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ABSTRACT

Can world knowledge learned by large language models (LLMs) be used to act in
interactive environments? In this paper, we investigate the possibility of ground-
ing high-level tasks, expressed in natural language (i.e. “make breakfast”), to a
chosen set of actionable steps (i.e. “open fridge”). While prior work focused
on learning from explicit step-by-step examples of how to act, we surprisingly
find that if pre-trained LMs are large enough and prompted appropriately, they
can effectively decompose high-level tasks into low-level plans without any fur-
ther training. However, the plans produced naively by LLMs often cannot map
precisely to admissible actions. We propose a procedure that conditions on ex-
isting demonstrations and semantically translates the plans to admissible actions.
Our evaluation in the recent VirtualHome environment shows that the resulting
method substantially improves executability over the LLM baseline. The con-
ducted human evaluation reveals a trade-off between executability and correct-
ness but shows a promising sign towards extracting actionable knowledge from
language models1.

1 INTRODUCTION

Large language models (LLMs) have made impressive advances in language generation and under-
standing in recent years (Devlin et al., 2018; Radford et al., 2019; Raffel et al., 2019; Brown et al.,
2020). See Bommasani et al. (2021) for a recent summary of their capabilities and impacts. Being
trained on large corpora of human-produced language, these models are thought to contain a lot of
information about the world (Roberts et al., 2020; Li et al., 2021; BIG-bench collaboration, 2021) -
albeit in linguistic form.

We ask whether we can use such knowledge contained in LLMs not just for linguistic tasks, but to
make goal-driven decisions to that can be enacted in interactive, embodied environments. But we
are not simply interested in whether we can train models on a dataset of demonstrations collected for
some specific environment – we are instead interested in whether LLMs already contain information
necessary to accomplish goals without any additional training.

More specifically, we ask whether world knowledge about how to perform high-level tasks (such
as “make breakfast”) can be expanded to a series of groundable actions (such as “open fridge”,
“grab milk”, “close fridge”, etc) that can be executed in the environment. For our investigation, we
use recently proposed VirtualHome environment (Puig et al., 2018). It can simulate a large variety
of realistic human activities in a household environment and supports ability to perform them via
embodied actions defined with a verb-object syntax. However, due to open-ended nature of the
tasks, it is difficult to autonomously evaluate their success. We rely on human evaluation (conducted
on Mechanical Turk) to decide whether sequences of actions meaningfully accomplish posed tasks.

We find that large GPT-3 (Brown et al., 2020) and Codex (Chen et al., 2021) models, when prompted
with a single fixed example of a task description and its associated sequence of actions, can produce
very plausible action plans for the task we’re interested in. Such completions reflect the information
already stored in the model – no model fine-tuning is involved. Additionally, we only observe this

1Results and videos at https://sites.google.com/view/language-model-as-planner

1

https://sites.google.com/view/language-model-as-planner


Under review as a conference paper at ICLR 2022

Task: Brush teeth
Step 1: Go to bathroom

Task: Brush teeth
Step 1: Walk to bathroom
Step 2: Walk to sink
Step 3: Find toothbrush
Step 4: Pick up toothbrush
Step 5: Put toothbrush in mouth
Step 6: Move brush around mouth for two minutes
Step 7: Spit out toothpaste and brush into sink
Step 8: Turn on water in sink and rinse brush for 

one minute
Step 9: Turn off water in sink and return brush to 

cupboard

Task: Brush teeth
Step 1: Walk to bathroom
Step 2: Open door
Step 3: Walk to sink
Step 4: Put pot on sink
Step 5: Put brush on 

toothbrush
Step 6: Turn to toothpaste
Step 7: Put toothpaste on 

toothbrush
Step 8: Put teeth on 

toothbrush

Samples Generated by LLMs

GPT2-1.5B Codex-12B Translated Codex-12B

0 20 40 60 80 100
% Executability

0

20

40

60

80

100

%
 C

or
re

ct
ne

ss

GPT2-1.5B

GPT3-12B

Codex-12B
GPT3-175B

Executable
Ground-Truth

Translated
Codex-12B
(Ours)

Figure 1: Executability v.s. semantic correctness of generated action plans (left) and sample action plans gen-
erated by different models (right). Large models can produce action plans indistinguishable from plans created
by humans, but frequently are not executable in the environment. Using our techniques, we can significantly
improve executability, albeit at the cost of correctness.

effect in the larger models. Unfortunately, despite their semantic correctness, the produced action
plans are often not executable in the environment. Produced actions may not map precisely to
admissible actions, or may contain various linguistic ambiguities.

We propose several tools to improve executability of the model’s outputs. First, we enumerate all
admissible action phrases and map the model’s output action to the most semantically-similar ad-
missible action (we use similarity measure between sentence embeddings produced by a RoBERTa
model Liu et al. (2019) in this work, but other choices are possible). Second, we use the model to
autoregressively generate actions in a plan by conditioning past actions that have been made admis-
sible via the technique above. Such on the fly correction can keep generation anchored to admissible
actions. Third, we provide weak supervision to the model by prompting the model with a known
task example similar to the query task. This is somewhat reminiscent of prompt tuning approaches,
but does not require access to gradients or internals of the model.

Using above tools to bias model generation, we find that we improve executability of instructions
from 18% to 79% (see Figure 1) without any invasive modifications to model parameters or any
extra gradient or internal information beyond what is returned from the model’s forward pass. This
is advantageous because it does not require any modifications to model training procedure and can
fit within existing model serving pipelines. However, we do find there to be a significant drop in cor-
rectness of the instruction sequences generated with above tools (as judged by humans), indicating
a promising step, but requiring more research on the topic.

To summarize, our paper’s contributions are as follows:

• We show that without any training, large language models can be prompted to generate
plausible goal-driven action plans, but such plans are frequently not executable in interac-
tive environments.

• We propose several tools to improve executability of the model generation without invasive
probing or modifications to the model.

• We conduct a human evaluation of multiple techniques and models and report on the trade-
offs between executabiltiy and semantic correctness.

2 EVALUATION FRAMEWORK

Simulating open-ended tasks that resemble naturalistic human activities requires an environment to
support a rich set of diverse interactions, rendering most existing embodied environments unsuitable
for our investigation. One exception is VirtualHome (Puig et al., 2018), which models human activ-
ities in a typical household. Therefore, we only provide evaluation in this environment. To further
measure correctness given open-ended tasks, we conduct a human evaluation. We note that since no
further training is involved throughout our investigations, the observations and findings presented in
this paper should also translate to similar embodied environments.
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2.1 EVALUATED ENVIRONMENT: VIRTUALHOME

Preliminaries In VirtualHome, activities are expressed as programs. Each program consists of
a sequence of steps, where each step is written as: [action] 〈arg1〉(id1) ... 〈argn〉(idn). Each
action refers to atomic actions such as “walk”, “open”, and “put”. A total of 45 atomic actions
are supported by VirtualHome. Different actions take in different numbers of arg necessary for
specifying an interaction. Associated with each arg is a unique id specifying the corresponding
node in the environment graph, in case of multiple instances of the same object class are present in
the graph. For the sake of simplicity, we omit the id in the remaining discussions of this paper and
allow automatic assignment by the environment. An example program is shown in Appendix 4.

