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ABSTRACT

Continual learning (CL) requires models to sequentially learn multiple tasks, max-
imizing transfer and minimizing interference. However, current methods cannot
proactively detect all types of transfer and interference at the local optimization
level, limiting their effectiveness. To address this, we propose an adaptive contin-
ual learning strategy by proactively detecting transfer and interference. We derive
the conditions for all types of transfer and interference from the perspective of pa-
rameter sharing and optimization, based on the Fisher matrix and gradient update
directions. Using this, we proposed a task transfer distance metric to help model
modules detect transfer and interference. We propose a dynamic parameter up-
date mechanism and a dynamic expansion strategy, using inserted adapters in the
pre-trained model, to manage all types of transfer and interference. Experiment
results on seven benchmarks show that our method achieves the best accuracy with
limited parameters, maximizing transfer and minimizing interference.

1 INTRODUCTION

Recently, artificial intelligence has made many significant breakthroughs across various fields. How-
ever, the traditional approach of repeatedly training models on fixed datasets has resulted in high
costs and delayed updates. To address this challenge, some researchers have proposed continual
learning (Masana et al., 2023). Continual learning enables models to learn from data streams in
open, dynamic environments without access to previously encountered data (Masana et al., 2023).
During this process, different types of transfer and interference can arise (Wang et al., 2024). Back-
ward interference occurs when the model’s performance declines on learned tasks during learning
new tasks, named catastrophic forgetting (Wang et al., 2024). Forward interference happens when
excessive protection of old knowledge prevents the model from effectively learning new ones (Zhou
et al., 2024c). On the other hand, forward transfer occurs when old knowledge helps accelerate learn-
ing on new tasks, while backward transfer happens when learning a new task improves performance
on earlier tasks (Wang et al., 2024; Masana et al., 2023). The primary goal of continual learning is
to maximize transfer between tasks while minimizing interference (De Lange et al., 2022).

Some studies suggest that transfer and interference in continual learning are linked to the shar-
ing and overlap of model parameters (Wang et al., 2024). Most current methods are designed to
maximize transfer while minimizing interference Rebuffi et al. (2017); Kirkpatrick et al. (2017).
Replay-based methods (Luo et al., 2024; Rebuffi et al., 2017) achieve it by storing, replaying, or
generating samples from previous tasks, simulating repeated training on fixed datasets. However, as
tasks increase, the required storage and computational resources increase uncontrollably, leading to
issues like sample imbalance. Dynamic network-based methods (Bonato et al., 2024; Yoon et al.,
2017; Wang et al., 2022a) promote forward transfer by reusing frozen old parameters while adding
new ones to avoid interference with new tasks. However, freezing old parameters limits backward
transfer, the network size grows uncontrollably with tasks added. optimization-based methods (Kao
et al., 2021; Saha et al., 2021; Saha & Roy, 2023; Zeng et al., 2019) reduce backward interference
and encourage forward transfer by preventing the overlap of important model parameters. These ap-
proaches hinder backward transfer and increase forward interference when new and old tasks share
too many important parameters. Recently, many studies have integrated fine-tuning of Pre-Trained
Models (PTMs) with these continual learning methods (Liang & Li, 2024; Yu et al., 2024; Qiao
et al., 2023; Zhou et al., 2024b; Luo et al., 2024), demonstrating superior performance (Zhou et al.,
2024a). However, the methods mentioned above do not provide a detailed analysis of the specific
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htbp (a) ImageNet-R B100 Inc50 (b) VTAB B0 Inc10 (c) VTAB B0 Inc10

Figure 1: Parameter-performance comparison. (a): The comparison of different methods on
ImageNet-R B100 Inc50. (b): The comparison of different variants on VTAB B0 Inc10. (c): Stage
accuracy of different varaints on VTAB B0 Inc10.

conditions under which different types of transfer and interference occur. Instead, they generally
avoid interference by preventing parameter overwriting and achieve transfer by freezing parameters,
which fails to proactively detect and properly handle all types of transfer and interference.

To address this issue, we have made the following efforts. (1) Theoretical derivation. We first
discovered through theoretical derivation that transfers and interference between tasks are related
to the extent of parameter sharing and the optimization directions of shared parameters. Then, we
defined the conditions under which different types of transfer and interference occur (see Section 2).
(2) Transfer distance metric. Based on the conditions, we leveraged the powerful representational
capability of the pre-trained ViT model to estimate the task Fisher matrix. By combining this with
gradient update directions, we propose a transfer distance metric to quantify the degree of shared
parameters and their optimization relationship, helping to identify transfer and interference (see
Section 4.2). (3) Adaptive continual learning strategies. Using this metric, the model can actively
detect transfer and interference during continual learning. We insert adapter modules at each layer to
fine-tune the pre-trained model for new tasks. When tasks show high transfer or low relevance, they
share the same adapter and apply dynamic gradient updates. This method adjusts the optimization
trajectory based on transfer distance, maximizing transfer while minimizing interference. In cases
of high interference, we introduce new adapters and activate the frozen old adapters to assist new
task learning. Our adaptive continual learning method enables model modules to proactively detect
transfer and interference and select appropriate continual learning strategies, achieving an optimal
balance between accuracy and resource efficiency (see Section 4.3).

We validate our method on seven benchmarks. As shown in Fig. 1, our method achieves the best
accuracy with limited parameters, effectively balancing accuracy and parameter efficiency. We also
analyzed the method’s parameter sharing and transfer across benchmarks, demonstrating its ability
to detect transfer and interference while selecting strategies to maximize transfer and minimize
interference. Ablation studies further confirm the effectiveness of each component.

