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ABSTRACT

Medical image segmentation methods typically rely on numerous dense annotated
images for model training, which are notoriously expensive and time-consuming
to collect. To alleviate this burden, weakly supervised techniques have been ex-
ploited to train segmentation models with less expensive annotations. In this pa-
per, we propose a novel point-supervised contrastive variance method (PSCV) for
medical image semantic segmentation, which only requires one pixel-point from
each organ category to be annotated. The proposed method trains the base seg-
mentation network by using a novel contrastive variance (CV) loss to exploit the
unlabeled pixels and a partial cross-entropy loss on the labeled pixels. The CV
loss function is designed to exploit the statistical spatial distribution properties of
organs in medical images and their variance distribution map representations to
enforce discriminative predictions over the unlabeled pixels. Experimental results
on two standard medical image datasets demonstrate that the proposed method
outperforms the state-of-the-art weakly supervised methods on point-supervised
medical image semantic segmentation tasks.

1 INTRODUCTION

Medical image analysis has become indispensable in clinical diagnosis and complementary
medicine with the developments in medical imaging technology. Notably, medical image segmenta-
tion is among the most fundamental and challenging tasks in medical image analysis, aiming to iden-
tify the category of each pixel of the input medical image. Existing methods have produced desirable
results by using lots of annotated data to train convolutional neural networks. However, acquiring a
large number of dense medical image annotations often requires specialist clinical knowledge and is
time-consuming, which has bottlenecked the development of the existing field. To reduce the costly
annotation requirement, weakly supervised learning technologies have been proposed to investigate
the utilization of less expensive training labels for performing complex tasks.

Several types of weakly supervised signals have attracted many attentions, such as point-level Bear-
man et al. (2016); Qian et al. (2019); Tang et al. (2018), scribble-level Lin et al. (2016); Tang et al.
(2018), box-level Dai et al. (2015); Khoreva et al. (2017), and image-level Ahn & Kwak (2018) su-
pervision. As one of the simplest methods of annotating objects, point-level supervision can afford
a trade-off between cost and information because they are significantly less expensive than dense
pixel-level annotation yet contain important location information Bearman et al. (2016); Chen et al.
(2021a). Therefore, we concentrate on segmenting organs in medical images under only the weak
supervision provided by point annotations, in which each category of organs is annotated with just
one pixel point, as shown in Figure 1 (a).

Some recent methods focus on using prior knowledge of the image, such as edge Qu et al. (2020);
Yoo et al. (2019), size Kervadec et al. (2019), or spatial information Li et al. (2019), as auxiliary in-
formation to train the segmentation network or perform multi-stage refinement. However, their prior
hypotheses may encounter difficulties when dealing with multi-class medical images, as similar ap-
pearances between different organs can produce noisy contexts to each other and hence inevitably
interfere with the model learning. In addition, several approaches propose to mimic full supervision
via generating pseudo-labels through dual structures Luo et al. (2022) and consistency constraints
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Figure 1: Annotation scenarios and performances of the proposed method. (a) Illustrations of dense
and point annotations. (b) With only point annotation, the proposed method produces performances
close to the ones produced with standard dense annotations based on UNet on two datasets.

Liu et al. (2022). But as the pseudo-labels are predicted from the weak model, the erroneous predic-
tion problem can hardly be solved by directly using the predicted pseudo-labels as explicit training
targets.

The overall fundamental challenges for point-supervised medical semantic segmentation lie in the
following two aspects: (1) The appearance discrepancies between different organ regions of medical
images are typically insignificant, and hence the organ boundaries are usually blurred, which can
easily lead to over-segmentation problems. (2) Learning discriminatory information from only one
pixel of annotation per organ is susceptible to underfitting. Inspired by the cognitive psychology
fact that humans can correct and adjust visual information gradually by consciously identifying each
region of interest Rensink (2000); Corbetta & Shulman (2002), it is desirable to investigate models to
tackle the abovementioned challenges and enable point-supervised medical semantic segmentation
in a similar manner.

