
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

THOUGHT ANCHORS: WHICH LLM
REASONING STEPS MATTER?

Anonymous authors
Paper under double-blind review

ABSTRACT

Current frontier large-language models rely on reasoning to achieve state-of-the-
art performance. Many existing interpretability methods are limited in this area,
as standard methods have been designed to study single forward passes of a
model rather than the multi-token computational steps that unfold during reasoning.
We argue that analyzing reasoning traces at the sentence level is a promising
approach to understanding reasoning processes. We introduce a black-box method
that measures each sentence’s counterfactual importance by repeatedly sampling
replacement sentences from the model, filtering for semantically different ones,
and continuing the chain of thought from that point onwards to quantify the
sentence’s impact on the distribution of final answers. We discover that certain
sentences can have an outsized impact on the trajectory of the reasoning trace
and final answer. We term these sentences thought anchors. These are generally
planning or uncertainty management sentences, and specialized attention heads
consistently attend from subsequent sentences to thought anchors. We further
show that examining sentence-sentence causal links within a reasoning trace gives
insight into a model’s behavior. Such information can be used to predict a problem’s
difficulty and the extent different question domains involve sequential or diffuse
reasoning. As a proof-of-concept, we demonstrate that our techniques together
provide a practical toolkit for analyzing reasoning models by conducting a detailed
case study of how the model solves a difficult math problem, finding that our
techniques yield a consistent picture of the reasoning trace’s structure. We provide
an open-source tool (anonymous-interface.com) for visualizing the outputs of our
methods on further problems. The convergence across our methods shows the
potential of sentence-level analysis for a deeper understanding of reasoning models.

1 INTRODUCTION

Training large language models to reason with chain-of-thought (Reynolds & McDonell, 2021; Nye
et al., 2021; Wei et al., 2023) has significantly advanced their capabilities (OpenAI, 2024). The
resulting reasoning traces are regularly used in safety research (Baker et al., 2025; Shah et al., 2025),
but there has been little work adapting interpretability methods to this new paradigm ((Venhoff
et al., 2025; Goodfire, 2025). Traditional mechanistic interpretability (Olah et al., 2020; Olah,
2022) methods often focus on a single forward pass of the model, understanding how layer-by-layer
activations (Wang et al., 2022; Heimersheim & Janiak, 2023). However, this too fine-grained for
autoregressive reasoning models, which consume their own output tokens.

Interpretability generally research aims to find the causes of a model’s behavior, to decompose a
model into smaller parts, and to map the mechanisms linking intermediate states to a model’s final
output. During reasoning, these intermediate states correspond to text in the chain-of-thought (CoT).
Our goal in this paper is to shed light about the computations being performed by CoT text and to
identify high-level principles regarding the structure of CoT. In addition, we present methods for
measuring how particular pieces of text drive the model’s final answer and influence one another.

For reasoning models, we propose that chain-of-thought traces can be decomposed into multi-
token reasoning steps. We operationalize reasoning steps in terms of sentences. Compared to
individual tokens, sentences are more coherent and often coincide with reasoning steps extracted
by an LLM (Venhoff et al., 2025; Arcuschin et al., 2025), and recent work suggests that sentence-

1

https://www.anonymous-interface.com

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Prompt

When base-16 number 66666 is written

in base 2, how many digits (bits) does it have?

Correct answer: 19

Plan Generation

Alternatively, maybe I can calculate the value
of 66666₁₆ in decimal and then find out how
many bits that number would require.

Active Computation

So, if each digit is 4 bits, then 5 digits would
be 5 * 4 = 20 bits.

Uncertainty Management

Maybe I messed up the decimal conversion.

#47

<think>

</think>

Us: remove sentence i and resample full rollout (100x)

Prior work: remove sentence i and force answer

1A. Black-box resampling

1B. Receiver head analysis

Find heads attending to sentence i

Vertical lines: broadcasting sentences

Ca usal masking

Mask all attention to sentence i

Examine effect on sentence j

#8

#13

A. B. C.

Figure 1: Summary of our methods for principled attribution to important sentences in reasoning
traces. A. An example reasoning trace with sentences labeled per our taxonomy. B. Our proposed
methods are: black-box resampling, receiver heads, and attention suppression. C. A directed acyclic
graph among sentences prepared by one of our techniques, made available open source.

ending punctuation frequently acts as an information-compressing boundary (Razzhigaev et al., 2025;
Chauhan et al., 2025). While a reasoning steps sometimes may be better seen as a sub-sentence
phrases or multiple sentence paragraph, we treat sentence segmentation as a robust starting point, and
we provide evidence validating the efficacy of this approach for studying CoTs.

We argue that CoTs are characterized by thought anchors: critical points in the CoT that guide the
reasoning trace’s trajectory. We provide evidence for this type of anchoring based on black-box
evidence from resampling and white-box evidence based on attention patterns. By measuring the
causal dependencies between sentences via a masking approach, we further show how a CoTs wider
computational structure can be interpreted. These measures go beyond just reading a CoT’s text,
providing a principled foundation for interpretability that sidesteps disputes about the “faithfulness”
of CoT text (Turpin et al., 2023; Korbak et al., 2025).

Section 2 and Section 3 provide evidence for the existence of particularly impactful sentences and
introduce a black-box method for measuring the counterfactual impact of a sentence on the model’s
final answer. Our method repeatedly resample reasoning traces from the start of each sentence. Based
on resampling data, we can quantify the counterfactual impact of each sentence on the likelihood
of any final answer. We find that planning sentences systematically initiate computations leading
to some answer and play a role distinct from sentences performing computations necessary for the
answer but which are predetermined. Section 4 adds a white-box method for evaluating importance
based on the sentences most attended. Our analyses reveal “receiver” heads that narrow attention
toward particular past “broadcasting” sentences. This provides a mechanistic measure of importance,
whose findings converge with our resampling technique.

Section 5 and Section 6 present a method mapping the wider structure of a CoT in terms of the
causal dependencies between pairs of sentences. For each sentence in a trace, we mask all attention
to it from subsequent tokens or by removing the sentence entirely. We then measure the effect on
subsequent token logits (KL divergence) compared without masking. Averaging token effects by
sentence, this strategy measures each sentence’s direct causal effect on each subsequent sentence.

Applying these techniques, our work suggests that analyzing reasoning through sentence-level units
introduces new domains through which reasoning models can be understood. Our work also opens
the door to more precise debugging of reasoning failures, identification of sources of unreliability,
and the development of techniques to enhance the reliability of reasoning models.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 CASE STUDY ON SENTENCE IMPORTANCE

We demonstrate in this section how sentences can be important by influencing the downstream
reasoning trace: a sentence is important if changing it would alter the subsequent CoT and the final
answer. We study this by conditioning the model on the CoT up to a given sentence, repeatedly
sampling the model continuing from that point, and comparing the resulting answer distributions
across different continuation points. We compare our strategy to the existing standard approach for
evaluating the impact of parts of a CoT by interrupting the model and forcing it to output its final
answer from that point. Here we a detailed case study to show how this standard approach ignores
sentences that are causally important by influencing the downstream CoT, but that our technique
captures this. In addition, we provide evidence on the utility of specifically examining sentences.

2.1 MODEL AND DATASET

Our analyses of sentence importance in this section along with Sections section 3, section 4, and
section 5 employ the DeepSeek R1-Distill Qwen-14B model, using a temperature of 0.6 and a top-p
value of 0.95(DeepSeek, 2025). For the present case study we focus on just one problem from the
MATH dataset (Hendrycks et al., 2021).

2.2 FORCED ANSWER IMPORTANCE

Earlier work has measured sentence importance by forcing a model to answer before completing its
reasoning trace (Lanham et al., 2023a; Radhakrishnan et al., 2023; Wang et al., 2025; Tanneru et al.,
2024; Parcalabescu & Frank, 2024). We compared our approach to this existing technique: For each
sentence in a CoT, we interrupt the model and append text, inducing a final output (“Therefore,
the final answer is \boxed{”). This was done 100 times at each sentence position.

2.3 IMPORTANCE VIA RESAMPLING

A limitation of the forced-answer approach is that a sentence S may be necessary for some final
answer but is consistently produced by the LLM late in the reasoning trace (e.g., a reliable arithmetic
statement). Thus, forced answer accuracy will be low for all sentences before S, precluding earlier
step importance from being assessed.

Our approach evaluates importance by examining how a sentence may guide downstream sentences.
Consider a rollout consisting of sentences S1, S2, . . . , Si, . . . , SM and a final answer A. We can
use resampling to capture the extent sentence Si influences A. Specifically, for a given sentence Si,
we generate a distribution over final answers by generating 100 rollouts both without sentence Si

(rollouts of the form S1, S2, . . . , Si−1, Ti, . . . , TN , A′
Si

), and another distribution with sentence Si

(rollouts of the form S1, S2, . . . , Si, Ui+1, . . . , UM , ASi
).

2.4 CASE STUDY

We first investigate the efficacy of our sentence importance technique by applying it to one problem:
“When the base-16 number 6666616 is written in base 2, how many base-2 digits (bits) does it have?”
(MATH Problem 4682; see Section A.1 for the CoT transcript). The resampling data shows that from
sentences 6-12, expected accuracy steadily declines, but sentence 13 causes accuracy to drastically
increase (indicated by the navy and red circles in Figure 2A).

The large accuracy fluctuation motivates inspection of this part of the CoT. The model initially
considers that 6666616 contains five base-16 digits, and any base-16 digit can be represented with
four base-2 digits. Thus, the model considers the answer: 20 bits. However, this overlooks that 616
is 1102 rather than 01102 due to the leading zero. Interestingly, Sentence 12 mentions “checking if
there’s any leading zero that might affect the bit count,” yet Sentence 12 lowers the expected accuracy.
The uplift comes from Sentence 13, where the model decides to “calculate the value of 6666616 in
decimal” (see resample alternatives in Section A.2). Downstream reasoning computes the decimal
value of 6666616 and converts it to binary to arrive at the correct answer: 19 bits. The key role of
Sentence 13 is missed if examining forced-accuracy importance (Figure 2A). This case study provides
initial evidence on how resampling identifies moments in a CoT where impactful plans are set.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: Accuracy over 100 rollouts at each (left) token, (middle) sentence, or (right) paragraph.
Navy and red circles border the most importance sentence (Sentence 13) and are plotted in each graph
as a reference. For the token graph, resampling was only done on the first 1,000 tokens of the CoT.

Further tests show the efficacy of specifically examining sentences. The sentence-level resampling
data mirrors the patterns seen resampling tokens but at a fraction of the cost (Figure 2B), whereas
resampling paragraphs leads to meaningfully less resolution (Figure 2C).

3 CONSISTENT PATTERNS IN SENTENCE IMPORTANCE

We now move to investigating whether particularly important sentences are a consistent theme
across CoTs, and whether they can be systematically related to sentence content. We formalize our
resampling approach into an importance score that can be compared across sentences and aggregated
across problems, and we apply analyzing CoTs for challenging MATH questions. This lets us analyze
how importance varies across different sentence types (e.g., planning statements) and to contrast what
our proposed measure captures compared to the typical forced-importance measure. In doing so, we
move beyond a single case study to characterize patterns of sentence importance in model reasoning.

3.1 DATASET

As for the case study, we examine problems from the MATH dataset. As our analysis hinges on
variability in final responses, so we target 20 challenging but doable questions that are correctly
solved 25-75% of the time, identified by testing on 1,000 problems 10 times each. For each selected
problem, we generated one correct and one incorrect reasoning trace, producing 40 responses. The
average response is 144.2 sentences (95% CI: [116.7, 171.8]) and 4208 tokens (95% CI: [3479,
4937]). We focus only on sentences before the model has converged on an answer (i.e., after which it
gives the same response in >98% of resamples). In Section B, we provide results from applying our
techniques to the R1-Distill-Llama-8B model.