Evaluated Tasks We use the knowledge base collected by VirtualHome for evaluation. The
knowledge base contains household activities crowd-sourced from Amazon Mechanical Turk
(MTurk). The MTurk workers were asked to provide natural language descriptions of daily house-
hold activities and all actionable steps necessary for completing the activities. The descriptions are
both given as high-level task descriptions and step-by-step instructions. We omit the use of step-
by-step instructions in this work as we desire direct extraction of executable programs from only
task descriptions. For evaluations, we randomly sample a subset of 88 high-level tasks, each having
one or more annotated ground-truth programs. The remaining 204 tasks are used as demonstration
set, from which we are allowed to select as example(s) for prompting language models. Note that
no training or fine-tuning is performed using these tasks and their annotations. More details of the
evaluated tasks can be found in Appendix 8.6.

2.2 METRICS

A program that commands the agent to wander around in a household environment is highly ex-
ecutable but may not complete the desired task. On the other hand, a program composed of step
instructions from knowledge bases can likely complete the task but cannot be executed. The reason
is that free-form instructions can be ambiguous and may lack necessary common-sense actions. To
this end, we consider two axes for evaluation: executability and correctness.

Executability Executability measures whether an action plan can be correctly parsed and satisfies
the common-sense constraints of the environment. To be correctly parsed, an action plan must
be syntatically correct and contain only allowed actions and recognizable objects. To satisfy the
common-sense constraints, each action step must not violate the set of its pre-conditions (e.g. the
agent cannot grab milk from the fridge before opening it) and post-conditions (e.g. the state of the
fridge changes from “closed” to “open” after the agent opens it). We report the average executability
across all 88 tasks and across all 7 VirtualHome scenes.

Correctness Unlike most embodied environments where the completion of a task can be easily
judged, the ambiguous and multimodal nature of natural language task specification makes it im-
practical to obtain a gold-standard measurement of correctness. One approach could be measuring
similarity of the final environment state produced by executing predicted and ground-truth programs,
but VirtualHome initializes an environment differently based on the to-be-executed program, mak-
ing comparisons difficult if measured in such way. Therefore, we conduct human evaluation for the
highlighted methods. More details of the human evaluations can be found in Appendix 8.5. For
the remaining methods and ablation studies, we rely on a match-based metric that measures how
similar a generated program is to human annotations. Specifically, we follow Puig et al. (2018) and
calculate the longest common subsequence (LCS) between two programs, normalized by the maxi-
mum length of the two. In the presence of multiple ground-truth programs for a single task, we take
the maximum LCS across the ground-truth programs. However, we note that the majority of the
tasks only have one ground-truth annotation, but there are often many plausible ways to complete a
certain task, making this metric imperfect at evaluation program correctness2. Although correlation
between the two is shown by Puig et al. (2018), we consider it only as a proxy metric in replacement
of unscalable human evaluation.

2Although LCS has a mathematical range of [0, 1], we measure the LCS between different ground-truth
programs for the same task and find an empirical maximum of 0.489.
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Figure 2: We investigate the possibility of extracting actionable knowledge from pre-trained language mod-
els without any additional training. We first show surprising finding that large language models (LLMs) can
decompose high-level tasks into sensible low-level action plans (left). To make the action plans executable,
we propose to translate each step into admissible action via another LLM (middle). The translated action is
appended to the original prompt used for generating the remaining steps (right).

3 METHOD

In this section, we investigate the possibility of extracting actionable knowledge from pre-trained
language models without further training. We first give an overview of the common approach to
query large language models (LLMs) and how it may be used for embodied agents. Then we de-
scribe an inference-time procedure that addresses several deficiencies of the LLM baseline and offers
better executability in embodied environments. We break down the proposed procedure into three
individual components, each discussed in Sec 3.2, 3.3, and 3.4.

Since LMs excel at dealing with natural language text instead of the specific format required by
VirtualHome as described in Section 2.1, we only expose natural language text to LMs. To do this,
we define a mapping for each atomic action that parses a natural language phrase to the required
format. For instance, “Walk to living room” is converted to “[Walk] 〈living room〉(1)”. When an LM
output cannot be parsed to any of the allowed action, the entire program is considered syntactically
incorrect and thus not executable.

3.1 PROMPTING

Previous works have shown that large language models pre-trained on a colossal amount of data
contain useful world knowledge that can be probed to perform various down-stream tasks (Radford
et al., 2019; Brown et al., 2020). Notably, autoregressive LLMs can even perform in-context learn-
ing, an approach to solve tasks using only contextual information without gradient updates (Brown
et al., 2020). Contextual information is given as part of the input prompt and LMs are asked to
complete the remaining text. It often consists of natural language instructions and/or a number of
examples containing the desired input/output pairs.

We adopt the same approach to query LLMs to generate action plans for high-level tasks. Specif-
ically, we prepend one example task description sentence and its annotated action plan from the
demonstration set to the query task description, as shown in Fig 2. To obtain text completion results,
we sample from autoregressive LLM using temperature sampling and nucleus sampling (Holtzman
et al., 2019). We refer to this LM as Planning LM and the approach using this LM for plan genera-
tion as Vanilla [LM], where [LM] is replaced by specific language model such as GPT-3 or Codex.

To further improve the quality of the generated output, we follow Chen et al. (2021) that uses LMs
for program synthesis to sample multiple output for each task. However, unlike prior works in
program synthesis that choose the sample with highest unit test pass rate, we only consider the
setting where one sample is allowed to be evaluated for each task. This is because repetitive trial-
and-errors can be dangerous in the real world, and executing many action plans is equivalent to
probing the environment for privileged information, which is often considered not viable.

3.2 ROBUST PARSING BY SEMANTIC TRANSLATION

One issue arises when naively following the above approach to generate action plans for high-level
tasks: the action plan is often not executable because LMs are allowed to generate free-form text.
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Therefore, most of the time the output cannot be mapped to one unambiguous actionable step. And
many reasons can cause such failures: 1) the output does not follow pre-defined mappings of any
atomic action (i.e. “I first walk to the bedroom” does not follow “Walk to 〈PLACE〉”), 2) the output
may refer to atomic action and objects using words unrecognizable by the environment (i.e. “Clean
the dirty dishes in the sink” where “clean” and “dirty dishes in the sink” cannot be mapped to precise
action and object), 3) the output contains lexical ambiguous words (i.e. “Open TV” should instead
be “Switch on TV”), or 4) the output may use disallowed action (i.e. “Microwave the cup”).

Instead of developing a set of rules to transform the free-form text into admissible action steps,
we propose to again leverage world knowledge learned by large language models to semantically
translate the action. For each step in the action plan â, we aim to find the most similar admissible
environment action ae as measured by cosine similarity:

argmax
ae

f(â) · f(ae)
‖f(â)‖‖f(ae)‖

where f is an embedding function.

