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Abstract

Popular text-to-image (T2I) models are trained on web-
scraped data, which is heavily Amero and Euro-centric, un-
derrepresenting the cultures of the Global South. To an-
alyze these biases, we introduce CuRe, a novel and scal-
able benchmarking and scoring suite for cultural represen-
tativeness that leverages the marginal utility of attribute
specification to text-to-image systems as a proxy for human
judgments. Our CuRe dataset has a novel categorical hi-
erarchy built from the crowdsourced Wikimedia knowledge
graph that enables benchmarking T2I systems in this man-
ner. Our benchmark has 300 cultural artifacts across 32
cultural subcategories grouped into six broad cultural axes
(food, art, fashion, architecture, celebrations, and people).
Unlike existing benchmarks which suffer from “generative
entanglement” due to overlap of T2I system and evalua-
tion scorer training data, CuRe enables fine-grained cul-
tural comparisons. We empirically observe much stronger
correlations of our class of scorers to human judgments
of perceptual similarity, image-text alignment, and cultural
diversity across image encoders (SigLIP 2, AIMV2 and
DINOv2), vision-language models (OpenCLIP, SigLIP 2,
Gemini 2.0 Flash) and state-of-the-art text-to-image sys-
tems, including three variants of Stable Diffusion (1.5, XL,
3.5 Large), FLUX.1 [dev], Ideogram 2.0, and Dalle-3.

1. Introduction

Text-to-Image (T2I) systems [44, 47, 49, 52] are trained
on web-scale data [9, 20, 54, 55], which is long-tail in na-
ture [43]. This translates to hallucinations when generat-
ing images of data in the tail, as the model has not seen
enough examples during training. This training paradigm
has been shown to amplify societal biases and stereotypes
encoded in the training data [4, 10], including harmful and
offensive content [6, 7]. We show a simple example of T2I
system bias using a state-of-the-art T2I system [39] to gen-
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Figure 1. Three images of types of pottery generated by a state-
of-the-art T2I system, DALL-E 3, with varying amounts of infor-
mation in the prompt. The T2I system is consistently accurate at
generating “ceramic diyas” (a), but hallucinates incorrect details
for “jebena, from Ethiopia” (b) and “amphora of Hermonax, a
type of pottery from Greece” (c). Specifying more information in
the prompt can help (i.e. in c but not in b), but is an unreliable
method to make the T2I system more culturally representative.

erate images of culturally specific pottery in Fig. 1. Gener-
ating images with the text prompt “ceramic diyas” (a) gives
diverse, consistent and factual outputs, while prompting
with “jebena, from Ethiopia” (b) and “amphora of Her-
monax, a type of pottery from Greece” (c) generate diverse
but low quality and inaccurate images that do not resem-
ble pottery (b), or miss culture-specific details of the ar-
tifact (c). Building generative models that faithfully rep-
resent the diversity of human preferences, values, and ex-
periences across global cultures in this long tail requires a
culturally-aware benchmarking and reliable bias measure-
ment, which is non-trivial. A typical method to measure
bias is through large-scale user studies on crowdsourcing
platforms [25, 28], leveraging human judgments for assess-
ment. While this approach accurately reflects feedbacks
from humans, it is expensive and difficult to scale. To miti-
gate this cost, prior works propose proxy scorers to estimate



Figure 2. An overview of the scorers and user study of CuRe. Through the lens of marginal utility of attributes, we analyze images I(a)
generated from prompts templates P (a) over attributes of the 300 cultural artifacts in our benchmark dataset. For example, we generate
an image from name and region attributes as I(a) = fθ

(
P (a|a = {n, r})

)
. This is the middle image in the figure above. These images

are then scored by quantitative scorers ϕ (see Sec. 2) and user judgments from a large-scale user study ϕ∗ (see Appendix D.1). Crucially,
cultural artifacts from region r are rated only by workers who identify with the culture of region r.

human judgments, such as computing similarity of gener-
ated images to real images with large neural encoders [29],
realism metrics [5, 23], alignment of images to some de-
sired attributes specified through text [29, 63] and cultural
diversity [28]. We find that these proxy scorers empirically
do not correlate well with human judgments of cultural rep-
resentativeness and similarity to ground truth across popular
T2I systems (Sec. 3).

Research Aim

Our goal is to measure the cultural representative-
ness capability of T2I systems across global cul-
tures, which we call CuRe.

To overcome these shortcomings, we propose CuRe, a
dataset and scorer suite to accurately and efficiently bench-
mark the cultural representativeness of T2I systems, i.e.
how equipped are state-of-the-art T2I systems at accurately
generating samples across global cultures that make up
their long-tail training data? We propose a novel frame-
work for scoring cultural representativeness through the
lens of marginal utility of increasing attribute specifica-
tion (Sec. 2), which correlates better to human judgments
than proxy scorers across T2I models (Sec. 3). We compare
our dataset and metric design to prior work in Tab. 4 and
summarize our contributions below:
• A new dataset constructed in a scalable fashion di-

rectly from the large crowdsourced Wikimedia knowl-
edge graph [66] with a novel coarse-to-fine categori-
cal hierarchy of 300 cultural artifacts across six cultural

axes, 32 cultural categories and 64 countries (see Fig. 3).
• A novel scoring of cultural representativeness through the

lens of marginal utility of specifying more information
to the T2I system across cultural attributes (e.g. cultural
axis, cultural category, and cultural region).

• A large-scale user study asking real humans to rate the
perceptual similarity, cultural representativeness, offen-
siveness, and stereotypicalness of T2I systems, alongside
detailed freeform feedback about culturally specific fail-
ures. We query workers who explicitly identify with the
culture of their country of nationality, which is largely an
unverified assumption made in prior works.

• A detailed analysis of how CuRe scorers correlate to
real human judgments of cultural representativeness
and factuality, which highlights the misleading takeaways
of popular status quo scorers (Sec. 3).

• For the first time, we evaluate the cultural capabilities of a
natively multimodal large language model (Appendix J).

2. Finding a CuRe through Information

We introduce our novel lens of marginal utility of infor-
mation into three prominent existing classes of quantitative
scorers: measuring human perceptual similarity between
the generated image and the ground truth (Sec. 2.1), eval-
uating image-text alignment with a desired attribute spec-
ified through text as a proxy for visual question-answering
(Sec. 2.2), and measuring the diversity of the T2I system
across global cultures (Sec. 2.3). We set up some useful
notation in Appendix E.

Towards designing a more accurate, reliable scorer for



Figure 3. The CuRe dataset is constructed in a hierarchical fash-
ion (s → c → a) from Wikimedia, with 6 cultural axes s, 32
cultural categories c, and 300 cultural artifacts a. For example,
s = “Food”, c = “Dumpling”, a = “Banku”.

CuRe across global cultures, we ask: how many attributes
of a cultural artifact does a T2I system need to know in
order to faithfully generate an image? We illustrate our in-
sight through an example in Fig. 2. We observe that sim-
ply specifying the name {n} and cultural region {n, r} as-
sociated with banku, a type of dumpling from Ghana, is
insufficient for current state-of-the-art T2I systems (Stable
Diffusion 3.5 Large, FLUX.1 [dev], Ideogram 2.0) to pro-
duce an image faithful to its real-world counterpart. When
also specifying the category {n, c, r}, the T2I system is able
to generate an image that appears more faithful to banku.
When this image is passed to existing quantitative scorers ϕ,
they tend to overestimate its cultural representativeness (see
examples in Fig. 9). However, when this image is shown
to a real human who identifies as culturally Ghanaian (ϕ∗),
they highlight that this image looks like a generic dumpling
and does not reflect their cultural context of Ghanaian cui-
sine. Inspired by this, we propose a hypothesis complemen-
tary to these existing quantitative scorers:

Key Insight

Evaluating how much information must be explic-
itly provided to a T2I system reveals valuable in-
sights into its cultural representativeness capabili-
ties.

Unlike existing methods, this approach measures how
well a model internalizes cultural knowledge by analyzing
the marginal utility of each additional attribute specified
during generation. For example, with the “Banku” artifact
in Fig. 2, we need to marginally increase attributes speci-
fied to the T2I system via the prompt n → n, r → n, c, r
for culturally accurate T2I generation. We refer to this class
of scorers as Marginal Information Attribution (MIA)
scorers. For each class of proxy scorer, we show quali-
tative examples of the capability of MIA-based scorers to
differentiate cultural artifacts with vastly different human-
rated scores for perceptual similarity and representative-
ness, while existing scorers are unable to do so, in Fig. 9.
We demonstrate this behavior quantitatively over the entire

CuRe dataset in Sec. 3. We formally define the variant of
MIA scorer for each class of proxy scorer in the relevant
section below and explain further in Appendix E.

2.1. Perceptual Similarity Scorers
The goal of perceptual similarity (PS) scorers is to com-
pute the similarity between a generated image I(a) and an-
other set of images representing the same artifact a, which
are typically manually-curated ground-truth (GT) images
G(a). While these scorers correlate reasonably well with
human perceptual similarity judgments, collecting appro-
priate ground-truth is expensive and occasionally infeasible.

The gold scorer for perceptual similarity is ϕ∗
PS(a) =

Likert(I(a), G(a)), where a Likert score [33] of 1 indicates
very low perceptual similarity and 5 indicates very high
similarity. As getting these gold scores is inscalable and ex-
pensive, proxy quantitative scorers are used [16, 22], which
we call ϕGT = sim(I(a), G(a)). The proxy scorers often
ignore when two images are semantically similar in favor
of spatial and textural consistency [21], which causes a dis-
crepancy between real human perceptual similarity ratings
(see Fig. 9a).

To overcome these limitations, we propose a marginal
information attribution scorer, ϕPS , that compares T2I
image features of cultural artifacts specified only by their
name a = n to images generated with only their categor-
ical and region information a = c or a = {c, r}. We
hypothesize that if these images are similar, the T2I sys-
tem has learned the artifact’s cultural association well (e.g.
a : n → {c, r}) and the artifact likely lies in the head of the
T2I system’s distribution (?? for n =“pierogi”). If these
images are very different (?? for n =“banku”), the T2I sys-
tem has not learned categorical or region-specific associa-
tions well, and we hypothesize it lies in the long tail and
shows poor CuRe performance. For example, while ϕ∗

PS

and ϕGT compute similarity of T2I generations of banku
I(n) to ground-truth images collected from a web database
G, ϕPS(n) instead computes similarity of T2I generations
of banku I(n) to T2I generations of dumplings I(c):

ϕGT (a) = sim(I(a), G) (1)

ϕPS(a) = sim
(
I(a), I(c)

)
(2)

Following the status quo for semantic similarity [26],
sim is a cosine distance between embeddings from state-of-
the-art large vision encoders (SigLIP 2 [61], AIMV2 [18],
and DINOv2 [42]).

2.2. Image-Text Alignment Scorers
The goal of image-text alignment (ITA) scorers is to com-
pute an “alignment” or similarity between an image and
a piece of text. CLIP [46] popularized using textual de-
scriptions of ImageNet classes as zero-shot labels for image



classification via unsupervised contrastive learning. We de-
note this class of image-text scorers by sim(I(n), P (a)).
For example, to evaluate country-specific representative-
ness, Khanuja et al. [29] check CLIP similarity of I(n)
with P (r) = “This image is culturally relevant to {r}”. We
note that prior works typically use CLIP trained on LAION-
2B [54] as their VLM of choice for image-text alignment,
which has been shown to have an Amero and Euro-centric
bias [2, 37] and is also part of the pretraining datasets of
many popular T2I systems [27, 44, 49, 52, 70]. This over-
lap causes misleading over-estimations of quality, which we
call generative entanglement (see Sec. 3.3 and Tab. 15 in
Appendix H).

These image-text scorers assume that embeddings of im-
ages containing attribute a = n are clustered close in the
VLM latent space to embeddings of textual descriptions of
n. In other words, they rely on the VLM’s ability to dis-
tinguish cultural relevance to different regions by seeing
enough artifact-region associations (n, c → r) during train-
ing [50]. We show in Tab. 2 that VLM knowledge of this as-
sociation is difficult to query explicitly as sim(I(n), P (r)),
and indirectly querying this knowledge through the impact
of changing a : n → r correlates better with human judg-
ments, i.e. adding sim(I(n), P (r)) to sim(I(n), P (n)).
We thus define ϕITA as:

ϕITA(a) =
sim

(
I(n), P (n)

)
+ sim

(
I(n), P (a)

)
2

(3)

2.3. Diversity Scorers
The goal of diversity (DIV) scorers is to capture the het-
erogeneity or intra-class variance of images generated by
T2I systems [28]. In this work, we view diversity through
the lens of culture, i.e. how culturally diverse are T2I sys-
tems, and can diversity be a predictor of cultural repre-
sentativeness? We define intra-category diversity as the
extent to which T2I images generated with underspecified
prompts [2] of cultural artifacts I(c) or I(s) reflect culture-
specific nuances of regional variants I(n) or I({n, r}). In
other words, if we sample I(c) = “An image of a house” [2]
from a T2I system 100 times, how many of these 100 im-
ages will be r = Japanese or Canadian houses? We also
measure intra-artifact diversity, i.e. how diverse are mul-
tiple seeds of images of the same artifact I(n), e.g. when
sampling 100 images with P (n) =“an image of chicken
biryani”, is there heterogeneity in the images of chicken
biryani, or do they all appear visually homogeneous?

LPIPS [73] computes an average over pair-wise dissim-
ilarity of images across all cultural artifacts a associated
with category c using deep features extracted from con-
volutional neural networks. Similar to Perceptual Similar-
ity scorers (Sec. 2.1), LPIPS (which uses encoders trained
on ImageNet [51]) can ignore image semantics in favor
of spatial, color, and textural consistency [21]. Another

recent approach to scoring diversity is via Vendi Scores
(VS) [19, 72], which quantify diversity by estimating the
entropy of a kernel similarity matrix computed over all pairs
of artifacts (ai, aj) belonging to same category c. While
Vendi Scores capture intra-category heterogeneity, they lack
any sense of each individual artifact’s image quality. Kan-
nen et al. [28] propose quality-weighting the Vendi score
(QVS) with a human preference reward model [68] to ad-
dress this limitation. We demonstrate qualitatively (Fig. 9c)
and quantitatively (Tab. 3) that LPIPS, VS, and QVS do not
correlate well with human judgments of CuRe.

We propose a modification to LPIPS that captures
marginal information attribution. For a given cultural
artifact n, we consider a set of images generated with
incrementally changing attributes, i.e. {I(n), I({n, c}),
I({n, r}), I({n, c, r})}. We compute LPIPS over each pair
in this set and take an average, which we denote by:

ϕDIV = LPIPS
(
n, {n, c}, {n, r}, {n, c, r}

)
(4)

3. Experiments
We discuss our empirical setup and observations for each
class of scorer below, i.e. Perceptual Similarity scorers ϕPS

in Sec. 3.2, Image-Text Alignment scorers ϕITA in Sec. 3.3,
and Diversity scorers ϕDIV in Sec. 3.4. We provide details
on T2I inference and seeding in Appendix B, discuss user
study design in Appendix D.1, and discuss evaluating the
capability of our scorers to approximate human judgments
in Sec. 3.1. Lastly, we benchmark state-of-the-art T2I sys-
tems on our dataset and scorer suite in Appendix E.1.