3.2 SENTENCE TAXONOMY

To more systematically test whether reasoning is characterized by key sentences with outsized impacts,
we organized sentences into different categories and measured their causal impacts. We adopted the
framework by Venhoff et al. (2025), which defines distinct reasoning functions within a reasoning
trace. We specify eight categories (see examples and frequencies in Section C):

1. Problem Setup: Parsing or rephrasing the problem
2. Plan Generation: Stating or deciding on a plan of action, meta-reasoning
3. Fact Retrieval: Recalling facts, formulas, problem details without computation
4. Active Computation: Algebra, calculations, or other manipulations toward the answer
5. Uncertainty Management: Expressing confusion, re-evaluating, including backtracking
6. Result Consolidation: Aggregating intermediate results, summarizing, or preparing
7. Self Checking: Verifying previous steps, checking calculations, and re-confirmations
8. Final Answer Emission: Explicitly stating the final answer

Each sentence in the analyzed response is assigned to one of these categories using an LLM-based
auto-labeling approach (detailed in Section D). Categories that rarely appear are omitted from the
figures below. Residual-stream probes accurately distinguish categories (see Section E).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

A. B.

Figure 3: Plots show each sentence category for (A) forced-answer importance and (B) counterfactual
importance; 5 most common sentence types shown (see Section J). The x-axis shows the sentence’s
average position in a reasoning trace to show this does not explain the difference in importance.

3.3 COUNTERFACTUAL IMPORTANCE

We additionally formalize our approach to quantifying importance in a manner that can be applied to
any problem, including ones with any number of possible outcomes. We present two measures:

1. Resampling importance. We can compute the KL Divergence between the final answer
distributions when conditioning up to Si, p(ASi), or up to the prior sentence, p(A′

Si
),

i.e., importancer := DKL[p(A
′
Si
)||p(ASi

)], providing a measure of how much sentence Si

changes the answer. We call this resampling importance. Because we resample all steps
after a given sentence Si, we avoid the aforementioned limitation of forced-answering.

2. Counterfactual importance. The problem with resampling importance is that if Ti is
identical or similar to Si then we do not get much information about whether Si is important
or not. Therefore, we write S ̸≈ T if two sentences S and T are dissimilar, defined as having
embeddings with a cosine similarity less than the median value across all sentence pairs
in our dataset; see Section F for details and evidence the below findings remain consistent
across other thresholds. We can define counterfactual importance by conditioning on
Ti ̸≈ Si; i.e., importance := DKL[p(A

′
Si
|Ti ̸≈ Si)||p(ASi

)]. Our KL divergence analyses
include ϵ = 10−9 to avoid division by zero, but our findings remain consistent if performed
using additive smoothing (α = 0.5 or 1.0; Section G).

Our analyses below continue with counterfactual importance, comparing it to forced answer
importance also computed based on final-answer KL divergence. Relative to resampling importance,
counterfactual importance conditions on semantically different resamples, reducing overdetermination
and better isolating a sentence’s causal influence. Resampling importance remains a complementary
metric that captures how far a prediction deviates from the model’s average behavior and may be
preferable when that notion of deviation is primary; we compare the two in Section H.

3.4 RESULTS

Plan generation and uncertainty management (e.g., backtracking) sentences consistently show
higher counterfactual importance than other categories like fact retrieval or active computation (see
Figure 3B). This supports the view that high-level organizational sentences anchor, organize, and steer
the reasoning trajectory. These findings deviate from the analysis of forced answer importance, which
instead implicates active computation as producing the greatest distributional shifts (Figure 3A). The
forced-answer approach entirely neglects the importance of planning that influences other sentences,
which we argue is more meaningful for understanding the trajectory of a reasoning trace. In Section I
we also provide results from an LLM judge tasked to score each sentence’s importance based on
reading the text. The judge likewise focuses on active computation steps and misses how a sentence
influences the downstream reasoning, suggesting this is difficult to predict.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 4: A. Lines show the vertical attention scores for each sentence by the 40 different heads in
layer 36. Head 6 has been highlighted as a receiver head, and its corresponding attention weight
matrix is shown for reference. Its prominent spikes cause the distribution to have a high kurtosis. B.
Histogram of these kurtosis values across all attention heads, median across all reasoning traces.

4 MECHANISTIC EVIDENCE FOR SENTENCE IMPORTANCE

We hypothesize that important sentences may receive heightened attention. Although attention
weights do not necessarily imply causal links, attention is a plausible mechanism by which important
sentences influence subsequent sentences. We conjecture further that a focus on important sentences
may be driven by specific attention heads, and by tracking such heads, we may pinpoint key sentences.

We assessed the degree that different attention heads narrow attention toward particular sentences.
For each of the 40 reasoning traces produced for the MATH problems, we averaged each attention
head’s token-token attention weight matrix to form a sentence-sentence matrix, where each element
is the mean across all pairs of tokens between two sentences. For each matrix, we computed the mean
of its columns below the diagonal to measure the extent each sentence receives attention from all
downstream sentences; averaged only among pairs at least four sentences apart. This generates a
distribution for each head (e.g., Figure 4A), and the extent each head narrows attention toward specific
sentences in general can be quantified as its distribution’s kurtosis. Plotting each head’s kurtosis
reveals that some attention heads strongly narrow attention toward specific sentences (Figure 4B).

4.1 THE IDENTIFICATION OF RECEIVER HEADS

We refer to attention heads that narrow attention toward specific sentences as “receiver heads”. These
heads are more common in later layers (Section K). To formally assess the existence of receiver
heads, we tested whether some attention heads consistently operate in this role by measuring the
split-half reliability of heads’ kurtosis scores. We found a strong head-by-head correlation (r = .84)
between kurtosis scores computed for half of the problems with kurtosis scores for the other half
of problems. Thus, some attention heads consistently operate as receiver heads, albeit with some
heterogeneity across responses in which heads narrow attention most.

Receiver heads usually direct attention toward the same sentences. Among the 16 heads with the
highest kurtoses, we computed the sentence-by-sentence correlation between the vertical-attention
scores for each pair of heads; correlated separately for each reasoning trace then averaged (i.e.,
averaging across numerous correlations with 50-200 samples each). This produced an large correlation
(mean r = .56). Thus, receiver heads generally attend the same sentences (for reference, the average
correlation among any heads is r = .35). This convergence across receiver heads is consistent with
the existence of sentence importance, which these heads identify.

Attentional narrowing toward particular sentences may be a feature specifically of reasoning models
that enhances their performance. Comparing R1-Distill-Qwen-14B (reasoning) and Qwen-14B (base)
suggests that the reasoning model’s receiver heads will narrow attention toward singular sentences
to a greater degree (Section L). Furthermore, ablating receiver heads leads to a greater reduction in
accuracy than ablating self-attention heads at random (Section M). Altogether, these findings are
consistent with receiver heads and thought-anchor sentences playing key roles in reasoning.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 5: The boxplot shows the average top-32 receiver-head score for each sentence type. The
boxes correspond to the interquartile range across different reasoning traces. The effects whereby
plan-generation and uncertainty management sentences yield the highest scores (ps < .001) remain
significant when examining top-16 or top-64 receiver-head scores (ps < .001)

4.2 LINKS TO COUNTERFACTUAL IMPORTANCE AND SENTENCE TYPES

Plan generation and uncertainty management sentences consistently receive the most attention via
receiver heads (Figure 5), whereas active computation sentences receive relatively minimal attention
(ts > 4.0, ps < .001 per paired t-tests comparing the mean receiver-head score for the former two versus
the later two categories). These findings demonstrate a parallel between the receiver head findings
here and the earlier results on the sentence types yielding the highest counterfactual importance.

5 CASE STUDY ON SENTENCE-SENTENCE CAUSAL LINKS

In the previous sections, we focused on how individual sentences influence the final answer. Here,
we turn to the finer-grained question of how sentences influence each other within a reasoning trace.
Our aim is to estimate directed, sentence-to-sentence causal links: for any pair (Si, Sj) with j > i,
how much does altering Si change the computation carried by Sj? We approximate these links by
constructing a sentence-level causal graph, using interventions that selectively suppress attention to a
given sentence and measuring how this affects the downstream sentence’s logits. We first illustrate
this approach on our running case study before turning to more systematic analyses.

5.1 APPROACH

Our approach examines how suppressing all attention towards a given sentence Si influences later
sentence Sj . We define this impact as the KL divergence between logits with/without masking,
averaged across a sentence’s tokens. We normalize this score by subtracting the latter sentence’s
average causal effect from all prior sentences. Section N provides pseudocode for generating the
causal graph. Suppressing attention is mostly equivalent to omitting a sentence from a CoT, only
differing in positional embeddings.

Our approach assumes (i) token logits capture a sentence’s semantic content and (ii) masking sentences
does not problematically induce out-of-distribution behavior. We evaluated these assumptions by
correlating the sentence-sentence scores with those from a sentence-sentence strategy based on our
counterfactual resampling method, which assesses how resampling Si with Ti (S ̸≈ T) influences
the likelihood of Sj appearing. This measure positively correlates with the scores from the masking-
and logits-based strategy (section O), suggesting that logits indeed track semantics. We continue with
the sentence-masking approach because it requires ∼100x less compute, increasing scalability.

5.2 CASE STUDY

We continue our initial case study (Section 2.4), but here, we focus on three local maxima in the
sentence-masking graph (Figure 6), which align closely with the sentences implicated as important
by receiver-heads (see further details on the case study in Section P):

• (Sentences: 12 → 43) After suggesting the answer “20 bits”, the model decides to begin
verifying it (Sentence 12). Verification leads to a different solution, “19 bits” (Sentence 43).
Between these key sentences, most of the intermediate text is performing arithmetic.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

• (Sentences: 44 → 65) Noticing the discrepancy (Sentence 44), the model decides to check
its calculations. It finds that they are correct, and the discrepancy remains (Sentence 65).

• (Sentences: 12 → 66) The model realizes that its initial suspicion about leading zeroes
(Sentence 12) is justified and states that this is the reason for the discrepancy (Sentence 66).

These connections point to an interpretable scaffold reflecting computations on the pursuit of interme-
diate results, the execution of self-correction subroutines, and the synthesis of prior statements.

Figure 6: For the correct-answer CoT of Problem #4682, the matrix shows the effect of masking one
sentence (x-axis) on a future sentence’s logits (y-axis). Darker colors indicate higher values.

5.3 OPEN SOURCE INTERFACE

We released an open source interface (anonymous-interface.com) for visualizing reasoning traces and
comparing alternative rollouts. We show our proof-of-concept interface in Figure 1C, where important
sentences are represented by larger nodes and causal connections between sentences are shown with
dashed gray lines. The tool aims to benefit interpretability and unwanted behavior debugging.

6 SYSTEMATIC DIFFERENCES IN SENTENCE-SENTENCE CAUSAL LINKS

We next investigated how causal graphs may shed light on general questions about LLM reasoning.
Specifically, we ask: How can examining sentence–sentence links shed light on model confidence
during reasoning? Relatedly, why do some problem domains like mathematics display stronger
uplift in reasoning compared to non-reasoning models? We hypothesize that strong causal links
between nearby sentences reflect a coherent logical flow and well-formed plan, so each sentence
strongly constrains the next, whereas distant linkages reflect uncertainty and backtracking. Despite
occasional long-range connections, we further hypothesize that successful mathematical CoTs are
characterized by tight, local causal links between sequential sentences, whereby planning statements
sharply structure the CoT by tightly determining what comes next with little variability. Domains
related to mathematics may uniquely lend themselves to such firmly structured reasoning, whereas
CoTs for other topics (e.g., history or biology) may solve problems by scanning a wider latent space
in a less tightly structured fashion.

6.1 METHODS

We pivoted to analyzing MMLU problems (Hendrycks et al., 2020), so that we could contrast problem
domains. We also switched to Qwen3-30b-a3b, so that we could leverage a serverless LLM provider

8

https://www.anonymous-interface.com

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

that outputs token logits, which allowed scaling up our analysis to thousands of CoTs. We ran
Qwen3-30b-a3b in non-reasoning mode on all 15,638 MMLU questions to identify challenging
problems where non-reasoning accuracy is under 50% (per answer logits). This corresponds to 3,651
problems, and for 2,492 of these questions, the model answers correctly when using reasoning at
least once across ten passes. We computed each correct CoT’s causal graph (mean = 90.1 sentences).

