-rank solution develops slowly from
the middle ranks of the model. By contrast, without weight
decay, the grokking phenomenon never occurs, and it does
not appear that a low-rank solution will develop. Grokking
depends on only using a small portion of the data for train-
ing (Power et al., 2022; Nanda et al., 2023). When instead
we use 90%, and no weight decay at all, generalization
again co-occurs with effective rank minimization, further
reinforcing the connection. We also replicate the setting
of Thilak et al. (2022) who show a form of grokking with-
out weight decay, but when plotted on a linear-scale x-axis
the generalization appears much less sudden than the set-
ting with weight decay. The familiar reader will note that
Nanda et al. (2023) previously showed that the particular
solution found in modular addition is a low rank fourier
decomposition, so our observations on low rank weights
will directly follow. While such a description for modular
addition is impressively precise, it is difficult to obtain for
more complex tasks. In following sections we argue that
rank minimization is a perspective that can apply in more
complex settings when one does not know what to look for
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(a) Error (b) SVs (c) Eff. Rank (d) Alignment

Figure 2: Top row: 30% data and no weight decay. 2nd row: 30% data and weight decay 1.0 (grokking), using
hyperparameters from Nanda et al. (2023). 3rd row: 70% data with no weight decay (slingshot), using hyperparameters
from Thilak et al. (2022). Bottom row: 90% data and no weight decay. Singular value evolution is visualized for the
first attention parameter, where each line represents a single singular value and the color represents the rank. Alignment
(Eqn. 3) between the embedding and the first attention parameter is also visualized. One can see that grokking co-occurs
with low-rank weights (effective rank is calculated according to Eqn. 1). In addition, there is an alignment that begins early
in training that evolves up the diagonal. Without weight decay and with less data, neither grokking nor the other phenomena
occur during the entire training budget, but using more data, even without weight decay, leads to low-rank solutions from
the beginning of training. The slingshot case follows a similar trend, though the validation loss is fit more gradually. Across
generalizing cases alignment is also more prevalent in the top ranks.
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in the weights, and it may even be possible to eventually
interpret the neural network via the top ranks (Praggastis
et al., 2022).

Though our results do not completely discard the contribu-
tion of the norm to generalization, they point out a com-
plication. One can see that without weight decay but with
90% of the data, the generalizing solution that is discovered
has many singular values larger than 1, and the maximum
singular value is also larger than that of the grokked solution,
for which most singular values are near zero. Recall the
norm of matrix W is given by ∥W∥2 =

√∑
i σ

2
i where

σi are the singular values. Thus, the large-data solution
has a much higher norm than the grokked solution. Still,
both settings generalize with a certain low-rank behavior.
The confounding factor is that, with high weight decay, the
smaller singular values disappear, while without, they do
not. We do not know how to precisely tie low-rank be-
havior to generalization, nor will it always make sense as
the solution might necessarily be high-rank, but it seems a
tempting explanation from the perspective of Occam’s Ra-
zor as a low-rank solution is “simpler” from the perspective
of dimension.

4. Spectral Dynamics
Grokking is typically observed on quite small-scale sys-
tems with very particular hyperparameter settings (Power
et al., 2022; Nanda et al., 2023; Gromov, 2023; Kumar et al.,
2023), thus we wonder how the observed trend toward rank
minimization scales to more complex systems. We also take
dual inspiration from prior work on deep linear networks,
which studies the evolution of the SVD of the weight ma-
trices (Saxe et al., 2014; Arora et al., 2018; 2019; Milanesi
et al., 2021; Yaras et al., 2023a) in simple cases. Thus we
apply the same analysis to larger, more practical systems.
We show that the trends we saw in the analysis of grokking
mostly hold true across networks and tasks at a much larger
scale, though our results do not always agree with the theory.

