

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 THOUGHT ANCHORS: WHICH LLM REASONING STEPS MATTER?

Anonymous authors

Paper under double-blind review

ABSTRACT

Current frontier large-language models rely on reasoning to achieve state-of-the-art performance. Many existing interpretability methods are limited in this area, as standard methods have been designed to study single forward passes of a model rather than the multi-token computational steps that unfold during reasoning. We argue that analyzing reasoning traces at the sentence level is a promising approach to understanding reasoning processes. We introduce a black-box method that measures each sentence’s counterfactual importance by repeatedly sampling replacement sentences from the model, filtering for semantically different ones, and continuing the chain of thought from that point onwards to quantify the sentence’s impact on the distribution of final answers. We discover that certain sentences can have an outsized impact on the trajectory of the reasoning trace and final answer. We term these sentences *thought anchors*. These are generally planning or uncertainty management sentences, and specialized attention heads consistently attend from subsequent sentences to thought anchors. We further show that examining sentence-sentence causal links within a reasoning trace gives insight into a model’s behavior. Such information can be used to predict a problem’s difficulty and the extent different question domains involve sequential or diffuse reasoning. As a proof-of-concept, we demonstrate that our techniques together provide a practical toolkit for analyzing reasoning models by conducting a detailed case study of how the model solves a difficult math problem, finding that our techniques yield a consistent picture of the reasoning trace’s structure. We provide an open-source tool (anonymous-interface.com) for visualizing the outputs of our methods on further problems. The convergence across our methods shows the potential of sentence-level analysis for a deeper understanding of reasoning models.

1 INTRODUCTION

Training large language models to reason with chain-of-thought (Reynolds & McDonell, 2021; Nye et al., 2021; Wei et al., 2023) has significantly advanced their capabilities (OpenAI, 2024). The resulting reasoning traces are regularly used in safety research (Baker et al., 2025; Shah et al., 2025), but there has been little work adapting interpretability methods to this new paradigm ((Venhoff et al., 2025; Goodfire, 2025). Traditional *mechanistic interpretability* (Olah et al., 2020; Olah, 2022) methods often focus on a single forward pass of the model, understanding how layer-by-layer activations (Wang et al., 2022; Heimersheim & Janiak, 2023). However, this too fine-grained for autoregressive reasoning models, which consume their own output tokens.

Interpretability generally research aims to find the causes of a model’s behavior, to decompose a model into smaller parts, and to map the mechanisms linking intermediate states to a model’s final output. During reasoning, these intermediate states correspond to text in the chain-of-thought (CoT). Our goal in this paper is to shed light about the computations being performed by CoT text and to identify high-level principles regarding the structure of CoT. In addition, we present methods for measuring how particular pieces of text drive the model’s final answer and influence one another.

For reasoning models, we propose that chain-of-thought traces can be decomposed into multi-token reasoning steps. We operationalize reasoning steps in terms of *sentences*. Compared to individual tokens, sentences are more coherent and often coincide with reasoning steps extracted by an LLM (Venhoff et al., 2025; Arcuschin et al., 2025), and recent work suggests that sentence-

Figure 1: Summary of our methods for principled attribution to important sentences in reasoning traces. **A.** An example reasoning trace with sentences labeled per our taxonomy. **B.** Our proposed methods are: black-box resampling, receiver heads, and attention suppression. **C.** A directed acyclic graph among sentences prepared by one of our techniques, made available open source.

ending punctuation frequently acts as an information-compressing boundary (Razhigaev et al., 2025; Chauhan et al., 2025). While a reasoning steps sometimes may be better seen as a sub-sentence phrases or multiple sentence paragraph, we treat sentence segmentation as a robust starting point, and we provide evidence validating the efficacy of this approach for studying CoTs.

We argue that CoTs are characterized by *thought anchors*: critical points in the CoT that guide the reasoning trace’s trajectory. We provide evidence for this type of anchoring based on black-box evidence from resampling and white-box evidence based on attention patterns. By measuring the causal dependencies between sentences via a masking approach, we further show how a CoTs wider computational structure can be interpreted. These measures go beyond just reading a CoT’s text, providing a principled foundation for interpretability that sidesteps disputes about the “faithfulness” of CoT text (Turpin et al., 2023; Korbak et al., 2025).