We compared graphs on the strength of their causal links at different distances between sentences.
We specifically computed the mean attention-suppression effect at distance k for each graph (m×m
sentences) for all k ≤ m

2 . This corresponds to the mean of a matrix’s k-th subdiagonal. We consider
subdiagonals only up to m

2 to reduce noise by ensuring that the mean is computed among an adequate
number of elements (e.g., the m-th subdiagonal would be just the single bottom-leftmost element).

6.2 RESULTS

The distance of causal effects tracks question difficulty. Computing correlations within-subject,
we find that questions with high average accuracy elicit CoTs with stronger close-range links and
weaker long-range links (Figure 7A). In addition, subjects where average accuracy is high overall
tend to produce CoTs with stronger close links (r = .44, p < .001; Figure 7B) and weaker long
links (r = −.54, p < .001 Figure 7C). The strongest levels of accuracy were seen in problems
requiring mathematical thinking (e.g., mathematics & physics). As hypothesized, these areas also
yielded CoTs with stronger close-range connections and weaker long-range connections (two-sample
t-test |t|s > 10, ps < .001; Figure 7D). Although these analyses do not model plan generation and
uncertainty management sentences directly, they are consistent with a picture in which plan-generation
anchors provide the local scaffolding for successful reasoning while uncertainty-management anchors
mediate longer-range links that resolve discrepancies, together shaping the overall structure of
effective CoTs.

Figure 7: A. For each distance k, we computed the correlation between a question’s average k-
distance causal effect in one CoT and the question’s mean reasoning accuracy across ten CoTs. B.
& C. Scatterplot shows each subject’s average close-range (k = 1-2) and long-range (k = 16-64)
was plotted against its average reasoning accuracy. D. Box-plots showing the spread of average
close-range and long-range causal effects for different question domains; each point represents one
CoT, and black circles represent means.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 RELATED WORK

Reasoning advances and unfaithfulness in LLMs. CoT reasoning, optimized using reinforcement
learning, has driven major capabilities improvements in large language models (Wei et al., 2023;
Nye et al., 2021; Reynolds & McDonell, 2021). This reasoning paradigm introduces novel safety
challenges. Experiments inducing unfaithful reasoning have led some to raise concerns about the
interpretability of CoT text (Lanham et al., 2023b; Chen et al., 2025), although others have argued
that CoT text generally is a meaningful representation, particularly for difficult tasks (Korbak et al.,
2025). By showing how sentence types, categorized based on their text, differ in their resampling and
receiver-head importance, our findings endorse the meaningfulness and interpretability of CoT text.

Importance of individual steps. A variety of techniques that can be used for CoT interpretability
have been developed, and these likewise suggest that a subset of steps disproportionately drive the
final answer – e.g., ROSCOE metrics (Golovneva et al., 2023), gradient-based scores (Wu et al.,
2023), and resampling at fork tokens (Bigelow et al., 2024). Complementing these, we provide a
more principled framework for understanding how CoTs are constructed around key sentences.

8 DISCUSSION AND LIMITATIONS

This work presents initial steps towards a principled decomposition of reasoning traces with a focus
on identifying thought anchors: sentences with outsized importance on the model’s final response,
specific future sentences, and downstream reasoning trajectory. We have also begun unpacking the
attentional mechanisms associated with these important sentences. We expect that understanding
thought anchors will be critical for interpreting reasoning models and ensuring their safety.

While some research raises concerns that CoT text can be unfaithful to the model’s underlying
computation (Lanham et al., 2023b; Chen et al., 2025), our results show CoT text is mechanistically
relevant and interpretable. For example, sentences categorized as plan generation and uncertainty
management consistently exhibit higher counterfactual importance in our resampling analyses and
receive more focused attention from receiver heads. This demonstrates a link between what a sentence
says and its functional role in the computation, and this type of correspondence supports arguments
on the value of CoT legibility (Korbak et al., 2025).

A primary limitation of our resampling approach is its computational cost. For a CoT of 150 sentences
and 4000 tokens, resampling each sentence 100 times corresponds to 20M output tokens. This cost
precludes its usage for real-time monitoring, but it remains feasible for intensive analyses of specific
questions of interest – e.g., understanding CoTs in safety-relevant scenarios, like cases of LLM
blackmailing or reward hacking. We resampled CoTs 100 times per sentence to achieve fairly precise
estimates (in terms of final-answer accuracy, 95% CI corresponds to at worst ±10%). However, for
analyses that average effects across many CoTs, fewer resamples for any one CoT would suffice.
Future work could develop adaptive resampling strategies that allocate more computational budget to
potentially pivotal moments in the trace, maximizing precision while minimizing cost.

Further work is needed to evaluate the generalizability of our findings across model capabilities and
question types. More advanced models may display improved error correction abilities, lowering
the frequency of sudden drops in accuracy following a sentence. Such models may also be more
aggressively trained to minimize CoT length, which could increase average importance. Problem
difficulty also influences reasoning, as we show in Section 6. Extremely difficult problems might
contain numerous points for subtle errors that could be difficult to correct; in this case, correct-CoT
sentences may be mostly low counterfactual importance, while incorrect CoTs could contain large
downward spikes following any error. Research remains necessary to uncover the landscape of
reasoning behavior, but we expect our methods will still apply to larger models and other problems.

We view this as preliminary work. Our analyses require refinement to grapple with how downstream
sentences may be overdetermined by different possible trajectories or independent sufficient causes.
Our receiver-head analyses are confounded by a sentence’s position in the reasoning trace (see
Section Q). Despite these limitations, we believe that we have demonstrated that our metrics are
an advance on prior work, interrupting models and forcing final answers. The surprising degree of
shared structure we have found across our three methods illustrates the potential value of future work
in this area and points to the possibility of more powerful interpretability techniques to come.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

9 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide comprehensive implementation details, code,
and experimental specifications. Our code is publicly available at https://anonymous.4open.
science/r/thought-anchors-2CB0 , which includes all scripts for black-box resampling,
receiver head analysis, and attention suppression experiments. We have also released two Python pack-
ages to aid in conducting these analyses: The first package helps with CoT prefilling and caching API
responses (https://anonymous.4open.science/r/rollouts-6C4D/), and the second
package helps with properly splitting CoTs into sentences while respecting standard tokenization pro-
cedures (https://anonymous.4open.science/r/Sentences-1148). We also provide
an interactive visualization tool at anonymous-interface.com for exploring reasoning traces
and sentence-level causal dependencies.

The complete prompt used for sentence taxonomy labeling is provided in Section D, including
detailed instructions for function tags and dependency annotations. Our experimental setup uses
DeepSeek R1-Distill-Qwen-14B (48 layers) with temperature 0.6 and top-p 0.95, tested on the MATH
dataset (Hendrycks et al., 2020) focusing on problems with 25-75% solution rates. We specify
exact hyperparameters including 100 rollouts per sentence for counterfactual resampling, cosine
similarity threshold of 0.8 (median value) using all-MiniLM-L6-v2 embeddings (Section F), and
identification of receiver heads via kurtosis scores of attention distributions. The sentence-sentence
causal masking methodology is fully detailed in Section 5, with validation through correlation with
resampling-based measures (Section O). For MMLU experiments in Section 6, we used Qwen3-
30b-a3b on 2,492 problems where non-reasoning accuracy is below 50%, computing causal graphs
for correct CoTs. Additional reproducibility details include: full case study transcript (Section A),
sentence category distributions (Section C), receiver head ablation procedures with 128/256/512
heads (Section M), and cross-model validation on R1-Distill-Llama-8B (Section B). All models
used are publicly available, and we provide pseudocode for the sentence-to-sentence importance
calculation in Section O.

REFERENCES

Iván Arcuschin, Jett Janiak, Robert Krzyzanowski, Senthooran Rajamanoharan, Neel Nanda, and
Arthur Conmy. Chain-of-thought reasoning in the wild is not always faithful, 2025. URL
https://arxiv.org/abs/2503.08679.

Bowen Baker, Joost Huizinga, Leo Gao, Zehao Dou, Melody Y. Guan, Aleksander Madry, Wojciech
Zaremba, Jakub Pachocki, and David Farhi. Monitoring reasoning models for misbehavior and the
risks of promoting obfuscation, 2025. URL https://arxiv.org/abs/2503.11926.

Eric Bigelow, Ari Holtzman, Hidenori Tanaka, and Tomer Ullman. Forking paths in neural text
generation, 2024. URL https://arxiv.org/abs/2412.07961.

Sonakshi Chauhan, Maheep Chaudhary, Koby Choy, Samuel Nellessen, and Nandi Schoots. Punctua-
tion and predicates in language models. arXiv preprint arXiv:2508.14067, 2025.

Yanda Chen, Joe Benton, Ansh Radhakrishnan, Jonathan Uesato, Carson Denison, John Schulman,
Arushi Somani, Peter Hase, Misha Wagner, Fabien Roger, Vlad Mikulik, Samuel R. Bowman, Jan
Leike, Jared Kaplan, and Ethan Perez. Reasoning models don’t always say what they think, 2025.

DeepSeek. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025.
URL https://arxiv.org/abs/2501.12948.

Olga Golovneva, Moya Chen, Spencer Poff, Martin Corredor, Luke Zettlemoyer, Maryam Fazel-
Zarandi, and Asli Celikyilmaz. Roscoe: A suite of metrics for scoring step-by-step reasoning,
2023. URL https://arxiv.org/abs/2212.07919.

Goodfire. Under the hood of a reasoning model. https://www.goodfire.ai/blog/
under-the-hood-of-a-reasoning-model, 2025. Accessed: May 15, 2025.

Stefan Heimersheim and Jett Janiak. A circuit for python docstrings in a 4-layer attention-only trans-
former, 2023. https://www.alignmentforum.org/posts/u6KXXmKFbXfWzoAXn/
a-circuit-for-python-docstrings-in-a-4-layer-attention-only.

11

https://anonymous.4open.science/r/thought-anchors-2CB0
https://anonymous.4open.science/r/thought-anchors-2CB0
https://anonymous.4open.science/r/rollouts-6C4D/
https://anonymous.4open.science/r/Sentences-1148
anonymous-interface.com
https://arxiv.org/abs/2503.08679
https://arxiv.org/abs/2503.11926
https://arxiv.org/abs/2412.07961
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2212.07919
https://www.goodfire.ai/blog/under-the-hood-of-a-reasoning-model
https://www.goodfire.ai/blog/under-the-hood-of-a-reasoning-model
https://www.alignmentforum.org/posts/u6KXXmKFbXfWzoAXn/a-circuit-for-python-docstrings-in-a-4-layer-attention-only
https://www.alignmentforum.org/posts/u6KXXmKFbXfWzoAXn/a-circuit-for-python-docstrings-in-a-4-layer-attention-only

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset, 2021. URL
https://arxiv.org/abs/2103.03874.

Tomek Korbak, Mikita Balesni, Elizabeth Barnes, Yoshua Bengio, Joe Benton, Joseph Bloom, Mark
Chen, Alan Cooney, Allan Dafoe, Anca Dragan, et al. Chain of thought monitorability: A new and
fragile opportunity for ai safety. arXiv preprint arXiv:2507.11473, 2025.

Tamera Lanham, Anna Chen, Ansh Radhakrishnan, Benoit Steiner, Carson Denison, Danny Her-
nandez, Dustin Li, Esin Durmus, Evan Hubinger, Jackson Kernion, Kamilė Lukošiūtė, Karina
Nguyen, Newton Cheng, Nicholas Joseph, Nicholas Schiefer, Oliver Rausch, Robin Larson, Sam
McCandlish, Sandipan Kundu, Saurav Kadavath, Shannon Yang, Thomas Henighan, Timothy
Maxwell, Timothy Telleen-Lawton, Tristan Hume, Zac Hatfield-Dodds, Jared Kaplan, Jan Brauner,
Samuel R. Bowman, and Ethan Perez. Measuring faithfulness in chain-of-thought reasoning,
2023a. URL https://arxiv.org/abs/2307.13702.