To embed the output text and environment actions, we use a BERT-style LM (Devlin et al., 2018;
Liu et al., 2019) trained with Sentence-BERT (Reimers & Gurevych, 2019) objective because of its
suitability for sentence modeling. The sentence embedding is obtained by mean-pooling the last
layer hidden states across all tokens. We refer to this LM as Translation LM. Note that this is a
different LM than the GPT-style Planning LM discussed in the text so far. Using a single LM for
both purposes could as well be possible and likely more efficient, but we leave such investigation to
future works. While the set of actions in our environment is discrete and possible to exhaustively
enumerate, sampling or projection can be employed in larger discrete or continuous action spaces.

Since Translation LM can guarantee the parsed action is allowed by the environment, we can trade-
off semantic soundness of an LM step by how likely it can be mapped to an admissible action in the
environment. This can be achieved by a simple modification to the scheme that we use to choose
the best sample from the LM output. Instead of only using mean token log probability as a ranking
metric, we choose the sample with the highest score calculated as s = C + β · logprob, where C is
the cosine similarity to the closest allowed action and β is a weighting parameter.

3.3 AUTOREGRESSIVE TRAJECTORY CORRECTION

Translating each step of the program after the entire program has been synthesized is analogous to
open-loop planning and is subject to compounding errors. In practice, LLMs might output com-
pounded instructions for a single step, even though it cannot be completed using one admissible
action in the environment. To this end, we can instead interleave plan generation and action trans-
lation to allow for automatic trajectory correction. At each step, we first query Planning LM to gen-
erate k samples for a single action. Then we calculate score s for each sample using Translation LM
and append the translated action to the unfinished text completion. This way all subsequent steps
will be conditioned on admissible actions instead of free-form text output generated by Planning
LM. Furthermore, we can use Translation LM to detect out-of-distribution actions, those outside the
capabilities of a robot, and terminate a program early instead of mapping to a faulty action. This
can be easily implemented by setting a threshold ε such that if Ct

max < ε at step t, the program is
terminated early. We empirically show this leads to better executability while maintaining similar
correctness of the generated action plans.

3.4 DYNAMIC EXAMPLE SELECTION FOR IMPROVED KNOWLEDGE EXTRACTION

So far in the text, we always give the same example in the prompt for all evaluated high-level
tasks. However, consider the task of “ordering pizza”. Prompting LLMs with this task may give
the assumption that the agent is initialized in front of a computer, and the LLMs may guide the
agent to search for a pizza store and click “checkout my cart”. Although these are reasonable and
feasible in the real world, such assumption cannot always be made as these interactions may not
be supported in simulated environments like VirtualHome. In fact, the closest series of actions that
human experts give may be “walking to a computer”, “switching on the computer”, and “typing the
keyboard”. Without being finetuned on these data, LLMs would often fail at these tasks. To provide
weak supervision at inference time, we propose to use Translation LM to select the most similar task
from the demonstration set to be used as the example in the prompt. Specifically, we choose the task
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Figure 3: Visualization of VirtualHome programs generated by our approach. The top row shows the execu-
tion of the task “Complete Amazon Turk Surveys”, and the bottom row shows the task “Get Glass of Milk”.
We show LLMs not only can generate sensible action plans given only high-level tasks but also contains the
actionable knowledge that can be extracted for grounding in embodied environments.

whose high-level description matches closely the query task as measured by cosine similarity. This
allows Planning LM to reason how to perform a similar task given a human-annotated example. In
our evaluations, we make sure the demonstration set is not overlapping with our test queries.

Combining the various improvement discussed above, we refer to the final approach as Translated
[LM], where [LM] is replaced by specific language model used such as GPT-3 and Codex.

4 RESULTS

In this section, we first show that language models can generate sensible action plans for many high-
level tasks, even without any additional training. Then we highlight its inadequacy when naively
applied to embodied environments and demonstrate how this can be improved by again leveraging
world knowledge learned by LLMs. Visualization of generated programs are shown in Fig 3.

Sampling from LMs Pre-trained LMs are sensitive to sampling parameters and the specific ex-
ample given in the prompt. For all evaluated methods, we perform hyper-parameter search over
various sampling parameters, and for methods using fixed prompt example, we report metrics aver-
aged across three randomly chosen examples. To select the best run for each method, we rank the
runs by LCS + executability, each normalized by human-expert scores3. Further details can be
found in Appendix 8.3.

Model Choices We find empirically the combination of Codex-12B and Sentence-RoBERTa-
355M work well in our setting. Codex and GPT-3 are accessed using OpenAI API. The remaining
models are accessed through open-source packages, Hugging Face Transformers (Wolf et al., 2019)
and SentenceTransformers (Reimers & Gurevych, 2019), without additional modifications.

4.1 DO LLMS CONTAIN ACTIONABLE KNOWLEDGE FOR HIGH-LEVEL TASKS?

We first investigate whether LLMs can generate sensible action plans expressed in free-form lan-
guage. We use the approach described in Section 3.1 to query pre-trained LLMs. To evaluate the
correctness of generated action plans, we conduct human evaluations. For each model, we ask 10
human annotators to determine – by answering “Yes” or “No” – whether each task can be completed
using provided action steps. To provide a reference of how humans might rate the action plans pro-
vided by other humans, we also ask annotators to rate the ground-truth action plans provided in the
VirtualHome dataset for the same set of tasks. In contrast to the free-form text output by LLMs, the
ground-truth action plans from VirtualHome are generated via a graphical programming interface
that enforces strict syntax, although annotators were allowed to compose necessary actions.

We show the human evaluation results in Fig 1, where y-axis shows correctness averaged across
all tasks and all annotators. Surprisingly, when LLMs are large enough and without imposed syn-
tactic constraints, they can generate highly realistic action plans whose correctness – as deemed by
human annotators – even surpasses human-labeled ground-truth. Yet another interesting finding is

3See footnote 2.
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Language Model Executability LCS Correctness
Vanilla GPT-2 117M 18.66% 3.19% 14.27%
Vanilla GPT-2 1.5B 39.40% 7.78% 19.51%
Vanilla Codex 2.5B 17.62% 15.57% 53.44%
Vanilla GPT-Neo 2.7B 29.92% 11.52% 50.74%
Vanilla Codex 12B 18.07% 16.97% 56.06%
Vanilla GPT-3 12B 25.87% 13.40% 30.98%
Vanilla GPT-3 175B 7.79% 17.82% 65.19%

Annotated GT 100.00% N/A 54.80%
Fine-tuned GPT-3 12B 66.07% 34.08% 50.56%

Our Final Methods
Translated Codex 12B 78.57% 24.72% 34.97%
Translated GPT-3 175B 73.05% 24.09% 51.73%

Table 1: Human-evaluated correctness and evaluation results in VirtualHome. Although action plans generated
by GPT-3 and Codex can even surpass the annotated GT in correctness measure, they are rarely executable. By
translating the naive action plans, we show an important step towards grounding LLMs in embodied environ-
ments, but we observe room to achieve this without trading executability for correctness. We also observe a
failure mode among smaller models that lead to high executability.

that Codex outperforms GPT-3 significantly under the same number of model parameters. One hy-
pothesis could be that by fine-tuning on structured data (docstrings and code), Codex specializes at
decomposing a high-level objective into a number of basic operations, even with those operations
described in natural language. We also observe some level of correctness for smaller models such
as GPT-2. However, inspection of its produced output indicates that it often generates significantly
shorter plans by ignoring common-sense actions or by simply rephrasing the given task (e.g. the task
“Go to sleep” produces only a single step “Go to bed”). These failure modes sometimes mislead
human annotators to mark them correct as the annotators may ignore common-sense actions in their
judgment as well, resulting in a higher correctness rate than the quality of the output shows.