4.1. Methodology

In all our experiments, we aim to study reasonably sized
neural networks across a variety of tasks. We choose models
and tasks to represent current applications. In particular, we
select image classification with CNNs (VGG-16 (Simonyan
& Zisserman, 2014)) on CIFAR10 (Krizhevsky, 2009), im-
age generation through diffusion with UNets (Ronneberger
et al., 2015) on MNIST (LeCun, 1998), speech recogni-
tion with LSTMs (Hochreiter & Schmidhuber, 1997b) on
LibriSpeech (Panayotov et al., 2015), and language model-
ing with Transformers (Vaswani et al., 2017) on Wikitext-
103 (Merity et al., 2016). These experiments require training
hundreds of runs of the same model variant, so we are lim-
ited by computational constraints in the scale of models we

(a) VGG (b) UNet (c) LSTM (d) Transformer

Figure 3: Top row: Singular value evolution for a single
matrix in the middle of each model. Each line represents a
singular value, whereas color represents rank. Notice the
unequal evolution where top singular values grow at a dis-
proportionate rate. Bottom row: Normalized effective rank
(Eqn. 1) evolution visualized in color for different matrices
across architectures and time. As we move down the y-axis,
the depth of the parameters in the model increases, while the
x-axis tracks training time. Notice decreasing effective rank
across nearly all parameters, though the magnitude differs
across layers. The block-like patterns in the VGG case are
likely due to different channel dimension sizes. The banding
in the UNet, LSTM, and Transformer cases is due to the dif-
ferences between convolutional and linear layers, residual
block connections, and attention and fully connected layers,
respectively. The sharp transition midway through training
in the VGG case is likely due to a 10x learning rate decay.

examine. We primarily take hyperparameters from existing
settings in the literature, making small modifications for
simplicity. Thus, we intend that any correlations between
settings will be a reflection of common practice as opposed
to introduced bias on our part. We hope that the broad
scope of these experiments will allow for a more general
perspective on neural network optimization.

The bulk of the evidence presented comes from computing
singular value decompositions (SVDs) of weight matrices
in models. Thus, we ignore 1D bias and normalization pa-
rameters entirely in our analysis. There are also previously
reported cases where these do not appear crucial for per-
formance (Zhang et al., 2018b; Mohan et al., 2019; Karras
et al., 2023). As there are many matrices in the models we
study, we provide plots of individual layers’ matrix param-
eters and statistics summarizing behavior across layers for
conciseness of presentation. Hundreds of thousands of plots
were generated for this study, so it is impossible to provide
all the evidence. Please see Appendix A for exact experi-
ment details, including hyperparameters. We will release
code for all experiments.
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(a) VGG (b) UNet (c) LSTM (d) Transformer

Figure 4: Top row: Training losses for all tasks. Bottom
row: Validation losses for all tasks. Red is the full model.
Blue is post-training pruning the bottom half of the SVD for
every matrix in the model that is not the final layer. Green
is post-training pruning the top half of the SVD. Notice that
for all models, keeping the bottom half of the SVD is worse
than keeping the top half, supporting the idea that the top
directions provide a better approximation to the original
function.

4.2. Effective Rank Minimization

Expanding on theoretical (Saxe et al., 2014; Arora et al.,
2019; Milanesi et al., 2021; Boix-Adserà et al., 2023; Yaras
et al., 2023a) and empirical (Boix-Adserà et al., 2023; Mar-
tin & Mahoney, 2021; Dittmer et al., 2019) results, we
examine effective rank minimization across parameters in
both larger models and on a more diverse variety of tasks. In
Figure 3, we see that effective rank tends to decrease as train-
ing proceeds, regardless of the parameter or network. This
suggests that the network is becoming simpler as training
proceeds.

To test if the low-rank picture is tightly related to model per-
formance, we also prune either the top or bottom half of the
singular values for every matrix in the network and evaluate
that pruned model at every timestep. We might expect that
the top singular values would be the best approximation to
the function of the neural network, and we indeed see that
this is the case in Figure 4, where the pruned parameters
without any further training can be close approximations of
the full parameters. It is a subtle point, but such an approx-
imation might not be valid if pruning lower components
led to some critical signal being lost while propagating for-
ward, or if the many small but nonzero singular values were
necessary for noise.