2 BACKGROUND

Continual learning is learning from samples of different distributions Dt and D1:t−1 = {Dj}t−1
j=1

arrive in sequence (Parisi et al., 2019). We define a population loss over the distribution Dt by
EDt

(θ) = E(x,y)∼Dt
[L(fθ(x), y)], where fθ(·) is the model parameterized by θ, and L is a bounded

loss function. The purpose of continual learning is to find a solution θ in a parameter space Θ that can
minimize both EDt(θ) and ED1:t−1(θ) as much as possible with no access to old training samples.
ÊD1:t−1(θ1:t) is the robust empirical risk by the worst case of the neighborhood in parameter space
aimed at finding a flat solution:

Êr
Dt

(θ) = max ÊDt
(θ +∆),

1

2
∆⊤Λk−1∆ ≤ r2 (1)

where r is the radius around θ and Λk−1 is a hessian matrix. Recent studies suggest that flatter
solutions are more robust to catastrophic forgetting (Cha et al., 2021; Deng et al., 2021; Jiang et al.,
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2022). Based on the theoretical derivation of the work (Wang et al., 2022b), we can obtain the upper
bound of the two losses. For any δ ∈ (0, 1) with probability at least 1− δ, for every solution θ1:t of
the continually learned 1 : t tasks in parameter space Θ, i.e., θ1:t ∈ Θ:

EDt(θ1:t) < ÊD1:t−1(θ1:t) +
1

2(t− 1)

t−1∑
j=1

Div(Dj , Dt) +

√
d ln(N1:t−1/d) + ln(1/δ)

N1:t−1
(2)

ED1:t−1(θ1:t) < ÊDt(θ1:t) +
1

2(t− 1)

t−1∑
j=1

Div(Dt, Dj) +

√
d ln(Nt/d) + ln(1/δ)

Nt
(3)

Div(Di, Dj) represents the H-divergence between distribution Di and Dj , which quantifies the
overall distribution differences between them. The third term is related to the dimensionality of
the model’s parameter space. Here, d is the dimension of the parameter space Θ, and N1:t−1 =∑t−1

k=1 Nk is the total number of training samples over all old tasks. Many CL methods have been
proposed in recent years, which are separated into three types: replay-based methods, dynamic
network-based methods, and optimization-based methods. The loss function for them can typically
be defined as:

L(θ) = Lt(θ) + λL̂1:t−1(θ) (4)

where L̂1:t−1(·) provides the constraint to achieve a proper trade-off between new and old tasks.

Replay-based methods (Luo et al., 2024; Rebuffi et al., 2017; Shin et al., 2017; Channappayya et al.,
2024; Zhou et al., 2022a) facilitate continual learning by storing and replaying, or generating learned
samples. L̂1:t−1(·) of them is

∑t−1
k=1 Lk(θ; D̂k), where D̂k is an approximation of Dk through re-

playing old training samples. Although these methods are effective, they lead to uncontrolled growth
in storage and computational resource requirements and suffer from sample imbalance with tasks
added. This imbalance can cause interference, as tasks with more replay samples affect learning
new tasks and those with fewer samples.

Dynamic network-based methods (Bonato et al., 2024; Yoon et al., 2017; Wang et al., 2022a; Mallya
& Lazebnik, 2018; Hu et al., 2023; Yan et al., 2021) primarily achieve continual learning by adding
new parameters for new tasks to varying degrees while freezing old parameters. L̂1:t−1(·) of them
is L̂1:t−1(θ =

⋃t−1
k=1 θ̂k). For every task, θ = {θ̂old, θ̂new}, where θ̂old decides the extent to

which frozen parameters from old tasks are reused varies across methods. In parameter isolation
approaches (Yoon et al., 2017), θ̂old is zero, while in network expansion methods (Wang et al.,
2022a), all frozen parameters are reused. When using a shared set of parameters across all tasks, the
dimensionality d is larger than when each task has its smaller set of parameters. These methods pri-

marily aim to minimize the
√

d ln(N1:t−1/d)+ln(1/δ)
N1:t−1

to reduce the upper bound of the loss function.
While these methods effectively maintain the model’s performance on new and old tasks, they do
not enable backward transfer during learning, and networks grow uncontrollably with tasks added.

Optimization-based methods (Kao et al., 2021; Saha et al., 2021; Saha & Roy, 2023; Zeng et al.,
2019; Lin et al., 2022; Kirkpatrick et al., 2017; Li & Hoiem, 2017; Yu et al., 2020) achieve continual
learning by restricts parameter updates to directions which do not interfere strongly with previous
tasks. L̂1:t−1(·) of them is L̂1:t−1(θ,Λk−1). These methods are roughly equivalent to Eq. 1, which
uses the Hessian matrix to constrain the updates of new tasks. Λk−1 is challenging to compute, it is
often approximated by Fisher Information Matrix (FIM) (Liu et al., 2020; Spall, 2005):

Fk = Ep(D̂k|θ)

[
∇θ log p(D̂k|θ)∇θ log p(D̂k|θ)⊤

] ∣∣∣∣∣
θ=µk

≈ Λ(Dk, µk) (5)

Fk represents the Fisher Information Matrix, which measures the sensitivity of the parameter θ to
the uncertainty during training (Kao et al., 2021). ∇θ log p(x|θ) is the gradient of the log-likelihood
function concerning the parameter θ. Different methods employ varying approaches to approximate
the FIM (Zeng et al., 2019; Lin et al., 2022; Kirkpatrick et al., 2017; Li & Hoiem, 2017; Yu et al.,
2020). While this method effectively avoids backward interference and promotes forward transfer,
it hinders backward transfer. Additionally, when important parameters of the new and old tasks
overlap, it greatly reduces the model’s plasticity for new tasks, which is forward inference.
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Figure 2: Illustration of our method. (a): The structure of the model and its operational state
during training. (b): The conditions for transfer and interference occurs between tasks. (c): The
different strategies the model employs to construct new parameter spaces for new tasks in response
to either interference or transfer. (d): The principle of Dynamic Gradient Updates.