4.2 HOW EXECUTABLE ARE THE LLM ACTION PLANS?

We analyze the executability of LLM plans by evaluating them in all 7 household scenes in Virtual-
Home. As shown in Table 1, we find action plans generated naively by LLMs are generally not very
executable. Although smaller models seem to have higher executability, we find that the majority
of these executable plans are produced by ignoring the queried task and repeating the given GT
example of a different task. This is validated by the fact that smaller models have lower LCS than
larger models despite having higher executability, showing that this failure mode is prevalent among
smaller models. In contrast, larger models do not suffer severely from this failure mode. Yet as a
result of being more expressive, their generated programs are substantially less executable.

4.3 CAN LLM ACTION PLANS BE MADE EXECUTABLE BY ACTION TRANSLATION?

In this section, we evaluate the effectiveness of our proposed procedure of action translation. We
first create a bank of all allowed 47522 action steps in the environment, including all possible com-
binations of atomic actions and allowed arguments/objects. Then we use an off-the-shelf Sentence-
RoBERTa (Liu et al., 2019; Reimers & Gurevych, 2019) as Translation LM to create embeddings for
actions and output text. For better computational efficiency, we pre-compute the embeddings for all
allowed actions, leaving minor computation overhead for our procedure over the baseline methods at
inference time. As shown in Table 1, executability of generated programs is significantly improved.
Furthermore, we also observe improved LCS because the translated action steps precisely follow the
program syntax and thus are more similar to ground-truth annotations. One sample output is shown
in Fig 1 and a larger random subset of generated samples can be found in Appendix 8.7.

To validate their correctness, we again perform human studies using the same procedure in Sec 4.1.
Results are shown in Table 1. We find that despite being more similar to GT, the programs are
deemed less correct by humans. By examining the generated output, we observe two main sources
of errors. First, we find Translation LM is poor at mapping compounded instructions to a succinct
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admissible action. This is partly due to that Translation LM is trained on a much smaller dataset and
contains much a smaller number of parameters, so we expect further improvement by using a larger
pre-trained model for translation. The second source of error comes from imperfect expressivity of
the environment; we find that for many tasks we evaluate, certain necessary actions or objects are
not implemented. This is also reflected by out human evaluation results of the GT programs, as only
half of the programs are considered complete by the human annotators.

5 ANALYSIS AND DISCUSSIONS

5.1 ABLATION OF DESIGN DECISIONS

Methods Executability LCS
Translated Codex 12B 78.57% 24.72%
- w/o Action Translation 31.49% 22.53%
- w/o Dynamic Example 50.86% 22.84%
- w/o Iterative 55.19% 24.43%

Table 2: Ablation of three proposed techniques.

We perform ablation studies to show the ef-
fectiveness and necessity of three components
of our proposed procedure, each described
Sec 3.2, 3.3, and 3.4. As shown in Table 2, leav-
ing out any of the three components would all
lead to decreased performance in both executability and LCS. Notably, not doing action transla-
tion leads to the most significant executability drop, showing the importance of action translation in
extracting executable action plans from LLMs.

5.2 CAN LLMS GENERATE ACTIONABLE PROGRAMS BY FOLLOWING DETAILED
INSTRUCTIONS?

Prior works often focus on translating step-by-step instructions into executable programs. We eval-
uate LLMs under this setting using a prompt format shown in Appendix 8.2. Although this setting
is easier as it does not require rich actionable knowledge, detailed instructions can help resolve
much ambiguity of exactly how to perform a high-level task when multiple solutions are possible.
Therefore, Translated Codex 12B achieves executability of 78.57% and LCS of 32.87%, where
LCS sees a considerable bump from the setting without detailed instructions. Surprisingly, the LCS
result is very close to that of a supervised LSTM (Hochreiter & Schmidhuber, 1997) baseline from
VirtualHome trained on human-annotated data, which is at 34.00%. Note that since code to train
the baseline and the specific train/test split is not publicly released, we only show results reported
in Puig et al. (2018) as a reference. We also cannot compare executability as it is not reported.

5.3 IS ACTION TRANSLATION NECESSARY FOR ACTIONABLE KNOWLEDGE GROUNDING?

Methods # of C # of C and E E / C
GPT-2 1.5B 8 0 0.00%
GPT-3 12B 24 2 8.33%
GPT-3 175B 68 5 7.35%
Codex 12B 45 8 17.78%
Translated Codex 12B 18 15 83.33%

Table 3: Count of correct/executable programs and
percentage of executable among correct. C indicates
correct and E indicates executable.

The investigations of this paper are two-fold: 1)
Is actionable knowledge present in LLMs? 2)
Can we ground this actionable knowledge in in-
teractive environment? In this section, we focus
our attention on the second question by condi-
tioning on the assumption that first question is
true. To do this, since successful execution of
correct action plans directly measures ground-
ing, we select only the correct plans generated
by LLMs and measure how executable they are.
We deem an action plan to be correct if 70% or
more human annotators decide it is correct.

As shown by Table 3, when an LM is not large enough (e.g. GPT-2), not only it contains little
actionable knowledge, but this knowledge cannot be grounded at all. GPT-3 and Codex, on the
other hand, can generate highly correct action plans in free-form language. However, they do not
have the capability to ground their actionable knowledge in interactive environments. What’s more
interesting, by comparing GPT-3 of both 12B parameters and 175B parameters, ratio of executable
plans does not improve with the parameter count. This shows that simply training larger models
does not necessarily lead to better knowledge grounding. In the meantime, action translation offers
a promising way towards grounding actionable knowledge by producing highly executable plans.
However, we again note that it comes at a trade-off of producing less correct plans as compared to
its vanilla counterpart, and we hope to see future endeavors for bridging the gap.
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6 RELATED WORKS

Large-scale natural language modeling has witnessed rapid advances since the inception of the
Transformer architecture (Vaswani et al., 2017). It has been shown by recent works that large lan-
guage models (LLMs) pre-trained on large unstructured text corpus not only can perform strongly
on various down-stream NLP tasks (Devlin et al., 2018; Radford et al., 2019; Raffel et al., 2019;
Brown et al., 2020) but also can internalize an implicit knowledge base containing rich information
about the world (Petroni et al., 2019; Jiang et al., 2020; Davison et al., 2019; Talmor et al., 2020;
Roberts et al., 2020). Furthermore, the learned representations can be used to model relations of
entities (Li et al., 2021), retrieve matching visual features (Ilharco et al., 2020), and even as valuable
priors when applied to diverse tasks from different modalities (Lu et al., 2021; Tsimpoukelli et al.,
2021). Compared to prior works in knowledge extraction that extract single-step factual answers
memorized by the models (e.g. “Dante was born in [PLACE]”), we aim to extract sequential action
plans to complete an open-ended human activity (e.g. “make breakfast”). We further require these
plans to only contain allowed actions and satisfy the pre/post-conditions of actions in order to be
executed by an embodied agent.