3.1. Scorer Correlation to Human Judgments
To validate the alignment of our proposed scorers (PS, ITA,
DIV) to real human judgments, we compute a Spearman
rank correlation ρ to three gold scores from the user study,
i.e. ϕ∗

CuRe, ϕ∗
PS , and ϕ∗

GT . Spearman’s ρ is a nonparamet-
ric measure of rank correlation, i.e. how well can the re-
lationship between quantitative proxy scorers and real hu-
man judgments be described by a monotonic function? A
ρ → 1 indicates a monotonically non-decreasing relation-
ship (e.g. in Tab. 1, as our proposed ϕPS scores increase,
human judments of CuRe and perceptual similarity also in-
crease). On the other hand, ρ → −1 indicates a monotoni-
cally non-increasing relationship (e.g. in Tab. 3, as our pro-
posed ϕDIV scores increase, human judments of CuRe and
perceptual similarity decrease). A ρ ∼ 0 indicates a very
weak correlation, i.e. the scorer contains very little predic-
tive signal over human judgments. We show qualitatively in
Fig. 9 that our proposed scorers can differentiate between
images treated differently by real humans (i.e. ϕ∗ are differ-
ent), while baseline scorers treat these images the same. We
discuss quantitative results over our entire CuRe dataset in
each corresponding section below.



3.2. Perceptual Similarity
To compare our proposed scorers to human judgments of
cultural representativeness ϕ∗

CuRe(a), perceptual similarity
ϕ∗
PS(a) and ground-truth label likelihood ϕ∗

GT (a), we tab-
ulate a Spearman rank correlation in Tab. 1. In our exper-
iments, we set a = {n} for ϕPS(a) in Eq. (2), to com-
pare how perceptually similar images of cultural artifacts
are to generated images of their cultural category, e.g. I(n)
(images of “banku”) and I(c) (images of “dumpling”). To
evaluate how much the change in attribute specification
(n → a) affects perceptual similarity, we also compare the
divergence ∆ of ϕPS(a) from ϕPS(n) across subsets of at-
tributes a:

ϕGT (n) = sim
(
I(n), G(n)

)
ϕPS(n) = sim

(
I(n), I(c)

)
∆ϕPS(a) = sim(I(a), I(c))− sim(I(n), I(c))

Intuitively, we find that across all image encoders, all
quantitative PS scorers correlate weaker with gold CuRe
scores ϕ∗

CuRe than gold ground truth likelihood scores ϕ∗
GT

and gold perceptual similarity scores ϕ∗
PS , which they di-

rectly attempt to approximate. We find that our ϕPS(n)
scorer, which uses no ground-truth informaton, is compara-
ble to strong baseline ϕGT (n) in Spearman’s ρ with the gold
scores ϕ∗

GT for Stable Diffusion models across all image
encoders (Tab. 1). On FLUX.1 [dev], our divergence scor-
ers ∆ϕPS(n, c) and ∆ϕPS(n, c, r) match or outperform
ϕGT (n) in Spearman’s ρ across gold scores with AIMV2
and DINOv2 encoders. We note that rank correlations of
divergence scorers with gold scores are always negative,
since a low divergence with marginally increasing infor-
mation indicates high perceptual similarity. We also eval-
uate Gemini 2.0 Flash [13], a strong natively multimodal
large language model (see Appendix J). We query Gemini to
score perceptual similarity between I(n) and ground truth
images G(n) on a 1 to 5 scale, similar to ϕ∗

PS from the user
study. We observe that Gemini correlates almost identically

Table 1. Spearman rank correlation between perceptual simi-
larity (PS) scorers and user judgments ϕ∗

CuRe, ϕ∗
PS , and ϕ∗

GT

across state-of-the-art large image encoders and T2I Systems on
the CuRe dataset.

Encoder Scorer FLUX.1 [dev] SD 3.5 Large SD 1.5
ϕ∗
CuRe ϕ∗

GT ϕ∗
PS ϕ∗

CuRe ϕ∗
GT ϕ∗

PS ϕ∗
CuRe ϕ∗

GT ϕ∗
PS

- Gemini 2.0 Flash - - 0.40 - - 0.39 - - 0.40

SigLIP 2 [61]

ϕGT (n) 0.25 0.36 0.44 0.26 0.29 0.46 0.23 0.33 0.48
ϕPS(n) 0.18 0.25 0.32 0.17 0.32 0.42 0.21 0.27 0.30
∆ϕPS(n, c) -0.16 -0.27 -0.31 -0.19 -0.30 -0.41 -0.05 -0.04 0.08
∆ϕPS(n, c, r) -0.17 -0.25 -0.30 -0.19 -0.31 -0.42 -0.06 -0.02 0.05

AIMV2 [18]

ϕGT (n) 0.20 0.28 0.39 0.27 0.31 0.46 0.19 0.29 0.42
ϕPS(n) 0.08 0.17 0.25 0.17 0.25 0.34 0.19 0.18 0.16
∆ϕPS(n, c) -0.17 -0.30 -0.35 -0.22 -0.29 -0.34 0.00 -0.05 0.05
∆ϕPS(n, c, r) -0.18 -0.28 -0.32 -0.20 -0.28 -0.35 0.03 0.02 0.07

DINOv2 [42]

ϕGT (n) 0.16 0.29 0.40 0.28 0.34 0.46 0.26 0.34 0.51
ϕPS(n) 0.13 0.22 0.30 0.24 0.37 0.44 0.24 0.32 0.36
∆ϕPS(n, c) -0.19 -0.27 -0.32 -0.17 -0.28 -0.38 -0.14 -0.08 0.03
∆ϕPS(n, c, r) -0.19 -0.25 -0.31 -0.16 -0.27 -0.37 -0.06 0.03 0.00

well with ϕ∗
PS across T2I systems, and slightly lags behind

ϕGT (n) in Spearman’s ρ. We highlight that while ϕGT (a)
and Gemini in general show the highest correlation with hu-
man perceptual judgments, our proposed scorers are capa-
ble of nearly matching them in rank correlation with real
human judgments while using no ground-truth information,
and are thus much cheaper to compute. We note that no
quantitative scorer surpasses ρ = 0.51, indicating that us-
ing cosine similarity with dense vector embeddings from
large vision encoders still fall short at accurately approxi-
mating human judgements, even with large state-of-the-art
encoders [18, 42, 61]. We also highlight that our divergence
scorers ∆ϕPS degrade in rank correlation for SD 1.5, an
older lower-resolution T2I system trained on much less data
while the baseline scorer ϕGT (n) does not. This suggests
that our scorer may be more sensitive to the coverage of the
pretraining data or the quality of the base T2I system.

3.3. Image-Text Alignment
Similar to PS scorers, we evaluate all quantitative ITA
scorers via a Spearman rank correlation with gold scor-
ers (ϕ∗

CuRe, ϕ∗
GT and ϕ∗

PS) in Tab. 2. To evaluate the
generative entanglement (impact of training data over-
lap) between T2I system and scorer, we use a suite of
vision-language models (VLMs) with different pretraining
datasets as our similarity measure: four versions of Open-
CLIP with different pretraining datasets, SigLIP 2 (details
in Appendix H). We compare our scorer to several base-
lines sim(I(n), P (a)): two prior works evaluating cul-
tural relevance [29] and cultural identity [63], the best per-
forming prompt P (r) suggested by o3-mini [41], Gemini
2.0 Flash, and several state-of-the art human preference
scorers [30, 68, 69]. We also evaluate image alignment
to specific artifact attribute specified through text varying
P (a) = P (n), P (c), P (r), and P (c, r).

Table 2. Spearman rank correlation between image-text alignment
(ITA) scorers and user judgments ϕ∗

CuRe, ϕ∗
PS , and ϕ∗

GT across
T2I systems on the CuRe dataset. All scorers except Gemini and
human preference scorers (first block in Tab. below) compute a
cosine distance with SigLIP 2 embeddings.

Scorer FLUX.1 [dev] SD 3.5 Large SD 1.5

ϕ∗
CuRe ϕ∗

GT ϕ∗
PS ϕ∗

CuRe ϕ∗
GT ϕ∗

PS ϕ∗
CuRe ϕ∗

GT ϕ∗
PS

PickScore [30] 0.20 0.29 0.34 0.23 0.37 0.40 0.23 0.39 0.45
Imagereward [69] 0.19 0.21 0.26 0.16 0.24 0.30 0.23 0.30 0.35
HPS v2 [68] 0.23 0.29 0.33 0.18 0.35 0.37 0.24 0.40 0.43
Gemini 2.0 Flash 0.23 0.41 - 0.27 0.37 - 0.18 0.39 -

Khanuja et al. [29] 0.13 0.08 0.11 0.05 0.04 0.00 0.06 -0.02 -0.04
Ventura et al. [63] 0.19 0.15 0.14 0.10 0.07 0.05 0.11 0.02 0.00
o3-mini [41] 0.17 0.13 0.14 0.07 0.03 0.00 0.06 -0.01 -0.04
sim

(
I(n), P (n)

)
0.24 0.35 0.38 0.18 0.31 0.35 0.22 0.34 0.44

sim
(
I(n), P (c)

)
0.20 0.32 0.34 0.17 0.30 0.35 0.19 0.34 0.37

sim
(
I(n), P (r)

)
0.20 0.11 0.12 0.09 0.03 0.02 0.07 -0.04 -0.05

sim
(
I(n), P (c, r)

)
0.25 0.35 0.38 0.22 0.31 0.35 0.25 0.34 0.37

ϕITA(c) 0.24 0.37 0.40 0.20 0.34 0.40 0.22 0.37 0.44
ϕITA(r) 0.28 0.33 0.35 0.20 0.27 0.29 0.23 0.30 0.39
ϕITA(c, r) 0.27 0.38 0.42 0.22 0.34 0.39 0.24 0.36 0.44



Our evaluation reveals that comparing images to P (n),
which uses only the artifact’s name (e.g., “sushi”) in the
prompt, consistently has a stronger positive rank correla-
tion with human judgments than all methods that com-
pare to P (r) across all T2I systems (Tab. 2). This
supports our claim in Sec. 2.2 that explicitly querying
VLMs for image similarity to prompts describing the im-
age (sim(I(n), P (n)) is more effective at assessing region-
specific cultural relevance than directly querying for cul-
tural relevance with region-specific prompts P (r). Re-
placing name-specific prompts P (n) with category-specific
prompts P (c) (e.g. “food” for an image of sushi), slightly
reduces rank correlation with all gold scores across all T2I
systems, which suggests that state-of-the-art VLMs learn
n → c associations reasonably well. Lastly, using both cat-
egory and region specific prompts P (c, r) tends to match
and occasionally outperform name-specific prompts.

Our scorers directly measure the marginal utility of in-
creasing attributes specified to the T2I system in two parts,
i.e. the T2I system’s ability to a) accurately generate tex-
tual descriptions of the artfact (sim(I(n), P (n)), b) cap-
ture categorical (sim(I(n), P (c)) and regional associations
((sim(I(n), P (r))). We observe that ϕITA(c, r) has higher
positive rank correlation than all baselines, and is slightly
outperformed by ϕITA(r) on Stable Diffusion models for
ϕ∗
PS and ϕ∗

GT . ϕITA(r) is worse than the best-performing
baseline across T2I systems, indicating that adding categor-
ical information (n → c) is important to capture region-
specific human judgments. Our scorers also outperform or
match strong T2I human preference reward models trained
on hundreds of thousands of human-labeled preferences
across all gold scores (ϕITA ≥ PickScore > HPS v2 >
Imagereward in rank correlation).

Lastly, we discuss the impact of our choice of VLM as
a similarity measure in the context of generative entangle-
ment. In Tab. 15 (Appendix H), we show that with FLUX.1
[dev], all baseline methods have a high variance in Spear-
man’s ρ to human judgments of perceptual similarity (ϕ∗

PS)
with respect to the choice of similarity measure (OpenCLIP
variant or SigLIP 2). In contrast, our scorers have lower
variance across VLMs. As these VLMs differ primarily in
their pretraining data, this result indicates that our scorers
ϕITA are much more robust to the choice of pretraining data
and are less entangled with the T2I system.

3.4. Diversity

We show a Spearman’s ρ between all quantitative scor-
ers (ϕDIV , LPIPS(n), and VS(c)) and all gold scorers
(ϕ∗

CuRe(a), ϕ
∗
GT (a), and ϕ∗

PS(a)) in Tab. 3. Consistent with
our observations with PS and ITA scorers, we show that
ϕDIV correlates more to human judgments than baselines
across all T2I systems. This difference is more pronounced
for high-quality models (FLUX.1 [dev] and SD 3.5 Large).

Table 3. Spearman rank correlation between diversity (DIV) scor-
ers and user judgments ϕ∗

CuRe, ϕ∗
PS , and ϕ∗

GT across T2I systems
on the CuRe dataset.

Scorer FLUX.1 [dev] SD 3.5 Large SD 1.5

ϕ∗
CuRe ϕ∗

GT ϕ∗
PS ϕ∗

CuRe ϕ∗
GT ϕ∗

PS ϕ∗
CuRe ϕ∗

GT ϕ∗
PS

LPIPS(n) -0.11 -0.06 -0.16 -0.13 -0.06 -0.09 -0.04 -0.03 -0.02
VS(c) -0.02 -0.01 -0.01 -0.03 0.02 0.05 -0.01 -0.03 -0.02
qVS(c) -0.02 -0.01 -0.01 -0.03 0.02 0.05 -0.01 -0.03 -0.02

ϕDIV (a) -0.20 -0.23 -0.30 -0.22 -0.23 -0.29 -0.08 -0.11 -0.11

As the Vendi score is computed as an aggregate at a
coarse category level on static assignments over cultural ar-
tifacts and has no sense of image quality (see Appendix I
for details on VS computation), it shows the weakest cor-
relation with human judgments for strong T2I systems (SD
3.5 Large and FLUX.1 [dev], (Tab. 3). Even the more recent
quality-weighted Vendi Score [28] fails to resolve these lim-
itations, as it simply scales VS(c) by a scalar quality mea-
sure q averaged over all artifacts n associated with category
c (HPS v2 score [68]), leaving the rank correlation with hu-
man judgments unchanged.

In contrast, our MIA-based scorer ϕDIV (a) achieves
stronger negative correlations with human judgments than
baselines for all T2I systems, especially those of higher
quality (SD 3.5 Large and FLUX.1 [dev]). This result
indicates that with our scorer, if incrementally increasing
attribute specification decreases diversity (i.e. the cultural
artifact is homogenous across attribute specification and
likely lies in the head of the T2I distribution), cultural repre-
sentativeness and perceptual similarity as perceived by hu-
mans tends to increase. This aligns with our hypotheses
in Sec. 2.3 and indicates the potential of marginal utilty of
information specification as a measure of diverse cultural
representativeness.

4. Conclusion

In summary, we propose CuRe, a novel benchmarking
and scoring suite for cultural representativeness that lever-
ages the marginal utility of attribute specification to text-to-
image systems as a proxy for human judgments. Our CuRe
dataset has a novel categorical hierarchy that enables bench-
marking T2I systems in this manner.

Our PS scorer approximates strong baseline performance
while using no ground-truth information, indicating strong
potential for efficient and democratic benchmarking of T2I
systems. Our ITA and DIV scorers (Tab. 3) outperform or
match all baselines, including a strong multimodal large
language model (Gemini 2.0 Flash, Appendix J). Finally,
we highlight the generative entanglement issue of prior
benchmarks and scorers, i.e. a miscalibrated estimation of
human judgments caused by an overlap of T2I system and
quantitative scorer pretraining data (Tab. 2).
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A. Related Work

Dataset Biases Datasets used to train generative models
are known to have biases, including the geographical dis-
tribution biasworks [12, 57] of crowd-labeled datasets such
as ImageNet [51], Open Images [31] and MS COCO [34],
which have been shown to have a strong Amerocentric
and Eurocentric bias. These works also highlight the data
collection bias; e.g., on YFCC100m [58], the data from
underrepresented countries is often taken by tourists (∼
47% [64]), and does not capture the true local distribution
of objects, people, and language. These dataset biases prop-
agate towards the T2I systems.