Section 2 and Section 3 provide evidence for the existence of particularly impactful sentences and introduce a black-box method for measuring the counterfactual impact of a sentence on the model’s final answer. Our method repeatedly resample reasoning traces from the start of each sentence. Based on resampling data, we can quantify the counterfactual impact of each sentence on the likelihood of any final answer. We find that planning sentences systematically initiate computations leading to some answer and play a role distinct from sentences performing computations necessary for the answer but which are predetermined. Section 4 adds a white-box method for evaluating importance based on the sentences most attended. Our analyses reveal “receiver” heads that narrow attention toward particular past “broadcasting” sentences. This provides a mechanistic measure of importance, whose findings converge with our resampling technique.

Section 5 and Section 6 present a method mapping the wider structure of a CoT in terms of the causal dependencies between pairs of sentences. For each sentence in a trace, we mask all attention to it from subsequent tokens or by removing the sentence entirely. We then measure the effect on subsequent token logits (KL divergence) compared without masking. Averaging token effects by sentence, this strategy measures each sentence’s direct causal effect on each subsequent sentence.

Applying these techniques, our work suggests that analyzing reasoning through sentence-level units introduces new domains through which reasoning models can be understood. Our work also opens the door to more precise debugging of reasoning failures, identification of sources of unreliability, and the development of techniques to enhance the reliability of reasoning models.

108 2 CASE STUDY ON SENTENCE IMPORTANCE
109110 We demonstrate in this section how sentences can be important by influencing the downstream
111 reasoning trace: a sentence is important if changing it would alter the subsequent CoT and the final
112 answer. We study this by conditioning the model on the CoT up to a given sentence, repeatedly
113 sampling the model continuing from that point, and comparing the resulting answer distributions
114 across different continuation points. We compare our strategy to the existing standard approach for
115 evaluating the impact of parts of a CoT by interrupting the model and forcing it to output its final
116 answer from that point. Here we a detailed case study to show how this standard approach ignores
117 sentences that are causally important by influencing the downstream CoT, but that our technique
118 captures this. In addition, we provide evidence on the utility of specifically examining sentences.
119120 2.1 MODEL AND DATASET
121122 Our analyses of sentence importance in this section along with Sections section 3, section 4, and
123 section 5 employ the DeepSeek R1-Distill Qwen-14B model, using a temperature of 0.6 and a top-p
124 value of 0.95(DeepSeek, 2025). For the present case study we focus on just one problem from the
125 MATH dataset (Hendrycks et al., 2021).126 2.2 FORCED ANSWER IMPORTANCE
127128 Earlier work has measured sentence importance by forcing a model to answer before completing its
129 reasoning trace (Lanham et al., 2023a; Radhakrishnan et al., 2023; Wang et al., 2025; Tanneru et al.,
130 2024; Parcalabescu & Frank, 2024). We compared our approach to this existing technique: For each
131 sentence in a CoT, we interrupt the model and append text, inducing a final output (“Therefore,
132 the final answer is \boxed{}”). This was done 100 times at each sentence position.
133134 2.3 IMPORTANCE VIA RESAMPLING
135136 A limitation of the forced-answer approach is that a sentence S may be necessary for some final
137 answer but is consistently produced by the LLM late in the reasoning trace (e.g., a reliable arithmetic
138 statement). Thus, forced answer accuracy will be low for all sentences before S , precluding earlier
139 step importance from being assessed.140 Our approach evaluates importance by examining how a sentence may guide downstream sentences.
141 Consider a rollout consisting of sentences $S_1, S_2, \dots, S_i, \dots, S_M$ and a final answer A . We can
142 use resampling to capture the extent sentence S_i influences A . Specifically, for a given sentence S_i ,
143 we generate a distribution over final answers by generating 100 rollouts both without sentence S_i
144 (rollouts of the form $S_1, S_2, \dots, S_{i-1}, T_i, \dots, T_N, A'_{S_i}$), and another distribution with sentence S_i
145 (rollouts of the form $S_1, S_2, \dots, S_i, U_{i+1}, \dots, U_M, A_{S_i}$).
146147 2.4 CASE STUDY
148149 We first investigate the efficacy of our sentence importance technique by applying it to one problem:
150 “When the base-16 number 66666_{16} is written in base 2, how many base-2 digits (bits) does it have?”
151 (MATH Problem 4682; see Section A.1 for the CoT transcript). The resampling data shows that from
152 sentences 6-12, expected accuracy steadily declines, but sentence 13 causes accuracy to drastically
153 increase (indicated by the navy and red circles in Figure 2A).154 The large accuracy fluctuation motivates inspection of this part of the CoT. The model initially
155 considers that 66666_{16} contains five base-16 digits, and any base-16 digit can be represented with
156 four base-2 digits. Thus, the model considers the answer: 20 bits. However, this overlooks that 6_{16}
157 is 110_2 rather than 0110_2 due to the leading zero. Interestingly, Sentence 12 mentions “*checking if*
158 *there’s any leading zero that might affect the bit count*,” yet Sentence 12 lowers the expected accuracy.
159 The uplift comes from Sentence 13, where the model decides to “*calculate the value of 66666_{16} in*
160 *decimal*” (see resample alternatives in Section A.2). Downstream reasoning computes the decimal
161 value of 66666_{16} and converts it to binary to arrive at the correct answer: 19 bits. The key role of
162 Sentence 13 is missed if examining forced-accuracy importance (Figure 2A). This case study provides
163 initial evidence on how resampling identifies moments in a CoT where impactful plans are set.
164