At the same time, there has also been growing interest and development in grounding language in
embodied environment. A series of prior works have investigated the possibility of parsing language
instructions into formal logic to resolve various linguistic ambiguities for embodied agents (Artzi
& Zettlemoyer, 2013; Misra et al., 2015; Tenorth et al., 2010). However, they often scale poorly
to complex tasks and environments. Recently, more research efforts have been put into creating
better and more realistic environments with the goal to further advances in this area (Puig et al.,
2018; Shridhar et al., 2020a;b; Kolve et al., 2017; Savva et al., 2019). At the same time, by lever-
aging the better representation power of neural architectures, a number of works have looked into
creating instruction-following agents that can perform manipulation (Lynch & Sermanet, 2020),
navigation (Majumdar et al., 2020), or both (Suglia et al., 2021; Hill et al., 2020).

Notably, most of these prior works do not leverage full-blown pre-trained LLMs (Suglia et al., 2021)
or do not scale to complex human activities (Hill et al., 2020; Lynch & Sermanet, 2020). Perhaps
more importantly, few works have evaluated LLMs in an embodiment setting that realizes the full
potential of the world knowledge these models contain: the tasks evaluated are often “pick”, “grab”,
“open”, and etc, which do not resemble the highly diverse activities that humans perform in daily
lives. The development of VirtualHome environment Puig et al. (2018) enables such possibility.
However, relevant works (Puig et al., 2020; Liao et al., 2019) rely on human-annotated data and
perform supervised training from scratch. Due to the lack of rich world knowledge, these models
can only generate action plans given step-by-step instructions of how to act or video demonstrations.
In this work, we take a step further by conditioning only on the high-level descriptions and by
extracting executable action plans from LLMs without any additional training.

7 LIMITATIONS AND CONCLUSION

There are several notable limitations of this work. First, although our approach presents a viable
way to ground world knowledge in embodied environments, it is still a trade-off rather than one best
solution since we observe considerable drop in correctness. Second, we focus on high-level to mid-
level grounding, assuming there is a controller that can execute mid-level tasks (such as “grab cup”).
Our work does not investigate usefulness of LLMs for low-level sensorimotor behavior grounding.
The third limitation is that we do not incorporate observation context or feedback into our models. To
some extent, we approach LLMs in the same way as how VirtualHome asks human annotators to give
action plans for a given huamn activity by imagination, in which case the human-generated action
plans also do not incorporate observation context. However, we do see incorporating observation
context for complex activities as an exciting future direction.
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8 APPENDIX

8.1 EXAMPLE PROGRAM IN VIRTUALHOME

[Walk] 〈 living room 〉 (1)
[Walk] 〈 television 〉 (1)
[Find] 〈 television 〉 (1)
[SwitchOn] 〈 television 〉 (1)
[Find] 〈 sofa 〉 (1)
[Sit] 〈 sofa 〉 (1)
[TurnTo] 〈 television 〉 (1)
[Watch] 〈 television 〉 (1)

Table 4: An example program for the activity ”Relax on sofa”.

8.2 EXAMPLE PROMPT CONTAINING STEP-BY-STEP INSTRUCTIONS

Task:	Read	book
Description:	Walk	to	home	office,	
turn	on	light,	grab	a	book,	sit	in	
chair,	start	to	read	the	book.
Step	1:	Walk	to	home	office
Step	2:	Walk	to	light
Step	3:	Find	light
Step	4:	Switch	on	light
Step	5:	Find	novel
Step	6:	Grab	novel
Step	7:	Find	chair

Step	8:	Sit	on	chair
Step	9:	Read	novel

Task:	Find	dictionary
Description:	Move	towards	the
bookshelf,	scan	the	bookshelf	for
the	dictionary,	when	the
dictionary	is	found,	pick	up	the
dictionary.

Figure 4: An example prompt containing step-by-step instructions.

8.3 HYPERPARAMETER SEARCH

For each evaluated method, we perform grid search over the following hyperparameters:
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Name Description Search Values
epsilon (ε) OOD cutoff threshold used in iterative action

translation
{0, 0.4, 0.8}

temperature sampling parameter adjusting relative probabili-
ties across tokens

{0.1, 0.3, 0.6}

k number of samples generated when querying LMs
each time

{1, 10}

frequence penalty OpenAI API specific; penalize new tokens based
on their existing frequency in the text so far

{0.1, 0.3, 0.6, 0.9}

presence penalty OpenAI API specific; penalize new tokens based
on whether they appear in the text so far

{0.3, 0.5, 0.8}

repetition penalty Hugging Face Transformers specific; penalize
new tokens based on whether they are repeating
existing text

{1.0, 1.2, 1.5, 1.8}

For methods that use fixed example across evaluated tasks, we search over the following three ran-
domly chosen examples:

Example 1 Example 2 Example 3
Task: Use computer
Step 1: Walk to home office
Step 2: Walk to chair
Step 3: Find chair
Step 4: Sit on chair
Step 5: Find computer
Step 6: Switch on computer
Step 7: Turn to computer
Step 8: Look at computer
Step 9: Find keyboard
Step 10: Type on keyboard

Task: Relax on sofa
Step 1: Walk to home office
Step 2: Walk to couch
Step 3: Find couch
Step 4: Sit on couch
Step 5: Find pillow
Step 6: Lie on couch

Task: Read book
Step 1: Walk to home office
Step 2: Walk to novel
Step 3: Find novel
Step 4: Grab novel
Step 5: Find chair
Step 6: Sit on chair
Step 7: Read novel

8.4 ANALYSIS OF PROGRAM LENGTH

Shorter programs have a natural advantage of being more executable. Consider a task “wash hands”
and a corresponding program that only commands an agent to “go to bathroom” without additional
steps. The program is obviously incorrect yet trivially executable. To validate our approach does not
simply generate very short program, we calculate the average program length across the 88 evaluated
tasks. Results are shown in Table 6. In addition to the failure mode discussed in Section 4.2 that
leads to incorrect yet executable programs, smaller LMs such as GPT-2 also generate programs
significantly shorter than larger models, making them more executable. In contrast, larger models
like Codex-12B generate more expressive program of high correctness, but they often suffer from
executability. We show action translation can lead to benefits of both worlds, generating programs
that are highly executable while maintaining similar expressiveness in terms of program length.