Text-to-Image System Biases T2I systems are predom-
inantly built on diffusion models [49, 52], autoregressive
Transformer models [15, 47, 70] or GANs [27, 53]. The
pretraining datasets of these models are web-scale [55] and
long-tail [43], and there have been several recent works ex-
amining the biases present within T2I systems. Several re-
cent works analyze the biases of text-to-image models from
a geographical [2], gender occupation [56], cultural [4, 62]
and social [37, 38] perspective. [37] provides an excellent
overview of TTI system biases, including from the data col-
lection [6] and filtering [48] process, as well as model train-
ing [67].

Cultural Representativeness Metrics To measure CuRe
on benchmark datasets, prior works use proxy scorers such
as using deep image encoders to compute similarity of gen-
erated images to real images [29], which contain similar
dataset biases as T2I models themselves [56]. Another class
of scorers use realism metrics [5, 23], which ignore culture-
specific nuance. Lastly, prior works evaluate image-text
alignment to carefully chosen prompts [29, 63] and cultural
diversity as a proxy for representativeness [28], which often
empirically do not correlate well human judgments across
global cultures (see Sec. 3).

Cultural Benchmarks To create cultural benchmarks to
measure T2I biases, previous works typically crowdsource
data, either directly from workers on online platforms [29,
45] or with massive inter-organization efforts [50]. Some
works also rely on cultural experts to create the data [36,
72]. While these methods can give high quality data, they
are expensive and inscalable, as to add new data to the
benchmark, new workers or experts must be hired each



Table 4. We tabulate existing cultural benchmarks for Text-to-Image Systems, organized by their contributions towards dataset design,
quantitative metrics to measure cultural representativeness, and towards the user study. We also tabulate statistics of the CuRe dataset
compared to existing cultural benchmark datasets. Here |R| is the number of cultural regions (countries), |S| the number of cultural axes,
|C| the number of cultural categories, and |A| the total number of cultural artifacts. We also note the number of T2I systems evaluated via
a user study, and the number of T2I systems evaluated only quantitatively.

Work Dataset Quantitative Metrics # T2I Systems

Crowd-
sourced Scalable Category

Hierarchy |R| |S| |C| |A| New
Metric

Img-Txt
Sim

Img-Img
Sim Diversity In User

Study
Only

Quant

Liu et al. [36] ✓ 8 9 - 1095 1 1
Basu et al. [2] 27 - 10 - ✓ ✓ 2 2
Ventura et al. [63] 10 8 200 - ✓ ✓ ✓ 3 6
Jha et al. [25] 135 - - - ✓ ✓ 1 1
Khanuja et al. [29] ✓ 7 - 17 580 ✓ ✓ 2 2
Kannen et al. [28] ✓ ✓ 8 3 - 1000 ✓ ✓ 2 2
Zhang et al. [72] 10 9 - 595 ✓ ✓ ✓ 3 3
Bayramli et al. [3] ✓ ✓ 10 3 - 150 ✓ 3 3

CuRe (Ours) ✓ ✓ ✓ 64 6 32 300 ✓ ✓ ✓ ✓ 3 6

time. To measure cultural biases, prior works rely on query-
ing users across global cultures for their judgment on im-
ages generated by T2I systems [2, 28, 29]. We overcome
these limitations by constructing our benchmark CuRe di-
rectly from the live Wikimedia graph [66], by traversing
parent nodes (cultural axes) and grouping child nodes (cul-
tural categories) by region. This methodology is both cheap
and scalable, as new categories can be added to our bench-
mark on-the-fly by crawling Wikimedia.

Multimodal Language Models There has been a sig-
nificant recent effort towards extending language models,
which only understand text, to multimodal large language
models (MLLMs) that can understand both text and im-
ages [13, 35, 59, 65, 71]. While the details of the pre-
training data of state-of-the-art MLLMs is typically hid-
den or proprietary, they are significantly larger than pre-
vious Vision-Language Models like CLIP [46, 55] and
perform very well on complex visual question answering
benchmarks [1, 50]. They can thus be directly queried for
culture-specific knowledge, similar to existing works that
use MLLMs as a judge [8]. Even at this scale of pretrain-
ing data, we show that MLLMs still fall short at evaluating
cultural representativeness (Appendix J).

B. T2I Inference Details
B.1. Seeding
We use four of the prompt styles outlined in Tab. 5 to
generate images for benchmarking from all T2I systems:
P (n), P (n, c), P (n, r), P (n, c, r). We generate multiple
random seeds for each prompt: for Stable Diffusion XL
and Stable Diffusion 1.5, we use 20 random seeds, and
for all other T2I systems, we use four random seeds1. For

1DALLE-3 has no dedicated random seed parameter. We follow prior
work on passing random seeds to DALLE-3 via prompting: https:

Table 5. Text prompts P describing cultural artifact a given to gen-
erative model fθ with differing levels of informativeness indicated
by artifact attributes X = {n, c, s, r}.

Type Prompt Text Example

P (n) An image of {n} An image of jiaozi
P (c) An image of {c} An image of a dumpling
P (r) An image from {r} An image from China
P (n, c) An image of {n}, a type of {c} An image of jiaozi, a type of dumpling
P (n, r) An image of {n}, from {r} An image of jiaozi, from China

P (n, c, r)
An image of {n}, a type of {c}
from {r}

An image of jiaozi, a type of dumpling
from China

all models except Ideogram 2.0 (computational constraints),
we also generate 80 seeds with prompt P (c), which is re-
quired for our perceptual similarity scorer ϕPS (see Sec. 2.1
for details). For a given artifact, our scorers compute a score
on all seeds, which are then averaged to a single score for
that artifact, i.e. for N seeds,

ϕ(a) =
1

N

N∑
i=1

ϕ
(
I(ai) ;

)

B.2. Safety Filter Refusal

Due to the inbuilt safety filters of Dalle-3 and Stable Dif-
fusion 1.5, many of our prompts were rejected and thus
we were unable to generate images over the entire CuRe
dataset. Tab. 6 shows the percentage of each supercategory
that was successfully generated, calculated as:

//community.openai.com/t/consistent-variability-
using-seeding-with-dall-e-3/457823

https://community.openai.com/t/consistent-variability-using-seeding-with-dall-e-3/457823
https://community.openai.com/t/consistent-variability-using-seeding-with-dall-e-3/457823
https://community.openai.com/t/consistent-variability-using-seeding-with-dall-e-3/457823
https://community.openai.com/t/consistent-variability-using-seeding-with-dall-e-3/457823
https://community.openai.com/t/consistent-variability-using-seeding-with-dall-e-3/457823
https://community.openai.com/t/consistent-variability-using-seeding-with-dall-e-3/457823
https://community.openai.com/t/consistent-variability-using-seeding-with-dall-e-3/457823
https://community.openai.com/t/consistent-variability-using-seeding-with-dall-e-3/457823
https://community.openai.com/t/consistent-variability-using-seeding-with-dall-e-3/457823
https://community.openai.com/t/consistent-variability-using-seeding-with-dall-e-3/457823
https://community.openai.com/t/consistent-variability-using-seeding-with-dall-e-3/457823
https://community.openai.com/t/consistent-variability-using-seeding-with-dall-e-3/457823
https://community.openai.com/t/consistent-variability-using-seeding-with-dall-e-3/457823
https://community.openai.com/t/consistent-variability-using-seeding-with-dall-e-3/457823
https://community.openai.com/t/consistent-variability-using-seeding-with-dall-e-3/457823
https://community.openai.com/t/consistent-variability-using-seeding-with-dall-e-3/457823
https://community.openai.com/t/consistent-variability-using-seeding-with-dall-e-3/457823


Table 6. Percent of each supercategory that was generated by
Dalle-3 and SD 1.5.

Supercategory Dalle-3 SD 1.5

Architecture 94.75% 99.80%
Art 78.50% 95.20%

Celebrations 95.63% 99.77%
Fashion 97.63% 99.05%

Food 97.63% 98.55%
People 33.50% 98.82%

T2I Acceptance Rate (s)

=
N img gen(s)

N img total(s)
∗ 100

=
N img gen(s)

N artifact(s) ∗N promptstyle ∗N seeds

where N artifact(s) = 50 for all supercategories,
N promptstyle = 4, and N seeds depends on the T2I
system (see Appendix B.1 for details).

C. Dataset Design
Creating a high quality cultural benchmark is non-trivial for
two primary reasons: a) it requires significant crowdsourc-
ing efforts [28, 29, 50] or hiring domain experts [36, 72]
b) it requires good “cultural coverage”, i.e. collecting cul-
tural artifacts across a large number of cultural regions r
and cultural categories c. We address the first difficulty by
designing a scalable dataset construction methodology that
enables democratic scaling, as any cultural artifact of inter-
est can easily be added to the benchmark by querying Wiki-
media. We address the second difficulty by collecting cul-
tural artifacts across 64 countries, which is higher than all
existing cultural benchmarks (Tab. 4). We will fully open-
source our code to easily add new data to our benchmark.

The necessity of Categorical Hierarchy Culture has a
sense of shared values through lived experiences and one’s
surroundings (intra-culture), which differ greatly across ge-
ographies (inter-culture) [24]. An important goal towards
accurately measuring cultural representativeness of T2I sys-
tems is to capture their behavior at both inter and intra-
culture levels. For instance, Cuisine is considered an impor-
tant axis of culture [11], yet it is difficult to compare how
well T2I systems do at generating cuisine of, for example,
the United States compared to Nigeria, as cuisine has very
high intra-class variance (diversity). We show that aggre-
gating bias measurement at such coarse levels can lead to
misleading takeaways about T2I performance (see diversity

Table 7. Supercategories and corresponding categories for our
CuRe benchmark dataset.

Supercategory Category

Architecture

Bridge
Fortification
House
Monument and Memorial
Religious Building

Art

Bust
Fresco
Oil Painting
Pottery
Statue

Celebration

Carnival
Christmas Food
Harvest Food
New Year celebration
Spring Festival

Fashion

Embroidery
Hat
Jewellery
Traditional clothing

Food

Dumpling
Flatbread
Fried Dough
Noodle Dish
Rice Dish

People

Activist
Actor
Filmmaker
Musician
Politician
Sportsperson
Writer

measured by Vendi scores in Sec. 3.4). To mitigate this, for
each cultural axis, we propose comparing T2I performance
at a finer granularity of cultural categorization. For exam-
ple, many cultures around the world have their own form of
dumpling. While all these forms have the same core struc-
ture (i.e. much lower intra-class variance than cuisine as a
whole), they vary greatly in their ingredients, preparation,
presentation, etc. specific to each culture. We design the
CuRe dataset with a novel coarse to fine hierarchy to cap-
ture these nuances of cultural categorization.

CuRe is made up of a set of 300 cultural artifacts or-
ganized in a categorical hierarchy, denoted by A. These
artifacts are partitioned into six cultural axes (or supercate-
gories) S, i.e. architecture, art, celebrations, fashion, food,



people. We describe each cultural artifact a ∈ A by a
set of attributes: a name n (e.g. “Modak”), a cultural cat-
egory c (e.g. “Dumpling”), a cultural supercategory s (e.g.
“Food”), and a cultural region of origin r (e.g. India). To
construct the CuRe dataset, within each supercategory, we
search for Wikimedia categories structured as “[category
name] by country”. To examine the performance across
the cultural long tail of T2I systems, we select Wikimedia
categories that contain countries across the Global North
/ South divide, an example proxy for the head and long
tail pretraining distribution of T2I systems. We filter out
countries who contain less than four images for a Wikime-
dia category, as we require these as a ground-truth set for
perceptual similarity scoring (Sec. 2.1) and our user study
(Appendix D.1). Under these conditions, we collect exactly
50 unique region-specific named entities (cultural artifacts)
for each supercategory. Each supercategory has between
four and seven categories : “Traditional clothing” from the
“Fashion” supercategory contains 20 artifacts and the “Peo-
ple” supercategory is balanced by region (5 famous people
per region over seven categories, i.e. occupations). Out of
our 300 cultural artifacts, 123 are from countries consid-
ered part of the Global North and 177 are from countries
considered part of the Global South [60], which we decided
based on UNCTAD categorization as developed economies
(Global North) or developing economies (Global South).
We show an illustration of the dataset structure in Fig. 3
and tabulate the entire categorical hierarchy of the CuRe
dataset in Tab. 7.

D. User Study Design
D.1. User Study Setup
To measure user judgments of T2I systems across global
cultures, we hire workers on the crowdsourcing tool Pro-
lific2. We hire three workers per region (by country of na-
tionality) to answer survey questions about the cultural ar-
tifacts from the CuRe dataset specific to their region. We
ask each worker from region r to rate on a 1-5 Likert scale
a generated image of artifact a for
1. Cultural representativeness ϕ∗

CuRe, i.e. “How likely can
this image be found in your country?”

2. Perceptual similarity to ground-truth images ϕ∗
PS , i.e.

“How similar is this AI image to these four real images?”
3. Likelihood that the image belongs to its ground-truth

class ϕ∗
GT , i.e. “How likely is this an image of {a}”

We expect rational users to provide a similar rating for
ϕ∗
GT and ϕ∗

PS - the distinction being that workers are not
provided ground-truth reference images while rating ϕ∗

GT

and must rely on their prior knowledge of artifact a. We
discuss the UI, survey design choices, and survey questions
asked to workers in Appendix D. We also compare our study

2https://www.prolific.com/

Figure 4. Q1a: Querying users for perceptual similarity of T2I
system generated image to ground-truth images.

to prior works in Tab. 9 (Appendix F). We pay workers the
platform set minimum of $8 per hour.

For each artifact a in the CuRe dataset, we hire three
workers whose country of nationality match the region r
of the artifact. The survey was launched only in English.
To minimize the introduction of biases from the researchers
themselves, no rubric was provided to workers to answer
survey questions, other than some examples of how T2I
systems can be stereotypical (see details in Appendix D.6)
since workers may be unfamiliar with T2I systems. Below,
we provide an overview of each section of our survey, which
was organized as:

1. Disclosure (Appendix D.2)
2. Perceptual Similarity (Appendix D.1)
3. Artifact Familiarity Questionnaire (Appendix D.4)
4. CuRe: Cultural Representativeness (Appendix D.5)
5. Offensiveness and Stereotypes (Appendix D.6)
6. User Metadata (Appendix D.7)

D.2. Disclosure

We inform the workers of the survey goals, how their data
will be used, and how they can withdraw their consent later
if they choose to do so. They are asked for explicit and
informed consent for their data to be used, and provided an
option to opt-out.



Figure 5. Q1b: Querying users to rank (order) the similarity of the
ground truth images to the AI generated image from highest (top)
to lowest (bottom).

Research Study on the Cultural Biases of Gener-
ative AI
Thank you for taking the time for this survey. We
are a team of researchers from [place] who study the
cultural biases of generative artificial intelligence
(GenAI) models in an attempt to make them more
representative for everyone.
What we collect from you: Current country of resi-
dence, Nationality, First language, Country of birth,
Age, Sex, Participant ID.

How we use your data: To analyze the biases
of generative AI models to concepts local to your
culture and country. Your data will be stored in
an anonymized fashion in an online excel sheet,
and published to other researchers as part of an
academic study. We will always maintain your
anonymity, as we do not collect any identifiable in-
formation.

Withdrawing your data later: If you wish to with-
draw or remove your data at any time after this sur-
vey, you can contact us via Prolific’s anonymous
internal messaging tool, or directly contact our re-
search lead by email at [email]. We will then re-
move your data from our server. Please note that
while we will remove your data from our server, we
cannot guarantee this data will not continue to exist
elsewhere online.

Do you consent to your anonymized data being
used in this survey? Select ’Yes’ only if you fully
understand the information above. If you are unsure
or hestitant about providing your data, please select
’No’.

D.3. Perceptual Similarity
We provide an image generated by the T2I system and ask
workers to rate similarity from 1 to 5 (low to high Likert
score) to a grid of ground-truth images from WikiMedia.
The worker is not told what the artifact is, only to rate visual
similarity.