Figure 2: Accuracy over 100 rollouts at each (left) token, (middle) sentence, or (right) paragraph. Navy and red circles border the most importance sentence (Sentence 13) and are plotted in each graph as a reference. For the token graph, resampling was only done on the first 1,000 tokens of the CoT.

Further tests show the efficacy of specifically examining sentences. The sentence-level resampling data mirrors the patterns seen resampling tokens but at a fraction of the cost (Figure 2B), whereas resampling paragraphs leads to meaningfully less resolution (Figure 2C).

3 CONSISTENT PATTERNS IN SENTENCE IMPORTANCE

We now move to investigating whether particularly important sentences are a consistent theme across CoTs, and whether they can be systematically related to sentence content. We formalize our resampling approach into an importance score that can be compared across sentences and aggregated across problems, and we apply analyzing CoTs for challenging MATH questions. This lets us analyze how importance varies across different sentence types (e.g., planning statements) and to contrast what our proposed measure captures compared to the typical forced-importance measure. In doing so, we move beyond a single case study to characterize patterns of sentence importance in model reasoning.

3.1 DATASET

As for the case study, we examine problems from the MATH dataset. As our analysis hinges on variability in final responses, so we target 20 challenging but doable questions that are correctly solved 25-75% of the time, identified by testing on 1,000 problems 10 times each. For each selected problem, we generated one correct and one incorrect reasoning trace, producing 40 responses. The average response is 144.2 sentences (95% CI: [116.7, 171.8]) and 4208 tokens (95% CI: [3479, 4937]). We focus only on sentences before the model has converged on an answer (i.e., after which it gives the same response in >98% of resamples). In Section B, we provide results from applying our techniques to the R1-Distill-Llama-8B model.

3.2 SENTENCE TAXONOMY

To more systematically test whether reasoning is characterized by key sentences with outsized impacts, we organized sentences into different categories and measured their causal impacts. We adopted the framework by Venhoff et al. (2025), which defines distinct reasoning functions within a reasoning trace. We specify eight categories (see examples and frequencies in Section C):

1. **Problem Setup:** Parsing or rephrasing the problem
2. **Plan Generation:** Stating or deciding on a plan of action, meta-reasoning
3. **Fact Retrieval:** Recalling facts, formulas, problem details without computation
4. **Active Computation:** Algebra, calculations, or other manipulations toward the answer
5. **Uncertainty Management:** Expressing confusion, re-evaluating, including backtracking
6. **Result Consolidation:** Aggregating intermediate results, summarizing, or preparing
7. **Self Checking:** Verifying previous steps, checking calculations, and re-confirmations
8. **Final Answer Emission:** Explicitly stating the final answer

Each sentence in the analyzed response is assigned to one of these categories using an LLM-based auto-labeling approach (detailed in Section D). Categories that rarely appear are omitted from the figures below. Residual-stream probes accurately distinguish categories (see Section E).

Figure 3: Plots show each sentence category for (A) forced-answer importance and (B) counterfactual importance; 5 most common sentence types shown (see Section J). The x-axis shows the sentence’s average position in a reasoning trace to show this does not explain the difference in importance.

3.3 COUNTERFACTUAL IMPORTANCE

We additionally formalize our approach to quantifying importance in a manner that can be applied to any problem, including ones with any number of possible outcomes. We present two measures:

1. **Resampling importance.** We can compute the KL Divergence between the final answer distributions when conditioning up to S_i , $p(A_{S_i})$, or up to the prior sentence, $p(A'_{S_i})$, i.e., $\text{importance}_r := D_{\text{KL}}[p(A'_{S_i}) || p(A_{S_i})]$, providing a measure of how much sentence S_i changes the answer. We call this *resampling importance*. Because we resample all steps after a given sentence S_i , we avoid the aforementioned limitation of forced-answering.
2. **Counterfactual importance.** The problem with resampling importance is that if T_i is identical or similar to S_i then we do not get much information about whether S_i is important or not. Therefore, we write $S \not\approx T$ if two sentences S and T are dissimilar, defined as having embeddings with a cosine similarity less than the median value across all sentence pairs in our dataset; see Section F for details and evidence the below findings remain consistent across other thresholds. We can define *counterfactual importance* by conditioning on $T_i \not\approx S_i$; i.e., $\text{importance} := D_{\text{KL}}[p(A'_{S_i} | T_i \not\approx S_i) || p(A_{S_i})]$. Our KL divergence analyses include $\epsilon = 10^{-9}$ to avoid division by zero, but our findings remain consistent if performed using additive smoothing ($\alpha = 0.5$ or 1.0 ; Section G).

Our analyses below continue with **counterfactual importance**, comparing it to *forced answer importance* also computed based on final-answer KL divergence. Relative to resampling importance, counterfactual importance conditions on semantically different resamples, reducing overdetermination and better isolating a sentence’s causal influence. Resampling importance remains a complementary metric that captures how far a prediction deviates from the model’s average behavior and may be preferable when that notion of deviation is primary; we compare the two in Section H.

3.4 RESULTS

Plan generation and *uncertainty management* (e.g., backtracking) sentences consistently show higher counterfactual importance than other categories like *fact retrieval* or *active computation* (see Figure 3B). This supports the view that high-level organizational sentences anchor, organize, and steer the reasoning trajectory. These findings deviate from the analysis of forced answer importance, which instead implicates *active computation* as producing the greatest distributional shifts (Figure 3A). The forced-answer approach entirely neglects the importance of planning that influences other sentences, which we argue is more meaningful for understanding the trajectory of a reasoning trace. In Section I we also provide results from an LLM judge tasked to score each sentence’s importance based on reading the text. The judge likewise focuses on active computation steps and misses how a sentence influences the downstream reasoning, suggesting this is difficult to predict.

283 Figure 4: **A.** Lines show the vertical attention scores for each sentence by the 40 different heads in
284 layer 36. Head 6 has been highlighted as a receiver head, and its corresponding attention weight
285 matrix is shown for reference. Its prominent spikes cause the distribution to have a high kurtosis. **B.**
286 Histogram of these kurtosis values across all attention heads, median across all reasoning traces.

288 4 MECHANISTIC EVIDENCE FOR SENTENCE IMPORTANCE

290 We hypothesize that important sentences may receive heightened attention. Although attention
291 weights do not necessarily imply causal links, attention is a plausible mechanism by which important
292 sentences influence subsequent sentences. We conjecture further that a focus on important sentences
293 may be driven by specific attention heads, and by tracking such heads, we may pinpoint key sentences.

294 We assessed the degree that different attention heads narrow attention toward particular sentences.
295 For each of the 40 reasoning traces produced for the MATH problems, we averaged each attention
296 head’s token-token attention weight matrix to form a sentence-sentence matrix, where each element
297 is the mean across all pairs of tokens between two sentences. For each matrix, we computed the mean
298 of its columns below the diagonal to measure the extent each sentence receives attention from all
299 downstream sentences; averaged only among pairs at least four sentences apart. This generates a
300 distribution for each head (e.g., Figure 4A), and the extent each head narrows attention toward specific
301 sentences in general can be quantified as its distribution’s kurtosis. Plotting each head’s kurtosis
302 reveals that some attention heads strongly narrow attention toward specific sentences (Figure 4B).

303 4.1 THE IDENTIFICATION OF RECEIVER HEADS

305 We refer to attention heads that narrow attention toward specific sentences as “*receiver heads*”. These
306 heads are more common in later layers (Section K). To formally assess the existence of receiver
307 heads, we tested whether some attention heads consistently operate in this role by measuring the
308 split-half reliability of heads’ kurtosis scores. We found a strong head-by-head correlation ($r = .84$)
309 between kurtosis scores computed for half of the problems with kurtosis scores for the other half
310 of problems. Thus, some attention heads consistently operate as receiver heads, albeit with some
311 heterogeneity across responses in which heads narrow attention most.

312 Receiver heads usually direct attention toward the same sentences. Among the 16 heads with the
313 highest kurtoses, we computed the sentence-by-sentence correlation between the vertical-attention
314 scores for each pair of heads; correlated separately for each reasoning trace then averaged (i.e.,
315 averaging across numerous correlations with 50-200 samples each). This produced a large correlation
316 (mean $r = .56$). Thus, receiver heads generally attend the same sentences (for reference, the average
317 correlation among any heads is $r = .35$). This convergence across receiver heads is consistent with
318 the existence of sentence importance, which these heads identify.