Compared to traditional approaches trained from scratch, PTM-based CL methods use a frozen pre-
trained model as initialization and combine fine-tuning techniques and methods mentioned to adapt
to new tasks (Zhou et al., 2024b; Liang & Li, 2024; Yu et al., 2024; Qiao et al., 2023). Some ap-
proaches learn a prompt pool to adaptively select instance-specific prompts for model updates (Wang
et al., 2022d;c; Smith et al., 2023; Zhou et al., 2024a). Other representation-based methods leverage
the generalization power of PTMs to construct classifiers (Zhou et al., 2024a) directly. However,
few methods mentioned above can detect all types of transfer and interference, which prevents them
from maximizing transfer and avoiding interference effectively.

3 THE CONDITIONS FOR TRANSFER AND INTERFERENCE

Eq. 1 measures the flatness of the loss surface around the solution, indicating the sensitivity of
the loss function to parameter updates. The so-called flat direction refers to the direction in
which the model is less sensitive, the corresponding element in the FIM is relatively small (Kao
et al., 2021; Achille et al., 2019). Thus, the FIM is not only task-related but also dependent
on specific model parameters. As seen above, when the model receives a new task, to min-
imize both EDt(θ1:t) and ED1:t−1(θ1:t), the new model should be optimized along the flat-
ter directions:∆ = argmin∆ Lt(θ) + ∇θLt(θ)

⊤∆ subject to 1
2∆

⊤FIMt−1∆ ≤ r2,, where
Lt(θ + ∆) ≈ Lt(θ) + ∇θLt(θ)

⊤∆ is a first-order approximation to the updated Laplace objec-
tive (Kao et al., 2021). Through derivation in Appendix A.1, we get update rules of θ:

θ ← θ − λFIM−1
t−1∇θLt(θ) (6)

From Eq. 6, we can deduce that the optimization of new tasks is constrained along directions that
are sensitive to prior tasks, while optimization in less sensitive directions is unrestricted. As shown
in Fig. 2 (a), if the optimization direction of the new task opposes that of the prior task along sen-
sitive parameters, updating in this new direction will degrade the prior task’s performance, causing
backward interference. On the other hand, constraining optimization in this direction may prevent
reaching the optimal solution, leading to forward interference. When the optimization directions of
the new and prior tasks share a common component in sensitive parameters, the alignment of their
optimization directions allows for parameter reuse, promoting forward transfer. Furthermore, slight
updates in this direction for the new task may improve the prior task’s performance, resulting in
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backward transfer. Therefore, we define transfer and interference in local model modules during
continual learning as follows:

Defination 1. Let Rθ
k,z be the interaction between task k and task z on parameters θ. Pk are sensitive

parameters in FIMk, P∩ = Pk ∩ Pz . gi,k is gradient direction of task k on parameters pi. For any
θ of model:

Rθ
k,z =


Transfer, if P∩! = 0,∃pi ∈ P∩, gi,k · gi,z > 0

Inference, if P∩! = 0,∃pi ∈ P∩, gi,k · gi,z < 0

No relevance, if P∩ = 0 or P∩! = 0,∀pi ∈ P∩, gi,t · gi,t−1 = 0

(7)

4 METHODS

This paper deals with class-incremental learning, where tasks with disjoint data label spaces and
task identities are only provided in training. We propose an adaptive continual learning approach
based on fine-tuning adapters added to a pre-trained ViT model. This approach can actively detect
transfer and interference and apply corresponding strategies. We first provide an overview of the
fine-tuning adapter scheme used. Next, based on the derived conditions for transfer and interference,
we introduce a task transfer distance metric. We then introduce how to use this metric to assess the
transfer distance between new and old tasks and apply different continual learning strategies. They
share the same adapter and apply dynamic gradient updates when tasks show high transfer or low
relevance. Otherwise, they introduce new adapters and activate the frozen old adapters to assist new
task learning in cases of high interference. More details about methods are in Appendix A.3.

4.1 SPACE EXPANSION WITH ADAPTERS

As shown in Fig. 2a, unlike previous methods that maintain an independent adapter for each task
to support model expansion (Tan et al., 2024), we insert a set of adapters within each transformer
block and employ a Mixture of Experts (MoE) mechanism (Masoudnia & Ebrahimpour, 2014; Du
et al., 2022; Zhou et al., 2022b) for each task. We use LoRA (Gupta, 2021; Ding et al., 2023) as
our adapter. As shown in Fig. 2 (a), a dedicated router is used for each task to select the appropriate
adapters to activate. Since the task ID is not provided during inference, we learn a class center
for each task during training. Then, during inference, we calculate the closest class center to the
sample and use it to select the corresponding router. During the learning of task t, the activated
adapters are fine-tuned for the new task, while the pre-trained weights W and other adapters remain
frozen. Expanding the parameter space through adapter combinations creates a flexible framework
that supports various strategies for both transfer and inference, improving the model’s adaptability.

4.2 TRANSFER DISTANCE EVALUATION

According to Definition 1, the occurrence of transfer or interference between tasks depends on
whether the sensitive parameters of the new task overlap with those of previous tasks, as well as
the direction of the gradient updates on these overlapping parameters. Using Eq. 6, we identify a
task’s sensitive parameters through the Fisher Information Matrix (FIM). However, calculating the
FIM requires network activation based on task data, which can pose challenges if the network is not
well-trained. In contrast, we leverage pre-trained models with strong feature extraction capabilities
and high generalization during continual learning. Thus, we use the frozen pre-trained backbone
as the FIM estimator. Since we fine-tune only a small number of parameters while keeping most
frozen, the FIM derived from the pre-trained model is highly representative and can effectively guide
adapter updates. As shown in Fig. 2 (a), we employ the frozen pre-trained backbone as a feature
extractor and re-train a classifier for each block on the given task, which is typically efficient. After
training, we compute the FIM for each block.