We provide four images to the users, i.e. a single ran-
domly chosen seed generated with four prompt styles with
varying levels of attribute specification or informativeness
(see Appendix B.1). The user is asked Q1a: “How similar
do you think the generated image on the left is to the real
images on the right?” and asked to rate it on a Likert scale
from 1 (Not at all similar) to 5 (Extremely Similar) (see
UI in Fig. 4).

A secondary goal for perceptual similarity questionnaire
is to examine how consistent or homogeneous different
workers are at ranking perceptual similarity. We thus query
each worker for their ranking of ground-truth similarity, i.e.
Q1b: to rank the four ground truth images in the grid for se-
mantic similarity to the AI-generated image I(n). The user
is asked to drag letters that correspond to each image of the
2x2 ground truth grid (a, b, c, d) into a high-to-low order
(1 being most similar and 4 being the lowest). We show the
UI for Q1b in Fig. 5. We analyze worker disagreement over
perceptual similarity in Appendix F.2.

D.4. Artifact Familiarity Questionnaire
The worker is queried for their prior knowledge about arti-
fact a by its name n, i.e. “Had you ever heard of {n} before
seeing all the images above?”, with possible answer op-
tions being “Yes”, “No”, and “Unsure”. If the user answers
“Yes”, the user is then queried for a textual description of
their knowledge, i.e.

Please describe your knowledge about what {n} is
in 1-2 sentences.

For example, if you have seen ”the Statue of Lib-
erty” before and know what it is, you might write:

”The Statue of Liberty is a famous landmark in new
york city. It is a tall green statue of lady liberty hold-
ing a torch”

D.5. CuRe: Cultural Representativeness
From this point on in the survey, the user only shown the
AI image generated with prompt P (n). They are no longer
shown ground truth images. The user is informed what the
artifact name n and category c are. They are shown only the
T2I system image and asked to rate its CuRe from 1 to 5
(low to high Likert score) with Q3a: “How likely can the
item in this image be found in your country?”. The user is



also asked to rate the likelihood of the image belonging to
the class of artifact, as they now know its name, via Q3b:
“How likely is this an image of [artifact name]?”. The UI
for these questions is shown in Fig. 6.

Figure 6. User study interface for CuRe.

Finally, the user is also asked to share a textual descrip-
tion of the specific details contributing to the accuracy or in-
accuracy of the T2I system output in Q3c. This fine-grained
information is useful to identify details of why and how the
T2I system failed to accurately generate artifact a, i.e.

We are trying to understand when GenAI models get
culture-specific details right and wrong.

In your opinion, what specific details in the AI-
generated image above make it accurate or inaccu-
rate compared to how this object typically appears
in your country or your understanding of [artifact
name]?

For example, if the image is of the ‘Italian pasta’
and is inaccurate, you might say: ‘The image has
used the wrong kind of pasta noodles, ingredients,
and sauce, you would not see this kind of pasta in
my country or culture’.

Figure 7. Description and examples given about stereotypes.

D.6. Offensiveness and Stereotypes
We ask workers to rate how offensive and stereotypical to
their culture the T2I system output is on a Likert scale from
1. Not at all to 5. A lot. For offensiveness, we query work-
ers zero-shot (i.e. no rubric or examples): “Images created
by GenAI models can be offensive or harmful, and this may
vary from person to person. In your opinion, does the above
image of [artifact name] seem offensive or harmful to you?”
Similar to cultural representativeness, we ask workers to
briefly justify their scores through text, i.e. “Please provide
a justification for your score above - what about this image
is offensive or not offensive, in your personal view? If it is
not at all offensive, simply stating so is sufficient.”

In contrast, to assess whether a T2I system perpetuates
visual cultural stereotypes, we provide workers with exam-
ples of how T2I systems can be stereotypical (see Fig. 7 for
details), as we observed a vast gulf in understanding of what
“stereotypical” means in the context of T2I systems during
our pilot study.

D.7. User Metadata
Users are asked to provide non-identifiable metadata for
post-hoc analyis, i.e. their country of nationality and res-
idence, how much they identify with the culture of their
country of nationality and residence, and their level of fa-
miliarity with T2I systems (Fig. 8). Users are then queried
for Likert scores from 1 (“Not at all”) to 5 (“A lot”), simi-
lar to offensiveness: “Below is an image of [artifact name],
a type of [category name] created by a GenAI model. In
your opinion, how much does this image reflect any stereo-
types about your culture or country (of nationality or res-



Figure 8. Demographic information questions.

Table 8. We evaluate several state-of-the-art T2I systems on our
CuRe benchmark across our three scorer classes: perceptual sim-
ilarity (Sec. 2.1), image-text alignment (Sec. 2.2), and diversity
(Sec. 2.3). The best entry of each column is bolded, and the next
best if the T2I system is Dall-E 3 or SD 1.5∗

T2I System ϕPS ↓ ϕITA ↑ ϕDIV ↑
SigLIP 2 DINOv2 AIMV2 SigLIP 2 LAION-2B WIT AlexNet

FLUX.1 [dev] 0.061 0.075 0.024 0.094 0.218 0.209 0.708
SD 3.5 Large 0.067 0.104 0.019 0.115 0.251 0.225 0.670
SD 1.5∗ 0.059 0.076 0.019∗ 0.107 0.240 0.229 0.755∗

SDXL 0.057 0.079 0.020 0.113 0.255 0.230 0.753
Ideogram 2.0 - - - 0.096 0.214 0.195 0.693
Dall-E 3∗ 0.057∗ 0.073∗ 0.022 0.105 0.219 0.222 0.789∗

∗ Dall-E 3 and Stable Diffusion 1.5 have moderate refusal rates due to safety filters (see Appendix B.2)

idence)?”. Similarly to offensiveness, they are also asked
for a textual justification of their score, i.e. “Please provide
a justification for your choice - what about this image is
stereotypical or not stereotypical of your culture or coun-
try, in your opinion? If you do not think it is stereotypical
at all, simply stating so is sufficient.”

E. Scorers
E.1. Benchmark Results
We evaluate several popular state-of-the-art T2I systems on
the CuRe benchmark dataset with our three scorer classes
in Tab. 8. We note that due to inbuilt safety filters, Dall-E
and Stable Diffusion 1.5 refuse to generate 17% and 1.5%
respectively (detailed breakdown in Appendix B.2). For
perceptual similarity, we use our ∆ϕPS(n, c) scorer, which
had the highest negative Spearman’s ρ with gold scores on
average (Tab. 1). As this scorer is a divergence, a value
closer to zero is better. SDXL and Dall-E 3 perform best for
SIGLIP 2 cosine distance, while DALL-E 3 and FLUX.1
[dev] slightly edge out SD 1.5 and SDXL with DINOv2.

AIMV2 has lower separability between T2I systems, with
SD 1.5 and 3.5 Large slightly edging out the other T2I sys-
tems. We would also like to caveat that as our PS scor-
ers show poor rank correlation to SD 1.5 (see discussion in
Sec. 3.2), PS scores on SD 1.5 are likely to be overestimates.
For ϕITA, we use ϕITA(c, r), which is a cosine distance us-
ing SigLIP 2 dense vector embeddings. We note that ϕPS

for Ideogram is omitted due to API compute constraints,
as our metric requires generating multiple seeds of I(c).
Across VLMs, the Stable Diffusion class of models per-
form quite strongly (XL ≥ 3.5 > 1.5) compared to FLUX.1
[dev], Ideogram 2.0 and Dall-E 3, and this is especially pro-
nounced for CLIP trained on LAION-2B. As Stable Diffu-
sion models were trained on LAION-2B, we suspect their
strong performance on LAION is because of this overlap
with the training set of our scorer, which was also trained
on LAION-2B (generative entanglement, see Sec. 2.1 for
details). Lastly, for ϕDIV , which is an LPIPS score com-
puted over a mixture of seeds across prompt styles, Dall-E
3 outperforms SDXL and SD 1.5, which are substantially
ahead of the rest. It is noteworthy that Dall-E 3 had a 17%
refusal rate across all seeds of images on the CuRe dataset,
which likely caused a slight inflation in its diversity score
(as LPIPS is computed across all pairs, generating fewer
seeds will drop diversity less). Across all our scorers, Sta-
ble Diffusion XL performs the most consistently, followed
by Dall-E 3.

Notation: To generate an image of artifact a, we first con-
struct a text prompt P (a) with templates over a subset of
the artifact attributes. We illustrate an example with banku,
a type of dumpling from Ghana in Fig. 2, and a more ex-
haustive list of example prompt templates over subsets of a
in Tab. 5 (Appendix C). For example, P (a|a = {n}) = “An
image of {n}”, P (a|a = {n, r}) = “An image of {n}, from
{r}” (the red and orange prompts in Fig. 2 respectively). Let
fθ denote a T2I system f parametrized by weights θ, which
takes in a text prompt P (a) for an artifact a, and generates
an image

I(a) := fθ
(
P (a)

)
.

For example, to generate “An image of {n}, a type of {c}
from {r}”, I(n, c, r) = fθ

(
P (a|a = {n, c, r})); e.g., the

image generated by the green prompt in Fig. 2.
To measure cultural representativeness capability of fθ

for region r, we need a method of scoring the quality of
generated images. Let ϕ : I → R be a quality scorer for
CuRe (e.g. similarity of generated images to ground-truth
images of artifact a). To measure CuRe of fθ for region r,
we compute an average score over the set of cultural arti-
facts a ∈ Ar:

CuRe(ϕ; fθ, r) =
1

|Ar|
∑
a∈Ar

ϕ
(
I(a)

)
.



Images Metric ϕ

a1

[42] 0.62
[61] 0.71
ϕ∗
CuRe 0.31

ϕ∗
PS 0.44

ϕPS ↓ 0.15

a2

[42] 0.67
[61] 0.79
ϕ∗
CuRe 0.83

ϕ∗
PS 0.75

ϕPS ↓ 0.01

AI : I(n) Real : G(n)

(a) Perceptual Similarity Scorer (ϕPS ). Top:
“Omurice”, Bottom: “Chicken Biryani”. Images
were generated with Stable Diffusion 3.5 Large.

Images Metric ϕ

[29] 0.13
[63] 0.11
ϕ∗
CuRe 1.00

ϕ∗
PS 0.75

ϕITA ↑ 0.14

[29] 0.11
[63] 0.09
ϕ∗
CuRe 0.17

ϕ∗
PS 0.15

ϕITA ↑ 0.01

AI : I(n) Real : G(n)

(b) Image-Text Alignment Scorer (ϕITA). Top:
“Sombrero”, Bottom: “Toquilla”. Images were
generated with FLUX.1 [dev].

Images Metric ϕ

LPIPS(n) 0.72
VS(c) 0.24
ϕ∗
CuRe 0.93

ϕ∗
PS 0.66

ϕDIV ↑ 0.57

LPIPS(n) 0.70
VS(c) 0.24
ϕ∗
CuRe 0.46

ϕ∗
PS 0.40

ϕDIV ↑ 0.79

AI : I(n) Real : G(n)

(c) Diversity Scorer (ϕDIV ). Top: “Spaghetti
and meatballs”, Bottom: “Saimin”. Images were
generated with FLUX.1 [dev].

Figure 9. A qualitative comparisons of our proposed MIA scorers compared to baselines in three scorer classes: a) Perceptual Similarity
(Sec. 2.1) b) Image-Text Alignment (Sec. 2.2) c) Diversity (Sec. 2.3). While human judgments ϕ∗ from the user study are on a 1 - 5 Likert
Scale, we normalize them to a 0 - 1 scale for a more direct comparison to quantitative scorers. When human judgments of representativeness
ϕ∗
CuRe and perceptual similarity ϕ∗

PS are able to distinguish between a generated image and ground truth image pair (rows a1 and a2), our
scorers are able to differentiate between them (ϕPS changes significantly), but baselines are not.

Choosing a Scorer: The gold standard for quality scorer
ϕ is to survey a large number of people from region r to rate
the model’s performance along pre-defined rubrics such as
realism and image-text alignment, typically with a 1-5 scale
Likert score [33], which we denote ϕ∗ (see Fig. 2). We in-
terchangeably refer to Likert scores from the user study ϕ∗

as “gold scores”, as they are rated by humans who iden-
tify with the culture of r. Designing surveys to collect these
human perceptual scores in this manner is non-trivial: elic-
iting calibrated scores is difficult and launching surveys is
expensive [32]. If enough people are not queried in the sur-
vey, there is also the possibility their scores may not cor-
relate well with the opinions of people who will use the
model after deployment [14]. To get around these diffi-
culties, existing works design automated quantitative proxy
scorers for cultural representativeness based on related but
distinct goals like image perceptual similarity, image-text
alignment, and diversity. These class of scorers have unique
strengths and weaknesses, and we find they empirically do
not correlate strongly to human judments of quality (Sec. 3).

F. User Study Analytics

We provide a detailed study of the user study responses
across our 2700 total surveys (3 T2I systems × 300 artifacts
× 3 workers per artifact).

F.1. Comparison to prior User Studies
We compare our CuRe user study to previous benchmark
and evaluations of T2I systems that included extensive user
studies as core contributions, which we show in Tab. 9. We
highlight that to our knowledge, ours is the only work that
queries explicitly for user cultural identity (i.e. for worker
hired to score an artifact a from country r, we ask them if

Table 9. We tabulate a comparison of CuRe to existing works for
contributions towards culture-specific user studies. Here WRK =
did the study ask for worker metadata (“Do you identify with the
culture of your country of nationality?”), REP = cultural repre-
sentativeness, RLM = realism, PS = perceptual similarity, OFF =
offensiveness, STR = stereotypical, ρ-MET = does the work ana-
lyze how their metrics correlate with real human judgments?

Benchmark WRK REP RLM PS OFF STR ρ-MET

Liu et al. [36] ✓ ✓ ✓
Basu et al. [2] ✓ ✓ ✓
Ventura et al. [63] ✓
Khanuja et al. [29] ✓ ✓ ✓ ✓
Kannen et al. [28] ✓ ✓ ✓
Zhang et al. [72] ✓ ✓
Bayramli et al. [3] ✓ ✓

CuRe ✓ ✓ ✓ ✓ ✓ ✓

they identify with the culture of {r}) via worker metadata
(see Fig. 10 for details).

F.2. Inter-Annotator and Encoder Agreement
We use the perceptual similarity ranking from Q1b. to mea-
sure agreement between survey respondents over perceptual
similarity the same artifact I(n) to its ground-truth images
G(n) across T2I systems and image encoders. To com-
pute the similarity ranking from our scorer ϕPS(n), we sort
the cosine distance between dense embeddings in descend-
ing order, which matches how users were queried (Fig. 5).
We compute a Kendall’s Tau distance between the rankings
from the user study and the ranking given by our scorer for
each encoder. We compute agreement between a ranking
pair (ri, rj) as a = (1 − KD(ri,rj)

max(KD(ri,rj))
). In Tab. 10, we

tabulate an average over all permutations of ranking pairs
(i, j):



agreement =
1

|(i, j)|
∑
(i,j)

a(i, j) (5)

For example, for agreement over only three survey re-
spondents for each survey (“Worker Only”), we have 3c2
pairs of rankings to compute agreement over, which we av-
erage. When we add the ranking given by the image encoder
(SigLIP 2, AIMV2, DINOv2), we have 4c2 pairs of rank-
ings to average over. As seen in Tab. 10, we observe that
disagreements are fairly consistent between workers across
T2I systems when averaged over the entire CuRe dataset.
When adding the ranking of an encoder to Eq. (5), there is
minimal change in the agreement value.

Table 10. Agreement between the user survey responses and the
other users who took the same survey or different image encoders.