4.3. Alignment of Singular Vectors Between Layers

Similar to the work done in the grokking case, we look at
alignment between consecutive layers in these larger neural
networks. In addition to the alignment matrix derived in
Eqn. 3, we derive and plot a scalar measure for alignment

(a) VGG (b) UNet (c) LSTM (d) Transformer

Figure 5: Neighboring layer alignment of singular vectors.
Top row: The diagonal of the alignment matrix A(t)ii
(Eqn. 3) vs. training time for a single pair of matrices in
the middle of each model. We see a small amount of align-
ment in the top ranks between layers shortly after training
begins, but this becomes more diffuse over time. Bottom
row: Alignment metric (Eqn. 4) for pairs of matrices for
depth vs. training time. It is hard to make out a global
trend across models, though the LSTM shows a weak signal
around Epoch 1 when the initial alignment occurs, and the
Transformer case has a banding pattern with depth due to
alignment between the query and key matrices that have no
nonlinearity in between.

in the top diagonal of this matrix:

a(t) =
1

10

10∑
i=1

A(t)ii . (4)

Again, for exact details on how this is computed for different
architectures and layers that are more complex than the fully-
connected case, please see Appendix A.

Figure 5 establishes that the theoretical assumption of bal-
anced initialization (Arora et al., 2018; Saxe et al., 2014),
which assumes aligned SVDs between weight matrices, is
not valid at the beginning of training. Nor does it appear
that alignment is static, like the linear case discussed by Du
et al. (2018). All of this points to the fact that the assump-
tions upon which the theory is based do not hold in these
larger-scale nonlinear settings, so the mechanism for rank
decrease may be quite different.

We also point out that, even though there is a trend toward
rank minimization, the effect is much weaker than in the
grokking case. We previously observed that weight decay
was a critical factor for the rank decrease, so we further
examine weight decay.

5. The Effect of Weight Decay
In light of the previously observed evolution of singu-
lar values, we investigate a proposed effect of weight de-
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(a) VGG (b) UNet (c) LSTM (d) Transformer

Figure 6: SV evolution for a single matrix and normalized effective rank (Eqn. 1) across matrices over time, where the
rows use differing amounts of weight decay. From top to bottom, for VGG we use coefficients {0, 0.001, 0.01, 0.1}, while
for other networks we use coefficients {0, 0.1, 1, 10}. Higher weight decay coefficients promote more aggressive rank
minimization. In the case of VGG, less weight decay is needed before norm collapse.

(a) VGG (b) UNet (c) LSTM (d) Transformer

Figure 7: Diagonal of alignment for a single pair over time (Eqn. 3) and alignment metric across pairs of matrices over time
(Eqn. 4) where the y-axis represents depth. From top to bottom, for VGG we use coefficients {0, 0.001, 0.01, 0.1}, while for
other networks we use coefficients {0, 0.1, 1, 10}. We see that the alignment magnitude is much higher with higher weight
decay, and in particular, the Transformer has the strongest alignment even when nonlinearities separate the MLP layers.
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(a) Train Err. (b) Val. Err. (c) SVs (d) Eff. Rank (e) Alignment

Figure 8: Top row: results with true labels. Bottom row: results with random labels. We see that the middle layers have a
lower effective rank when using true labels and that alignment in the middle layers persists throughout training, unlike in the
random label case.

cay. Though weight decay explicitly penalizes the norm
of weights, there is empirical evidence that discards the
connection between norm and generalization for neural net-
works (Razin & Cohen, 2020; Andriushchenko et al., 2023),
meaning we do not have a full understanding as to why
weight decay may be useful. Alternatively, some theoreti-
cal (Boix-Adserà et al., 2023; Razin & Cohen, 2020; Yaras
et al., 2023a; Timor et al., 2023; Ongie & Willett, 2022;
Galanti et al., 2022; Zangrando et al., 2024) and empirical
works (Galanti et al., 2022; Boix-Adserà et al., 2023) pro-
pose a connection with the rank of matrices in constrained
settings. Still, a comprehensive connection to larger empiri-
cal networks has not yet been demonstrated.