In this paper, we propose a novel point-supervised contrastive variance (PSCV) method for learning
medical image semantic segmentation models with only one pixel per class being labeled in each
training image. The center of this approach is a novel contrastive variance loss function, which
is designed to exploit unlabeled pixels to train the segmentation network together with a partial
cross-entropy loss on the labeled pixels. This contrastive loss function is specifically designed for
solving the point-supervised medical image segmentation task, which is computed over the pixel-
level variance distribution map instead of the intermediate features. The standard Mumford-Shah
function Mumford & Shah (1989) has been shown to be effective in image segmentation Vese &
Chan (2002) by approximating the image using a smooth function inside each region. But its ca-
pacity for exploiting the unlabeled pixels is limited without considering the discrepancy information
across different categories. The proposed contrastive variance loss function overcomes this draw-
back by capturing the statistical spatial distribution properties of the objects (i.e., organs) in medical
images to eliminate the complex background of each category of organs in a contrastive manner.
Moreover, by adopting a pixel-level variance distribution map representation for each organ in an
image and contrasting the inter-image similarities between positive object pairs and negative ob-
ject pairs, the proposed loss can help enforce compact predictions of each organ of the unlabeled
pixels, and therefore eliminate the boundary prediction noise. The proposed PSCV is trained in an
end-to-end manner. It largely reduces the performance gap between point-annotated segmentation
methods and the fully supervised method, as shown in Figure 1 (b). In summary, this work makes
the following contributions:

• We propose a novel PSCV method to tackle the medical image semantic segmentation
problem by exploiting both unlabeled and labeled pixels with limited point supervisions:
one labeled pixel point per class in each image.

• We design a novel contrastive variance function that exploits the spatial distribution prop-
erties of the organs in medical images and their variance distribution map representations
to enforce discriminative predictions over the unlabeled pixels.

• Experimental results on two medical image segmentation datasets show that the proposed
PSCV can substantially outperform the state-of-the-art weakly supervised medical segmen-
tation methods and greatly narrow the gap with the results of the fully supervised method.
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Figure 2: An overview of the proposed method. In the training stage, we first input the images
into the segmentation network and obtain predictions through the encoder and decoder. Then we
calculate two loss functions, a partial cross entropy loss LpCE and a contrastive variance Loss LCV ,
to update the segmentation network. The LpCE is calculated using point annotations and predictions,
while the LCV is calculated using the input images and predictions. In the testing stage, we input
the test image into the segmentation network to obtain the segmentation result.

2 RELATED WORK

2.1 WEAK SUPERVISION FOR IMAGE SEGMENTATION

Weakly-supervised segmentation methods have proposed to use different types of weak supervi-
sion information, such as point-level Bearman et al. (2016); Qian et al. (2019); Tang et al. (2018),
scribble-level Lin et al. (2016); Tang et al. (2018), box-level Dai et al. (2015); Khoreva et al. (2017),
and image-level Ahn & Kwak (2018) supervisions. In particular, Lin et al. Lin et al. (2016) proposed
to propagate information from scribble regions to unlabeled regions by generating proposals. Tang
et al. Tang et al. (2018) combined the partial cross entropy for labeled pixels and the normalized cut
to unlabeled pixels to obtain a more generalised model. Kim and Ye Kim & Ye (2019) proposed a
novel loss function based on Mumford-Shah functional that can alleviate the burden of manual an-
notation. Qian et al. Qian et al. (2019) considered both the intra- and inter-category relations among
different images for distance metric learning. In order to obtain reasonable pseudo-labels, some
methods stack temporal level predictions Lee & Jeong (2020) or constrain the consistency of differ-
ent outputs from the model to increase the performance Ouali et al. (2020); Chen et al. (2021c). The
performances of the above methods nevertheless still have considerable gaps from fully supervised
methods and their study has focused on natural scene images.

2.2 MEDICAL IMAGE SEGMENTATION WITH WEAK SUPERVISION

Medical image semantic segmentation with weak supervision poses different challenges from the
segmentation task for natural scene images Luo et al. (2022); Dorent et al. (2021); Roth et al. (2021);
Qu et al. (2020); Tajbakhsh et al. (2020). Some works have explored using extreme points as su-
pervisory signals for medical image segmentation Dorent et al. (2021); Roth et al. (2021). Roth
et al. Roth et al. (2021) used the Random Walker according to extreme points to generate initial
pseudo-labels, which were then used to train the segmentation model. Subsequently, Dorent et al.
Dorent et al. (2021) generated more annotated voxels by deep geodesics connecting and used a CRF
regularised loss to obtain better performance. Kervadec et al. Kervadec et al. (2019) proposed a loss
function that constrains the prediction by considering prior knowledge of size. Laradji et al. Laradji
et al. (2021) constrained the output predictions to be consistent through geometric transformations.
Can et al. Can et al. (2018) introduced an iterative two-step framework that uses conditional random
field (CRF) to relabel the training set and then trains the model recursively. Recently, Luo et al. Luo
et al. (2022) proposed a dual-branch network to generate pseudo-labels dynamically, which learns
from scribble annotations in an end-to-end way. Although the above work has made some progress,
they have not yet satisfactorily addressed the problem of weakly supervised semantic segmentation
of medical organs, and more research effort is needed on this task.
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3 PROPOSED METHOD