Config User Survey

FLUX.1 [dev] SD 3.5 Large SD 1.5

Worker Only 0.776 ± 0.028 0.771 ± 0.027 0.778 ± 0.029
SigLIP 2 0.759 ± 0.026 0.756 ± 0.026 0.758 ± 0.026
AIMV2 0.755 ± 0.024 0.754 ± 0.028 0.752 ± 0.025
DINOv2 0.763 ± 0.027 0.754 ± 0.026 0.754 ± 0.025

We also qualitatively examine cases with high worker
disagreement over cultural representativeness, i.e. ϕ∗

CuRe,
alongside their textual justification for their score in Fig. 12.
A major cause of disagreement is a miscalibration between
worker thoughts and the Likert score selected. For example,
for the Rostás Pál Monument, workers disagree on the his-
torical relevance to Slovenia, but one worker gives a score
of 5 out of 5 even though they “don’t think it has much
in common with the original details.” Similarly for the
Yangpu bridge, one worker says the main tower looks Eu-
ropean instead of Chinese, while another remarks that the
bridge structure and details are reminiscent of more modern
bridges in China. Some workers base their rating more on
semantic content, while others critique details more harshly
(e.g. Hogmanay, where one worker highlights incorrect de-
tails, while another focuses on the fireworks and crowd
presence being accurate). In another case, workers appear
to agree with their justification, but mark vastly different
Likert scores (cowboy hat, pabellón criollo). In the case of
cowboy hat, this appears to be an incorrect interpretation of
which Likert score indicates high CuRe, while for pabellón
criollo one worker assigns a high score even as though the
image is not of the dish, the worker believes it can still be
found in their country and justifies the mistake made by the
T2I system was due to underspecification in the prompt (i.e.
the T2I system should be told in the prompt that pabellón
criollo is a type of food).

Table 11. Mean and Variance of Likert scores over offensive-
ness (ϕOFF ) and stereotypicalness (ϕSTR) of images generated
by FLUX.1 [dev].

Continent ϕOFF ϕSTR

Africa 1.22 ± 0.64 1.74 ± 1.19
Asia 1.46 ± 0.93 1.90 ± 1.09

Europe 1.31 ± 0.77 1.89 ± 1.17
North America 1.22 ± 0.60 1.88 ± 1.22

Oceania 1.05 ± 0.21 1.62 ± 1.01
South America 1.28 ± 0.81 1.68 ± 1.10

Table 12. Mean and Variance of Likert scores over offensiveness
(ϕOFF ) and stereotypicalness (ϕSTR) of the T2I systems split by
Global North and Global South.

Model Global North/South ϕOFF ϕSTR

FLUX.1 [dev] Global North 1.29 ± 0.54 1.86 ± 1.29
Global South 1.35 ± 0.68 1.82 ± 1.34

SD 3.5 Large Global North 1.29 ± 0.75 1.75 ± 1.05
Global South 1.36 ± 0.78 1.91 ± 1.25

SD 1.5 Global North 1.35 ± 0.83 1.65 ± 1.06
Global South 1.61 ± 1.06 2.02 ± 1.25

F.3. Survey Respondent Statistics

Recall that we only hire workers to score surveys of arti-
fact a if their country of nationality matches the artifact’s
associated region r (Appendix D.1). We query workers for
their perception of their own cultural identity to determine
if they would be a reliable judge of culture-specific percep-
tual similarity. Users are asked if they identify with the cul-
ture of their country of nationality and residence, and given
options “Yes”, “No”, or “Unsure”. We show a bar plot of
worker responses for each region r in the CuRe dataset (64
total) in Fig. 10, grouped on the X-Axis by continent. We
observe that respondents identify more with the culture of
their country of nationality than the culture of their country
of residence, especially in Africa, Asia, and South America,
likely indicating that they are immigrants. We also ask re-
spondents to rate their familiarity level with generative AI
models (see UI in Fig. 8) on a scale of 1 - Never heard
of it to 5 - Expert, which we visualize with a bar plot in
Fig. 11. We observe that 92% of Prolific workers have used
generative AI tools at least a few times, and are thus mod-
erately aware of what generated responses look like (fami-
larity score = 3.53± 0.8).

We also report statistics for how offensive and stereotyp-
ical of local culture FLUX.1 [dev] generations are, as rated
by survey respondents on a 1 to 5 Likert scale, in Tab. 11.
We observe that across continents, both offensiveness and
sterotypicalness scores are between 1 (“Not at all”) and 2



Figure 10. Responses to “Do you identify with the culture of [country]?” summed across all surveys grouped by Continent and sorted by
total count of responses.

Figure 11. Responses to “Familiarity with GenAI models” summed across all surveys.

(“Slightly”) out of 5, indicating that FLUX.1 [dev] is per-
ceived to be minimally offensive and slightly stereotypical
of local cultures. Asia ranks highest for offensiveness in

terms of mean and variance, followed by Europe and South
America. Asia also ranks highest for stereotypicalness, fol-
lowed by Europe and North America.



AI Image Real Image Feedback

ϕ∗
CuRe = 1 out of 5: The most different part is probably the main tower. The AI-generated

main tower is more like something that would appear in Europe.

ϕ∗
CuRe = 5 out of 5: This is very typical of modern bridges in China. The structure is very

normal; there are cars driving over the bridge; both sides of the river have tall, modern
buildings and even skyscrappers.

Yangpu Bridge

ϕ∗
CuRe = 1 out of 5: the picture does not show the history of the Slovenian nation

and does not show the history of this area-europe at all

ϕ∗
CuRe = 5 out of 5: I think Al correctly interpreted the historical and cultural context

of my country, although I don’t think it has much in common with the original details.

Rostás Pál Monument

ϕ∗
CuRe = 1 out of 5: fireworks are too low, faces blurry and distorted

ϕ∗
CuRe = 5 out of 5: The image shows displays of fireworks which are often associated

with celebrating Hogmanay, and also large crowds of people who gather t[o] celebrate
and watch the fireworks

Hogmanay

ϕ∗
CuRe = 1 out of 5: The image of cowboy hats is pretty accurate. In my country

of residence, this would be a pretty representative image.

ϕ∗
CuRe = 5 out of 5: Cowboy hats from my country are made from straws or leather

which is shown in the picture here.

Cowboy Hat

ϕ∗
CuRe = 1 out of 5: The image does not look anything like the typical dish. It has

nothing in common, it shows a ”corridor type pavilion” I think is very misguided.

ϕ∗
CuRe = 5 out of 5: Ok, the image created by the AI is a creole Pavillion in terms of

a farm in Venezuela, i think when it was created by AI , the instructions have to be
more specific, i mean telling the AI that is referred to a typical food

Pabellòn criollo

ϕ∗
CuRe = 2 out of 5: The image is more bright and shows different features of him

ϕ∗
CuRe = 5 out of 5: In the image he is wearing shalwar kameez with a waistcoat

which is a typical attire of Men in Pakistan. So the image is quite accurate.

Fawad Khan

Figure 12. Comparison between user study written feedback when the same artifact for the same T2I system was scored by users on
opposite ends for ϕ∗

CuRe (Part 1).



AI Image Real Image Feedback

ϕ∗
CuRe = 5 out of 5: This isn’t a picture of a bunad at all, but rather a picture associated

with Norwegian cultural heritage, a beautiful landscape with mountains and fjords.

ϕ∗
CuRe = 1 out of 5: This image doesn’t show anything connected to Hardangerbunad

which is an item of clothing, it shows a landscape with mountains and fjords.

Hardangerbunad

ϕ∗
CuRe = 1 out of 5: The image used the wrong race of the person

ϕ∗
CuRe = 5 out of 5: It appears much acurate and more clear

Kaapse Klopse

ϕ∗
CuRe = 1 out of 5: the star on top of the pastry is not realistic and is unlikely to be

found in my country. The colour of the pastry is similar to what a kue nastar would look
like in my culture

ϕ∗
CuRe = 5 out of 5: It’s almost similar to normal nastar, except that nastar in my country

usually has cheese on top or just plain.

Kue Nastar

ϕ∗
CuRe = 2 out of 5: The flooring’s pattern is really irrelevant. You will not find this pattern

in Iranian architecture. Besides the walls are exaggerated. If we neglect the pavement, it
could be an Iranian moscque

ϕ∗
CuRe = 5 out of 5: The architecture of windows, walls and ceramics are really like the

samples that can be seen in iran palaces or mosques

Golestan Palace

ϕ∗
CuRe = 1 out of 5: The clothes of the two figures, the composition of the image, the

colors and the subject in general do not reflect the style of Italian art in the 16th Century.

ϕ∗
CuRe = 4 out of 5: The image shows two lovers touching and almost kissing, while in

the real painting they aren’t.

Stanza dell’Amore Coniugale

ϕ∗
CuRe = 1 out of 5: The sky is far too clear for the NYC skyline (lacking smog haze),

the archways are too tall and narrow, and the meshing on the sides did not exist the last
time I was in the city

ϕ∗
CuRe = 4 out of 5: The floor part does not look authentic as well as the surrounding

city

Brooklyn Bridge

Figure 12. Comparison between user study written feedback when the same artifact for the same T2I system was scored by users on
opposite ends for ϕ∗

CuRe (Part 2).



G. Perceptual Similarity Ablations
As detailed in Appendix B.1, we generate images with in-
creasing attribute specification for each artifact with three
T2I systems, Stable Diffusion 1.5, Stable Diffusion 3.5
Large, and FLUX.1 [dev]. The prompts used are P (n),
P (n, c), P (n, r), and P (n, c, r) from Tab. 5.

We discuss in ablation to visually examine how our PS
scorers capture T2I system performance in the cultural head
and long tail in Appendix G.1. We also discuss qualita-
tive examples from the CuRe dataset and how our PS scor-
ers rate artifacts when compared to user judgments in Ap-
pendix G.2.

G.1. Head-Tail Split using PS Scorers
For each T2I system fθ, in Fig. 13 we show a scatter plot of
raw perceptual similarity scores ϕGT and ϕPS for all 50 cul-
tural artifacts belonging to each supercategory s. For each
artifact, we plot two scores: ϕ(n) and argmax ϕ(a), i.e. the
highest similarity score across four prompts. To examine if
the head and tail of the distribution of PS scores correlate
with the Global North / South divide, we also color each
point according to whether the region the artifact belongs to
lies in the Global North (red) or South (black). Below we
discuss the “spread” or visual divergence in scores between
ϕ(n) and argmax ϕ(a) as well as “cultural outlier”, i.e.
points with a high spread in the head or points with a low
spread in the tail.

As seen in Fig. 13, we observe a spread of scores in
the tail across T2I systems for both scorers ϕGT and ϕPS ,
though the starting point and magnitude of spread (vertical
height) differs by supercategory. ϕGT tends to have a lower
spread than ϕPS , with fewer outliers. All T2I systems have
very few outliers in the head (i.e. points with high spread),
while there tend to be many more outliers in the tail, i.e.
points with low spread (e.g. for Art and People.) People
has the least spread across all T2I systems, which is intu-
itive as there is a very specific way that a certain individual
looks, and thus perceptual similarity tends not to change
with attribute specification. Interestingly, even though Ar-
chitecture and Art are similarly also singular named enti-
ties (i.e. minimal intra-artifact variance in visual features),
we observe a later starting point with occasionally large
spread (e.g. only in the last 10 to 15 artifacts). Food, Fash-
ion and Celebrations have in general the widest spread, as
there is generally large intra-class diversity / variance as to
how culture-specific food preparations, clothing, and cele-
brations looks visually. Dall-E 3 (Fig. 13e) appears to be
the most homogenous in perceptual similarity, as the spread
is much lesser than other models, even for Food.

For a more fine-grained analysis than aggregating at the
Global North / South divide, we also examine PS scores
across each region (country) in the CuRe dataset in Tab. 13.
In some continents, such as North America, we observe a

Table 13. Perceptual similarity CuRe scores of all regions in the
CuRe dataset, sorted descending by user study scores ϕ∗

CuRe.

Continent Region Perceptual Similarity Scorer
ϕ∗
CuRe ϕGT (n) ϕPS(n) ∆ϕPS(n, c) ∆ϕPS(n, c, r)

Africa

Egypt 3.265 0.719 0.617 0.019 0.010
Nigeria 2.959 0.716 0.638 0.010 0.006

Morocco 2.800 0.638 0.618 0.048 0.045
Algeria 2.722 0.556 0.569 0.058 0.065
Ghana 2.694 0.589 0.588 0.049 0.034

South Africa 2.528 0.641 0.631 0.052 0.043
Ethiopia 2.259 0.606 0.623 0.039 0.039

Zimbabwe 2.222 0.770 0.686 -0.011 -0.003
Tunisia 1.741 0.498 0.529 0.132 0.127

Asia

India 3.910 0.690 0.654 0.016 0.014
Malaysia 3.333 0.735 0.779 0.010 0.007
Pakistan 3.024 0.760 0.612 0.002 -0.000

Indonesia 2.875 0.656 0.629 0.032 0.028
Iran 2.861 0.614 0.560 0.051 0.049

Philippines 2.772 0.644 0.598 0.043 0.039
Japan 2.722 0.650 0.610 0.046 0.040
China 2.667 0.652 0.624 0.033 0.030

Lebanon 2.667 0.720 0.763 -0.006 0.006
Israel 2.444 0.701 0.709 -0.019 -0.013
Korea 2.422 0.662 0.627 0.033 0.025

Thailand 2.250 0.674 0.662 0.053 0.038
Vietnam 2.139 0.587 0.588 0.042 0.041

Bangladesh 2.111 0.529 0.547 0.091 0.082
Singapore 1.889 0.787 0.696 0.028 0.022

Afghanistan 1.889 0.798 0.586 0.003 -0.002

Europe

Slovenia 3.407 0.634 0.629 0.065 0.060
Czech Republic 3.278 0.732 0.694 0.012 0.024

Switzerland 3.185 0.605 0.622 0.013 0.004
United Kingdom 3.139 0.737 0.623 0.012 0.013

Germany 3.111 0.624 0.582 0.058 0.056
Denmark 3.111 0.591 0.575 0.080 0.068

Norway 3.111 0.572 0.586 0.052 0.053
Italy 3.014 0.695 0.662 0.028 0.028

Netherlands 3.000 0.638 0.582 0.048 0.046
Poland 3.000 0.626 0.610 0.034 0.041
France 2.978 0.687 0.655 0.023 0.015
Russia 2.833 0.675 0.651 0.035 0.035
Greece 2.733 0.690 0.642 0.030 0.028

Belgium 2.722 0.706 0.638 -0.001 0.003
Spain 2.617 0.684 0.631 0.021 0.018

Portugal 2.600 0.614 0.593 0.060 0.065
Austria 2.519 0.618 0.619 0.026 0.026

Slovakia 2.407 0.660 0.643 0.042 0.034
Romania 2.333 0.608 0.597 0.077 0.092
Hungary 2.333 0.684 0.710 0.005 0.013

Croatia 2.222 0.529 0.561 0.097 0.078
Finland 2.201 0.654 0.637 0.014 0.015
Turkey 2.194 0.656 0.668 0.032 0.016

Sweden 2.093 0.666 0.630 0.029 0.028
Ukraine 1.741 0.524 0.556 0.098 0.084

North America

United States 3.463 0.727 0.664 0.009 0.010
Canada 3.296 0.656 0.728 -0.002 -0.001
Mexico 2.889 0.662 0.675 0.020 0.015

Puerto Rico 2.556 0.499 0.508 0.170 0.147
Costa Rica 1.444 0.598 0.666 0.040 0.048

Oceania Australia 2.867 0.659 0.688 0.024 0.021
New Zealand 2.778 0.617 0.618 0.035 0.026

South America

Brazil 3.108 0.653 0.660 0.014 0.014
Venezuela 2.889 0.483 0.545 0.102 0.106

Chile 2.849 0.735 0.629 0.009 0.009
Argentina 2.403 0.716 0.677 0.020 0.014

Peru 2.286 0.575 0.623 0.036 0.026
Colombia 2.111 0.635 0.619 0.043 0.034

Ecuador 1.667 0.537 0.528 0.116 0.097

clear correspondence between the expected availability of
training data and the performance of our perceptual simi-
larity scorers. Regions like the United states and Canada
have high ϕ∗

CuRe which aligns with the scores from our
ϕPS scorers, while Puerto Rico and Costa Rico have much
lower scores for both. However, this trend is not uni-
formly observed across all continents. Other continents,
like Africa and South America have little relationship be-



(a) FLUX.1 dev

(b) Stable Diffusion 3.5 Large

(c) Stable Diffusion 1.5

(d) Stable Diffusion XL



(e) Dall-E 3

Figure 13. Left: ϕGT for artifacts from the supercategories generated using FLUX.1 [dev] with similarity averaged to get one value for
each artifact. Right: ϕPS for artifacts from the supercategories generated using FLUX.1 [dev] with similarity averaged to get one value
for each artifact. ϕGT (n) and ϕPS(n) (Vanilla) has the “x” marker while highest similarity score (Best) amongst the other 3 prompts has
the “o” marker. The colors indicate whether the artifact falls in the Global North (red) or Global South (black). Artifacts are sorted by
descending Vanilla similarity score.

tween the quantitative perceptual similarity scorers and the
user study gold scores. While certain regions fall in line
with the ϕ∗

CuRe scores, for example, Tunisia has the worst
scores across all quantitative perceptual similarity scorers
and also the lowest ϕ∗

CuRe in Africa, the ranking of the scor-
ers rarely match with the ranking of ϕ∗

CuRe.