Tamera Lanham, Anna Chen, Ansh Radhakrishnan, Benoit Steiner, Carson Denison, Danny Hernan-
dez, Dustin Li, Esin Durmus, Evan Hubinger, Jackson Kernion, et al. Measuring faithfulness in
chain-of-thought reasoning. arXiv preprint arXiv:2307.13702, 2023b.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David
Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, Charles Sutton, and
Augustus Odena. Show your work: Scratchpads for intermediate computation with language
models, 2021.

Chris Olah. Mechanistic interpretability, variables, and the importance of interpretable bases. https:
//www.transformer-circuits.pub/2022/mech-interp-essay, 2022.

Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter.
Zoom in: An introduction to circuits. Distill, 2020. doi: 10.23915/distill.00024.001.

OpenAI. o1: Introducing our first reasoning model. https://openai.com/o1/, 2024. Ac-
cessed: 2025-05-15.

Letitia Parcalabescu and Anette Frank. On measuring faithfulness or self-consistency of natu-
ral language explanations. In Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 6048–6089, 2024.

Ansh Radhakrishnan, Karina Nguyen, Anna Chen, Carol Chen, Carson Denison, Danny Hernandez,
Esin Durmus, Evan Hubinger, Jackson Kernion, Kamilė Lukošiūtė, et al. Question decomposition
improves the faithfulness of model-generated reasoning. arXiv preprint arXiv:2307.11768, 2023.

Anton Razzhigaev, Matvey Mikhalchuk, Temurbek Rahmatullaev, Elizaveta Goncharova, Polina
Druzhinina, Ivan Oseledets, and Andrey Kuznetsov. Llm-microscope: Uncovering the hidden role
of punctuation in context memory of transformers. arXiv preprint arXiv:2502.15007, 2025.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.
arXiv preprint arXiv:1908.10084, 2019.

Laria Reynolds and Kyle McDonell. Prompt programming for large language models: Beyond the
few-shot paradigm, 2021.

Rohin Shah, Alex Irpan, Alexander Matt Turner, Anna Wang, Arthur Conmy, David Lindner, Jonah
Brown-Cohen, Lewis Ho, Neel Nanda, Raluca Ada Popa, Rishub Jain, Rory Greig, Samuel Albanie,
Scott Emmons, Sebastian Farquhar, Sébastien Krier, Senthooran Rajamanoharan, Sophie Bridgers,
Tobi Ijitoye, Tom Everitt, Victoria Krakovna, Vikrant Varma, Vladimir Mikulik, Zachary Kenton,
Dave Orr, Shane Legg, Noah Goodman, Allan Dafoe, Four Flynn, and Anca Dragan. An approach
to technical agi safety and security, 2025. URL https://arxiv.org/abs/2504.01849.

12

https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2307.13702
https://www.transformer-circuits.pub/2022/mech-interp-essay
https://www.transformer-circuits.pub/2022/mech-interp-essay
https://openai.com/o1/
https://arxiv.org/abs/2504.01849

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Sree Harsha Tanneru, Dan Ley, Chirag Agarwal, and Himabindu Lakkaraju. On the hardness of
faithful chain-of-thought reasoning in large language models. arXiv preprint arXiv:2406.10625,
2024.

Miles Turpin, Julian Michael, Ethan Perez, and Samuel R. Bowman. Language models don’t
always say what they think: Unfaithful explanations in chain-of-thought prompting, 2023. URL
https://arxiv.org/abs/2305.04388.

Constantin Venhoff, Iván Arcuschin, Philip Torr, Arthur Conmy, and Neel Nanda. Understanding
reasoning in thinking language models via steering vectors. In Workshop on Reasoning and
Planning for Large Language Models, 2025.

Kevin Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt. Inter-
pretability in the wild: a circuit for indirect object identification in gpt-2 small, 2022. URL
https://arxiv.org/abs/2211.00593.

Zezhong Wang, Xingshan Zeng, Weiwen Liu, Yufei Wang, Liangyou Li, Yasheng Wang, Lifeng
Shang, Xin Jiang, Qun Liu, and Kam-Fai Wong. Chain-of-probe: Examining the necessity and
accuracy of cot step-by-step. In Findings of the Association for Computational Linguistics: NAACL
2025, pp. 2586–2606, 2025.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le,
and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023.
URL https://arxiv.org/abs/2201.11903.

Skyler Wu, Eric Meng Shen, Charumathi Badrinath, Jiaqi Ma, and Himabindu Lakkaraju. Analyzing
chain-of-thought prompting in large language models via gradient-based feature attributions, 2023.
URL https://arxiv.org/abs/2307.13339.

13

https://arxiv.org/abs/2305.04388
https://arxiv.org/abs/2211.00593
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2307.13339

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A CASE STUDY DETAILS

A.1 CASE STUDY TRANSCRIPT

Below is a transcript of the model’s response used for the case study (Section 5.2). The first 74
sentences following <think> are shown. After this point, the model converged on 100% resampling
accuracy for all subsequent sentences.

0. (problem_setup): Okay, so I have this problem where I need to find out how many bits
the base-16 number 6666616 has when it’s converted to base-2.

1. (uncertainty_management): Hmm, let’s see.
2. (fact_retrieval): I remember that each hexadecimal digit corresponds to exactly 4

binary digits, or bits.
3. (plan_generation): So, maybe I can just figure out how many hexadecimal digits there

are and multiply by 4 to get the number of bits.
4. (uncertainty_management): Let me check that.
5. (fact_retrieval): First, the number given is 66666 in base 16.
6. (active_computation): Let me count the digits: 6, 6, 6, 6, 6.
7. (result_consolidation): That’s five digits in total.
8. (active_computation): So, if each digit is 4 bits, then 5 digits would be 5×4=20 bits.
9. (uncertainty_management): Wait, is that always the case?

10. (fact_retrieval): I think so because each hex digit maps directly to 4 bits without any
overlap or sharing.

11. (result_consolidation): So, 6666616 would be 20 bits in binary.
12. (uncertainty_management): But wait, I should make sure that this is correct by

actually converting the number or at least checking if there’s any leading zero that might
affect the bit count.

13. (plan_generation): Alternatively, maybe I can calculate the value of 6666616 in
decimal and then find out how many bits that number would require.

14. (plan_generation): Let’s try that approach to cross-verify.
15. (fact_retrieval): So, to convert 6666616 to decimal, I can expand it as follows:
16. (fact_retrieval): Each digit represents a power of 16.
17. (fact_retrieval): Starting from the right, the digits are 160,161,162,163,164.
18. (fact_retrieval): So, the number is:
19. (active_computation): 6×164+6×163+6×162+6×161+6×160

20. (plan_generation): Let me compute each term:
21. (fact_retrieval): First, 164 is 16×16×16×16.
22. (active_computation): 162 is 256, so 163 is 256×16=4096, and 164 is

4096×16=65536.
23. (active_computation): So, 6×65536=393216
24. (active_computation): Next, 163 is 4096, so 6×4096=24576
25. (active_computation): Then, 162 is 256, so 6×256=1536
26. (active_computation): 161 is 16, so 6×16=96
27. (active_computation): And 160 is 1, so 6×1=6
28. (result_consolidation): Now, adding all these up:
29. (active_computation): 393216+24576=417,792
30. (active_computation): 417,792+1536=419,328
31. (active_computation): 419,328+96=419,424

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

32. (active_computation): 419,424+6=419,430
33. (result_consolidation): So, 6666616 is equal to 419,430 in decimal.
34. (fact_retrieval): Now, to find out how many bits this number requires, I can use

the formula for the number of bits needed to represent a number N in binary, which is
floor(log2(N)) + 1.

35. (plan_generation): So, let’s compute log2(419, 430).
36. (uncertainty_management): Hmm, I don’t have a calculator here, but I can estimate

it.
37. (fact_retrieval): I know that 218 =262,144
38. (fact_retrieval): 219 =524,288
39. (result_consolidation): So, 419,430 is between 218 and 219.
40. (result_consolidation): Therefore, log2(419, 430) is between 18 and 19.
41. (active_computation): The floor of that would be 18, so the number of bits is

18+1=19 bits.
42. (uncertainty_management): Wait, but earlier I thought it would be 20 bits because

it’s 5 hex digits each being 4 bits.
43. (result_consolidation): Now, according to this, it’s 19 bits.
44. (uncertainty_management): There’s a discrepancy here.
45. (uncertainty_management): I must have made a mistake somewhere.
46. (self_checking): Wait, let me check my calculations again.
47. (uncertainty_management): Maybe I messed up the decimal conversion.
48. (fact_retrieval): Wait, 66666 in hex.
49. (plan_generation): Let me convert it step by step again.
50. (active_computation): 6×164: 6×65536=393216
51. (active_computation): 6×163: 6×4096=24576
52. (active_computation): 6×162: 6×256=1536
53. (active_computation): 6×161: 6×16=96
54. (active_computation): 6×160: 6×1=6
55. (active_computation): Adding them up: 393216+24576=417,792
56. (active_computation): 417,792+1536=419,328
57. (active_computation): 419,328+96=419,424
58. (active_computation): 419,424+6=419,430.
59. (result_consolidation): That seems correct.
60. (result_consolidation): So, 419,430 in decimal.
61. (fact_retrieval): Now, let’s check 218 is 262,144, 219 is 524,288.
62. (result_consolidation): So, 419,430 is less than 524,288, so log2(419, 430) is less

than 19.
63. (active_computation): So, floor(log2(419, 430)) is 18, so number of bits is 19.
64. (uncertainty_management): But wait, when I thought about each hex digit being 4

bits, 5 hex digits would be 20 bits.
65. (uncertainty_management): So, why is there a difference?
66. (plan_generation): Ah, perhaps because leading zeros are not counted.
67. (fact_retrieval): So, when converting from hex to binary, each digit is 4 bits, but if

the leading hex digits are such that when converted to binary, they don’t add any leading
zeros beyond the 4 bits per digit.

68. (uncertainty_management): Wait, but 66666 in hex is 5 digits, so 5×4=20 bits.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

69. (result_consolidation): But according to the decimal conversion, it’s 19 bits.

70. (result_consolidation): That suggests that when converted to binary, it’s 19 bits,
not 20.

71. (uncertainty_management): So, which is correct?

72. (plan_generation): Wait, perhaps when converting 6666616 to binary, it’s exactly 20
bits, but the leading bits are zeros, so when counting the number of bits, we don’t count
leading zeros.

73. (fact_retrieval): Wait, but in the problem, it’s just asking how many bits it has when
written in base 2.

A.2 CASE STUDY: SENTENCE 13 ALTERNATIVES

Sentence 13 (“Alternatively, maybe I can calculate the value of 6666616 in decimal and then find out
how many bits that number would require.”) was found to have the highest counterfactual importance
among any sentence in the response (see Figure 2A). Five alternative possible sentences resampled
at the sentence 13 position, marked by whether they eventually led to a correct or incorrect answer,
are as follows:

1. (×) Let me think. The first digit is 6, which in binary is 0110.

2. (✓) Let me try converting the number to decimal first. . .

3. (×) Let me try converting the first few digits to binary to see how it goes.

4. (×) Let me think about the conversion process.

5. (✓) Let me try converting the number step by step.

B GENERALIZING TO AN ALTERNATIVE REASONING MODEL

B.1 MEASURING COUNTERFACTUAL INFLUENCE

To assess the generalizability of our counterfactual importance findings, we replicated our resampling
methodology on R1-Distill-Llama-8B, applying the same experimental parameters (e.g., temperature
= 0.6 and top-p = 0.95) used for R1-Distill-Qwen-14B. We collected 100 rollouts for 20 correct and
20 incorrect base solutions using the identical question set described in Section 2.

The resampling accuracy trajectories for R1-Distill-Llama-8B (Figure 8) demonstrate patterns that
are similar to those observed in R1-Distill-Qwen-14B (Figure 2). Specifically, we observe similar
characteristic accuracy fluctuations throughout the reasoning traces, with notable spikes and dips
occurring at sentences corresponding to critical reasoning transitions.

Figure 9 shows that R1-Distill-Llama-8B exhibits similar sentence category effects whereby plan
generation and uncertainty management sentences demonstrate higher counterfactual importance
compared to active computation and fact retrieval sentences (see Figure 3 for R1-Distill-Qwen-14B).