In this section, we present a novel point-supervised contrastive variance method for medical seman-
tic segmentation (PSCV), which exploits both labeled and unlabeled pixels to learn discriminative
segmentation models by capturing the statistical spatial distribution properties of organs in medical
images in a contrastive manner.

In particular, we assume weakly point-annotated data provided by only making a few clicks on
each training image. That is, in each training image, only one pixel from each organ category is
annotated. We aim to train a good segmentation model from N point-annotated training images,
D = {(In, Y n)}Nn=1, where In ∈ R1∗H∗W denotes the n-th training image, Y n ∈ {0, 1}K∗H∗W

denotes the corresponding point-supervised label matrix, K is the number of classes (i.e., organ
categories) in the dataset, H and W are the height and width of the input image, respectively. Let
Ω ⊂ R2 denote the set of spatial locations for the input image. Since each point-annotated training
image In only has K pixels being labeled, the subset of spatial locations for these labeled pixels can
be denoted as Ωn

y ⊂ Ω, and the point-supervised pixel-label pairs in the n-th image can be written
as {(In(r), Y n(r)),∀r ∈ Ωn

y}.

The pipeline of the proposed method is illustrated in Figure 2. Each image first goes through a
base segmentation network to produce prediction outputs. The overall training loss is then com-
puted as two parts: the standard partial cross-entropy loss LpCE computed based on the given
point annotations and the corresponding prediction outputs, and the proposed contrastive vari-
ance Loss LCV computed based on the whole input image and all the prediction outputs. The
segmentation network consists of an encoder fencoder : R1∗H∗W → Rc∗h∗w and a decoder
fdecoder : Rc∗h∗w → RK∗H∗W , where c, h, and w are the number of channels, height, and width
of the intermediate embedding features respectively. The proposed method is trained end-to-end
with the joint training loss. Below we elaborate the proposed method by first introducing the base
point-supervised segmentation training, then revisiting the standard Mumford-Shah loss function for
image segmentation, and finally presenting the proposed novel contrastive variance loss function, as
well as the training and test procedures of the proposed method.

3.1 POINT-SUPERVISED LEARNING

Following the framework in Figure 2, the prediction output Ŷ n ∈ [0, 1]K∗H∗W for a training image
In can be generated through the pipeline of an encoder fencoder and a decoder fdecoder, as follows:

Ŷ n = softmax(fdecoder ◦ fencoder(In)), (1)

where softmax(·) denotes the class-wise softmax function that predicts each pixel into a probability
vector of K classes. Let Ŷ n

k (r) denote the predicted probability of a pixel at location r belonging to
the k-th class. We then have

∑K
k=1 Ŷ

n
k (r) = 1.

In general point-supervised learning, especially given a fraction of labeled points, the partial cross-
entropy loss LpCE is typically minimized to train the segmentation network Tang et al. (2018). Here
given the few annotated points indicated by Ωn

y for each training image In, the cross-entropy loss
LpCE is computed by using the point-supervised ground truth Y n and the prediction output/mask
Ŷ n as follows:

LpCE = −
N∑

n=1

∑
r∈Ωn

y

K∑
k=1

Y n
k (r) log Ŷ n

k (r) (2)

3.2 REVISITING MUMFORD-SHAH LOSS FUNCTION

In this subsection, we provide an overview of the Mumford-Shah loss function Kim & Ye (2019),
which treats image segmentation as a Mumford-Shah energy minimization problem Mumford &
Shah (1989). It aims to segment images into K classes of piece-wise constant regions by enforcing
each region to have similar pixel values with the regularization of the contour length.
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Specifically, by using the prediction function output Ŷk as the characteristic function for the k-th
class Kim & Ye (2019), the Mumford-Shah loss functional LMS is defined as below:

LMS = λms

N∑
n=1

K∑
k=1

∫
Ω

|In(r)− cnk |2Ŷ n
k (r)dr + µ

N∑
n=1

K∑
k=1

∫
Ω

|∇Ŷ n
k (r)|dr, (3)

where cnk ∈ R1∗1∗1 is the average pixel value of the k-th class in the n-th image; the gradient

∇Ŷ n
k (r) =

∂Ŷ n
k (r)
∂r computes the horizontal and vertical changes in the predictions, and is used in

the second term to enforce the predictions to be smooth within each of the organs.