Since the full FIM is too large for transformer-based blocks, we focus only on the diagonal en-
tries. To prevent noise when training with limited samples, instead of direct computation, we use
a more robust estimator inspired by variational inference, as described in Achille et al. (2019).
Assume we perturb the network weights θ̂ with Gaussian noise N (0,Λ), where Λ is the preci-
sion matrix. Our goal is to find the optimal Λ that minimizes the expected error while staying
close to an isotropic prior N (θw, λ

2I). Specifically, we aim to find Λ that minimizes:L(θ̂; Λ) =
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Eθ∼N (θ̂,Λ) [L(pθ, p̂(y|x))] + β KL
(
N (0,Λ)∥N (0, λ2I)

)
, where β controls the weight of the prior,

KL is KL-divergence (Xie & Song, 2023; Vaitl et al., 2022). Approximating to the second order,
the optimal value of Λ satisfies β

2NΛ = F + βλ2

2N I . Therefore, β
2NΛ ∼ F + o(1) can be considered

as an estimator of the FIM. This estimator is easy to compute using Stochastic Gradient Variational
Bayes (Achille et al., 2019).

Having accurately estimated the diagonal elements of the FIM, we now have the sensitivity of each
parameter in the model. Next, we normalize the gradients G = {g1, ...gd} of the samples obtained
from the frozen modules to capture the gradient update direction Ĝ = {ĝ1, ...ĝd} for parameters and
task. By multiplying the parameter sensitivities by their corresponding gradient update directions,
we obtain a task embedding that integrates both parameter sensitivity and gradient direction:

Emdθ,i = Fθ,i ∗ Ĝθ,i = {σθ,i,1ĝ1, ...σθ,i,dĝd} = {emd1, ...emdd} (8)

where Emdθ,i is the task embedding of task i on weight θ. we can compute transfer distance TDi,j

of task i and task j by TDθ,i,j =
∑d

k=1 emdθ,i,k · emdθ,j,k We can see that when both tasks show
high sensitivity to the same parameter and the product of their gradient update directions is positive,
the transfer distance increases, indicating a greater degree of transfer between the tasks. Conversely,
if the sensitivity rankings for the same parameter differ between the tasks, or if the product of their
gradient update directions is negative, the transfer distance decreases, leading to greater interference
between the tasks.

4.3 STRATEGIES BASED ON ACTIVE DETECTION OF TRANSFER AND INTERFERENCE

4.3.1 MORE TRANSFER BETWEEN TASKS

As shown in Fig 2 (a), we compute the transfer distance metric between new and old tasks, and
determine whether two tasks are similar or non-interfering. As Fig. 2 (c) shows, we make the new
task share the same adapters and pathways with the old task with the highest transfer. We propose
a dynamic gradient adjustment method based on transfer distance, which allows controlled updates,
enhances forward knowledge transfer, and improves model generalization. It consists of three key
components: extracting and updating the principal directions of prior tasks, calculating and updating
the importance of these directions, and dynamically adjusting gradients for the new task.

The extraction and update of principal directions. When an adapter is activated for the first
time, it is crucial to capture and record the key optimization directions of the current tasks with
their importance for future updating. Therefore, we obtain the activations At of adapters and
perform SVD on them At = UtΣtV

T
t , where Ut and Vt are orthonormal matrices, and Σt has

sorted singular values (σi,t) along its diagonal. According to Principal Component Analysis
(PCA) (Abdi & Williams, 2010), we sort the singular values in descending order and select the
top zt left singular vectors Ukt

t corresponding to the largest singular values, ensuring that it satisfies
∥AtU

kt
t ∥2F ≥ α∥At∥2F , ∥.∥2F is the Frobenius norm (Cortinovis & Kressner, 2020; Xi, 2021) of the

matrix. The threshold hyperparameter, α ∈ (0, 1) controls the value of kt selected. We store these
bases in V = [v1,t, v2,1, . . . , vkt,t] as important directions for current task. After the end of task
t + 1, we update V by adding the important gradient space for this task. Since we utilize transfer
distance evaluation, there may be overlapping feature vectors between task t and task t+1. Thus, we
eliminate redundant feature vectors from the task t+ 1 and retain the new ones to add to the feature
basis set. We first project the task t+1 activations At+1 onto the complementary space represented
by V :

A
′

t+1 = At+1 − (V V ⊤)At+1 = At+1 −At+1,V (9)

Then SVD is performed on A
′

t+1 = U
′

t+1Σ
′

t+1V
′

t+1 and new kt+1 bases are chosen for minimum
kt+1 satisfying the criteria: ∥AtU

kt
t ∥2F + ∥AtU

kt
t ∥2F ≥ α∥At∥2F . Gradient space in V is updated

(after t+ 1 update) by adding these new bases to it.

The computation and update of the importance of the main direction Through transfer distance,
we observe that both tasks show co-directional updates in these overlapping directions. Therefore,
we can appropriately relax the constraints on gradient updates in the shared directions. The degree
of relaxation depends on two key factors: (1) the sensitivity of the previous task in the overlapping
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directions, and (2) the magnitude of the new task’s updates in those directions. The singular values
from matrix decomposition indicate the importance of the corresponding singular vectors. There-
fore, we determine the sensitivity of each optimization direction, represented by the basis vectors, as
λi =

σi,t

max(σt)
, based on their singular values. After learning the new task t+1, we propose a method

for finding and updating the importance without using data from old tasks. As discussed previously,
we obtain new feature vectors by performing Singular Value Decomposition (SVD) (Abdi, 2007) on
the projection of At+1 onto (1−V V ⊤). The corresponding singular values represent the importance
of these feature vectors. However, we cannot directly derive the sensitivity of V for task t+ 1 from
this. Given that the task t+ 1 may contain redundant feature vectors that are linear combinations of
V , we first compute the coordinates of the redundant vectors in Ut+1,V :C = V TUt+1,V . Then, by
multiplying these coordinates with the corresponding singular values of the redundant vectors, we
obtain the task’s sensitivity to the basis: σ

′

V =
√
(C ⊙ C)(σt+1,V )2, here ⊙ denotes element-wise

multiplication (Lee et al., 2021), (.)2 and
√
(.) denote element-wise square and square root opera-

tions respectively. Then we get new single values for task t + 1: σt+1 =

[
σ′
V

σt+1

]
. Therefore, we

can use σt+1 to obtain the basis importance vector λt+1 =
σi,t+1

max([σ
′
V ,σ

′
t+1])

for the given ith basis.