Methods Executability Average Length
Vanilla GPT-2 1.5B 39.40% 4.24
Vanilla Codex 12B 18.07% 7.22
Translated Codex 12B 78.57% 7.13

Ground-Truth 100.00% 9.66

Table 6: Average executability & program length of different methods and human annotations.
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8.5 DETAILS OF HUMAN EVALUATIONS

Human evaluations are conducted on Amazon Mechanical Turk. For each method, we generate
action plans for all 88 high-level tasks. To account for expressivity of the VirtualHome environ-
ment (Puig et al., 2018), we further include ground-truth action plans from the VirtualHome dataset
in our human evaluations. The human evaluations are conducted in the form of questionnaires
containing all action plans with unknown corresponding methods. The questionnaire contains the
following instructions at the top:

For every question below, determine whether the task can be completed in any
reasonable scenario using the provided steps. In other words, can the task be
decomposed into these steps? Note that simply re-stating the task does not mean
completing it.

Human annotators are required to answer all the questions in the questionnaire, where each question
is an action plan generated by a method unknown to the annotator. The order of the questions is
randomly permuted before presented to each annotator. For each question, the annotators need to
answer either “Yes” or “No” indicating if they believe the action plan completes the task. For each
method, we report correctness percentage averaged across 10 participated human annotators.

8.6 DETAILS OF VIRTUALHOME TASKS

VirtualHome ActivityPrograms is a knowledge base collected on Mechanical Turk by Puig et al.
(2018). The knowledge base features real household activities of humans and correspondingly se-
quences of basic actions for robots to perform these activities. Each entry contains a high-level task
name (i.e. “Watch TV”), a mid-level detailed description (i.e. “Sit on my couch directly opposite my
TV, switch on my TV with the remote control and watch”), and a sequence of allowed actions (a.k.a.
a program) to perform the task in VirtualHome. There are 292 distinct high-level tasks and a total
of 2821 different entries in the knowledge base, where each high-level task may correspond one or
several programs. The knowledge base covers a diverse set of real human activities and a wide range
of different actions and objects. Puig et al. (2018) also conduct additional human evaluation on 100
randomly sampled programs and show that 64% of them are complete (i.e. contain all necessary
steps). Readers are encouraged to refer to Puig et al. (2018) for more comprehensive analysis of the
dataset.

Train/Test Split From all 292 distinct high-level tasks from the ActivityPrograms knowledge base,
we randomly sample 88 high-level tasks for evaluation. The remaining 204 tasks are used as demon-
stration set from which we are allowed to select as example(s) for prompting language models, or
in the case of supervised fine-tuning, they are used to fine-tune pre-trained language models.

8.7 RANDOM SAMPLES OF GT, VANILLA CODEX, AND TRANSLATED CODEX

Annotated Ground-Truth Codex Translated Codex (Ours)
Task: Go to sleep
Step 1: Walk to bedroom
Step 2: Walk to bed
Step 3: Find bed
Step 4: Turn to bed
Step 5: Look at bed
Step 6: Sit on bed
Step 7: Sleep

Task: Go to sleep
Step 1: Walk to bedroom
Step 2: Walk to bed
Step 3: Find bed
Step 4: Sit on bed
Step 5: Find pillow
Step 6: Sleep on pillow

Task: Go to sleep
Step 1: Walk to bedroom
Step 2: Walk to bed
Step 3: Lie on bed
Step 4: Sleep
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Task: Browse internet
Step 1: Walk to home office
Step 2: Walk to chair
Step 3: Find chair
Step 4: Sit on chair
Step 5: Find computer
Step 6: Switch on computer
Step 7: Turn to computer
Step 8: Look at computer
Step 9: Find keyboard
Step 10: Type on keyboard

Task: Browse internet
Step 1: Walk to home office
Step 2: Walk to chair
Step 3: Find chair
Step 4: Sit on chair
Step 5: Find computer
Step 6: Switch on computer
Step 7: Turn to computer
Step 8: Look at computer
Step 9: Find keyboard
Step 10: Type on keyboard

Task: Browse internet
Step 1: Walk to home office
Step 2: Walk to desk
Step 3: Find chair
Step 4: Sit on chair
Step 5: Find computer
Step 6: Switch on computer
Step 7: Find mouse
Step 8: Grab mouse
Step 9: Turn to computer
Step 10: Point at computer

Task: Listen to music
Step 1: Walk to bedroom
Step 2: Walk to computer
Step 3: Find computer
Step 4: Turn to computer
Step 5: Look at computer
Step 6: Walk to computer
Step 7: Find chair
Step 8: Pull chair
Step 9: Sit on chair
Step 10: Find headset
Step 11: Grab headset
Step 12: Put on headset
Step 13: Switch on computer
Step 14: Find keyboard
Step 15: Type on keyboard

Task: Listen to music
Step 1: Walk to home office
Step 2: Walk to chair
Step 3: Find chair
Step 4: Sit on chair
Step 5: Find computer
Step 6: Switch on computer
Step 7: Turn to computer
Step 8: Look at computer
Step 9: Find keyboard
Step 10: Type on keyboard

Task: Listen to music
Step 1: Walk to home office
Step 2: Walk to computer
Step 3: Sit on chair
Step 4: Switch on computer
Step 5: Find music stand

Task: Brush teeth
Step 1: Walk to bathroom
Step 2: Walk to tooth paste
Step 3: Find tooth paste
Step 4: Grab tooth paste
Step 5: Find toothbrush
Step 6: Grab toothbrush

Task: Brush teeth
Step 1: Walk to bathroom
Step 2: Walk to sink
Step 3: Find toothbrush
Step 4: Pick up toothbrush
Step 5: Put toothbrush in mouth
Step 6: Move brush around
mouth for two minutes
Step 7: Spit out toothpaste and
brush into sink
Step 8: Turn on water in sink and
rinse brush for one minute
Step 9: Turn off water in sink and
return brush to cupboard

Task: Brush teeth
Step 1: Walk to bathroom
Step 2: Open door
Step 3: Walk to sink
Step 4: Put pot on sink
Step 5: Put brush on toothbrush
Step 6: Turn to toothpaste
Step 7: Put toothpaste on tooth-
brush
Step 8: Put teeth on toothbrush

Task: Dry soap bottles
Step 1: Find towel
Step 2: Find soap
Step 3: Grab soap
Step 4: Wipe soap
Step 5: Put back soap
Step 6: Find shampoo
Step 7: Grab shampoo
Step 8: Wipe shampoo
Step 9: Put back shampoo
Step 10: Find shampoo
Step 11: Grab shampoo
Step 12: Wipe shampoo
Step 13: Put back shampoo

Task: Dry soap bottles
Step 1: Walk to kitchen
Step 2: Walk to sink
Step 3: Find sink
Step 4: Turn on water tap
Step 5: Wait for water to be hot
enough
Step 6: Fill container with hot
water
Step 7: Find soap bottles
Step 8: Pour soap into container
with hot water
Step 9: Wait for soap to dissolve
in water
Step 10: Turn off tap and empty
container into sink