3.3 CONTRASTIVE VARIANCE LOSS FUNCTION

It is very challenging to identify boundaries between different classes with just a single point anno-
tation per class in an image. The partial cross-entropy loss on the labeled pixels can only provide
limited guidance. It is therefore essential to exploit the unannotated pixels. Although the Mumford-
Shah loss above exploits the unlabeled pixels in a predictive K-means clustering manner, it still lacks
sufficient discriminative capacity for separating different categories and identifying the segmentation
boundaries. Meanwhile, medical images have some unique properties for the spatial distributions of
different categories of organs—even with operations such as random rotation and flipping, the spa-
tial locations of the same organ, especially the smaller ones, in different images will still be within
some limited regions in contrast to the whole image background. Inspired by this observation, we
develop a novel contrastive variance loss function to exploit the statistical spatial category distribu-
tion information in a contrastive manner, aiming to enhance the discrepancy between each organ and
its background.

Specifically, we first calculate the pixel-level variance distribution map znk ∈ R1∗H∗W for each k-th
organ category on the n-th image, such as:

znk (r) = |In(r)− cnk |2Ŷ n
k (r),∀r ∈ Ω, (4)

where cnk ∈ R1∗1∗1 is the mean pixel value for the k-th category region on the n-th image, which is
defined as:

cnk =

∫
Ω
In(r)Ŷ n

k (r)dr∫
Ω
Ŷ n
k (r)dr

. (5)

We then use this variance distribution map znk as the appearance representation of the k-th class in the
n-th image and define the following contrastive variance loss to promote the inter-image similarity
between the same class of organs in contrast to the similarities between different classes:

LCV = λcv

N∑
n=1

K∑
k=1

− log
pos

pos+ neg
+ µ

N∑
n=1

K∑
k=1

∫
Ω

|∇Ŷ n
k (r)|dr, (6)

with
pos = exp(cos(znk , z

mn

k )/τ), neg =
∑
i ̸=n

∑
j ̸=k

exp(cos(znk , z
i
j)/τ), (7)

where cos(·, ·) denotes the cosine similarity function, and τ is the temperature hyper-parameter. In
this loss function, given the pixel variance distribution map znk for the k-th category on the n-th
training image, we build the contrastive relationship by randomly selecting another mn-th image
that contains the same k-th category and using zmn

k ∈ {zik, i ̸= n|znk } as a positive sample for znk ,
while using all pixel variance distribution maps for all the other categories {j : j ̸= k} on all other
training images {i : i ̸= n} as negative samples for znk .

Different from the typical contrastive losses popularly deployed in the literature, which are computed
over intermediate features Khosla et al. (2020); Hu et al. (2021), our proposed contrastive variance
loss above is specifically designed for the point-supervised medical image segmentation task and is
computed over the pixel-level variance distribution map. This contrastive variance (CV) loss inte-
grates both the variance and contrastive learning paradigms in a way that has not been attempted, and
is designed to possess the following advantages. First, under this CV loss, by maximizing the sim-
ilarities between the positive pairs in contrast to the negative pairs, we can enforce each prediction
Ŷ n
k into the statistically possible spatial regions for the k-th category across all the training images.
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Table 1: Quantitative comparison results on the Synapse dataset. We report the class average DSC
and HD95 results and the DSC results for all individual classes. The best results are in bold-font and
the second best are underlined.