Finally, we update the importance of old k bases by: λi =

{
λi, if λi ≥ λi,t+1

λi,t+1, otherwise
We then add

the importance of new bases in λ as [λ
′
, λt+1,V ].

Dynamic gradient updates. we propose Dynamic Gradient Updates (DGU) to adjust the gradient
updates along the prior task’s basis, using the importance parameters of the prior task and the transfer
distance between the new and prior tasks. We then compute scaling factor for ith basis, by following:

si,t+1 =
(β + 1)λi,t

βλi,t + 1
(10)

where β is a non-negative scale coefficient hyperparameter. The value of si,t+1 will range from 0
to 1 as we are concerned with the non-negative singular values. Eq. 10 ensures that a maximum
importance of 1 is assigned to the basis with the highest singular value and other bases are given
importance (< 1) relative to this maximum. In our formulation, λi,t = 1 means no gradient step
is allowed along the corresponding basis direction for the new tasks, whereas along other basis gra-
dients are scaled by the factor of (1 − λi,t). We allow a scaled gradient update along those bases
(Figure 1(d)) enabling higher plasticity for new tasks, while importance-based scaling ensures ad-
equate stability of past tasks. As shown in Fig. 2 (d), scaled gradient updates along those bases,
which increases plasticity for new tasks, while importance-based scaling maintains stability for pre-
vious tasks. As shown in Fig. 2 (d), as the β increases, all scaling factors approach 1, mimicking the
behavior of traditional projection-based methods that block optimization of the new task on a prior
basis. Given this characteristic, we implement a phased approach to adjust the parameter based on
the transfer distance between tasks:

β =

{
β > βth, if dis ≥ th

β < βth, otherwise
(11)

This parameter control allows us to regulate the extent of optimization for new tasks with highly
overlapping optimization directions, ensuring a balance between tasks, improving generalization,
and preventing any single model from dominating in specific directions. We learn the t + 1 task
sequentially using only its dataset, Dt+1. Let Lt+1 represent the loss for the t+ 1 task. To prevent
catastrophic forgetting and enable new learning, we apply a scaled gradient projection to the new
gradients, ∇Wt+1Lt+1, as follows:∇Wt+1Lt+1 = ∇Wt+1Lt+1 − (V ΣV ⊤)(∇Wt+1Lt+1), As
Fig. 2 (d) shows, it ensures the gradient components along orthogonal directions to V will not be
changed, while the importance scaled gradient components will be scaled by (1− λ1).

4.3.2 MORE INTERFERENCE BETWEEN TASKS

When the transfer distance is too small, it means their feature spaces overlap, but the gradient update
directions in these overlapping areas are opposite. In this situation, updating the new task along
these shared gradient directions would severely degrade the performance of previous tasks, making
parameter sharing unsuitable. Therefore, we introduce a new sub-parameter space adapter for the
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new task to act as its primary adapter. Meanwhile, all old adapters are frozen, and the routing
mechanism is trained to select a few old branches with lower importance to participate in learning
the new task.

5 EXPERIMENTS

In this section, we first compared our method to SOTA methods and typical CL methods on seven
benchmark. We then conducted experiments under different settings to validate the robustness of our
algorithm. Additionally, an ablation study was performed to assess the effectiveness of each com-
ponent of our method. Finally, we analyzed transfer phenomena and shared weights in experiments,
demonstrating that our proposed method can maximize transfer and avoid interference.

5.1 IMPLEMENTATION DETAILS

Dataset and Settings. We follow (Zhou et al., 2024a) to evaluate the performance on three datasets
with the overlap between pre-trained datasets and four datasets with large domain gap with it, which
are CIFAR100 (Krizhevsky et al., 2009), CUB200 (Wah et al., 2011), ImageNet-R (Hendrycks
et al., 2021a), ImageNet-A (Hendrycks et al., 2021b), ObjectNet (Barbu et al., 2019), Omnibench-
mark (Zhang et al., 2022) and VTAB (Zhai et al., 2019). We use ’B-m Inc-n’ to represent the
configuration where m classes are in the base stage and n classes in each incremental stage. Com-
parison methods. We compare our method to state-of-the-art PTM-based CL methods, including
L2P (Wang et al., 2022d), DualPrompt (Wang et al., 2022c), CODA-Prompt (Smith et al., 2023),
SimpleCIL (Zhou et al., 2024a) and ADAM (Zhou et al., 2024a). Additionally, we evaluate it against
typical continual learning methods adapted with PTM, such as LwF (Li & Hoiem, 2017), SDC (Yu
et al., 2020), iCaRL (Rebuffi et al., 2017), DER (Yan et al., 2021), FOSTER (Wang et al., 2022a)
and MEMO (Zhou et al., 2022a). We also report the baseline methods: sequential PTM finetuning
(Finetune) and PTM finetuning with adapters (Finetune Adapter). All methods are implemented
using the same PTM. Evaluation metric. Following (Zhou et al., 2024a), we use Ab to denote the
model’s accuracy after the b-th stage. Specifically, we measure AB (accuracy after the final stage)
and Ā = 1

B

∑B
b=1 Ab (average accuracy across all stages). More details in Appendix A.4

5.2 COMPARISON WITH OTHER METHODS

Table 1: Average and last performance comparison on seven datasets with ViT-B/16-IN21K as the
backbone. ’IN-R/A’ stands for ’ImageNet-R/A,’ ’ObjNet’ stands for ’ObjectNet,’ and ’OmniBench’
stands for ’OmniBenchmark.’ ’*’ means we get outcomes in published work.