We speculate on the intuition of the mechanism in more
practical settings. Notice in its simplest form that weight de-
cay asks for arg minW L(W ) + λ∥W∥2F , where ∥W∥2F =∑R

i=1 σ
2
i with singular values σi of weight matrix W with

rank R. We saw that larger singular values of neural net-
works grow faster (Fig. 3(top row)) and that the top singular
vectors are much more useful for minimizing task loss than
the bottom ones (Fig. 3). Thus, with minor weight decay
regularization, one straightforward solution for the network
may be to minimize the rank of a given weight matrix while
preserving the top singular values to minimize L(W ).

Figure 6 shows that adding weight decay produces this exact
behavior, while too much weight decay leads to complete
norm collapse. The exact choice of “too much” varies across
architectures and tasks. In addition, even more surprisingly,
large amounts of weight decay promote a tighter alignment
in the top singular vectors of consecutive layers, which
we see in Figure 7. This behavior is quite reminiscent of

the balancedness condition (Arora et al., 2018; 2019; Du
et al., 2018), though the networks considered here have
nonlinearities and much more complex structures. We also
provide additional evidence in Appendix A where Figure 9
shows that the solutions with very high weight decay are
still performant, even though they are much lower rank.

6. Spectral Dynamics with Random Labels
Given the observations connecting generalization and rank
in the grokking case, we are interested in seeing whether the
perspective that we have developed sheds any light on the
classic random label memorization experiments of Zhang
et al. (2021).

Similar to Zhang et al. (2021), we train a simple MLP to fit
random or true labels on CIFAR10. Please see Appendix A
for the details regarding the experimental setup. Zhang et al.
(2021) decay the learning rate to zero, and the random label
experiments only converge late in training. Consequently,
we use a constant learning rate to control this phenomenon.
We see in Figure 8 that both cases are able to achieve zero
error, though with different singular value evolution and
alignment in the middle layer.

Surprisingly, we see that even without weight decay, with
true labels, inner layers align, while with random labels, this
alignment occurs and then disappears with more training.
This is particularly intriguing as there are nonlinearities
that could theoretically separate the network from the linear
case, and yet quite strong alignment occurs despite that.
We also see that the middle layer of the network trained
on true labels has a lower effective rank, which may make
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sense as the data with true labels likely shares a common
structure among classes. This further suggests that viewing
generalization through the lens of rank may be fruitful.

7. Discussion
We provide an alternative view on the grokking phenomenon
through the lens of SVD evolution, where we see that gener-
alization coincides with the discovery of a low-rank solution
in the weight matrices. We then observe that this tendency
toward rank minimization exists on a much larger scale
across natural tasks. We show that weight decay promotes
this tendency toward low rank and provide additional ev-
idence pointing out that generalization and memorization
differ in the rank of solutions found by optimization.

Though we do not provide a comprehensive theory that ex-
plains these observations, we believe that such observations
may form the basis for a deeper understanding of deep learn-
ing. Even without restricting assumptions like balancedness,
linearity, or small initialization, the spectral dynamics are
consistent across settings, so we believe there is likely a
common cause.

Many natural questions remain open. There is great interest
in the interpretability of models (Nanda et al., 2023), and
there is already prior work on interpreting the singular vec-
tors of convolutional weights (Praggastis et al., 2022). One
may also wonder on the connection to other unexplained
phenomena like double descent (Belkin et al., 2019; Nakki-
ran et al., 2021; Davies et al., 2022) or the lottery ticket
hypothesis (Frankle & Carbin, 2018). Given the generality
of our observations, we believe such directions may inform
a more precise analysis of neural networks.
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A. Experimental Details
For all experiments, we use 3 random seeds and average all plots over those 3. This is relatively small, but error bars tend to
be very tight, and due to the high volume of runs required for this work we lack the resources to run much more.

In order to compute alignment we consider only pairs of layers that directly feed into each other, and ignore the influence of
residual connections so as to cut down on the number of comparisons. Specifics on individual architectures are given below.

A.1. Image Classification with VGG

We train a VGG-16 (Simonyan & Zisserman, 2014) on CIFAR-10 (Krizhevsky, 2009) for 164 epochs, following hyperpa-
rameters and learning rate schedule in (Frankle et al., 2020), but without data augmentation. For the optimizer we use SGD
with batch size 128, initial learning rate 0.1 and momentum of 0.9. We also decay the learning rate 3 times by a factor of 10
at epoch 82, epoch 120, and finally at epoch 160. We also use a minor amount of weight decay with coefficient 0.0001.