319 Attentional narrowing toward particular sentences may be a feature specifically of reasoning models
320 that enhances their performance. Comparing R1-Distill-Qwen-14B (reasoning) and Qwen-14B (base)
321 suggests that the reasoning model’s receiver heads will narrow attention toward singular sentences
322 to a greater degree (Section L). Furthermore, ablating receiver heads leads to a greater reduction in
323 accuracy than ablating self-attention heads at random (Section M). Altogether, these findings are
consistent with receiver heads and thought-anchor sentences playing key roles in reasoning.

324
325
326
327
328
329
330
331
332

Figure 5: The boxplot shows the average top-32 receiver-head score for each sentence type. The boxes correspond to the interquartile range across different reasoning traces. The effects whereby plan-generation and uncertainty management sentences yield the highest scores ($ps < .001$) remain significant when examining top-16 or top-64 receiver-head scores ($ps < .001$)

4.2 LINKS TO COUNTERFACTUAL IMPORTANCE AND SENTENCE TYPES

Plan generation and *uncertainty management* sentences consistently receive the most attention via receiver heads (Figure 5), whereas *active computation* sentences receive relatively minimal attention ($ts > 4.0$, $ps < .001$ per paired t-tests comparing the mean receiver-head score for the former two versus the later two categories). These findings demonstrate a parallel between the receiver head findings here and the earlier results on the sentence types yielding the highest counterfactual importance.

5 CASE STUDY ON SENTENCE-SENTENCE CAUSAL LINKS

In the previous sections, we focused on how individual sentences influence the final answer. Here, we turn to the finer-grained question of how sentences influence each other within a reasoning trace. Our aim is to estimate directed, sentence-to-sentence causal links: for any pair (S_i, S_j) with $j > i$, how much does altering S_i change the computation carried by S_j ? We approximate these links by constructing a sentence-level causal graph, using interventions that selectively suppress attention to a given sentence and measuring how this affects the downstream sentence’s logits. We first illustrate this approach on our running case study before turning to more systematic analyses.

5.1 APPROACH

Our approach examines how suppressing all attention towards a given sentence S_i influences later sentence S_j . We define this impact as the KL divergence between logits with/without masking, averaged across a sentence’s tokens. We normalize this score by subtracting the latter sentence’s average causal effect from all prior sentences. Section N provides pseudocode for generating the causal graph. Suppressing attention is mostly equivalent to omitting a sentence from a CoT, only differing in positional embeddings.

Our approach assumes (i) token logits capture a sentence’s semantic content and (ii) masking sentences does not problematically induce out-of-distribution behavior. We evaluated these assumptions by correlating the sentence-sentence scores with those from a sentence-sentence strategy based on our counterfactual resampling method, which assesses how resampling S_i with T_i ($S \not\approx T$) influences the likelihood of S_j appearing. This measure positively correlates with the scores from the masking-and logits-based strategy (section O), suggesting that logits indeed track semantics. We continue with the sentence-masking approach because it requires $\sim 100x$ less compute, increasing scalability.

5.2 CASE STUDY

We continue our initial case study (Section 2.4), but here, we focus on three local maxima in the sentence-masking graph (Figure 6), which align closely with the sentences implicated as important by receiver-heads (see further details on the case study in Section P):

- **(Sentences: 12 → 43)** After suggesting the answer “20 bits”, the model decides to begin verifying it (Sentence 12). Verification leads to a different solution, “19 bits” (Sentence 43). Between these key sentences, most of the intermediate text is performing arithmetic.

378 • **(Sentences: 44 → 65)** Noticing the discrepancy (Sentence 44), the model decides to check
 379 its calculations. It finds that they are correct, and the discrepancy remains (Sentence 65).
 380 • **(Sentences: 12 → 66)** The model realizes that its initial suspicion about leading zeroes
 381 (Sentence 12) is justified and states that this is the reason for the discrepancy (Sentence 66).

382 These connections point to an interpretable scaffold reflecting computations on the pursuit of interme-
 383 diate results, the execution of self-correction subroutines, and the synthesis of prior statements.
 384

402 Figure 6: For the correct-answer CoT of Problem #4682, the matrix shows the effect of masking one
 403 sentence (x-axis) on a future sentence’s logits (y-axis). Darker colors indicate higher values.
 404

408 5.3 OPEN SOURCE INTERFACE

410 We released an open source interface (anonymous-interface.com) for visualizing reasoning traces and
 411 comparing alternative rollouts. We show our proof-of-concept interface in Figure 1C, where important
 412 sentences are represented by larger nodes and causal connections between sentences are shown with
 413 dashed gray lines. The tool aims to benefit interpretability and unwanted behavior debugging.