Method CIFAR B0 Inc5 CUB B0 Inc5 IN-R B0 Inc5 IN-A B0 Inc20 ObjNet B0 Inc5 OmniBench B0 Inc30 VTAB B0 Inc10

Ā AB Ā AB Ā AB Ā AB Ā AB Ā AB Ā AB

Finetune 38.90 20.17 26.08 13.96 21.61 10.79 24.28 14.51 19.14 8.7 23.61 10.57 34.95 21.25
Finetune Adapter* 60.51 49.32 46.12 52.99 47.59 40.28 47.50 41.10 50.22 35.95 62.32 50.53 48.91 45.12
LwF* 46.29 41.07 48.97 32.03 39.93 26.47 37.75 26.84 33.01 20.65 47.14 33.95 40.48 27.54
SDC* 68.21 63.05 70.62 66.37 52.17 49.20 29.11 26.63 39.04 29.06 60.94 50.28 45.06 22.50
L2P* 85.94 79.93 67.05 56.25 66.53 59.22 49.39 41.47 63.78 52.19 73.36 64.69 77.11 70.10
DualPrompt* 87.87 81.15 71.47 66.54 63.31 55.22 53.71 41.67 59.27 49.33 73.92 65.52 83.36 81.23
CODA-Prompt* 89.11 81.96 84.00 73.37 64.42 55.08 53.54 42.73 66.07 53.29 77.03 68.09 83.90 83.02
SimpleCIL* 87.57 81.26 92.20 86.73 62.58 54.55 59.77 48.91 65.45 53.59 79.34 73.15 85.99 84.38
ADAM + Finetune* 87.67 81.27 91.82 86.39 70.51 62.42 61.01 49.57 61.41 48.34 73.02 65.03 87.47 80.44
ADAM + VPT-S* 90.43 84.57 92.02 86.51 66.63 58.32 58.39 47.20 64.54 52.53 79.63 73.68 87.15 85.36
ADAM + VPT-D* 88.46 82.17 91.02 84.99 68.79 60.48 58.48 48.52 67.83 54.65 81.05 74.47 86.59 83.06
ADAM + SSF* 87.78 81.98 91.72 86.13 68.94 60.60 61.30 50.03 69.15 56.64 80.53 74.00 85.66 81.92
ADAM + Adapter* 90.65 85.15 92.21 86.73 72.35 64.33 60.47 49.37 67.18 55.24 80.75 74.37 85.95 84.35
EASE 91.51 85.80 92.23 86.81 78.31 70.58 65.34 55.04 70.84 57.86 81.11 74.85 93.61 93.55

ours 93.34 89.20 92.06 90.37 76.20 73.28 67.61 59.71 69.45 59.13 83.26 75.46 95.46 94.11

Benchmark comparison. We compare our proposed method with other state-of-the-art approaches
across seven benchmark datasets using different backbone weights. Tab. 1 shows the results us-
ing ViT-B/16-IN21K, where our method achieves the best performance on all seven benchmarks,
significantly surpassing current SOTA methods. Figure 1 illustrates the incremental performance
trends using ViT-B/16-IN1K. As indicated in each image, our method outperforms the runner-up by
0.7%to2% on ImageNet-R/A, ObjectNet, OmniBenchmark, and VTAB. Comparison with typical
CL methods. We also compare our method to typical CL approaches using the same pre-trained
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model, as shown in Tab. 1. Unlike these typical CL methods, which require saving exemplars to
retain previous knowledge, our method does not. Following the setup from (Rebuffi et al., 2017),
we find that, surprisingly, our method remains competitive even against exemplar-based approaches.
Parameters efficient. We examine the number of parameters used by different methods and present
the parameter-performance comparison on ImageNet-R B100 Inc50 in Fig. 1 (a). As shown in Fig. 1
(a), our method uses a similar number of parameters as other prompt-based methods and EASE, yet
achieves the highest performance among all competitors. This highlights that our proposed method
strikes a better balance between parameter efficiency and accuracy compared to other algorithms.

(a) CIFAR B0 Inc20 (b) ImageNet-A B0 Inc20 (c) ImageNet-R B0 Inc10

(d) ObjectNet B0 Inc20 (e) Omnibenchmark B0 Inc30 (f) VTAB B0 Inc10

Figure 3: Performance comparison across different benchmarks.

5.3 ABLATION STUDY

We conduct an ablation study to assess the effectiveness of each component in our proposed method.
We report the incremental performance and parameters efficiency of variations on the VTAB, which
has significant category differences, as shown in Fig. 1 (b). Effectiveness of MoE. We present the
performance of ”MoE” which applies the MOE mechanism across ten groups of adapters. Even
without additional continual learning techniques to prevent catastrophic forgetting on shared param-
eters, the MoE mechanism alone learns task-specific paths and adapters, helping retain part of the
model’s performance. Notably, as Fig. 1 (b) and Tab. 3 shows, the performance of ”MoE” surpasses
certain continual learning methods based on pre-trained models, further demonstrating its effective-
ness. Effectiveness of DGU and independent adapters. We further remove the transfer distance
evaluation and evaluate two variations: one uses dynamic gradient updates (DGU) to optimize two
shared adapters, and the other maintains two independent adapters for each task. These variations
are labeled ”DGU” and ”Independent” respectively. Fig. 1 (b) shows that ”DGU” significantly out-
performs the ”MoE” method, indicating that DGU alone has strong continual learning capabilities.
Effectiveness of actively detecting transfer and interference. As Fig. 1 (b) shows, our method,
which combines transfer distance evaluation with DGU and independent adapters, achieves accuracy
levels notably higher than DGU alone and is comparable to ”Independent”. However, our approach
requires far fewer trainable parameters compared to ’independent’. This demonstrates that the in-
troduction of active transfer and interference detection allows the model to apply more effective
continual learning strategies, maximizing beneficial transfer, and reducing interference.
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Table 2: Comparison to typical CL methods. All methods are based on the same pre-trained model.