Task: Dry soap bottles
Step 1: Walk to bathroom
Step 2: Walk to shower
Step 3: Find soap
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Task: Vacuum
Step 1: Walk to home office
Step 2: Walk to computer
Step 3: Find vacuum cleaner
Step 4: Switch on vacuum
cleaner
Step 5: Switch off vacuum
cleaner

Task: Vacuum
Step 1: Walk to hallway
Step 2: Walk to closet
Step 3: Find closet
Step 4: Open closet
Step 5: Find vacuum cleaner
Step 6: Turn on vacuum cleaner
Step 7: Walk to living room
Step 8: Vacuum floor in living
room

Task: Vacuum
Step 1: Walk to home office
Step 2: Walk to dresser
Step 3: Open dresser
Step 4: Find vacuum cleaner
Step 5: Grab vacuum cleaner
Step 6: Pull vacuum cleaner
Step 7: Plug in vacuum cleaner
Step 8: Switch on vacuum
cleaner
Step 9: Pull vacuum cleaner
Step 10: Push vacuum cleaner

Task: Find dictionary
Step 1: Walk to home office
Step 2: Walk to bookshelf
Step 3: Turn to bookshelf
Step 4: Look at bookshelf
Step 5: Turn to bookshelf
Step 6: Look at bookshelf
Step 7: Turn to bookshelf
Step 8: Look at bookshelf
Step 9: Turn to bookshelf
Step 10: Look at bookshelf
Step 11: Turn to bookshelf
Step 12: Look at bookshelf
Step 13: Turn to bookshelf
Step 14: Look at bookshelf
Step 15: Find novel
Step 16: Grab novel

Task: Find dictionary
Step 1: Walk to home office
Step 2: Walk to chair
Step 3: Find chair
Step 4: Sit on chair
Step 5: Find dictionary
Step 6: Open dictionary
Step 7: Look at dictionary

Task: Find dictionary
Step 1: Walk to home office
Step 2: Walk to book
Step 3: Find textbook

Task: Wash monitor
Step 1: Walk to home office
Step 2: Walk to computer
Step 3: Find computer
Step 4: Turn to computer
Step 5: Look at computer
Step 6: Switch off computer
Step 7: Find brush
Step 8: Turn to brush
Step 9: Look at brush
Step 10: Grab brush
Step 11: Wipe computer
Step 12: Drop brush
Step 13: Find napkin
Step 14: Grab napkin
Step 15: Wash napkin
Step 16: Wipe computer

Task: Wash monitor
Step 1: Walk to home office
Step 2: Walk to chair
Step 3: Find chair
Step 4: Sit on chair
Step 5: Find computer
Step 6: Switch on computer
Step 7: Turn to computer
Step 8: Look at computer
Step 9: Find keyboard
Step 10: Type on keyboard

Task: Wash monitor
Step 1: Walk to check
Step 2: Walk to desk

Task: Read newspaper
Step 1: Walk to home office
Step 2: Walk to chair
Step 3: Find chair
Step 4: Sit on chair
Step 5: Find newspaper
Step 6: Grab newspaper
Step 7: Open newspaper
Step 8: Read newspaper

Task: Read newspaper
Step 1: Walk to home office
Step 2: Walk to chair
Step 3: Find chair
Step 4: Sit on chair
Step 5: Find newspaper
Step 6: Open newspaper
Step 7: Read newspaper

Task: Read newspaper
Step 1: Walk to home office
Step 2: Walk to chair
Step 3: Find chair
Step 4: Sit on chair
Step 5: Find newspaper
Step 6: Grab newspaper
Step 7: Read newspaper
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Task: Apply lotion
Step 1: Find bed
Step 2: Turn to bed
Step 3: Point at bed
Step 4: Wash bed
Step 5: Turn to bed
Step 6: Look at bed
Step 7: Push bed
Step 8: Sit on bed

Task: Apply lotion
Step 1: Walk to bathroom
Step 2: Walk to cabinet
Step 3: Open cabinet
Step 4: Find lotion
Step 5: Apply lotion on hands
Step 6: Rub hands together for
10 seconds
Step 7: Apply lotion on face

Task: Apply lotion
Step 1: Walk to bathroom
Step 2: Turn to lotionbottle
Step 3: Grab lotionbottle

Task: Draw picture
Step 1: Walk to home office
Step 2: Walk to chair
Step 3: Find chair
Step 4: Sit on chair
Step 5: Find desk
Step 6: Open desk
Step 7: Find check
Step 8: Grab check
Step 9: Put check on desk
Step 10: Find pencil
Step 11: Grab pencil
Step 12: Close desk

Task: Draw picture
Step 1: Walk to home office
Step 2: Walk to chair
Step 3: Find chair
Step 4: Sit on chair
Step 5: Find computer
Step 6: Switch on computer
Step 7: Turn to computer
Step 8: Look at computer
Step 9: Find keyboard
Step 10: Type on keyboard

Task: Draw picture
Step 1: Walk to home office
Step 2: Walk to wall
Step 3: Walk to drawing
Step 4: Find drawing
Step 5: Turn to drawing
Step 6: Look at drawing
Step 7: Touch drawing
Step 8: Pull drawing
Step 9: Push drawing

Task: Prepare pot of boiling wa-
ter
Step 1: Walk to dining room
Step 2: Walk to pot
Step 3: Find pot
Step 4: Grab pot
Step 5: Walk to sink
Step 6: Find faucet
Step 7: Switch on faucet
Step 8: Put pot on sink
Step 9: Grab pot
Step 10: Switch off faucet
Step 11: Grab pot
Step 12: Walk to oven
Step 13: Put pot on oven
Step 14: Switch on oven

Task: Prepare pot of boiling wa-
ter
Step 1: Walk to kitchen
Step 2: Walk to sink
Step 3: Find sink
Step 4: Turn on tap
Step 5: Fill kettle with water
Step 6: Put kettle on stove
Step 7: Turn on stove
Step 8: Wait for water to boil

Task: Prepare pot of boiling wa-
ter
Step 1: Walk to kitchen
Step 2: Walk to cabinet
Step 3: Find pot
Step 4: Grab pot
Step 5: Walk to stove
Step 6: Find stove
Step 7: Switch on stove

Task: Look at mirror
Step 1: Walk to bathroom
Step 2: Walk to mirror
Step 3: Find mirror
Step 4: Turn to mirror
Step 5: Look at mirror

Task: Look at mirror
Step 1: Walk to bathroom
Step 2: Walk to mirror
Step 3: Look at mirror

Task: Look at mirror
Step 1: Walk to bedroom
Step 2: Walk to mirror
Step 3: Find mirror
Step 4: Turn to mirror
Step 5: Look at mirror

Task: Wipe down sink
Step 1: Walk to dining room
Step 2: Walk to rag
Step 3: Find rag
Step 4: Grab rag
Step 5: Walk to sink
Step 6: Wipe sink
Step 7: Put back rag

Task: Wipe down sink
Step 1: Walk to kitchen
Step 2: Walk to sink
Step 3: Find sink
Step 4: Wipe down sink
Step 5: Return to kitchen