415 6 SYSTEMATIC DIFFERENCES IN SENTENCE-SENTENCE CAUSAL LINKS

417 We next investigated how causal graphs may shed light on general questions about LLM reasoning.
 418 Specifically, we ask: How can examining sentence–sentence links shed light on model confidence
 419 during reasoning? Relatedly, why do some problem domains like mathematics display stronger
 420 uplift in reasoning compared to non-reasoning models? We hypothesize that strong causal links
 421 between nearby sentences reflect a coherent logical flow and well-formed plan, so each sentence
 422 strongly constrains the next, whereas distant linkages reflect uncertainty and backtracking. Despite
 423 occasional long-range connections, we further hypothesize that successful mathematical CoTs are
 424 characterized by tight, local causal links between sequential sentences, **whereby planning statements**
 425 **sharply structure the CoT by tightly determining what comes next with little variability**. Domains
 426 related to mathematics may uniquely lend themselves to such firmly structured reasoning, whereas
 427 CoTs for other topics (e.g., history or biology) may solve problems by scanning a wider latent space
 428 in a less tightly structured fashion.

429 6.1 METHODS

431 We pivoted to analyzing MMLU problems (Hendrycks et al., 2020), so that we could contrast problem
 432 domains. We also switched to Qwen3-30b-a3b, so that we could leverage a serverless LLM provider

432 that outputs token logits, which allowed scaling up our analysis to thousands of CoTs. We ran
 433 Qwen3-30b-a3b in non-reasoning mode on all 15,638 MMLU questions to identify challenging
 434 problems where non-reasoning accuracy is under 50% (per answer logits). This corresponds to 3,651
 435 problems, and for 2,492 of these questions, the model answers correctly when using reasoning at
 436 least once across ten passes. We computed each correct CoT’s causal graph (**mean = 90.1 sentences**).
 437

438 We compared graphs on the strength of their causal links at different distances between sentences.
 439 We specifically computed the mean attention-suppression effect at distance k for each graph ($m \times m$
 440 sentences) for all $k \leq \frac{m}{2}$. This corresponds to the mean of a matrix’s k -th subdiagonal. We consider
 441 subdiagonals only up to $\frac{m}{2}$ to reduce noise by ensuring that the mean is computed among an adequate
 442 number of elements (e.g., the m -th subdiagonal would be just the single bottom-leftmost element).
 443

444 6.2 RESULTS

445 The distance of causal effects tracks question difficulty. Computing correlations within-subject,
 446 we find that questions with high average accuracy elicit CoTs with stronger close-range links and
 447 weaker long-range links (Figure 7A). In addition, subjects where average accuracy is high overall
 448 tend to produce CoTs with stronger close links ($r = .44, p < .001$; Figure 7B) and weaker long
 449 links ($r = -.54, p < .001$ Figure 7C). The strongest levels of accuracy were seen in problems
 450 requiring mathematical thinking (e.g., mathematics & physics). As hypothesized, these areas also
 451 yielded CoTs with stronger close-range connections and weaker long-range connections (two-sample
 452 t-test $|t|s > 10, ps < .001$; Figure 7D). **Although these analyses do not model *plan generation* and**
 453 ***uncertainty management* sentences directly, they are consistent with a picture in which plan-generation**
 454 **anchors provide the local scaffolding for successful reasoning while uncertainty-management anchors**
 455 **mediate longer-range links that resolve discrepancies, together shaping the overall structure of**
 456 **effective CoTs.**

480 Figure 7: **A.** For each distance k , we computed the correlation between a question’s average k -
 481 distance causal effect in one CoT and the question’s mean reasoning accuracy across ten CoTs. **B.**
 482 **& C.** Scatterplot shows each subject’s average close-range ($k = 1-2$) and long-range ($k = 16-64$)
 483 was plotted against its average reasoning accuracy. **D.** Box-plots showing the spread of average
 484 close-range and long-range causal effects for different question domains; each point represents one
 485 CoT, and black circles represent means.