Method HD95.Avg↓ DSC.Avg↑ Aor Gal Kid(L) Kid(R) Liv Pan Spl Sto
pCE Lin et al. (2016) 112.83 0.469 0.348 0.251 0.522 0.443 0.792 0.257 0.713 0.426

EntMini Grandvalet & Bengio (2004) 105.19 0.485 0.329 0.257 0.577 0.491 0.787 0.304 0.663 0.471
WSL4MIS Luo et al. (2022) 81.79 0.497 0.315 0.189 0.625 0.526 0.817 0.290 0.722 0.491

USTM Liu et al. (2022) 97.05 0.552 0.443 0.312 0.645 0.631 0.834 0.311 0.761 0.482
GatedCRF Obukhov et al. (2019) 66.32 0.596 0.457 0.420 0.722 0.666 0.836 0.361 0.730 0.578

PSCV (Ours) 37.38 0.717 0.803 0.572 0.770 0.736 0.901 0.522 0.840 0.587
FullySup 39.70 0.769 0.891 0.697 0.778 0.686 0.934 0.540 0.867 0.756

Table 2: Quantitative comparison results on the ACDC Dataset. We report the class average results
and the results for all individual classes n terms of the DSC and HD95 metrics. The best results are
in bold-font and the second best are underlined.

Method DSC.Avg↑ RV Myo LV HD95.Avg↓ RV Myo LV
pCE Lin et al. (2016) 0.722 0.622 0.684 0.860 39.30 40.22 40.60 37.08

EntMini Grandvalet & Bengio (2004) 0.740 0.632 0.718 0.870 28.56 25.79 30.76 29.14
USTM Liu et al. (2022) 0.767 0.691 0.736 0.874 18.35 17.63 15.33 22.08

WSL4MIS Luo et al. (2022) 0.768 0.664 0.745 0.896 10.00 10.73 9.37 9.92
GatedCRF Obukhov et al. (2019) 0.814 0.743 0.788 0.911 4.03 7.45 2.47 2.17

PSCV (Ours) 0.841 0.810 0.804 0.910 3.57 3.42 2.98 4.33
FullySup 0.898 0.882 0.883 0.930 7.00 6.90 5.90 8.10

This can help eliminate the complex background formed by all the other categories and improve
the discriminative capacity of the segmentation model. Second, by using the pixel-level variance
distribution maps as the appearance representation of the organs for similarity computation, one can
effectively eliminate the irrelevant inter-image pixel variations caused by different collection equip-
ment or conditions. Third, using the cosine similarity function to compute the similarity between
a pair of (znk , z

mn

k ) is equivalent to computing the dot product similarity between two normalized
probability distribution vectors. Hence, the smaller effective length of the vectors will lead to larger
similarities. This property consequently will push each organ prediction Ŷ n

k to cover more compact
regions for more accurate predictions of the unlabeled pixels, while eliminating the boundary noise.
Overall, we expect this novel loss function can make effective use of all the unlabeled pixels to
support few-point-annotated segmentation model training.

3.4 TRAINING AND TESTING PROCEDURES

The proposed PSCV is straightforward and can be trained in an end-to-end manner. It does not re-
quire any additional layers or learnable parameters on top of the base segmentation network. During
the training phase, the learnable parameters of the segmentation network are learned to minimize
the following joint loss function:

Ltotal = LpCE + LCV , (8)

where LpCE encodes the supervised information in the labeled pixels and LCV exploits all pixels
in the training images in a self-supervised manner. Note for batch-wise training procedures, these
losses are computed within each batch. During testing, each test image I can be given as an input to
the trained segmentation network (encoder and decoder) to obtain the prediction results Ŷ .

4 EXPERIMENTAL RESULTS

4.1 DATASETS AND EVALUATION METRICS.

Following Wang et al. (2022); Chen et al. (2021b), we benchmark the proposed PSCV on two
medical image datasets: the Synapse multi-organ CT dataset and the Automated cardiac diagnosis
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Table 3: Ablation study over the proposed method on Synapse. We report the class average DSC
and HD95 results and the DSC results for all individual classes. pCE: using only the LpCE loss.
vanilla MS: using the combined loss: LpCE + LMS .

Method HD95.Avg↓ DSC.Avg↑ Aor Gal Kid(L) Kid(R) Liv Pan Spl Sto
pCE 112.83 0.469 0.348 0.251 0.522 0.443 0.792 0.257 0.713 0.426

vanilla MS 41.58 0.634 0.596 0.460 0.717 0.678 0.892 0.357 0.781 0.588
PSCV 37.38 0.717 0.803 0.572 0.770 0.736 0.901 0.522 0.840 0.587
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Figure 3: Ablation study of the proposed PSCV on the ACDC dataset. The horizontal coordinates
indicate the different class categories and the average. The vertical coordinates indicate the DSC
values.

challenge (ACDC) dataset. The Synapse dataset consists of 30 abdominal clinical CT cases with
2211 images and contains eight organ categories. Following Wang et al. (2022); Chen et al. (2021b),
18 cases are used for training and 12 cases are used for testing. The ACDC dataset contains 100
cardiac MRI examples from MRI scanners with 1300 images and includes three organ categories:
left ventricle (LV), right ventricle (RV), and myocardium (Myo). We evaluate the proposed PSCV on
the ACDC via five-fold cross-validation Luo et al. (2022). Following previous works Ronneberger
et al. (2015); Wang et al. (2022); Chen et al. (2021b), the Dice Similarity Coefficient (DSC) and the
95% Hausdorff Distance (HD95) are used as evaluation metrics.