This cross-model validation supports our claim that reasoning traces are structured around high-level
organizational sentences rather than low-level computational steps. The consistency of counterfactual
importance patterns suggests that our sentence-level attribution framework captures fundamental
properties of chain-of-thought reasoning that generalize beyond specific model implementations.

B.2 ATTENTION AGGREGATION

R1-Distill-Llama-8B displayed receiver-head patterns largely consistent with those of R1-Distill-
Qwen-14B. The histogram of attention heads’ vertical-attention scores displays a right tail, indicating
that some attention heads tend to particularly focus attention on a subset of sentences (Figure 11A).
Interestingly, the R1-Distill-Qwen-14B receiver-heads tended to be more frequent in later layers (see
below, Figure 20), which was not evident in R1-Distill-Llama-8B (Figure 10).

The R1-Distill-Qwen-14B and R1-Distill-Llama-8B receiver heads displayed consistent patterns
related to sentence types, such that plan generation, uncertainty management, and self checking

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A. B.

Figure 8: Accuracy over 100 rollouts at each sentence for (A) one correct and (B) one incorrect
base solution for R1-Distill-Llama-8B. Red dots mark significant spikes or dips. Local minima and
maxima sentences are annotated with category initials. Our analyses focus on the counterfactual
KL-divergence between sentences, but resampling accuracy is visualized here as it is more intuitive.

A. B.

Figure 9: The mean of each sentence category for (A) forced-answer importance and (B) counterfac-
tual importance for R1-Distill-Llama-8B, per the resampling method, plotted against the sentence
category’s mean position in the reasoning trace. Only the 5 most common sentence types are shown.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

sentences received heightened attention; although visually, the differences to fact retrieval and active
computation may be less prominent, paired t-tests (paired with respect to a given response) showed
that plan generation and uncertainty management always significantly surpassed fact retrieval and
active computation (four paired t-tests: ps ≤ .01).

No R1-Distill-Llama-8B results are provided for the attention suppression analysis, as that method was
principally used for the case study, and no new case study was performed for R1-Distill-Llama-8B.

Figure 10: The plots here show the vertical-attention score patterns associated with the R1-Distill-
Llama-8B data. A. This histogram shows the kurtosis values across all attention heads, median
across all reasoning traces; parallels Figure 4 based on the R1-Qwen-14B data. B. This scatterplot
shows the kurtosis of each head’s vertical-attention score, organized by layer. Figure 20 is the
R1-Distill-Qwen-14B version of this figure, which showed an upward trend into later layers that is
not evident here.

Figure 11: Based on the R1-Distill-Llama-8B data, the boxplot shows the average top-64 receiver-
head score for each sentence type. The boxes correspond to the interquartile range across different
reasoning traces. Figure 5 is the R1-Distill-Qwen-14B version of this figure; note that for the R1-
Distill-Qwen-14B figure, the top-32 heads were used. We found that for Llama 8B, examining the
top-64 heads yielded more pronounced differences, although the sentence types with the highest
scores remain the same.

C SENTENCE TAXONOMY

Building on top of the framework presented by (Venhoff et al., 2025), we developed a taxonomy
consisting of eight distinct sentence categories that capture reasoning functions in mathematical
problem-solving. Each category represents a specific cognitive operation. The functions and examples
for each category are given in Table 1 and Table 2. Notably, the uncertainty management category
includes backtracking sentences.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 1: Sentence taxonomy with reasoning functions in problem-solving
Category Function Examples
Problem Setup Parsing or rephrasing the problem

(e.g., initial reading)
I need to find the area of a
circle with radius 5 cm.

Plan Generation Stating or deciding on a plan of ac-
tion, meta-reasoning

I’ll solve this by applying the
area formula.

Fact Retrieval Recalling facts, formulas, problem
details without computation

The formula for the area of a
circle is A = πr2.

Active Computation Algebra, calculations, or other ma-
nipulations toward the answer

Substituting r = 5: A = π×
52 = 25π.

Uncertainty Management Expressing confusion, re-evaluating,
including backtracking

Wait, I made a mistake ear-
lier. Let me reconsider...

Result Consolidation Aggregating intermediate results,
summarizing, or preparing

So the area is 25π square cm
which is approximately...

Self Checking Verifying previous steps, checking
calculations, and re-confirmations

Let me verify: πr2 = π ×
52 = 25π. Correct.

Final Answer Emission Explicitly stating the final answer Therefore, the answer is...

The distribution of categories across our dataset as shown in Figure 12 reveals that active computation
constitutes the largest proportion (32.7%), followed by fact retrieval (20.1%), plan generation
(15.5%), and uncertainty management (14.0%). The sequential structure of reasoning is reflected in
the rarity and positioning of problem setup (2.4%), which typically occurs at the beginning, and final
answer emission (0.7%), which predominantly appears toward the end of the reasoning process.

Figure 12: Counts and frequencies of taxonomic sentence categories in our dataset.

Table 2: Ten randomly selected examples for each category in our func-
tional taxonomy. Examples are drawn from model reasoning traces on
MATH problems.

Example Sentence

Problem Setup (n=124)

Continued on next page

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 2 – continued from previous page
Example Sentence

1 The question is asking how many different ways we can assign 0s and 1s to the bottom
row such that the number in the ver...

2 So, each of these four small triangles is a quarter of the size of the large one, and they
are arranged such that one is...

3 The answer should be to the nearest hundredth of a percent.
4 Compute 3(1 + 3(1 + 3(1 + 3(1 + 3(1 + 3(1 + 3(1 + 3(1 + 3(1 + 3)))))))))
5 But wait, the problem is asking for the coefficient in the entire expression \((a + b)^4

\left(c + \frac1c \right)...
6 Okay, so I’ve got this problem where a mother wants to arrange her plates around a

circular table, and she doesn’t want ...
7 So, it’s a triangle with 11 rows, right?
8 So, the large triangle is divided into four small ones, each at the corners, and the

central area is another shape, but ...
9 Wait, but in an equilateral triangle, if you connect the midpoints, you actually create

four smaller equilateral triangl...
10 Wait, the problem is asking for the coefficient of \(a^2b^2\).

Plan Generation (n=761)

1 Let’s check:
2 Since P is a polynomial whose roots are r_j + 1/r_j, maybe I can express P in terms of

f(x).
3 Let me try expanding both parts separately.
4 Suppose that two different irrational roots have the same conjugate.
5 Let me see how that progresses over 12 months.
6 Then, we can model this as a linear algebra problem over the field GF(3), where we’re

looking for the number of solution...
7 If I can figure out what those coefficients are modulo 3, I can then determine how the

initial 0s and 1s in the bottom r...
8 When they’re nailed together, the area where they overlap would be covered by both

boards, meaning that when you paint t...
9 Now, I need to find P(1)/P(-1).

10 Similarly, f(δ) = δ2007 +17δ2006 +1.

Fact Retrieval (n=1470)

1 Wait, but if r is 2 feet, and h is 3 feet, then (r - h) would be negative, which is (2 - 3) =
-1.

2 However, the problem states that \(r \), \(s \), and \(t \) are distinct, so \(c = 1 \) is a
possible solution, but ...

3 3. Rotation by 240◦ clockwise: this is the inverse of the 120◦ rotation, so it would be
(1 2 4 3).

4 γ is a primitive 3rd root of unity, so γ^3 = 1, and γ^2 = γ^-1.
5 Given y = x + 1/x, then as I mentioned before, x satisfies x2 - yx + 1 = 0.
6 So, sin(θ) = 0 when θ = nπ, where n is any integer.
7 So, starting from the bottom side, for example, from the bottom-left corner, moving 3

units to the right is the first po...
8 Points B and A are at (0,2) and (12,10), respectively.
9 So, these two equations relate r and 1/r.

10 I think that’s correct because each of the four variables a1, a2, a10, a11 can be 0 or 1,
giving 16 possibilities.

Active Computation (n=1902)

1 Simplify numerator and denominator:
2 Wait, but when k = 319, x = 1/(319π) ≈ 0.0009965, which is still less than 0.001, so

it’s included.
3 3 ∗ 500 = 1500

Continued on next page

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 2 – continued from previous page
Example Sentence

4 2.296... ÷ 3 ≈ 0.765...
5 Compute each term:
6 Therefore, the total boundary length is 12 + 6π units.
7 1.005^5 ≈ 1.0201503906 ∗ 1.005 ≈ 1.0252518971
8 Left side: \((z - 0)(z - s)(z + s) = z(z^2 - s^2) = z^3 - s^2 z \)
9 10/24 = 120/288

10 Then, when upright, V = 4πH.

Result Consolidation (n=879)

1 So, the minimal degree is 1970.
2 Therefore, the only possible c’s are the cube roots of unity, which are three in number:

1, ω, ω^2.
3 y=2 ± 19/81, so y≈2.2345679 or y≈1.7654321.
4 Thus, y is either 2 + 19/81 or 2 - 19/81, which are 181/81 and 143/81, respectively.
5 Since each root requires its conjugate, and each pair contributes 2 to the degree, and

there are 1000 such roots, each n...
6 Alternatively, I can write this as 143/(3^9), since 3^9 is 19,683.
7 Thus, I’m confident that p(5) = -5/12.
8 So, to find x such that f(x)=186, we can write 186 = 3^n ∗ f(y), where y is in [1,3],

and f(y) is in [0,1].
9 Therefore, the final result is 36,084.

10 So, my calculation up to Level 9 as 36084 seems correct.

Self Checking (n=392)

1 / (5!2!1!) = 8!
2 Correct. So, yes, 187 - 98 = 89.
3 But since the plates are arranged in a circle, we use (n-1)!
4 Yes, that’s correct.
5 As I thought, 289 is 17^2, 259 is 7∗37.
6 Wait, let me make sure: the number of integers from a to b inclusive is b - a + 1.
7 48+50 is 98, plus 89 is 187.
8 4. Then I noticed that every 3 functions, it cycles: f1, x, f, f1, x, f, etc.
9 So, in \((a + b)^4\), the coefficient of \(a^2b^2\) is indeed 6.

10 Layer 8: 1 + 3∗3280 = 1 + 9840 = 9841

Uncertainty Management (n=859)

1 So, I must have been wrong with that formula.
2 But wait, that would mean that the leading zero can be dropped, making it 19 bits.
3 Wait, but let me verify this because I might be making a mistake.
4 Wait, but let me confirm the count for S=0 and S=3.
5 Wait, perhaps I made a mistake.
6 Wait, but let me think again: when I subtract 3183 - 319, that’s 2864, and adding 1

gives 2865.
7 Wait, no, maybe I’m getting confused.
8 Let me do it properly.
9 Wait, perhaps the issue is that when converting from hex to binary directly, the leading

zeros in the binary digits migh...
10 But let me think more carefully.

Final Answer Emission (n=87)

1 So, the final answer is -289/259.
2 Therefore, there are 89 more 4’s than 8’s.
3 ∗∗Final Answer∗∗ The number of initial distributions is \boxed1280.
4 So, the number of x-intercepts is 2865.

Continued on next page

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 2 – continued from previous page
Example Sentence

5 ∗∗Final Answer∗∗ The smallest \(x \) for which \(f(x) = f(2001) \) is
\(\boxed\dfrac14319683\).

6 So, f_1993(3) = -1/2.
7 Therefore, the coefficient of \(a^2b^2 \) in the entire expression is 384.
8 Therefore, the area of the unpainted region on the four-inch board is 12√3 square

inches.
9 So, the number of distinguishable large equilateral triangles is 336.

10 Therefore, p(5) = 24/5.

D PROMPT INFORMATION

We used the following prompt with OpenAI GPT-4o (April-May, 2025) to annotate each sentence:

You are an expert in interpreting how LLMs solve math problems
using multi-step reasoning. Your task is to analyze a
chain-of-thought reasoning trace, broken into discrete text
sentences, and label each sentence with:

1. **function_tags**: One or more labels that describe what this
sentence is *doing* functionally in the reasoning process.
2. **depends_on**: A list of earlier sentence indices that this
sentence directly depends on, e.g., uses information, results, or
logic introduced in earlier sentences.