486 **7 RELATED WORK**

488 **Reasoning advances and unfaithfulness in LLMs.** CoT reasoning, optimized using reinforcement
 489 learning, has driven major capabilities improvements in large language models (Wei et al., 2023;
 490 Nye et al., 2021; Reynolds & McDonell, 2021). This reasoning paradigm introduces novel safety
 491 challenges. Experiments inducing unfaithful reasoning have led some to raise concerns about the
 492 interpretability of CoT text (Lanham et al., 2023b; Chen et al., 2025), although others have argued
 493 that CoT text generally is a meaningful representation, particularly for difficult tasks (Korbak et al.,
 494 2025). By showing how sentence types, categorized based on their text, differ in their resampling and
 495 receiver-head importance, our findings endorse the meaningfulness and interpretability of CoT text.

496 **Importance of individual steps.** A variety of techniques that can be used for CoT interpretability
 497 have been developed, and these likewise suggest that a subset of steps disproportionately drive the
 498 final answer – e.g., ROSCOE metrics (Golovneva et al., 2023), gradient-based scores (Wu et al.,
 499 2023), and resampling at fork tokens (Bigelow et al., 2024). Complementing these, we provide a
 500 more principled framework for understanding how CoTs are constructed around key sentences.

502 **8 DISCUSSION AND LIMITATIONS**

504 This work presents initial steps towards a principled decomposition of reasoning traces with a focus
 505 on identifying thought anchors: sentences with outsized importance on the model’s final response,
 506 specific future sentences, and downstream reasoning trajectory. We have also begun unpacking the
 507 attentional mechanisms associated with these important sentences. We expect that understanding
 508 thought anchors will be critical for interpreting reasoning models and ensuring their safety.

510 While some research raises concerns that CoT text can be unfaithful to the model’s underlying
 511 computation (Lanham et al., 2023b; Chen et al., 2025), our results show CoT text is mechanistically
 512 relevant and interpretable. For example, sentences categorized as *plan generation* and *uncertainty
 513 management* consistently exhibit higher counterfactual importance in our resampling analyses and
 514 receive more focused attention from receiver heads. This demonstrates a link between what a sentence
 515 says and its functional role in the computation, and this type of correspondence supports arguments
 516 on the value of CoT legibility (Korbak et al., 2025).

517 A primary limitation of our resampling approach is its computational cost. For a CoT of 150 sentences
 518 and 4000 tokens, resampling each sentence 100 times corresponds to 20M output tokens. This cost
 519 precludes its usage for real-time monitoring, but it remains feasible for intensive analyses of specific
 520 questions of interest – e.g., understanding CoTs in safety-relevant scenarios, like cases of LLM
 521 blackmailing or reward hacking. We resampled CoTs 100 times per sentence to achieve fairly precise
 522 estimates (in terms of final-answer accuracy, 95% CI corresponds to at worst $\pm 10\%$). However, for
 523 analyses that average effects across many CoTs, fewer resamples for any one CoT would suffice.
 524 Future work could develop adaptive resampling strategies that allocate more computational budget to
 525 potentially pivotal moments in the trace, maximizing precision while minimizing cost.

526 Further work is needed to evaluate the generalizability of our findings across model capabilities and
 527 question types. More advanced models may display improved error correction abilities, lowering
 528 the frequency of sudden drops in accuracy following a sentence. Such models may also be more
 529 aggressively trained to minimize CoT length, which could increase average importance. Problem
 530 difficulty also influences reasoning, as we show in Section 6. Extremely difficult problems might
 531 contain numerous points for subtle errors that could be difficult to correct; in this case, correct-CoT
 532 sentences may be mostly low counterfactual importance, while incorrect CoTs could contain large
 533 downward spikes following any error. Research remains necessary to uncover the landscape of
 534 reasoning behavior, but we expect our methods will still apply to larger models and other problems.

535 We view this as preliminary work. Our analyses require refinement to grapple with how downstream
 536 sentences may be overdetermined by different possible trajectories or independent sufficient causes.
 537 Our receiver-head analyses are confounded by a sentence’s position in the reasoning trace (see
 538 Section Q). Despite these limitations, we believe that we have demonstrated that our metrics are
 539 an advance on prior work, interrupting models and forcing final answers. The surprising degree of
 shared structure we have found across our three methods illustrates the potential value of future work
 in this area and points to the possibility of more powerful interpretability techniques to come.

540 **9 REPRODUCIBILITY STATEMENT**

541

542 To ensure the reproducibility of our work, we provide comprehensive implementation details, code,
 543 and experimental specifications. Our code is publicly available at <https://anonymous.4open.science/r/thought-anchors-2CB0>, which includes all scripts for black-box resampling,
 544 receiver head analysis, and attention suppression experiments. We have also released two Python packages to aid in conducting these analyses: The first package helps with CoT prefilling and caching API
 545 responses (<https://anonymous.4open.science/r/rollouts-6C4D/>), and the second
 546 package helps with properly splitting CoTs into sentences while respecting standard tokenization pro-
 547 cedures (<https://anonymous.4open.science/r/Sentences-1148>). We also provide
 548 an interactive visualization tool at anonymous-interface.com for exploring reasoning traces
 549 and sentence-level causal dependencies.