4.2 IMPLEMENTATION DETAILS

We randomly select one pixel from the ground truth mask of each category as labeled data to gen-
erate point annotations for each training image. The most widely used medical image segmentation
network UNet Ronneberger et al. (2015) is used as the base architecture. In the training stage, we
first normalized the pixel values of input images to [0,1]. Then the input images are resized to
256×256 with random flipping and random rotation Luo et al. (2022). The weights of the proposed
model are randomly initialized. The model is trained by stochastic gradient descent (SGD) with a
momentum of 0.9, a weight decay of 1e-5, a batch size of 12, and a poly learning rate policy with
a power of 0.9. We set the hyperparameters µ=1e-5 and τ=0.07. We use a learning rate of 0.01
for 60K total iterations and λcv=1e-3 on the ACDC dataset and a learning rate of 0.001 for 100K
total iterations and λcv=3e-1 on the Synapse dataset. Inspired by the central bias theory Levy et al.
(2001), in the testing stage we filtered fifty pixels that are close to the left and right edges of the
prediction as the background to further refine the results on Synapse for all the methods.

4.3 QUANTITATIVE EVALUATION RESULTS

The proposed PSCV is compared with several state-of-the-art methods on the Synapse and the
ACDC datasets: pCE Lin et al. (2016) (lower bound), EntMini Grandvalet & Bengio (2004),
WSL4MIS Luo et al. (2022), USTM Liu et al. (2022) and GatedCRF Obukhov et al. (2019). For fair
comparisons, we use UNet as the backbone for all the comparison methods, while all of them are
trained with the same point-annotated data. In addition, we also tested the fully supervised model
trained with the cross-entropy loss, which uses the dense annotations of all pixels in the training
images, and its performance can be treated as a soft upper bound for the point-supervised methods.
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Figure 4: (a) Impact of the weight of the proposed contrastive variance loss, λcv , on the Synpase
dataset. (b) Impact of the hyper-parameter τ of the proposed contrastive variance loss on the Synapse
dataset. The horizontal coordinate indicates the τ value and the vertical coordinate indicates the class
average DSC value.

4.3.1 COMPARISON RESULTS ON SYNAPSE

The test results for all the comparison methods on the Synapse dataset are reported in Table 1. We
can see that the proposed PSCV performs substantially better than the other comparison methods in
terms of both DSC and HD95 metrics. Note that WSL4MIS and USTM are based on pseudo-label
generations. Due to the extremely small number of annotated pixels, the noise of their generated
pseudo-labels tends to bias the model learning. The proposed PSCV outperforms these two ap-
proaches by 22% and 16.5% respectively, and achieves 0.717 in terms of the class average of DSC
results. Moreover, PSCV outperforms the second best result of GatedCRF by 12.1% in terms of the
class average DSC, and substantially reduces the class average HD95 result from 66.32 to 37.38.
Aorta (Aor) and Liver (Liv) are the smallest and largest organs in the Synapse dataset, while the
proposed PSCV achieves very satisfactory results (0.803 and 0.901 in terms of class average DSC)
in both categories compared to the other methods. It is also worth noting that the performance of
PSCV is very close to the upper bound produced by the fully supervised method. These results
validate the effectiveness of the proposed PSCV.

4.3.2 COMPARISON RESULTS ON ACDC

The comparison results on the ACDC dataset are reported in Table 2. It is clear that the proposed
PSCV outperforms the state-of-the-art comparison methods, achieving the best class average DSC
value of 0.841 and the best class average HD95 value of 3.57. In particular, PSCV outperforms the
second best, GatedCRF, by 2.7% in terms of class average DSC. PSCV also substantially reduces the
performance gap between the point-supervised methods and the fully supervised method in terms of
DSC. In terms of HD95, PSCV even outperforms the fully supervised method. These results suggest
that PSCV is effective for point-supervised learning.