VGG-16 uses ReLU activations and batch normalization (Ioffe & Szegedy, 2015), and includes both convolutional and
linear layers. For linear layers we simply compute the SVD of the weight matrix. For convolutional layers, the parameters
are typically stored as a 4D tensor of shape (cout, cin, h, w) for the output channels, input channels, height and width of the
filters respectively. As the filters compute a transformation from each position and input channel to an output channel, we
compute the SVD of the flattened tensor (cout, cin ·h ·w), which maps all inputs to outputs, similar to Praggastis et al. (2022).
This is not the SVD of the entire transformation of the feature map to the next feature map, but rather the transformation
from a set of adjacent positions to a particular position in the next layer. For the individual SV evolution plot, we use the
12th convolutional layer.

In order to compute alignment of bases between consecutive convolutional layers, V ⊤
i+1Ui we need to match the dimen-

sionality between Ui and Vi+1. For convolutional layers we are presented with a question as to how to handle the spatial
dimensions h and w as naively the input dimension of the next layer will be a factor of h · w larger dimension. We
experimented with multiple cases, including aligning at each spatial position individually or averaging over the alignment at
all spatial positions, and eventually settled at aligning the output of one layer to the center spatial input of the next layer.
That is, for a 3x3 convolution mapping to a following 3x3 convolution, we compute the alignment only for position (1,1) of
the next layer. This seemed reasonable to us as on average the edges of the filters showed poorer alignment overall. For the
individual alignment plot, we use the alignment between the 11th and 12th convolutional layers at the center spatial position
of the 12th convolutional layer.

A.2. Image Generation with UNets

We train a UNet (Ronneberger et al., 2015) diffusion model (Sohl-Dickstein et al., 2015; Ho et al., 2020) on MNIST (LeCun,
1998) generation. We take model design and hyperparameters from (Wang & Vastola, 2022). In particular we use a 4-layer
residual UNet and train with AdamW (Loshchilov & Hutter, 2017) with batch size 128, and learning rate of 0.0003 for 100
epochs. This model uses swish (Ramachandran et al., 2017) activations and a combination of linear and convolutional, as
well as transposed convolutional layers.

Computing SVDs and alignment is similar to the image classification case described above, except in the case of the
transposed convolutions where an extra transpose of dimensions is needed as parameters are stored with the shape
(cin, cout, h, w). For the individual SV evolution plot, we use the 3rd convolutional layer. For the alignment plot, we use the
alignment between the 3rd and 4th convolutional layers at the center spatial position of the 4th convolutional layer.

A.3. Speech Recognition with LSTMs

We train a bidirectional LSTM (Hochreiter & Schmidhuber, 1997a) for automatic speech recognition on LibriSpeech (Panay-
otov et al., 2015). We tune for a simple and well-performing hyperparameter setting. We use AdamW (Loshchilov & Hutter,
2017) with batch size 32, learning rate 0.0003 and weight decay 0.1 for 50 epochs. We also use a cosine annealing learning
rate schedule from 1 to 0 over the entire 50 epochs.

The LSTM only has matrix parameters and biases, so it is straightforward to compute SVDs of the matrices. For individual
SV evolution plots, we plot the 3rd layer input parameter. In the case of alignment, we make a number of connections: first
down depth for the input parameters, then connecting the previous input parameter to the current hidden parameter in both
directions, then connecting the previous hidden parameter to the current input parameter. For the individual layer alignment,
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we plot alignment between the 3rd and 4th layer input parameters.

A.4. Language Modeling with Transformers

We train a Transformer (Vaswani et al., 2017) language model on Wikitext-103 (Merity et al., 2016). We base hyperparameter
choices on the Pythia suite (Biderman et al., 2023), specifically the 160 million parameter configuration with sinusoidal
position embeddings, 12 layers, model dimension 768, 12 attention heads per layer, and hidden dimension 768. We use
AdamW (Loshchilov & Hutter, 2017) with batch size 256, learning rate 0.0006 and weight decay 0.1. We use a context
length of 2048 and clip gradients to a maximum norm of 1. We also use a learning rate schedule with a linear warmup and
cosine decay to 10% of the learning rate, like Biderman et al. (2023).