This annotation will be used to build a dependency graph and
perform causal analysis, so please be precise and conservative:
only mark a sentence as dependent on another if its reasoning
clearly uses a previous sentence’s result or idea.

Function Tags:

1. problem_setup: Parsing or rephrasing the problem (initial
reading or comprehension).
2. plan_generation: Stating or deciding on a plan of action
(often meta-reasoning).
3. fact_retrieval: Recalling facts, formulas, problem details
(without immediate computation).
4. active_computation: Performing algebra, calculations,
manipulations toward the answer.
5. result_consolidation: Aggregating intermediate results,
summarizing, or preparing final answer.
6. uncertainty_management: Expressing confusion, re-evaluating,
proposing alternative plans (includes backtracking).
7. final_answer_emission: Explicit statement of the final boxed
answer or earlier sentences that contain the final answer.
8. self_checking: Verifying previous steps, checking
calculations, and re-confirmations.
9. unknown: Use only if the sentence does not fit any of the
above tags or is purely stylistic or semantic.

Dependencies:

For each sentence, include a list of earlier sentence indices that

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

the reasoning in this sentence *uses*. For example:
- If sentence 9 performs a computation based on a plan in sentence
4 and a recalled rule in sentence 5, then depends_on: [4, 5]
- If sentence 24 plugs in a final answer to verify correctness
from sentence 23, then depends_on: [23]
- If there’s no clear dependency use an empty list: []
- If sentence 13 performs a computation based on information in
sentence 11, which in turn uses information from sentence 7, then
depends_on: [11, 7]

Important Notes:
- Make sure to include all dependencies for each sentence.
- Include both long-range and short-range dependencies.
- Do NOT forget about long-range dependencies.
- Try to be as comprehensive as possible.
- Make sure there is a path from earlier sentences to the final
answer.
Output Format:

Return a dictionary with one entry per sentence, where each entry
has:
- the sentence index (as the key, converted to a string),
- a dictionary with:

- "function_tags": list of tag strings
- "depends_on": list of sentence indices, converted to strings

Here is the expected format:
{
"1": {
"function_tags": ["problem_setup"],
"depends_on": [""]
},
"4": {
"function_tags": ["plan_generation"],
"depends_on": ["3"]
},
"5": {
"function_tags": ["fact_retrieval"],
"depends_on": []
},
"9": {
"function_tags": ["active_computation"],
"depends_on": ["4", "5"]
},
"24": {
"function_tags": ["uncertainty_management"],
"depends_on": ["23"]
},
"32": {
"function_tags": ["final_answer_emission"],
"depends_on": ["9, "30", "32"]
},

}

Here is the math problem:
<PROBLEM>

Here is the full chain-of-thought, broken into sentences:
<SENTENCES>

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Now label each sentence with function tags and dependencies.

E SENTENCE CATEGORY PROBING

We trained a linear classifier to identify sentence categories based on activations. We employed a
multinomial logistic regression with L2 regularization (C = 1.0) on the residual stream activity
from layer 47 (last layer) of R1-Distill-Qwen-14B. For evaluating accuracy, we implemented a
group-5-fold cross-validation that ensured examples from the same problem response remained in
either the training or testing set to prevent data leakage. We averaged the residual stream activity
across tokens to create sentence-level representations, whose dimensions were then standardized.
To address class imbalance in the training data, we employed balanced class weights. The model
demonstrated strong discriminative power across all reasoning categories, achieving a macro-F1
score of 0.71. The confusion matrix presented in Figure 13 reveals high classification accuracies for
categories such as active computation (0.74), uncertainty management (0.79), and problem setup
(0.83), while showing some confusion between functionally related categories.

Figure 13: Confusion matrix showing the sentence category classification performance of a logistic
regression probe trained on activations from layer 47 of the R1-Distill-Qwen-14B model. Values
represent the proportion of examples from each true category (rows) classified as each predicted
category (columns). Diagonal elements indicate correct classifications.

F EMBEDDINGS MODEL AND COUNTERFACTUAL IMPORTANCE RESULTS
ACROSS SIMILARITY THRESHOLDS

We used all-MiniLM-L6-v2with a maximum sequence length of 256 tokens and a hidden dimen-
sion of 384 as our sentence embeddings model from the sentence-transformers (Reimers
& Gurevych, 2019) library. We picked a cosine similarity threshold of 0.8, which is the median
similarity value between all sentence removed (i.e., original sentence) and sentence resampled pairs
in our dataset.

The effects reported in Figure 3, whereby plan generation and uncertainty management display the
highest levels of counterfactual importance, also emerges when the cosine similarity threshold for
Ti ̸≈ Si is set at 0.5 or 0.9 (Figure 14).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Figure 14: This is a variant of Figure 3, now performed a cosine similarity threshold of using either
(A) 0.5 or (B) 0.9

G EVALUATING IMPORTANCE (KL) WHILE SMOOTHING

The identified link between sentence’s category and its forced-answer or counterfactual importances
were also measured while smoothing the final-answer distribution associated with each sentence.
Smoothing was performed when computing the KL divergence between the two distribution and
constitutes replacing the ϵ = 10−9 term (originally used to avoid division by zero) with α = 1.0
(Laplace smoothing) or α = 0.5 (smoothing with Jeffrey’s prior).

Let p(A′
Si
) and p(ASi

) be the empirical distributions over a set of K possible final answers,A, derived
from N rollouts (e.g., N = 100). Let C ′

Si
(a) and CSi

(a) be the observed counts for a specific answer
a ∈ A in the intervention and base conditions, respectively, such that

∑
a∈A C ′

Si
(a) = N . Additive

smoothing with a parameter α is applied to derive smoothed probabilities, pα and qα, from these
counts:

pα(a) =
C ′

Si
(a) + α

N +Kα
and qα(a) =

CSi
(a) + α

N +Kα

The smoothed KL divergence, Dα
KL, is then computed using these non-zero probabilities:

Dα
KL[p(A

′
Si
)||p(ASi

)] =
∑
a∈A

pα(a) log

(
pα(a)

qα(a)

)

This method replaces the use of a small ϵ floor. The smoothing parameters used are α = 1.0 (Laplace
smoothing) and α = 0.5 (Jeffreys prior).

With either level of smoothing, the same patterns linking importance and sentence category emerge
as initially reported without smoothing (Figure 3). Specifically, active computation sentences yield
higher forced answer importance than plan generation and uncertainty management, but the reverse
is true when examining counterfactual importance based on the resampling method (Figure 15).

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Figure 15: This is a variant of Figure 3, now performed with smoothing. Smoothing was performed
using either (A) α = 1.0, Laplace smoothing, or (B) α = 0.5, Jeffreys prior.

H COUNTERFACTUAL VERSUS RESAMPLING IMPORTANCE

The resampling importance metric introduced in Section 2.3 treats all resampled sentences as equally
informative, but different sentence types may exhibit varying degrees of overdetermination during
resampling. Overdetermination occurs when resampled sentences Ti are frequently similar to the
original sentence Si (i.e., Ti ≈ Si), indicating that the reasoning context strongly constrains what can
be expressed at that position. We present empirical evidence that counterfactual importance is a more
nuanced measure by accounting for semantic divergence in resampled content.

Some sentences are more overdetermined than others. Figure 16A shows that uncertainty management
and plan generation sentences produce semantically different alternatives in a large proportion of
resamples, while active computation and problem setup sentences show lower divergence rates.

The transition matrix in Figure 16B shows how sentence categories change under resampling. For
instance, uncertainty management and active computation sentences are usually replaced by sentences
of the same category, whereas plan generation and fact retrieval sentences are more often resampled
into a variety of other categories.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

A. B.

Figure 16: (A) Fraction of semantically different resampled sentences by category, showing that
uncertainty management and plan generation sentences produce more divergent alternatives when
resampled. (B) Transition probabilities between original and resampled sentence categories.

These resampling behaviors create systematic differences between our counterfactual and resampling
importance metrics. Figure 17 demonstrates that the relationship between the two metrics varies
substantially across sentences and sentence categories. The counterfactual importance metric aims to
address overdetermination by explicitly filtering for semantically different resamples, providing a
more targeted measure of causal influence. In contrast, the resampling metric potentially overestimates
the importance of sentences that consistently produce similar content when resampled.

Figure 17: Comparison between counterfactual and resampling importance metrics across sentence
categories. Each point represents a single sentence and the dashed gray line is the y = x line.

However, the counterfactual importance metric can yield high-variance estimates when the number
of semantically divergent resampled sentences is low (e.g., < 10), as the conditional probability
estimates become less reliable with limited data. Alongside the limitations discussed in Section 8,
this represents another constraint of our approach that future work should investigate further.

I SIMULATING INTERPRETATIONS FROM READING COT TEXT

To address whether our techniques for quantifying sentence importance merely recover insights that
are obvious from reading the CoT text, we conducted an experiment simulating a human evaluator.
We employed an LLM judge (Claude-4.5-Sonnet) to read the 40 MATH reasoning traces and predict
the causal importance of specific sentences. We used the scores for two analyses: First, we measured
the correlation between the judge’s predicted importance and our empirical metrics (Counterfactual
and Forced-Answer Importance). Second, we aggregated the judge’s ratings against our sentence
taxonomy—mirroring the analysis in the main text—to determine which sentence types (e.g., Plan
Generation vs. Active Computation) a reader intuitively perceives as important.

I.1 METHODOLOGY

For every sentence in our MATH dataset (N = 6474), we provided the LLM judge with the full
reasoning trace up to that point. We tested two distinct prompting strategies (prompts in Table 3):

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

1. Naive Causal Relevance: We asked the judge to rate (0-10), "how much do you expect that
the marked sentence is causally relevant to arriving at the correct final answer?"

2. Mechanism-Aware Relevance: We explicitly prompted it to consider the mechanics of
autoregressive generation. We asked the model to consider "restarting the reasoning from
that point" and to "think about how a given sentence influences the likelihood of future
sentences appearing" before assigning a 0-10 rating.

Table 3: System prompts used for the LLM Judge evaluation. Both prompts included the full problem
and the solution with the target sentence highlighted.

Prompt Strategy Prompt Template

Naive Causal Relevance You are evaluating the importance of individual sentences in a mathematical
reasoning trace. Below is a chain-of-thought solution to a math problem. One
sentence is marked with **[THIS SENTENCE]** tags.

Problem: {problem}
Solution: {marked_solution}

Question: On a scale of 0 to 10, how much do you expect that the
marked sentence is causally relevant to arriving at the correct final answer?
- 0 means completely irrelevant (removing it would have no impact)
- 10 means critically essential (removing it would definitely prevent getting the
correct answer)

Provide ONLY a single number from 0 to 10 as your response.

Mechanism-Aware
Relevance

You are evaluating the importance of individual sentences in a mathematical
reasoning trace. Below is a chain-of-thought solution to a math problem. One
sentence is marked with **[THIS SENTENCE]** tags.

Problem: {problem}
Solution: {marked_solution}

Question: On a scale of 0 to 10, how much do you expect that the
marked sentence is causally relevant to arriving at the correct final answer?
- 0 means completely irrelevant (removing and restarting the reasoning from
that point would have no impact)
- 10 means critically essential (removing and restarting the reasoning from that
point would definitely prevent getting the correct answer)

Think about how a given sentence influences the likelihood of future
sentences appearing. Provide ONLY a single number from 0 to 10 as your
response.

I.2 CORRELATION RESULTS

We computed the Pearson correlation between the LLM judge’s ratings and our empirically derived
importance metrics. We found that the judge’s importance scores did not meaningfully correlate with
the ground-truth causal impact measured by our resampling method.

• Correlation with Counterfactual Importance: The judge’s ratings showed near-zero
correlation with our counterfactual importance metric for both the naive prompt (r = −.03)
and the mechanism-aware prompt (r = −.04). This suggests that the sentences that actually
drive the model’s downstream trajectory are not intuitively obvious even to a strong frontier
model analyzing the text.