G.2. Qualitative Analysis of PS Scorers

We highlight several qualitative examples on the CuRe
dataset with our perceptual similarity scorers ϕPS and
∆ϕPS compared to the strong baseline scorer ϕGT (n) in
Fig. 14. We also show Likert scores for cultural representa-
tiveness ϕ∗

CuRe and textual justification for each example.
As we observed in our quantiative results (Tab. 1), our

divergence PS scorer ∆ϕPS(n, c) correlates strongly (and
negatively) with the ϕ∗

CuRe gold scores, i.e. low ∆ϕPS(n, c)
indicating higher ϕ∗

CuRe (e.g. Bayt al-Suhaymi, Moai, and
George Lucas). We also highlight a failure case for our scor-
ers with Talları́n saltado, a type of noodle dish from Peru
generated by SD 1.5. While we expect a low ∆ϕPS score
to correspond to high cultural representativeness, workers
rate a low ϕ∗

CuRe score of 1 out of 5 and indicate errors with
textual response, i.e. incorrect ingredients and out-of-place
textures. ϕPS also did worse than the baseline ϕGT (n) as
it gave a higher perceptual similarity score (falsely predict-
ing high quality T2I output). This failure aligns with our
quantitative rank correlation analysis in Tab. 1, where we
observe very Spearman’s ρ for SD 1.5, an older and smaller
T2I system.

We also highlight two cases where both our proposed
scorers and the baseline scorer fail. The artifact Blocos car-
navalescos de São Paulo, a carnival celebration from Brazil,
had a 1 out of 5 ϕ∗

CuRe for SD 3.5 Large. The written

feedback also reflects that the images are sterotypically ex-
travagant and incorrect in physical appearance. However,
the quantitative perceptual similarity scorers were very high
compared to other artifacts with the same low ϕ∗

CuRe score.
In contrast, the artifact Hmong textile art, a style of em-
broidery from Vietnam had an excellent 5 out of 5 ϕ∗

CuRe

for SD 3.5 Large, but lower scores from the quantitative
PS scorers than Blocos carnavalescos de São Paulo which
was much less culturally representative according to human
judgments.



AI Image Real Image Feedback PS Scorers

ϕ∗
CuRe = 2 out of 5 Bayt al-Suhaymi

1. The trees used looks so weird as its mimicing a dome shape.
some of the small blue domes are futher apart than others.
asymtrical look

2. There is a lot of Dom’s typicaly there is only one in any
building, this picture represent a mosque more than a normal
building, also the Dom’s can’t be made from trees

ϕGT (n) = 0.654

ϕPS(n) = 0.580

∆ϕPS(n, c) = 0.052

∆ϕPS(n, c, r) = 0.006

ϕ∗
CuRe = 4 out of 5 Moai

1. the head to body ratio is a bit off, the body should either be
more elongated or the head bigger, some even had some kind of
red hat and they all looked to the ocean.

2. The main thing that I think is inaccurate is that the moai in the
image looks too perfect and the real ones have a lot of damage
due to nature.

ϕGT (n) = 0.808

ϕPS(n) = 0.581

∆ϕPS(n, c) = −0.014

∆ϕPS(n, c, r) = −0.014

ϕ∗
CuRe = 1 out of 5 Blocos carnavalescos de São Paulo

1. The costumes are indeed carnival like, but the blocos are less
stravagant and the costumes wore by the people usualy contain
some kind of a joke on a very low budget costume

2. Their physical appearance and posture.

ϕGT (n) = 0.712

ϕPS(n) = 0.757

∆ϕPS(n, c) = 0.004

∆ϕPS(n, c, r) = −0.027

ϕ∗
CuRe = 5 out of 5 Hmong textile art

1. The design motif and colors are quite close to the real ones

2. I think the repetitive patterns and the colourful decoration make
it accurate

ϕGT (n) = 0.620

ϕPS(n) = 0.634

∆ϕPS(n, c) = 0.019

∆ϕPS(n, c, r) = 0.018

ϕ∗
CuRe = 1 out of 5 Talları́n saltado

1. the noodles look like worms, talları́n saltado is spaghetti with
meat and vegetables whereas the image only shows weird pasta
and no meat nor onions/tomatoes.

2. The image doesn’t look like noodles to me, it seems like a kind
of vegetable so I can’t say is accurate to the real Talları́n saltado

ϕGT (n) = 0.654

ϕPS(n) = 0.696

∆ϕPS(n, c) = −0.014

∆ϕPS(n, c, r) = −0.075

ϕ∗
CuRe = 5 out of 5 George Lucas

1. This is a closeup picture of George Lucas’ face. There’s nothing
particularly unique about it that would NOT make it apart of my
culture. I don’t see why I couldn’t see this kind of photo in my
culture.

2. I do not see anything that is ”wrong” other than the eyes. They
are obviously AI.

ϕGT (n) = 0.745

ϕPS(n) = 0.571

∆ϕPS(n, c) = −0.011

∆ϕPS(n, c, r) = −0.040

Figure 14. Visualization of quantitative perceptual similarity (PS) scorers and user study CuRe scores and text feedback (Appendix D.5).
The first two artifacts were generated with FLUX.1 [dev], the second two with SD 3.5 Large, and the last two with SD 1.5.



H. Image-Text Alignment
We examine in important factor in the context of image-text
alignment scorers in Appendix H.1: what impact does the
choice of vision-language model backbone have on scorer
quality? We also discuss qualitative examples with ITA
scorers in Appendix H.2.

Table 14. List of prompts used for text-image similarity score cal-
culations. e.g. for region r = ”Australia”, the T2I prompt P (r) =
“An image from Australia”.

Scorer Prompt
Khanuja et al. [29] “This image is culturally relevant to {r}.”
Ventura et al. [63] “Image from {r} culture.”
o3 mini [41] “Assess the image’s cultural representation of {r}.”
P (n) “An image of {n}.”
P (c) “An image of {c}.”
P (r) “An image from {r}.”
P (c, r) “An image of {c} from {r}.”

H.1. Choice of ITA Scorer’s VLM Backbone

Table 15. Spearman correlation values of ITA scorers with human
judgments of perceptual similarity ϕ∗

PS across ITA scorer models
for FLUX.1 [dev]. ITA scorer models we evaluate are OpenCLIP
models trained on OpenAI WIT [46], Data Filtering Networks
(DFN-5B) [17], LAION-2B [55], and DataComp (DC-1B) [20].

ITA Scorer LAION-2B WIT DFN-5B SigLIP 2 DC-1B

Khanuja et al. [29] 0.18 0.16 0.12 0.11 0.12
Ventura et al. [63] 0.16 0.09 0.16 0.14 0.16
o3-mini 0.17 0.17 0.13 0.14 0.15

sim
(
I(n), P (n)

)
0.35 0.39 0.41 0.38 0.37

sim
(
I(n), P (c)

)
0.33 0.38 0.35 0.34 0.31

sim
(
I(n), P (r)

)
0.16 0.09 0.17 0.12 0.13

sim
(
I(n), P (c, r)

)
0.37 0.39 0.38 0.38 0.34

ϕITA(c) 0.39 0.43 0.43 0.40 0.39
ϕITA(r) 0.32 0.32 0.37 0.35 0.33
ϕITA(c, r) 0.40 0.43 0.44 0.42 0.40

We replicate the Spearman rank correlation setup from
Tab. 2 and ablate over the choice of VLM backbone used to
compute image-text alignment for FLUX.1 [dev] in Tab. 15
(see Sec. 3.3 for VLM details). To recap, we compute a
Spearman’s ρ of each scorer with the user study gold score
ϕ∗
PS . We observe that baselines (Khanuja et al. [29], Ven-

tura et al. [63], and o3 mini) which query the VLM for
CuRe score directly with region information r are sensi-
tive to changes in the backbone, showing high variability in
ITA scores. As we marginally increase attributes specified
to the T2I system (n → c → r → c, r ), the rank cor-
relations become more consistent across VLM backbones.
Our proposed metrics show both higher and more consis-

tent rank correlations with ϕ∗
PS gold scores across all VLM

backbones, showing that they are less sensitive to the pre-
training distribution of the VLM for evaluating cultural rep-
resentativeness.

H.2. Qualitative Analysis of ITA Scorers
We highlight several qualitative examples on the CuRe
dataset of our ITA scorer ϕITA(c, r) compared to baselines
in Fig. 14 using SigLIP 2 as the VLM backbone. We also
show Likert scores for cultural representativeness ϕ∗

CuRe

and textual justification for each example.
Throughout our evaluation, we treat user judgments as

the gold standard, assessing scorers based on how well they
replicate human feedback. Example 5 (Zwölf Glaubensar-
tikel) is a rare case where users were unfamiliar with the
artifact itself, leading to a high ϕ∗

cure based primarily on re-
gional similarity. Since the AI-generated and real images
differ in category, the ϕITA(c, r) score is correspondingly
low, reflecting this mismatch.

As seen in Example 1 (Bangles), our proposed metric
ϕITA(c, r) aligns more closely with user preferences com-
pared to existing baseline scorers. Our proposed metric
proves particularly robust in scenarios where the T2I system
generates outputs that are categorically incorrect. In Exam-
ple 3 (Jalangkote), SD 3.5 Large generates an image of ar-
chitecture rather than food, a failure undetected by baseline
metrics that focus narrowly on regional resemblance. From
a user perspective, representativeness encompasses not only
regional cues but also correct category and item-level se-
mantics, an area where our marginal information attribution
scorer provides more robust signal.

We also highlight some failure cases of our ITA scorer.
Example 4 (Puchner Mansion) shows a case where base-
line scorers better approximated human judgments than
ϕITA(c, r), suggesting that in some cases, the baselines’
focus on broader stylistic features may offer advantages. In
Example 6 (Michelle Bachelet), our proposed ϕITA(c, r)
captures semantic representativeness by integrating cate-
gory and region cues, but does not account for image qual-
ity. Users tend to penalize low-quality or unrealistic images
regardless of semantic alignment, which our scorer over-
looks. Example 2 (Festival de la Primavera) demonstrates
a failure case across all ITA-based scorers which fail to cap-
ture culturally specific or context-dependent cues (region
inconsistency, incorrect details of the parade).

Note on Worker Reliability: While most participants
provided thoughtful and culturally grounded feedback, a
few responses reflected exasperation with AI-generated out-
puts in general, including outright pleas to “stop this”. This
highlights an important issue regarding images created by
generative AI systems: a sense of subjectivity and hetero-
geneity of opinions involved in evaluating cultural artifacts
and towards T2I systems themselves.



AI Image Real Image Feedback ITA Scorers

ϕ∗
CuRe = 5 out of 5 Bangles

1. Bangles are circular ornaments with some colors and patterns
on them.

2. The width and the carvings and the colors make it seem more
aligned to my culture

Khanuja et al. [29] = 0.060

Ventura et al. [63] = 0.045

ϕITA(c, r) = 0.124

ϕ∗
CuRe = 1 out of 5 Festival de la Primavera

1. The festival takes place in the cost of Lima, no there are not a
lot of hilly areas, and it’s more a dry environment so those flowers
and the place do not correspond at all to Trujillo reality.

2. The image represents the Spring in general. But the main event
of the Festival de la Primavera is the parade (People, carriages
and flowers).

Khanuja et al. [29] = 0.086

Ventura et al. [63] = 0.067

ϕITA(c, r) = 0.156

ϕ∗
CuRe = 1.67 out of 5 Jalangkote

1. The image use the wrong thing, AI image is using stone like
building while Jalangkote is a food. a complete different genre

2. The AI image is not even a food.

Khanuja et al. [29] = 0.112

Ventura et al. [63] = 0.093

ϕITA(c, r) = 0.022

ϕ∗
CuRe = 1.34 out of 5 Puchner Mansion

1. It’s style is just all wrong. it looks more like something an
american would think of as a castle. can we stop trying to make
ai image gen happen?

2. I feel like the AI focused too much on the word Mansion, and
especially the american/older british kind.

Khanuja et al. [29] = 0.040

Ventura et al. [63] = 0.053

ϕITA(c, r) = 0.096

ϕ∗
CuRe = 4.67 out of 5 Zwölf Glaubensartikel

1. Overall the vegitation seems possible to find in my country

2. This image could be a shot from above of some forest in my
country.

Khanuja et al. [29] = 0.108

Ventura et al. [63] = 0.091

ϕITA(c, r) = 0.079

ϕ∗
CuRe = 2 out of 5 Michelle Bachelet

1. The image doesn’t have the exact facial features of Michelle
Bachelet. She’s a well known Chilean politician, so a lot of people
recognize her face. The image looks too fat and the hair is wrong.

2. Its the features of the face, they are not completly wrong, but
together they make a face who cant be taken to be Bachelet,
also the hair looks really fake.

Khanuja et al. [29] = 0.066

Ventura et al. [63] = 0.054

ϕITA(c, r) = 0.164

Figure 15. Visualization of ITA scorers and user Feedback. The first two artifacts were generated with FLUX.1 [dev], the second two
generated with SD 3.5 Large, and the last two generated with SD 1.5.



I. Diversity
LPIPS. A high LPIPS [73] score indicates high intra-
artifact variance in patchwise image features across seeds,
which is interpreted as high diversity. We compute LPIPS
for a category c in our CuRe dataset as:

LPIPS(c) =
1

|Ac|
∑
a∈Ac

ϕ
(
I(a)

)
.

Vendi Scores. Vendi Scores (VS) [19, 28] define a sim-
ilarity measure via a kernel over selected attributes (e.g.
r = {Country, Continent}). While computing VS, each
seed j of an image of a cultural category I(c) is as-
signed a predicted label based on its “closest” image
in the set of artifacts belonging to c, i.e. â(I(c)j) =
argmaxa∈c sim

(
I(c), I(a)

)
.

A j × j kernel similarity matrix is then computed based
on a selected attribute (see Experimental Setup of Kannen
et al. [28] for details). The primary drawback VS as a scorer
is that its quality depends entirely on this initial assignment
â and choice of kernel, which in turn depends on the image
encoder used to compute sim.

Figure 16. ∆ϕDIV (a) for FLUX.1 [dev] images of artifacts in
the CuRe dataset belonging to the Global North (GN) and Global
South (GS).