Method Exemplars ImageNet-R B0 Inc20 CIFAR B0 Inc10

Ā AB Ā AB

iCaRL* 20 / class 72.42 60.67 82.46 73.87
DER* 20 / class 80.48 74.52 86.04 77.93
FOSTER* 20 / class 81.34 74.88 89.87 84.91
MEMO* 20 / class 74.80 66.62 84.08 75.79

Ours 0 84.23 79.12 95.42 89.65

Table 3: The number of adapters in different blocks of the model our proposed method learned
during training. We use 2 adapters for a task.

Settings Number of Adapters

1 2 3 4 5 6 7 8 9 10 11 12

CIFAR B0 Inc5 2 2 2 2 2 2 2 2 2 2 2 2
CUB B0 Inc5 2 2 2 2 2 19 16 18 20 20 20 2
IN-R B0 Inc5 3 3 3 3 3 3 3 3 3 4 5 3
IN-A B0 Inc20 2 2 2 2 2 4 2 2 2 5 5 2
ObjNet B0 Inc5 5 6 5 5 5 6 15 12 16 15 18 5
OmniBench B0 Inc30 9 9 10 10 10 6 6 2 2 2 2 2
VTAB B0 Inc10 4 4 4 4 4 4 4 4 4 4 4 4 4

5.4 TRANSFER AND INFERENCE ANALYSIS

As shown in the Fig. 1 (c) and Tab. 3, we provide the number of adapters used in different blocks
of the model under various settings, along with the individual performance of our method and its
variants on all tasks in the VTAB dataset. Tab. 3 shows that, in our method, two tasks share pa-
rameters at each layer on the VTAB. By tracking the training process, we found that stages 1 and 4,
both involving satellite remote sensing images, shared parameters, as did stages 3 and 5, which both
focused on natural images. This demonstrates that our algorithm accurately captures task-specific
transfer and interference. Fig. 1 (c) highlights that our method significantly outperforms other vari-
ants in stages 1 and 3, indicating that our approach not only detects transfer but also maximizes
backward knowledge transfer through effective CL strategies. The table also reveals a clear layering
pattern in parameter sharing across different blocks. In some cases, earlier blocks have high-level
sharing, suggesting similar low-level features, while later blocks show more sharing, reflecting sim-
ilar high-level features. For VTAB, consistent parameter sharing across all layers suggests a strong
domain-specific pattern within the dataset. In summary, our method enables the model to actively
detect transfer and interference across different modules and tasks, and adapt continual learning
strategies accordingly, maximizing knowledge transfer while minimizing interference.

6 CONCLUSION

This paper addresses the issue that most continual learning methods do not actively detect trans-
fer or interference during learning, which prevents them from maximizing transfer or minimizing
interference. We conduct a theoretical analysis to identify the conditions under which transfer and
interference occur in continual learning. Based on this, we propose a method to measure task transfer
and interference using pre-trained models. Furthermore, we introduce different strategies to handle
transfer and interference. Our baseline experiments demonstrate that our algorithm can actively
detect these phenomena during continual learning and apply appropriate strategies to maximize
transfer and avoid interference.
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A APPENDIX

A.1 THEORETICAL PROOF

DERIVATION PROCESS

Given the following equation:

∆ = argmin
∆

Lt(0) +∇θLt(0)
T∆ subject to

1

2
∆TFIMt−1∆ ≤ r2

1. LAGRANGE MULTIPLIER METHOD

We introduce the Lagrange multiplier λ to handle the constraint:

L(∆, λ) = Lt(0) +∇θLt(0)
T∆+ λ

(
1

2
∆TFIMt−1∆− r2

)
Taking the derivative with respect to ∆ and setting it equal to 0:

∂L
∂∆

= ∇θLt(0) + λFIMt−1∆ = 0

Solving for ∆:

∆ = − 1

λ
F−1
IMt−1

∇θLt(0)
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2. SOLVING FOR λ

Using the constraint 1
2∆

TFIMt−1∆ ≤ r2, substitute ∆:

1

2

(
− 1

λ
∇θLt(0)

)T

FIMt−1

(
− 1

λ
F−1
IMt−1

∇θLt(0)

)
≤ r2

Simplifying:
1

2λ2
∇θLt(0)

TF−1
IMt−1

∇θLt(0) ≤ r2

Solving for λ:

λ2 =
1

2r2
∇θLt(0)

TF−1
IMt−1

∇θLt(0)

Thus:

λ =

√
1

2r2
∇θLt(0)TF

−1
IMt−1

∇θLt(0)

3. FINAL UPDATE RULE

Substituting λ back into the expression for ∆, we get the parameter update rule:

∆ = − r√
1
2∇θLt(0)TF

−1
IMt−1

∇θLt(0)
F−1
IMt−1

∇θLt(0)

it is often approximated by Fisher Information Matrix (FIM) (Liu et al., 2020; Spall, 2005):

Fk = Ep(D̂k|θ)

[
∇θ log p(D̂k|θ)∇θ log p(D̂k|θ)⊤

] ∣∣∣∣∣
θ=µk

≈ Λ(Dk, µk) (12)