4.4 ABLATION STUDY

To demonstrate the effectiveness of the proposed CV loss, we conducted an ablation study by com-
paring the full PSCV method with two variant methods: (1) “pCE” denotes the variant that performs
training only using the partial cross-entropy loss LpCE ; (2) “vanilla MS” denotes the variant that
replaces the CV loss, LCV , in the full PSCV method with the standard Mumford-Shah loss, LMS .
The comparison results on the Synapse and the ACDC datasets are reported in Table 3 and Figure 3
respectively. From Table 3, we can see that using LpCE alone produces poor segmentation results.
With the additional LMS loss, “vanilla MS” improves the segmentation results by 16.5% in terms of
class-average DSC and by 71.25 in terms of class-average HD95. By using the proposed contrastive
variance loss LCV , PSCV further improves the performance by another 8.3% in terms of DSC and
by 4.2 in terms of HD95. Similar observations can be made from the results reported in Figure 3 as
well. Overall, the proposed CV loss is more effective than the regular Mumford-Shah loss.

4.5 HYPERPARAMETER ANALYSIS

4.5.1 IMPACT OF THE WEIGHT OF THE CV LOSS FUNCTION

We summarize the experimental results regarding the influence of the weight of the CV loss function,
λcv , in Eq.(6) on the Synapse dataset in Figure 4 (a). The experiments are conducted by fixing the
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Image Ground Truth PSCV(Ours)vanilla MSpCE EntMini GatedCRF USTM WSL4MIS

LiverAorta Gallbladder Right kidney Left kidney Pancreas Spleen Stomach

Figure 5: Visualized examples of the segmentation results for the proposed PSCV and other state-
of-the-art methods on Synapse. The first and the second columns show the input images and the
ground-truth. The last column shows visualized examples of the segmentation results produced by
PSCV. The other columns present the results obtained by other methods.

other hyperparameters and only adjusting the value of λcv . Combining the results in Figure 4 (a) and
Table 3, we can see that for a range of different λcv values within [0.05, 0.3], the proposed CV loss
can outperform the Mumford-Shah loss, while the best performance is produced when λcv = 0.3.
However, when λcv gets too large, e.g., λcv = 0.5, the performance degrades substantially. This
suggests that though the unsupervised loss term is useful, it still should be an auxiliary loss and
should not dominate the supervised partial cross-entropy loss.

4.5.2 IMPACT OF THE TEMPERATURE OF THE CV LOSS

We illustrate the impact of the temperature τ of the contrastive variance Loss in Eq.(6) on the seg-
mentation performance in Figure 4 (b). It demonstrates that the temperature τ is crucial for control-
ling the strength of penalties on hard negative samples in the contrast learning paradigm Wang &
Liu (2021). As shown in Figure 4 (b), good experimental results can achieved with smaller τ values
within [0.05, 0.09] and the best result is produced with τ = 0.07. With τ values larger than 0.09,
the performance of the proposed approach degrades substantially. This experimental phenomenon
suggests using smaller τ values.

4.6 QUALITATIVE EVALUATION RESULTS

We present a visualized comparison between our results and the results produced by several state-
of-the-art methods in Figure 5. We can see that the various organs differ significantly in size and
shape in medical organ images, and the background regions are frequently mistaken for organs by
many methods. Additionally, different image samples have different intensities of the same organs.
From Figure 5, we can see that benefiting from using the contrastive paradigm and the variance dis-
tribution map representations in designing the CV loss, the proposed PSCV can better discriminate
the organs from the background, and produce more compact and accurate segmentations than the
other comparison methods. Its ability to accurately segment the smaller organs is especially notable.

5 CONCLUSIONS

In this paper, we proposed a novel method, PSCV, for point-supervised medical image semantic
segmentation. PSCV adopts the partial cross-entropy loss for the labeled point pixels and a novel
contrastive variance loss for the unlabeled pixels. The proposed contrastive variance loss exploits
the spatial distribution properties of the medical organs and their variance distribution map repre-
sentations in a contrastive paradigm to enforce the model’s discriminative and smooth segmentation
capacity. Experimental results demonstrate the proposed PSCV substantially outperforms existing
state-of-the-art methods on two medical image datasets, and its ability to accurately segment the
more difficult smaller organs are particularly notable.
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