I.1. Diversity as a Long Tail Predictor
We examine if we can use diversity as a predictor of a cul-
tural artifact lying in the head or long tail of a T2I system’s
distribution over generated images, similar to our marginal
attribution lens over perceptual similarity (Sec. 2.1). Recall
from Eq. (4) that our ϕDIV scorer compute LPIPS diversity
over a set of images generated across attribute specification
levels:

ϕDIV (a) = LPIPS
(
{n}, {n, c}, {n, r}, {n, c, r}

)
We expect that in the long tail, a larger marginal increase

in information n → a will cause a large increase in diver-
sity, as there will be a larger visual difference between im-
ages generated with different attributes I(n) → I(a) (as

seen with the “Banku” artifact in Fig. 2). Intuitively, this
evaluates how much diversity changes when we mix images
of “Banku” with images of “Banku, a type of dumpling”,
images of “Banku, from Ghana”, and images of “Banku, a
type of dumpling from Ghana”. If it is relatively unchanged,
we predict it to lie in the long tail of the T2I system. To test
this hypothesis, we compute the marginal increase in infor-
mation as divergence of ϕDIV (a) from an LPIPS over only
images generated with a = {n}, i.e.

∆ϕDIV (a) = ϕDIV (a)− LPIPS({n})

We visualize this marginal increase ∆ϕDIV (a) on the
CuRe dataset by grouping cultural artifacts into two buckets
as proxies for the head and long tail: artifacts belonging to
regions from the global north and global south. We average
∆ϕDIV (a) over all artifacts belonging to each bucket for
each supercategory s, and show a bar plot for FLUX.1 [dev]
in Fig. 16. We observe that the change in diversity score is
higher for artifacts belonging to the global south than for
artifacts belonging to the global north across all supercat-
egories, which aligns with our hypothesis. Our proposed
scorer ϕDIV (a) can thus serve as a good proxy to predict
whether an image generated by a T2I system lies. We note
while our scorer requires generating multiple seeds of im-
ages with different attribute specification levels (practically,
four seeds across four styles = 16 total images), it is still
relatively cheap to compute when compared to computing
artifact frequency over a large pretraining dataset via string
matching, such as in Parashar et al. [43], which we discuss
in more detail in Appendix K.

I.2. Qualitative Analysis of DIV scorers
We highlight several qualitative examples on the CuRe
dataset of our DIV scorer ϕDIV (a) compared to baselines
in Fig. 17. In alignment with our quantitative observa-
tions in Appendix I.1, in the examples “Third Mainland
Bridge”, “Rabat Lighthouse” and “Penelope Cruz”, all di-
versity scorers show an inverse relationship to human judg-
ments of cultural representativeness ϕ∗

CuRe. In the examples
of “Vaso de los Guerrero” and “Hokkien Mee”, ϕDIV (a)
captures this negative rank correlation better than the base-
line (lower score than baseline for high ϕ∗

CuRe). We high-
light a failure case where the baseline outperforms in scorer
with “Ushabti”, where for a low ϕ∗

CuRe, the baseline shows
a higher diversity score.



AI Image Real Image Feedback Score

ϕ∗
CuRe = 1 out of 5 Ushabti

1. This image has used a different facial feature of the statue you
would not see in my country of culture. Although, the wear and tear
as well as the shape of the statue being mummy-like would be found
in my country.

2. The similarities lies in the cat structure generally. The material it
is made of and the type of cloth it seems to be wearing. The part
where it is different from my culture is that the eyes are looking at the
side which is very unlikely. Moreover, the smile itself is so not true.
The big differences lie in the eyes direction and the smile.

LPIPS(n) = 0.62
ϕDIV (n) = 0.48

ϕ∗
CuRe = 4 out of 5 Hokkien Mee

1. Should have less liquid sauce. May need to add shrimps. The
noodle should be fried.

2. The noodles in the AI image looks weird and too smooth/plump
compared to real noodle dishes. Each individual strand can be traced
which seems unlikely in a real noodle image

LPIPS(n) = 0.70
ϕDIV (n) = 0.59

ϕ∗
CuRe = 4.5 out of 5 Third Mainland Bridge

1. The image contains the distinctive part of the real location and
image, it contains most of the details of the real thing.

2. The inaccurate details is The Number of Lanes. The image shows
more or fewer lanes than the actual four lanes. The image inaccurately
represents the bridge structural elements such.

LPIPS(n) = 0.50
ϕDIV (n) = 0.50

ϕ∗
CuRe = 5 out of 5 Rabat Lighthouse

1. The catholic or christian cross

2. I think gen AI did a good job here, but missed some details like the
big square in front of the lighthouse and the window’s sizes are
somewhat big here

LPIPS(n) = 0.51
ϕDIV (n) = 0.54

ϕ∗
CuRe = 4 out of 5 Penelope Cruz

1. The facial features are very similar to the real ones

2. The hair is typical of any country, so it could as well be spanish.
The white clothes is typical mediterranean.

LPIPS(n) = 0.74
ϕDIV (n) = 0.62

ϕ∗
CuRe = 2 out of 5 Vaso de los Guerreros

1. The AI-generated image looks too unreal; it doesn’t feel natural, as
if it was too exaggerated

2. The image has floral filigrees and not warriors. The decorations are
in relief and not painted. In addition, the vessel is lacquered with gloss

LPIPS(n) = 0.75
ϕDIV (n) = 0.55

Figure 17. Diversity scorer and user feedback



J. MLLM as a Judge

Figure 18. We evaluate how well Gemini 2.0 Flash CuRe score
justifications match real human CuRe score justifications with
OpenAI o1, which gives a score from 1 (poor) to 5 (excellent).

To our knowledge for the first time, we evaluate the
capacity of a MLLM at approximating human judgments
(gold scores) of cultural representativeness (ϕ∗

CuRe) and im-
age perceptual similarity (ϕ∗

PS , ϕ∗
GT ). Specifically, we

query Gemini 2.0 Flash [13] with the same set of ques-
tions asked to real humans in our user study (details in Ap-
pendix J), and output a score from 1 (low) to 5 (high), sim-
ilar to user study Likert scores. We also query Gemini for
a textual justification of these scores, so we can inspect its
reasoning.

We follow the same evaluation setup as PS, ITA and DIV
scorers (Sec. 3.1) and compute a Spearman rank correlation
between Gemini scores and gold scores from our user study.
For PS scorers Tab. 1, we observe that Gemini slightly lags
behind ϕGT , and our scorers approximate both these strong
baselines well without access to any ground-truth images.
For ITA scorers (Tab. 2), we observe that Gemini 2.0 Flash
nearly matches (Flux.1 [dev] and SD 1.5) and occasionally
outperforms (SD 3.5) our proposed ϕITA scorers in Spear-
man’s ρ. This intuitively suggests that their pretraining
dataset has wider cultural coverage of artifact - region as-
sociations compared to smaller VLMs like OpenCLIP and
SigLIP 2. While these results are promising, our examina-
tion of Gemini’s textual justifications (Fig. 19) show that
it tends to overlook culture-specific details, even when at-
tribute details may be correct (e.g. textures, shapes and pat-
terns of an object that are not culturally accurate).

In addition to the scores it provides for CuRe, perceptual
similarity and ground-truth likelihood, we ask Gemini 2.0
Flash to provide a textual justification for its scores (details
in Appendix J.1). Following previous work using an inde-
pendent MLLM as a judge [8], we evaluate the quality of
Gemini 2.0 Flash’s text justification with a state-of-the-art
reasoning LLM, OpenAI o1 [40] (details in Appendix J.2).
Specifically, for a given artifact, we ask o1 to output a
score from 1 (low) to 5 (high) for how closely Gemini 2.0

Flash’s score justification matches the Likert score justifica-
tions provided by real humans in the user study. As seen in
Fig. 18, according to o1, Gemini 2.0 Flash is able to most
accurately justify scores for SD 1.5 (3.6 / 5), followed by
Flux.1 [dev] (3.4 / 5), and lastly SD 3.5 Large (3.2 / 5). Even
with these promising initial results at providing fine-grained
textual justifications that resemble real human justifications,
we show that Gemini 2.0 Flash still has many failure cases
in Fig. 19b.

J.1. Gemini 2.0 Flash as a Scorer

We summarize the prompts administered to the Gemini 2.0
Flash model to elicit scores and textual justifications regard-
ing cultural representativeness (ϕ∗

CuRe), perceptual similar-
ity (ϕ∗

PS), and ground truth similarity (ϕ∗
GT ). The core eval-

uation prompt administered to Gemini 2.0 Flash (as men-
tioned in item 1 above) was structured around five key ques-
tions. These questions were designed to mirror the assess-
ments performed by human participants in our user study
(Appendix D.5, Q3c), focusing on critical aspects of the
generated images:

1. PS Likert (Perceptual Similarity): Assesses the visual
resemblance between the AI-generated image and pro-
vided real reference images.
(Measured on a Likert scale from 1 ”Not at all similar”
to 5 ”Extremely similar”)

2. Representativeness: Evaluates the likelihood that the
depicted item could be found within a specific cultural
context ({country}).
(Measured on a Likert scale from 1 ”Highly Unlikely”
to 5 ”Extremely Likely”)

3. GT Likert (Ground Truth Similarity): Judges the ac-
curacy of the AI’s depiction of the item ({item name})
itself, irrespective of the cultural context.
(Measured on a Likert scale from 1 ”Highly Unlikely”
to 5 ”Extremely Likely”)

4. Similarity Explanation: Requests a textual justification
identifying specific visual elements contributing to the
similarity or difference compared to real images.

5. Description (Accuracy/Inaccuracy Details): Asks for
textual details explaining the image’s accuracy or inac-
curacy relative to its typical appearance in the specified
{country} or general knowledge of the {item name}.



Prompt for perceptual similarity Likert:
You will be shown two images below. The image
on the left is an AI-generated image of {item name}
({category name}). The image on the right is a grid
of four real images of {item name} from Wikipedia.
Generated Image (Left):
[Image 1 Placeholder - will be inserted by API call]
Real Images Collage (Right):
[Image 2 Placeholder - will be inserted by API call]
Please analyze the images and answer the following:
1. On a scale of 1-5, how similar do you think the
generated image on the left is to the real images on
the right? Use the following scale:

1: Not at all similar
2: Slightly similar
3: Reasonably Similar
4: Very Similar
5: Extremely Similar

2. Provide a brief explanation for your similarity
rating, detailing specific visual aspects you com-
pared.
Format your response strictly as JSON with the keys
”similarity rating” (for the number 1-5) and ”simi-
larity explanation” (for the text explanation). Ex-
ample:
{

”similarity rating”: 4,
”similarity explanation”: ”The generated image

captures the overall shape and key architectural el-
ements seen in the real images, like the arches and
towers, but lacks some finer texture details and the
surrounding environment differs.”
}

Prompt for representativeness and GT Likert:
This is an AI-generated image of {item name},
which is a type of {category name}. Please analyze
this image and answer the following questions:
1. Representativeness: On a scale of 1-5 (where 1
is ”Highly Unlikely” and 5 is ”Extremely Likely”),
how likely can this item be found in {country}?
2. GT Likert: On a scale of 1-5 (where 1 is ”Highly
Unlikely” and 5 is ”Extremely Likely”), how likely
is this an accurate image of {item name}?
3. Description: What specific details in the AI-
generated image make it accurate or inaccurate
compared to how this object typically appears in
{country} or your understanding of {item name}?
Format your response as JSON with keys:
’country likelihood’, ’item accuracy’, and ’de-
tails analysis’.

J.2. o1 as a Judge

We discuss the precise prompt provided to the OpenAI o1
model, instructing it to evaluate the semantic similarity be-
tween the justifications generated by Gemini 2.0 Flash and
the aggregated justifications from our human user study

Subsequent to the initial analysis by Gemini 2.0 Flash, a
meta-evaluation step was employed using the OpenAI o1
model. The objective of this stage was to quantitatively
assess how closely the textual justifications generated by
Gemini 2.0 Flash align with the reasoning provided by hu-
man evaluators.

To prepare the necessary inputs for this comparative
analysis, all relevant free-text descriptions collected from
human participants for a given item for a specific model
during the user study were first concatenated.

The prompt designed for the o1 model, detailed below,
was then supplied with both the specific justification text
produced by Gemini 2.0 Flash and this corresponding block
of aggregated human descriptions. The core instruction
within this prompt directed the o1 model to perform a se-
mantic similarity evaluation between these two distinct sets
of responses.



o1 Prompt for Evaluating description Similarity:
You are an AI evaluator tasked with assessing the
semantic similarity between two sets of responses.
One set consists of human ratings (2 to 5 responses
in a list), and the other is a single response from a
Vision-Language Model (VLM).
Your task is to evaluate how well the VLM’s re-
sponse captures the key cultural details mentioned
in the human responses. Consider the following
scoring criteria:
1 - Very Low Similarity: The VLM response fails
to capture key details or is largely unrelated to the
human descriptions.
2 - Low Similarity: Some relevant aspects are
present, but major cultural details or themes are
missing or incorrect.
3 - Moderate Similarity: The VLM response cap-
tures some important details but lacks nuance or
specificity compared to the aggregated human re-
sponses.
4 - High Similarity: The VLM response aligns well
with the human descriptions, with only minor omis-
sions or differences in emphasis.
5 - Very High Similarity: The VLM response is
highly aligned with the human descriptions, captur-
ing all key cultural details accurately.
Provide your answer as a single number (1-5) along
with a brief explanation (1-2 sentences) that outlines
the main reasons behind your rating in this format:
{ ”score”: A, ”explanation”: ”Explanation for score
A” }

J.3. Analysis of Gemini 2.0 Flash Responses.
Overall Gemini 2.0 Flash demonstrates strong performance,
often providing detailed and coherent explanations. How-
ever, while the model is generally reliable, it is not a com-
plete solution for modeling nuanced cultural feedback. In
this section, we walk through a set of illustrative cases
(Fig. 19) that show where Gemini 2.0 Flash either fails
or succeeds in matching the representational cues priori-
tized by human users. Most examples expose limitations
especially when cultural, semantic, or regional subtleties
are involved though a few clear successes demonstrate the
model’s potential when the visual content is unambiguous
or culturally neutral.

In Example 1 (Femi Kuti), users were unanimous in
rejecting the likeness citing incorrect facial features and
hairstyle as key indicators that the image was not repre-
sentative. Gemini 2.0 Flash, however, rates the similarity
as high, based on general body structure and attire. This
reveals a pattern where the model focuses on surface-level
alignment but misses culturally specific identity markers.

Example 2 (Jollof Rice) shows a reverse failure: users
appreciate the image, noting the correct rice type, color, and
overall presentation. Gemini 2.0 Flash, however, discredits
it due to less relevant details like garnish or grain shape.
The model’s critique prioritizes visual specifics that don’t
necessarily carry the same weight in cultural context.

In Example 3 (Chuseok), Gemini 2.0 Flash’s descrip-
tion emphasizes the presence of traditional Korean dress
and a village setting. But users notice features that don’t
belong Chinese-style lanterns, architectural elements, and
hairstyle. While the model sees broad alignment, it over-
looks cross-cultural leakage that human evaluators catch
immediately.

Example 4 (Sámi Headwear) continues this trend. The
model focuses on color and form, affirming the image as
accurate, while users reject it based on incorrect materials,
proportions, and representation of the subject. These errors
are small but significant, when dealing with indigenous ar-
tifacts where authenticity is tightly linked to detail.

For Example 5 (Takht-e Fulad), Gemini 2.0 Flash
misidentifies the architecture as Egyptian and dismisses its
relevance to Iran entirely. Users instead interpret the im-
age as resembling other historical Iranian sites, even if not
the exact artifact. The model’s binary judgment misses this
more flexible, human interpretation of regional similarity.

Example 6 (Portrait of Amir Kabir) offers a similar case:
Gemini 2.0 Flash gives a broadly positive assessment, ref-
erencing Qajar-era styling. Users, however, flag specific
missing details like the hat, mustache style, and necklace
elements that signify historical authenticity. The model gets
the context, but not the execution.