Task: Wipe down sink
Step 1: Walk to bathroom
Step 2: Walk to cleaning solution
Step 3: Find cleaning solution
Step 4: Grab cleaning solution
Step 5: Find sink
Step 6: Pour cleaning solution
into glasses
Step 7: Find faucet
Step 8: Switch on faucet
Step 9: Scrub sink
Step 10: Wash sink
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Task: Complete surveys on ama-
zon turk
Step 1: Walk to chair
Step 2: Sit on chair
Step 3: Find computer
Step 4: Switch on computer
Step 5: Turn to computer
Step 6: Look at computer
Step 7: Find mouse
Step 8: Grab mouse
Step 9: Turn to computer
Step 10: Point at computer
Step 11: Find check
Step 12: Grab check
Step 13: Read check
Step 14: Put back mouse
Step 15: Find keyboard
Step 16: Type on keyboard

Task: Complete surveys on ama-
zon turk
Step 1: Walk to home office
Step 2: Walk to chair
Step 3: Find chair
Step 4: Sit on chair
Step 5: Find computer
Step 6: Switch on computer
Step 7: Turn to computer
Step 8: Look at computer
Step 9: Find keyboard
Step 10: Type on keyboard

Task: Complete surveys on ama-
zon turk
Step 1: Walk to home office
Step 2: Walk to desk
Step 3: Find chair
Step 4: Sit on chair
Step 5: Find computer
Step 6: Switch on computer

Task: Write book
Step 1: Walk to home office
Step 2: Walk to laptop
Step 3: Find laptop
Step 4: Grab laptop
Step 5: Find electrical outlet
Step 6: Plug in laptop
Step 7: Walk to love seat
Step 8: Sit on love seat
Step 9: Switch on laptop
Step 10: Find keyboard
Step 11: Type on keyboard

Task: Write book
Step 1: Walk to home office
Step 2: Walk to chair
Step 3: Find chair
Step 4: Sit on chair
Step 5: Find computer
Step 6: Switch on computer
Step 7: Turn to computer
Step 8: Look at computer
Step 9: Find keyboard
Step 10: Type on keyboard

Task: Write book
Step 1: Walk to home office
Step 2: Walk to light
Step 3: Find light
Step 4: Switch on light
Step 5: Find pen
Step 6: Grab pen
Step 7: Find chair
Step 8: Sit on chair
Step 9: Turn to novel

Task: Paint ceiling
Step 1: Find drawing
Step 2: Turn to drawing
Step 3: Point at drawing
Step 4: Watch drawing
Step 5: Touch drawing
Step 6: Walk to bedroom

Task: Paint ceiling
Step 1: Walk to home office
Step 2: Walk to chair
Step 3: Find chair
Step 4: Sit on chair
Step 5: Find paint can
Step 6: Open paint can
Step 7: Pour paint into paint can
Step 8: Close paint can
Step 9: Find roller
Step 10: Roll paint onto ceiling

Task: Paint ceiling
Step 1: Walk to home office
Step 2: Walk to ceiling
Step 3: Walk to painting
Step 4: Find painting
Step 5: Turn to painting
Step 6: Look at painting
Step 7: Touch painting
Step 8: Pull painting
Step 9: Push painting

Task: Change clothes
Step 1: Walk to bedroom
Step 2: Walk to dresser
Step 3: Open dresser
Step 4: Find dress
Step 5: Grab dress
Step 6: Put on dress
Step 7: Close dresser

Task: Change clothes
Step 1: Walk to closet
Step 2: Open closet
Step 3: Find clothes
Step 4: Put on clothes
Step 5: Close closet

Task: Change clothes
Step 1: Walk to bedroom
Step 2: Walk to dresser
Step 3: Find dresser
Step 4: Open dresser
Step 5: Find pants
Step 6: Grab pants
Step 7: Put on pants
Step 8: Find shirt
Step 9: Grab shirt
Step 10: Put on shirt
Step 11: Close dresser
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Task: Make bed
Step 1: Walk to bedroom
Step 2: Walk to bed
Step 3: Find sheets
Step 4: Grab sheets
Step 5: Pull sheets

Task: Make bed
Step 1: Walk to bedroom
Step 2: Walk to bed
Step 3: Find bed
Step 4: Sit on bed
Step 5: Find sheet
Step 6: Pick up sheet
Step 7: Find pillow
Step 8: Pick up pillow
Step 9: Find blanket
Step 10: Pick up blanket

Task: Make bed
Step 1: Stand up
Step 2: Walk to bedroom
Step 3: Walk to bed
Step 4: Turn to bed
Step 5: Put sheets on bed

Task: Read yourself to sleep
Step 1: Walk to bedroom
Step 2: Walk to novel
Step 3: Find novel
Step 4: Grab novel
Step 5: Find bed
Step 6: Sit on bed
Step 7: Find bookmark
Step 8: Grab bookmark
Step 9: Read novel
Step 10: Put bookmark on novel
Step 11: Sleep

Task: Read yourself to sleep
Step 1: Walk to home office
Step 2: Walk to chair
Step 3: Find chair
Step 4: Sit on chair
Step 5: Find computer
Step 6: Switch on computer
Step 7: Turn to computer
Step 8: Look at computer
Step 9: Find keyboard
Step 10: Type on keyboard

Task: Read yourself to sleep
Step 1: Walk to bedroom
Step 2: Walk to book
Step 3: Sit on chair
Step 4: Read check
Step 5: Sleep

Task: Hang keys
Step 1: Walk to bedroom
Step 2: Walk to dresser
Step 3: Find purse
Step 4: Grab purse
Step 5: Open purse
Step 6: Find keys
Step 7: Grab keys
Step 8: Find bowl
Step 9: Put keys on bowl
Step 10: Close purse
Step 11: Put back purse

Task: Hang keys
Step 1: Walk to home office
Step 2: Walk to chair
Step 3: Find chair
Step 4: Sit on chair
Step 5: Find computer
Step 6: Switch on computer
Step 7: Turn to computer
Step 8: Look at computer
Step 9: Find keyboard
Step 10: Type on keyboard

Task: Hang keys
Step 1: Walk to home office
Step 2: Walk to table
Step 3: Find keys
Step 4: Grab keys
Step 5: Walk to wall
Step 6: Find hanger
Step 7: Put keys on hanger

Task: Eat cheese
Step 1: Walk to dining room
Step 2: Walk to freezer
Step 3: Open freezer
Step 4: Find cheese
Step 5: Grab cheese
Step 6: Eat cheese

Task: Eat cheese
Step 1: Walk to fridge
Step 2: Open fridge
Step 3: Find cheese
Step 4: Pick up cheese
Step 5: Walk to table
Step 6: Place cheese on table
Step 7: Close fridge
Step 8: Walk to chair
Step 9: Sit on chair
Step 10: Eat cheese

Task: Eat cheese
Step 1: Walk to dining room
Step 2: Walk to table
Step 3: Find table
Step 4: Turn to table
Step 5: Find chair
Step 6: Sit on chair
Step 7: Find food
Step 8: Grab food
Step 9: Find plate
Step 10: Put food on plate
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