• Correlation with Forced-Answer Importance: Interestingly, the judge’s ratings showed a
weak positive correlation with the forced-answer importance baseline for both prompting
conditions (r = .14− .16).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

I.3 DIFFERENCES ACROSS SENTENCE CATEGORIES

As shown in Figure 18, the divergence stems from what the judge values. The LLM judge tends to
assign high importance to active_computation. In contrast, our resampling method identifies
plan_generation and uncertainty_management steps as having the largest causal impact.
Although there exists no single “ground truth” that all of these methods are attempting to predict,
these comparisons demonstrate that our counterfactual technique identifies new insights and covers
different mechanisms by considering how a sentence influences the downstream CoT.

Figure 18: Importance scores assigned by the LLM judge, averaged for each sentence category.

J ADDITIONAL RESAMPLING RESULTS

Figure 19 presents mean counterfactual importances across all eight taxonomic categories for R1-
Distill-Qwen-14B, extending the main text results (Figure 3) which showed only the five most frequent
sentence types. The expanded view includes three additional categories with lower frequencies.
Problem setup sentences occur predominantly at trace beginnings (mean normalized position ≈ 0.1)
with moderate-high counterfactual importance. Self checking sentences tend to occur in the second-
half of the traces and show lower counterfactual importance. Final answer emission sentences appear
late in traces (mean normalized position ≈ 0.9) and show the lowest counterfactual importance. The
patterns observed in the five-category analysis remain consistent when examining the full taxonomy.

A. B.

Figure 19: The mean of each sentence category for (A) forced-answer importance and (B) counterfac-
tual importance for R1-Distill-Qwen-14B, per the resampling method, plotted against the sentence
category’s mean position in the reasoning trace. All sentence types are shown.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Figure 20: This scatterplot shows the kurtosis of each head’s vertical-attention score, organized by
layer. There is an upward trend across layers and a strong uptick among some late-layer heads.

K ADDITIONAL RECEIVER HEAD INFORMATION

Receiver heads – heads receiving high kurtosis scores – are more common in late layers (Figure 20).
Examples of receiver heads are shown in Figure 21, showing how the highest kurtosis head consis-
tently narrows attention on particular sentences, and Figure 22, showing how there exist many heads
that narrow attention on particular sentences.

L REASONING VERSUS BASE MODEL DIFFERENCES IN RECEIVER HEADS

Attentional narrowing toward particular sentences may be a feature specifically of reasoning models.
We submitted the reasoning traces to a base model version of Qwen-14B and identified receiver
heads. For both models, we sorted all sentences by their mean receiver-head score using the 16
attention heads with the highest kurtoses. The highest percentile sentences received greater attention
by the reasoning model - e.g., the highest-percentile sentences receive 1.8x more attention via top-16
heads in the reasoning model compared to the base model (Figure 23). Additionally, lower percentile
sentences receive less attention through the top-16 heads. This conclusion is somewhat tenuous, as
no base-model difference is seen when this result is tested using R1-Distill-Llama-8B. Nonetheless,
based on the Qwen-14B data, it appears the model has learned to narrow its attention toward particular
sentences.

M EFFECTS OF ABLATING RECEIVER HEADS

To test the causal hypothesis that the receiver heads identified in Section 4 are functionally important
for reasoning, we performed an experiment ablating receiver heads and evaluating how this impact’s
model accuracy. This intervention is designed to measure the direct impact of removing these heads
on task performance and to evaluate the possibility that they may be more important than typical
heads.

M.1 METHODOLOGY

We continue to use problems from the MATH dataset. We selected 32 problems where the non-ablated
model achieves 10-90% accuracy on average. For each problem, we ran R1-Distil-Qwen-14B sixteen
times, while allowing the model to output up to 216 (16,384) tokens. Responses that did not produce
an answer by that point were marked as incorrect.

We compared the effect of ablating 128 attention heads (approx. 7% of all heads), 256 heads (approx.
13%), or 512 heads (approx. 27%). The ablation strategies were:

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Figure 21: The attention weight matrices for the receiver head with the highest kurtosis score are
shown here for twenty of the forty responses (selected arbitrarily based on the first twenty processed).
The coloring was defined such that the darkest navy corresponds to values surpassing 99.5th percentile
value of each matrix. White is zero.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Figure 22: The attention weight matrices for response #1591 (incorrect) are shown here for the
20 attention heads yielding the highest kurtosis score across all responses. No effort was taken to
“cherry-pick” responses showing prominent receiver head patterns; we are showing #1591 (incorrect)
because it corresponded to the alphabetically earliest problem number among the ten problems
analyzed (correct/incorrect chosen randomly). The coloring was defined such that the darkest navy
corresponds to values surpassing 99.5th percentile value of each matrix. White is zero.

Figure 23: The navy and red lines on the left show the receiver-head scores assigned to sentences,
averaged across the 16 heads with the highest kurtoses. The green lines on the right represent the
ratio of the navy and blue lines for a given sentence rank. Sentences with high receiver head scores
receive more attention in the reasoning model compared to the base model.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

1. Receiver head ablation: We ablated the top-N heads with the highest average kurtosis
scores.

2. Random non-receiver (control) ablation: For each layer where k receiver heads were
ablated, we ablated k heads chosen randomly from the set of heads not selected from that
same layer. This ensures a matched comparison with no overlap.

Note that receiver heads are more common in late layers (see above, Figure 20). By ensuring that
both conditions included an equal number of heads from each layer (rather than selecting 128, 256,
or 512 heads randomly across all layers), this ensures that differences cannot be explained simply by
differences in the layers selected.

In the 512-head ablation condition, a majority of attention heads in some late layers were marked
as receiver heads. For these layers, the non-receiver control condition was modified to ablate the
corresponding number of heads with the lowest kurtosis scores to ensure a valid comparison set. For
instance, if 60% of layer 43 heads are in the top-512, then the control condition included the 60%
with the lowest kurtosis score, meaning that there is 20% overlap for that layer.

M.2 RESULTS AND DISCUSSION

Our experiments show that a large number of heads must be ablated to induce a significant drop in
performance compared to the baseline level of accuracy (baseline = 64.1%, 95% CI: [56.0%, 72.1%]).
Regardless of whether receiver heads or non-receiver heads are targeted, ablating 128 heads produces
differences in accuracy that insignificantly differ from baseline accuracy, and ablating 256 heads still
produces only a small drop in accuracy (Table 4).1

Table 4: Answer accuracy on MATH problems for different self-attention-head ablation conditions.
The brackets show the 95% confidence interval for each accuracy estimate.

Heads Ablated Receiver heads Random heads
256 48.8% [39.3%, 58.3%] 52.7% [43.0%, 62.5%]
512 27.7% [17.2%, 38.2%] 37.3% [27.5%, 47.1%]

The importance of receiver heads emerges when a large number of heads are ablated. When ablating
512 heads (over a quarter of the model’s 1920 heads), targeting receiver heads caused performance to
fall to 28% accuracy. Removing the same number of control heads resulted in a less severe drop to
37% accuracy. There is a significant difference between these percentages (t[31] = 2.55, p = .02),
suggesting receiver heads are more critical for reasoning than other heads.

As mentioned, this analysis treats responses as incorrect if they do not produce a final answer by
16,384 tokens. If the analysis is changed to instead simply omit those responses entirely from the
analysis, there remains a significant difference in accuracy when ablating top-512 receiver heads
(29% accuracy) versus random non-receiver heads (39% accuracy) (t[31] = 2.66, p = .02). Hence,
regardless of whether non-completed responses are marked as incorrect or ignored, ablating receiver
heads is found to exert a larger impact on model accuracy than ablating random non-receiver heads.

N KL CAUSAL GRAPH PSEUDOCODE

This pseudocode outlines the procedure for computing a sentence-to-sentence causal graph for a
given chain-of-thought (CoT). The algorithm works by systematically masking each source sentence
and measuring the resulting change in the model’s predictions (logits) for all subsequent target
sentences. The sentence–sentence impact is quantified as the average log-KL divergence across a
target sentence’s tokens, which is then normalized against the average impact from all prior sentences.

1We are not aware of prior studies on attention head ablation for models generating long chain-of-thought
reasoning, making it difficult to establish what is a typical number of heads to ablate. Potentially, a large
number is necessary because the long reasoning traces (sometimes exceeding 10,000 tokens) provide extensive
opportunities for error correction and compensatory computation.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

This last normalization step effectively accounts for differences in target sentences’ average entropy,
which may vary widely and can hamper studying differences between target sentences.

Masking can be performed either by suppressing attention toward the source sentence or omitting the
sentence entirely; the former preserves positional embedding information, while the latter may be
computationally cheaper and easier to implement (e.g., with serverless providers). If masking is done
by omitting sentence i from the CoT, rather than suppressing attention toward sentence i, this will
impact sentence j’s token positions across the CoT and masked CoT, which should be accounted for.

Algorithm 1 GetCausalMatrix(CoT, Model)
1: Initialize CAUSAL_MATRIX ∈ RM×M ← 0 ▷ M = number of sentences in CoT
2: LOGITS_BASE ← FORWARD_PASS(CoT,Model) ▷ shape: (tokens, vocabulary)
3: for i = 0 to M − 1 do ▷ source sentence
4: CoTmasked ← MASK_SOURCE(CoT, i)
5: LOGITS_MASKED ← FORWARD_PASS(CoTmasked,Model)
6: for j = i+ 1 to M − 1 do ▷ target sentence
7: TOKENS_J ← SENTENCE_TOKENS(CoTmasked, j)
8: TOTAL_KL ← 0
9: for each k ∈ TOKENS_J do

10: KL ← KLDIVERGENCE(LOGITS_BASE[k], LOGITS_MASKED[k])
11: TOTAL_KL ← TOTAL_KL + log(KL)
12: end for
13: CAUSAL_MATRIX[i, j]← TOTAL_KL/|TOKENS_J|
14: end for
15: end for
16: ▷ Normalize each target column by the mean over prior sources
17: for j = 0 to M − 1 do
18: µ← MEAN(CAUSAL_MATRIX[0 :j, j])
19: CAUSAL_MATRIX[0 :j, j]← CAUSAL_MATRIX[0 :j, j]− µ
20: end for
21: return CAUSAL_MATRIX

Algorithm 2 KLDivergence(LOGITS_P, LOGITS_Q)

1: log p← LOGITS_P − LOG_SUM_EXP(LOGITS_P) ▷ log-softmax
2: log q ← LOGITS_Q − LOG_SUM_EXP(LOGITS_Q)
3: p← exp(log p)
4: KL ← 0
5: for each vocabulary index v do
6: KL ← KL + p[v] ·

(
log p[v]− log q[v]

)
7: end for
8: return KL

O SENTENCE-TO-SENTENCE COUNTERFACTUAL IMPORTANCE

We extend our counterfactual resampling framework (section 3.2) to quantify each sentence’s influence
on each future sentence. Further below, we describe how this measure’s values for sentence-sentence
links correlate with the values generated via our section 5 method, masking sentences and measuring
the impact on later sentences’ logits.

O.1 COUNTERFACTUAL SENTENCE-SENTENCE LINKAGE METHODS

We estimate the counterfactual importance of sentence Si on a future sentence SFut. formally with:

importance(Si → SFut.) = P(SFut. ∈≈ {Si, . . . , SM})− P(SFut. ∈≈ {Ti, . . . , TN}|Ti ̸≈ Si) (1)

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Intuitively, on the right-hand side of Equation (1), the first term is the probability that a future
sentence SFut. will semantically occur given that Si was present in the trace, and the second term is
the corresponding probability when Si is resampled with a non-equivalent sentence. A positive score
indicates that sentence Si increases the likelihood of producing SFut. (i.e., Si upregulates SFut.), while
a negative score suggests that it suppresses or inhibits it. To be clear, this technique relies on full
autoregressive rollouts rather than teacher-forced probabilities.

In this context SFut. semantically occurs if, when we extract the sentences and identify the best
candidate match for SFut. using cosine similarity between sentence embeddings, it has greater than 0.8
cosine similarity (i.e., the median value in our dataset) to that sentence. Pseudocode for estimating
sentence-to-sentence importance and empirical values of this metric can be found in Section H.