Example 7 (Kiping) is more straightforward. Both Gem-
ini 2.0 Flash and users recognize that the image is entirely
off the AI generated a cartoon animal instead of a food item.
In this case, the model correctly identifies the error and does
not attempt to justify the image.

Example 8 (Pulseira) Gemini 2.0 Flash agrees with the
users that the bracelet is a valid representation, even if not
explicitly regional. It correctly identifies visual plausibil-
ity and acknowledges the cultural neutrality of the design.
These are the kinds of examples where Gemini 2.0 Flash’s
descriptive abilities align well with human expectations.

Regional Trend: A notable pattern is that most failure
cases involve artifacts from the Global South. While Gem-
ini 2.0 Flash performs well on globally familiar or culturally
neutral items, it struggles with region-specific representa-
tions that require localized knowledge. This may reflect im-
balances in training data coverage, highlighting the need for
broader cultural representation to improve alignment with
diverse user perspectives.



Figure 19. Visualization of Gemini 2.0 Flash responses where the MLLM either failed or succeeded in identifying nuances compared to
humans. Examples were generated using FLUX.1 [dev], SD 3.5 Large, and SD 1.5. (Continued on next page)

AI Image Real Image Feedback

Artifact: Femi Kuti
Category: Musician

Region: Nigeria
Super Category: People

Human Judgments (User Study):
1. The image is someone holding a microphone but that is not femi kuti
2. The image seems inaccurate from the images of Kuti I used to see.
3. The face is not just right with with me and the hair is just off....Femi has very distinctive blend of grey hair.

MLLM Judgment (Gemini 2.0 Flash):
The generated image bears a strong resemblance to Femi Kuti, especially concerning his facial features, skin tone,
and general build as seen in the real images. The attire and overall style are also relatively consistent with his public
image. However, subtle details like the precise shape of his nose and mouth, as well as the sharpness of the image,
differentiate it from the real photos. The generated image’s attire is similar to what he might wear but not an exact
match of anything in the real images.Considering all these aspects, the similarity is high but not perfect.

o1 critique of MLLM accuracy:
The VLM’s description contradicts the humans’ consensus that the image is not Femi Kuti and misses key details
about the distinctive hair and facial features.

Artifact: Jollof Rice
Category: Rice dish

Region: Nigeria
Super Category: Food

Human Judgments (User Study):
1. The image gets the color of Jollof rice
2. The rice and the colour of the rice after been cooked makes it look like jollof from my culture.
3. The image has used the correct kind of rice, ingredients, and sauce, in my country

MLLM Judgment (Gemini 2.0 Flash):
The item can almost definitely be found in Nigeria. However, the rice itself does not resemble Jollof rice. Jollof rice
typically uses long-grain rice, which, after cooking, retains a relatively distinct shape. The rice in the AI-generated
image looks more like orzo pasta with an orange tint. The orange cubes included in the dish do not generally feature
in Jollof rice. It usually includes tomato, pepper, onions, and spices. Also, Jollof rice is not normally garnished with
a large green leafy sprig.

o1 critique of MLLM accuracy:
The VLM’s response directly contradicts the human descriptions that emphasize the color, rice type, and ingredients
pointing to Jollof rice. It dismisses the dish as not resembling Jollof rice, missing the key cultural details the humans
highlighted.

Artifact: Chuseok
Category: Harvest festival

Region: South Korea
Super Category: Celebrations

Human Judgments (User Study):
1. I feel like it’s close to getting it right, but the patterns on the waist and sleeves, for example, makes it look like almost
we’d never see something like this. It’d be like, let’s say we are trying to find certain colored horses, but perhaps AI
generates the horses with patterns of color never found in nature.
2. The hairstyle in the picture is more Chinese than Korean. Also, the detail of the traditional Korean clothing is not
correct. There are also a number of red lanterns in the background, which is also more Chinese than Korean. I cannot
find a single theme in the photo that is related to Korean Chuseok.
3. The figure in the image is where wrong traditional attire and the background architectures also looks like Chinese.

MLLM Judgment (Gemini 2.0 Flash):
The image depicts a woman in a Hanbok, a traditional Korean dress, likely taken in an area resembling a traditional
Korean village. Hanboks are commonly worn in Korea, especially during festivals like Chuseok. The likelihood of
finding a Hanbok in Korea is extremely high. The accuracy as an image of Chuseok is also high. Hanboks are
commonly worn during Chuseok. Some details make the image accurate, such as the Hanbok itself, which is generally
accurate, and the setting, which suggests a traditional Korean village. Some minor inaccuracies include the specific
style of the Hanbok, which seems a bit stylized, and it does not include other aspects related to Chuseok, such as food
or activities.

o1 critique of MLLM accuracy:
The VLM’s response conflicts directly with the human descriptions, which emphasize Chinese elements (hairstyle,
architecture, lanterns) rather than Korean ones, and thus it fails to capture the key cultural details mentioned.

Artifact: Sami headwear
Category: Hat

Region: Finland
Super Category: Fashion

Human Judgments (User Study):
1. The person wearing the hat doesn’t look Northern European.
2. The image has used an outfit that other indigenous people from northern hemisphere might use, but based on my
experience it doesn’t look extremely similar to Finnish Sami headwear. The fabric texture and colors are different
from what I have seen in real life.
3. The woman in the pictute is asian and Sami people aren’t asian. The hat is too wide and the fur is not supposed to
be on top of the hat.

MLLM Judgment (Gemini 2.0 Flash):
The image shows a person wearing Sami headwear, specifically a hat with intricate patterns and a possible fur trim
at the top. The colors are primarily red, white, and green, which are commonly found in Sami designs. The overall
shape of the hat, along with the additional adornments like the colorful braids and beads around the neck, matches
the traditional appearance of Sami attire. The designs also appear to be consistent with Sami textile patterns, which
are often geometric and symbolic. Given that the Sami people inhabit areas within Finland, it is extremely likely that
this type of headwear can be found there. The overall image appears to be an accurate representation of Sami headwear.

o1 critique of MLLM accuracy:
The VLM response contradicts the human descriptions, which emphasize that the hat is not an accurate representation
of Sami attire. It overlooks key details about the hat’s shape, colors, and origins mentioned by the human observers.

(a) Examples 1–4 of Gemini 2.0 Flash failure cases (Examples 1–3 generated with FLUX.1 [dev], and Example 4 with SD 3.5 Large).



Figure 19. Continued from previous page.
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Artifact: Takht-e Fulad
Category:Monument/Memorial

Region: Iran
Super Category: Architecture

Human Judgments (User Study):
1. so the image has certain specification like carvings are quite similar, the stone types also similar to the one I saw
in my country, however I think this image is closer to Takhte-Jamshid, as it does not have blue ceramic which usually
be used in Esfahan an is one of the icons of any munument in Esfahan.
2. The coloring is different and Isfahanian buildings have different sets of colors and style more colorful.
3. The image is so similar to the type of historical buildings in Iran.

MLLM Judgment (Gemini 2.0 Flash):
The image shows a large stone structure with hieroglyphs, reminiscent of ancient Egyptian architecture. Takht-e Fulad,
in contrast, is a historical cemetery in Isfahan, Iran, which primarily consists of tombstones, mausoleums, and intricate
stonework with Persian inscriptions, not large temples. Therefore, it is highly unlikely that this image depicts something
found in Iran or an accurate representation of Takht-e Fulad.

o1 critique of MLLM accuracy:
The VLM response contradicts the human descriptions by focusing on Egyptian rather than Iranian architecture,
ignoring key details about Takhte-Jamshid and the stylistic elements discussed.

Artifact: Portrait-Amir Kabir
Category: Oil Painting

Region: Iran
Super Category: Art

Human Judgments (User Study):
1. The only thing similar to Amir Kabir AI to the real life is the facial structures like nose and eyes. The beard needs
improvement as each era in Iranian culture, men used to have different hair and beard styles. The cone shaped hat is
important in displaying who this person was and the power he had during Qajar in Iran. In addition, the texture of the
clothes and the famous necklace are items that AI ”must” add to the image made since they are distinct elements that
show Persian culture especially for showing a historical figure.
2. It has the right feature in the face but lack of detail in the outfit and background.
3. The colour of his mustaches should be darker, and its style is not Iranian and looks more like Mongols and Turks.

MLLM Judgment (Gemini 2.0 Flash):
A portrait of Amir Kabir is highly likely to be found in Iran due to his historical importance. The image appears to be an
accurate representation, showing him in traditional attire common for the Qajar era. The details like the style of beard,
the coat, and the head covering are consistent with known depictions of him. However, judging finer accuracy requires
comparison with specific known portraits, but generally, the visual style and features align with expectations.

o1 critique of MLLM accuracy:
While it mentions the Qajar era and general attire, it overlooks key cultural details (e.g., the conical hat style, necklace,
correct beard/mustache style) that the human descriptions emphasize.

Artifact: Kiping
Category: Flatbread

Region: Philippines
Super Category: Food

Human Judgments (User Study):
1. The image does not portray the meaning of Kiping at all.
2. The image shown was a type of an animal which is obviously so far from ”Kiping” which is a type of food.
3. The image is an animal holding a spray bottle, it has no connection to kiping.

MLLM Judgment (Gemini 2.0 Flash):
The image features a cartoon cat holding what appears to be a small pump or sprayer. There is absolutely nothing in the
image resembling Kiping, which is a type of leaf-shaped, colorful wafer made from glutinous rice. Therefore, it’s highly
unlikely this image depicts Kiping or could be found in the Philippines as a depiction of Kiping. The AI hallucinated a
completely different scene.

o1 critique of MLLM accuracy:
The VLM’s response precisely matches the human descriptions by stating that the image is of an animal (a cat) holding a
spray bottle and has no connection to kiping, while also accurately describing kiping as a leaf-shaped, glutinous rice wafer.
Thus, it captures all key cultural details mentioned by the humans.

Artifact: Pulseira
Category: Jewellery

Region: Brazil
Super Category: Fashion

Human Judgments (User Study):
1. This is exactly how a pulseira is, a piece of jewellery that goes on the wrist
2. The image is very similar to the name of Pulseira.
3. This bracelet represents one of the forms of objects that we wear on our wrist, very beautiful with details in shiny stones.

MLLM Judgment (Gemini 2.0 Flash):
The image depicts a bracelet with a braided or woven metal band and a spherical centerpiece covered in small stones
(possibly diamonds or crystals). The clasp appears to be a cylindrical metal piece. Jewelry of this style, particularly
silver-tone metal and crystal/diamond combinations, is widely available in Brazil. Brazilians enjoy both fine jewelry and
more affordable fashion jewelry. The design isn’t inherently ’Brazilian’ but the style is commonly found. It could be sold in
upscale stores or at street markets. The image accurately represents what a ”pulseira” (Portuguese for bracelet) can look like.
While the term encompasses a wide variety of bracelet styles, this particular design is plausible and well-executed. The
details, such as the braiding of the metal and the studded sphere, are consistent with what one would expect. The braided
metal design is common in bracelets. The overall aesthetic is refined and somewhat luxurious. The clasp type is also
reasonable. **Inaccuracy:** There is little that points to this image being highly ’Brazilian’, as opposed to generally stylish.
The price point may make it difficult for a larger portion of the population to afford. If the center sphere is made of real
diamonds, it could be less common than if it were made of crystals. It looks very shiny. The dark and reflective background
gives it a commercial aesthetic, which may not immediately invoke Brazil, but is still considered a fairly accurate
representation of a pulseira.

o1 critique of MLLM accuracy:
The VLM response fully captures the main points from the human descriptions, including that it is a wrist-worn
pulseira/bracelet with shiny stones, aligning closely with all key details.

(b) Examples 5–6 of Gemini 2.0 Flash failure cases (Example 5: SD 3.5 Large, Example 6: SD 1.5), and Examples 7–8 of successful cases (Example 7:
FLUX.1 [dev], Example 8: SD 3.5 Large)



Figure 20. Concept Frequency Estimation for all artifacts across the six supercategories in the CuRe dataset on Re-LAION-2B.

K. Concept Frequency Estimation

In the modern era, state-of-the-art T2I systems do not have
fully open pretraining data, i.e. it is unknown whether any
particular image lies in the learned distribution of a modern
T2I system. However, for the older Stable Diffusion 1.5,
we have full access to its entire pretraining data, i.e. a mix-
ture of LAION-2B-en [55] and LAION-Aesthetics V2 5+3,
both of which are publicly and openly accessible. We can
thus know with certainty whether a given image belongs to
the training data of SD 1.5. Inspired by the string matching
search system of Parashar et al. [43], we explictly compute
a concept frequency for every cultural artifact in the CuRe
dataset on reLAION2B-en-research-safe4, the recently re-
released version of the original dataset. As seen in Fig. 20,
all supercategories in our CuRe dataset also show a long tail
behavior in Re-LAION-2B across 50 cultural artifacts each.
We observe especially low occurence of many artifacts in
art and architecture, as these are often specific and unique
named entities which may occur rarely in the dataset when
compared to more common items with high intra-class vari-
ance such as food, celebrations or people.

We also compute a Spearman rank correlation of concept
frequency with the ground truth likelihood Likert scores
(see Appendix D for details) provided by survey respon-
dents for FLUX.1 [dev], SD 3.5 Large, and SD 1.5 in
Tab. 16. We observe that for Celebrations, Food, Fash-

3https://laion.ai/blog/laion-aesthetics/
4https : / / huggingface . co / datasets / laion /

relaion2B-en-research-safe

ion, and People, there is a large positive correlation with
user perceptions of the likelihood of the T2I system out-
put I(n) belonging to the class of artifacts n (e.g. assign-
ing high score to the likelihood of images of spaghetti ac-
tually representing “spaghetti” as an artifact). Correlations
are low for art and architecture, which we suspect is due to
the large portion of their tail having very small frequency
counts (Fig. 20). While the datasets used to train SD 3.5
Large and FLUX.1[dev] are not public and we cannot ex-
plicitly compute concept frequencies, since they show sim-
ilar rank correlations to user judgments as SD 1.5, we pre-
dict that the CuRe dataset shows a similar long tail behav-
ior across cultural artifacts for SD 3.5 and FLUX.1[dev] as
well.

Table 16. Spearman rank correlation between occurrence fre-
quency in Re-LAION-2B of each cultural artifact in the CuRe
dataset with human perceptions of ground-truth likelihood from
the user study. Results are tabulated for each supercategory and
for SD 1.5, SD 3.5 Large, and FLUX.1 [dev].

T2I Supercategory

Art Architecture Celebrations Food Fashion People

SD 1.5 0.04 0.10 0.37 0.59 0.31 0.21
SD 3.5 Large 0.05 0.12 0.44 0.55 0.23 0.24
FLUX.1 [dev] 0.01 0.06 0.33 0.37 0.40 0.36

Table 17. Spearman’s correlation of diversity scorers with fre-
quency of artifact in reLAION2B dataset

https://laion.ai/blog/laion-aesthetics/
https://huggingface.co/datasets/laion/relaion2B-en-research-safe
https://huggingface.co/datasets/laion/relaion2B-en-research-safe


T2I Correlation
w freq(n)

Supercategory

Art Architecture Celebrations Food Fashion People

SD 1.5 LPIPS(n) 0.21 0.05 0.07 0.19 0.19 0.35
ϕDIV (n) 0.09 0.01 0.02 0.03 0.08 0.27

SD 3.5 Large LPIPS(n) 0.09 0.28 0.23 0.22 0.13 0.11
ϕDIV (n) 0.11 0.32 0.09 0.43 0.16 0.23

FLUX.1 [dev] LPIPS(n) 0.25 0.20 0.14 0.19 0.07 0.08
ϕDIV (n) 0.17 0.34 0.49 0.43 0.02 0.14
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