For SVDs, for simplicity we take the SVD of the entire (3dmodel, dmodel) parameter that computes queries, keys and values
from the hidden dimension inside the attention layer, without splitting into individual heads. This is reasonable as the
splitting is done after the fact internally. We also take the SVD of the output parameters, and linear layers of the MLPs,
which are 2 dimensional matrices. For the individual SV evolution plot, we plot the SVs of W1 of the 8th layer MLP

For alignment, we consider the alignment of WQ and WK matrices, WV and WO matrices, the alignment between WO

and W1 of the MLP block, between W1 and W2 of the MLP block, and between W2 and the next attention layer. For the
individual layer alignment, we plot alignment between W1 and W2 of the 8th layer MLP.

A.5. Weight Decay Experiments

All tasks are trained in exactly the same fashion as mentioned previously, with increasing weight decay in the set
{0, 0.0001, 0.001, 0.01, 0.1, 1.0, 10.0}. For ease of presentation we consider a subset of settings across tasks. In Fig-
ure 9 we include trained model performance and pruned model performance to show that, even with high levels of weight
decay, models do not entirely break down. More so, the approximation of the pruned model to the full model gets better
with higher weight decay.

A.6. Grokking Experiments

We mostly follow the settings and architecture of Nanda et al. (2023), except we use sinusoidal positional encodings instead
of learned.

For the slingshot case we follow hyperparameter settings in Thilak et al. (2022), Appendix B except with the 1-layer
architecture from Nanda et al. (2023) instead of the 2-layer architecture specified. W perform addition modulo 97. The
original grokking plot in Thilak et al. (2022) appears much more dramatic as it log-scales the x-axis, which we do not do
here for clarity.

A.7. Random Label Experiments

We train a 4-layer MLP on CIFAR10 (Krizhevsky, 2009) with either completely random labels, or the true labels. We use
SGD with momentum of 0.9 and constant learning rate of 0.001, and train for 300 epochs to see the entire trend of training.
The major difference to the setting of Zhang et al. (2021) is the use of a constant learning rate, as their use of a learning rate
schedule might conflate the results.

B. Limitations
There are a few key limitations to our study. As mentioned, we lack the computational resources to run more than 3 random
seeds per experiment, though we do find error bars to be quite tight in general (except for the generalization epoch in the
grokking experiments). In addition, as discussed we ignore 1D parameters in the neural networks, which may be particularly
crucial (especially normalization). In addition, due to computational constraints we do not consider alignment of layers
across residual connections as this quickly becomes combinatorial in depth, thus there may be other interesting interactions
that we do not observe. Finally, due to computational constraints we are unable to investigate results on larger models than
the 12 layer Transformer, which may have different behavior.
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(a) VGG (b) UNet (c) LSTM (d) Transformer

Figure 9: Training loss over time, where the rows use differing amounts of weight decay. From top to bottom, for VGG
we use coefficients {0, 0.001, 0.01, 0.1}, while for other networks we use coefficients {0, 0.1, 1, 10}. We see that it is still
possible to achieve low training loss under high weight decay, and as we increase the amount of weight decay, the gap
between pruned and unpruned parameters closes, lending support to the idea that the parameters become lower rank.

C. Compute Resources
All experiments are performed on an internal cluster with on the order of 100 NVIDIA 2080ti GPUs or newer. All
experiments run on a single GPU in less than 8 hours, though it is extremely helpful to parallelize across machines. We
estimate that end-to-end it might take a few days on these resources to rerun all of the experiments in this paper.
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D. Code Sources
We use PyTorch (Paszke et al., 2019), NumPy (Harris et al., 2020) for all experiments and Weights & Biases (Biewald,
2020) for experiment tracking. We make plots with Matplotlib (Hunter, 2007) and Seaborn (Waskom, 2021).
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