Beyond measuring individual sentence importance, our framework quantifies causal dependencies
between specific sentence pairs within reasoning traces. Figure 24 displays the sentence-to-sentence
importance matrix for problem #2236 (incorrect) (“Each page number of a 488-page book is printed
one time in the book. The first page is page 1 and the last page is page 488. When printing all of
the page numbers, how many more 4’s are printed than 8’s?”), showing how individual sentences
influence downstream reasoning steps. Below we list a few illustrative cases.

• 12-PG→ 16-PG. The planning in sentence 12 (“1. Count the number of 4’s in the units
place across all page numbers”) raises the probability that the model produces sentence 16
(“Starting with the 4’s.”) by 0.39. A plan statement triggers a subordinate planning step.

• 8-FR, 9-PG, 12-PG, 14-PG→ 32-UM. The uncertainty management in sentence 32 (“How-
ever, I need to check if 440-449 is fully included.”) receives sizeable positive influence from
several earlier sentences: 8-FR (+0.11), 9-PG (+0.06), 12-PG (+0.12), 14-PG (+0.10).
This forms the dense horizontal band at row index 32.

• 39-RC ̸→ 83-UM. The result consolidation in sentence 32 (“Now, summing up all the 4’s:
- Units: 48 - Tens: 50 - Hundreds: 89. Total 4’s = 48 + 50 + 89 = 187.”) decreases the
likelihood (i.e., inhibits) of 83-UM (“Wait, but just to be thorough, let me check the hundreds
place for 4’s again.”) by 0.22.

• 52-AC ̸→ 65-SC. The computation in sentence 52 (“The first four blocks 80-89, 180-189,
280-289, 380-389 each contribute 10 eights in the tens place.”) decreases the likelihood of
65-SC (“Let me go through each step again to make sure I didn’t make a mistake.”) by 0.16.

• 63-AC→ 64-UM, 65-SC, 69-SC, 75-SC, 83-UM, 86-SC. The computation in sentence
63 (“So, the difference is 187 – 98 = 89.”) propagates forward, increasing the likelihood
of 64-UM (+0.24), 65-SC (+0.17), 69-SC (+0.16), 75-SC (+0.28), 83-UM (0.23), and
86-SC (0.16). This forms the dense vertical band originating from column index 63.

• 64-UM→ 65-SC, 69-SC, 75-SC, 83-UM, 86-SC. The uncertainty management in sentence
64 (“Wait, that seems quite a large difference.”) further amplifies the same downstream
block: 65-SC (+0.32), 69-SC (+0.25), 75-SC (+0.26), 83-UM (0.25), and 86-SC (0.25).

• 83-UM→ 86-SC, 90-FAE. Even very late checks matter. Sentence 83 (“Wait, but just to be
thorough, let me check the hundreds place for 4’s again.”) increases the chance of 86-SC
(“Correct. And for the tens place...”) by 0.43 and of the final answer in 90-FAE by 0.41.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Figure 24: Sentence-to-sentence importance matrix for the 32 most important sentences in problem
#2236 (incorrect), selected based on total outgoing and incoming importance. Each cell (i, j) shows
the causal importance of sentence i on sentence j, calculated as the difference in the probability
sentence j semantically occurs (> 0.8 cosine similarity) when sentence i is present versus resampled.

We provide the following pseudocode for estimating sentence-to-sentence importance:

Input: Sentence index i, target sentence index j (where j > i),
threshold t = 0.8

Output: Importance score importance(i -> j)

1. Get rollouts R_keep where sentence i was kept (resampling from i+1)
2. Get rollouts R_remove where sentence i was removed (resampling from i)

3. For each rollout r in R_keep:
a. Extract all sentences S_r from rollout r
b. Find best matching sentence to target sentence j:

- Compute sentence embeddings
- Calculate cosine similarity between each s in S_r and target j
- Select sentence with highest similarity if similarity >= t

c. Add to matches_keep if valid match found

4. For each rollout r in R_remove:
a. Extract all sentences S_r from rollout r
b. Find best matching sentence to target sentence j
(same process as step 3b)
c. Add to matches_remove if valid match found

5. Calculate match rates:
match_rate_keep = |matches_keep| / |R_keep|
match_rate_remove = |matches_remove| / |R_remove|

6. Return importance(i -> j) = match_rate_keep - match_rate_remove

O.2 CORRELATIONS WITH THE RESAMPLING-BASED IMPORTANCE MATRIX

The sentence-masking matrix values correlate with those of the resampling-method matrix. Specifi-
cally, the two matrices were positively correlated for 90% of reasoning traces (mean r = .20, 95% CI:
[.12, .27]); a correlation was computed separately for each CoT and then averaged, and this average
significantly surpasses zero per a one-sample t-test (p < .001). This association is stronger when
considering only cases fewer than five sentences apart in the reasoning trace, which may better track

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Figure 25: Case study: problem #4682 (correct). Red matrix shows the effect of suppressing one
sentence (x-axis) on a future sentence (y-axis). Darker colors indicate higher values. Bottom-left
line plot shows the average attention toward each sentence by all subsequent sentences via the top-32
receiver heads (32 attention heads with the highest kurtosis score). Flowchart summarizes the model’s
CoT with chunks defined around key sentences receiving high attention via receiver heads. Sentence
13 is emphasized as it has high counterfactual importance per the resampling method (see Figure 2A).

direct rather than indirect effects represented by the resampling method (mean r = .34 [.27, .40]).
The magnitudes of these correlations are substantial, given that the two measures capture partially
different aspects of causality and the resampling measure itself contains stochastic noise. Hence,
these results give weight to the validity of the resampling approach, whose precision we leverage for
the forthcoming case study.

P IN DEPTH CASE STUDY

The presented techniques cover different aspects of attribution within a reasoning trace. Building on
the case-study conclusions from our resampling approach (section 2.4), we study the model’s CoT
here by focusing on receiver heads and sentence-sentence links (Figure 25) (see above, Section A, for
the full transcript).

P.1 RECEIVER HEADS

The trajectory toward the final correct answer can be understood as a series of computational chunks
(see flowchart in Figure 25). First, the model prepares a formula for converting 6666616 to decimal
(sentences 13-19). Next, the model computes the answer to that formula, finding that 6666616 is
419,430 in decimal (sentences 20-33). The model subsequently converts that number to binary by
putting forth another formula and solving it, floor(log2(419, 430)) + 1 = 19, to derive that the
answer is “19 bits” (sentences 34-41). The model then notes a discrepancy with the earlier 20-bit
solution (sentences 42-45). The model hence initiates new computations that verify that it computed
the decimal value of 6666616 correctly (sentences 46-58) and that it computed the binary conversion
accurately (sentences 59-62). Equipped with this increased certainty about 19-bit answer, the model

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

discovers why its initial 20-bit idea was incorrect: “because leading zeros are not counted” (Sentence
66). This overall narrative is based on our analysis of attention patterns (section 4): Receiver attention
heads pinpoint sentences initiating computations or stating key conclusions, thereby segmenting the
reasoning trace into seemingly meaningful chunks (Figure 25).

P.2 ATTENTION SUPPRESSION

Along with being organized into computational chunks, the reasoning displays a scaffold related to
sentence-sentence dependencies (Figure 25). One piece of this structure is a self-correction pattern
involving an incorrect proposal, a detected discrepancy, and a final resolution. Specifically, the
model initially proposes an incorrect answer of “20 bits”, which it decides to recheck (sentence 12).
This leads to a discrepancy with the “19 bits” answer computed via decimal conversion (sentences
43 & 44). After rechecking its arithmetic supporting the “19 bit” answer, the model returns to
the discrepancy (sentence 65) and then produces an explanation for why the “20 bits” answer is
incorrect (sentence 66). This can be seen as a tentative CoT circuit, where two conclusions conflict
to produce a discrepancy, which in turn encourages the model to resolve the discrepancy. Within
this wide-spanning scaffold, there exist further dependencies, corresponding to verifying an earlier
computation. Specifically, the model finishes computing the decimal value of 6666616 as 419,430
(sentence 32), later decides to verify that decimal conversion (sentence 46), and finally confirms that
the original value is correct (sentence 59). This can be seen as further indication of CoT circuitry.

We identified these linkages based on the attention-suppression matrix (section 5), which contains
local maxima at these linkages (12 → 43, 43 → 65, 12 → 66; 32 → 46, 32 → 59). Notice that
many of the sentences pinpointed by the attention-suppression technique overlap with the sentences
receiving high attention from receiver heads. Adding to the receiver-head conclusions, the attention
suppression technique shows how information flows between these key sentences that structure the
reasoning trace.

Q SENTENCE POSITION EFFECTS ON RECEIVER-HEAD SCORES

A sentence’s position within the reasoning trace will tend to influence its measured receiver score.

As a reasoning trace progresses, the number of possible broadcasted sentences will necessarily
increase. For instance, by sentence 20, there might be only two broadcasted sentences (each receiving
50% of attention from sentences 21-29), whereas by sentence 100, there could be ten broadcasted
sentences (each receiving 10% of attention from sentences 101-109). As the sum of an attention
weight row will sum to 1 (at the token level), later sentences will distribute their attention across a
larger number of past sentences. This dilution of attention creates downward pressure on the receiver-
head scores of later sentences. This is the case even though a receiver head score extends through all
subsequent low-competition or high-competition periods. For example, broadcasting sentence 20 will
face limited competition from receiving sentence 21-29 attention and high competition for sentences
101-109, whereas broadcasting sentence 100 will exclusively face high competition, pushing its score
downward as broadcasting-sentence position increases.

There also exists a proximity effect on receiver-head scores that operates in the opposite direction of
the above effect. Although broadcasted sentences are attended by all subsequent sentences to some
degree, this will be more so the case for more recently subsequent sentences (e.g., receiving more
attention from a sentence 10 sentences downstream than one 20 sentences downstream). For sentences
late in the reasoning trace, the average distance to future sentences will be shorter. For example, if a
reasoning trace contains 120 sentences, then sentence 100 will be at most 19 sentences apart from
any given future sentence, whereas sentence 20 will be at most 99 sentences apart. To a degree, the
analyses in the report account for proximity effects by ignoring the 4 sentences immediately proximal
to a given sentence when calculating vertical-attention scores. However, this will not fully address
proximity effects.

We see no reason why the downward pressure of sentence position on receiver-head scores (attention
dilution) will be equal in magnitude to the upward pressure of sentence position (proximity effects).

For the preparation of the present report, we conducted exploratory analyses evaluating whether
the above confounding factors invalidate any presented finding, and we did not find evidence that

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

this is the case. Thus, rather than pursuing some technique to account for the above pressures (e.g.,
linearly weighing attention weight matrices based on their position), we opted to only account for
these factors in a minimal fashion by ignoring the attention among sentences just 4 sentences apart.

39

	Introduction
	Case study on sentence importance
	Model and dataset
	Forced answer importance
	Importance via resampling
	Case study

	Consistent patterns in sentence importance
	Dataset
	Sentence taxonomy
	Counterfactual importance
	Results

	Mechanistic evidence for sentence importance
	The identification of receiver heads
	Links to counterfactual importance and sentence types

	Case study on sentence-sentence causal links
	Approach
	Case study
	Open source interface

	Systematic differences in sentence-sentence causal links
	Methods
	Results

	Related work
	Discussion and Limitations
	Reproducibility Statement
	Case study details
	Case study transcript
	Case study: Sentence 13 alternatives

	Generalizing to an alternative reasoning model
	Measuring counterfactual influence
	Attention aggregation

	Sentence taxonomy
	Prompt information
	Sentence category probing
	Embeddings model and counterfactual importance results across similarity thresholds
	Evaluating importance (KL) while smoothing
	Counterfactual versus resampling importance
	Simulating interpretations from reading CoT text
	Methodology
	Correlation results
	Differences across sentence categories

	Additional resampling results
	Additional receiver head information
	Reasoning versus base model differences in receiver heads
	Effects of ablating receiver heads
	Methodology
	Results and Discussion

	KL causal graph pseudocode
	Sentence-to-sentence counterfactual importance
	Counterfactual sentence-sentence linkage methods
	Correlations with the resampling-based importance matrix

	In depth case study
	Receiver heads
	Attention suppression

	Sentence position effects on receiver-head scores