Fk represents the Fisher Information Matrix, which measures the sensitivity of the parameter θ to
the uncertainty during training (Kao et al., 2021). ∇θ log p(x|θ) is the gradient of the log-likelihood
function concerning the parameter θ.

the work by (Wang et al., 2022b) demonstrates that this method leads to a tighter upper bound on

the generalization gap than independent adapters through
√

d ln(Nt/d)+ln(1/δ)
Nt

. See more details in
Appendix A.

max
i∈[1,K]

√
di ln(N1:t−1/di) + ln(2K/δ)

N1:t−1
+

√
d ln(N1:t−1/d) + ln(1/δ)

N1:t−1
, (13)

max
i∈[1,K]

√
di ln(Nt/di) + ln(2K/δ)

Nt
+

√
d ln(Nt/d) + ln(1/δ)

Nt
. (14)

Comparing Eq. 3 and Eq. 14, we conclude that cooperating k adapters facilitates a smaller general-
ization gap over the new and old tasks.

A.2 LIMITATIONS OF OTHER METHODS IN HANDLING TRANSFER AND INTERFERENCE

L2P (Wang et al., 2022d)applies visual prompt tuning to continual learning by learning a prompt
pool to select instance-specific prompts. DualPrompt (Wang et al., 2022c) introduces two types of
prompts, namely, general and expert prompts. CODA-Prompt (Smith et al., 2023) further improves
the prompt selection process by incorporating an attention mechanism. SimpleCIL (Zhou et al.,
2024a) freezes the pre-trained weights and extracts the center of each class by averaging the embed-
dings within the same class, resulting in the most representative pattern of that class. ADAM (Zhou
et al., 2024a) further advances this approach by comparing the performance of the prototype-based
classifier with that of a fully fine-tuned model on new classes.
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A.3 DETAILS OF METHOD

LoRA (Gupta, 2021; Ding et al., 2023) includes a dimensionality reduction matrix Fdown ∈ Rl×d

and a dimensionality increasing matrix Fup ∈ Rd×l: o = Wx +
∑k

j=1 F
j
upF

j
downx. where x

denotes inputs of the block, o denotes outputs, W is the frozen weight of pre-trained model and k is
the number of activated adapters.

Effectiveness. Based on Eq. 3, we analyze the theoretical effectiveness of our algorithm. First,
for ÊD1:t−1

(θ1:t), our algorithm shares a set of parameters among tasks that fall within the same
flat optimization region and applies a suitable flat direction search method, thereby tightening the
upper bound of this term. For the second term, 1

2(t−1)

∑t−1
j=1 Div(Dj , Dt), since the FIM closely

aligns with task similarities, reducing the divergence between them. Finally, the MoE mechanism
also reduces the third term. In conclusion, our algorithm effectively tightens the upper bound of
the loss function across all three aspects, enabling strong continual learning performance. The
work by (Wang et al., 2022b) demonstrates that MOE-adapters lead to a tighter upper bound on

the generalization gap than independent adapters through
√

d ln(Nt/d)+ln(1/δ)
Nt

.

Estimate optimization directions. Projection matrix-based methods estimate these optimization
directions by using the principal components of network activations. Therefore, we first train the
adapter using the current task’s dataset Dt. After training, we sample St = [x1,t, x2,t, . . . , xn,t]
from the task dataset Dt, obtain the activations At = fadapter(Rt) passing through the adapter, and
perform SVD on the activations At = UtΣtV

T
t , where Ut and Vt are orthonormal matrices, and Σt

has sorted singular values (σi,t) along its diagonal. We then extract the principal components via
low-rank approximation based on Ut and Σt. According to the proof from Principal Component
Analysis (PCA) (Abdi & Williams, 2010), the larger the singular value, the more its correspond-
ing left singular vector represents the primary information contained in the data. Therefore, we
sort the singular values in descending order and select the top zt left singular vectors Ukt

t corre-
sponding to the largest singular values for matrix dimensionality reduction, ensuring that it satisfies
∥AtU

kt
t ∥2F ≥ α∥At∥2F , ∥.∥2F is the Frobenius norm (Cortinovis & Kressner, 2020; Xi, 2021) of the

matrix. The threshold hyperparameter, α ∈ (0, 1) controls the value of kt selected. Saha et al. (Saha
et al., 2021) showed that these bases equivalently span the most important gradient space. We store
these bases in V = [v1,t, v2,1, . . . , vkt,t] as important directions for current task. After the end of
task t+ 1, we update V by adding the important gradient space for this task.

A.4 EXPERIMENTS DETAILS

Setting details. VTAB contains 50 classes, CIFAR100 has 100 classes, CUB, ImageNet-R,
ImageNet-A, and ObjectNet each have 200 classes, and OmniBenchmark includes 300 classes.
To ensure a fair comparison, we use the same training and testing sets as in (Zhou et al., 2024a)
for all methods. Following (Zhou et al., 2024a), we use two pre-trained models: ViT-B/16-IN21K
and ViT-B/16-IN1K. Both are pre-trained on ImageNet21K, but the latter is further fine-tuned on
ImageNet1K.

In our experimental setup, we assign two adapters for each task. For tasks requiring a new adapter,
we currently set the number of frozen old branches to be reused to 1.

Comparison in different settings. In addition to the B0 settings shown in Tab. 1 and Fig. 3, we also
conduct experiments with different base class configurations. As illustrated in Fig. 4 (a) and (b), our
proposed method continues to perform competitively across various data split settings.
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(a) ImageNet-R B100 Inc50 (b) ImageNet-A B100 Inc50

Figure 4: Experiments results. (a): Performance comparison with vase base stage on ImageNet-R
B100 Inc50. (b): Performance comparison with vase base stage on ImageNet-A B100 Inc50.
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