550

551 The complete prompt used for sentence taxonomy labeling is provided in Section D, including
 552 detailed instructions for function tags and dependency annotations. Our experimental setup uses
 553 DeepSeek R1-Distill-Qwen-14B (48 layers) with temperature 0.6 and top-p 0.95, tested on the MATH
 554 dataset (Hendrycks et al., 2020) focusing on problems with 25-75% solution rates. We specify
 555 exact hyperparameters including 100 rollouts per sentence for counterfactual resampling, cosine
 556 similarity threshold of 0.8 (median value) using all-MiniLM-L6-v2 embeddings (Section F), and
 557 identification of receiver heads via kurtosis scores of attention distributions. The sentence-sentence
 558 causal masking methodology is fully detailed in Section 5, with validation through correlation with
 559 resampling-based measures (Section O). For MMLU experiments in Section 6, we used Qwen3-
 560 30b-a3b on 2,492 problems where non-reasoning accuracy is below 50%, computing causal graphs
 561 for correct CoTs. Additional reproducibility details include: full case study transcript (Section A),
 562 sentence category distributions (Section C), receiver head ablation procedures with 128/256/512
 563 heads (Section M), and cross-model validation on R1-Distill-Llama-8B (Section B). All models
 564 used are publicly available, and we provide pseudocode for the sentence-to-sentence importance
 565 calculation in Section O.

566

567 **REFERENCES**

568

569 Iván Arcuschin, Jett Janiak, Robert Krzyzanowski, Senthooran Rajamanoharan, Neel Nanda, and
 570 Arthur Conmy. Chain-of-thought reasoning in the wild is not always faithful, 2025. URL
<https://arxiv.org/abs/2503.08679>.

571

572 Bowen Baker, Joost Huizinga, Leo Gao, Zehao Dou, Melody Y. Guan, Aleksander Madry, Wojciech
 573 Zaremba, Jakub Pachocki, and David Farhi. Monitoring reasoning models for misbehavior and the
 574 risks of promoting obfuscation, 2025. URL <https://arxiv.org/abs/2503.11926>.

575

576 Eric Bigelow, Ari Holtzman, Hidenori Tanaka, and Tomer Ullman. Forking paths in neural text
 577 generation, 2024. URL <https://arxiv.org/abs/2412.07961>.

578

579 Sonakshi Chauhan, Maheep Chaudhary, Koby Choy, Samuel Nellessen, and Nandi Schoots. Punctua-
 580 tion and predicates in language models. *arXiv preprint arXiv:2508.14067*, 2025.

581

582 Yanda Chen, Joe Benton, Ansh Radhakrishnan, Jonathan Uesato, Carson Denison, John Schulman,
 583 Arushi Soman, Peter Hase, Misha Wagner, Fabien Roger, Vlad Mikulik, Samuel R. Bowman, Jan
 584 Leike, Jared Kaplan, and Ethan Perez. Reasoning models don't always say what they think, 2025.

585

586 DeepSeek. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025.
 587 URL <https://arxiv.org/abs/2501.12948>.

588

589 Olga Golovneva, Moya Chen, Spencer Poff, Martin Corredor, Luke Zettlemoyer, Maryam Fazel-
 590 Zarandi, and Asli Celikyilmaz. Roscoe: A suite of metrics for scoring step-by-step reasoning,
 591 2023. URL <https://arxiv.org/abs/2212.07919>.

592

593 Goodfire. Under the hood of a reasoning model. <https://www.goodfire.ai/blog/under-the-hood-of-a-reasoning-model>, 2025. Accessed: May 15, 2025.

594

595 Stefan Heimersheim and Jett Janiak. A circuit for python docstrings in a 4-layer attention-only trans-
 596 former, 2023. <https://www.alignmentforum.org/posts/u6KXXmKFbXfWz0AXn/a-circuit-for-python-docstrings-in-a-4-layer-attention-only>.

594 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
 595 Jacob Steinhardt. Measuring massive multitask language understanding. *arXiv preprint*
 596 *arXiv:2009.03300*, 2020.

597

598 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
 599 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset, 2021. URL
 600 <https://arxiv.org/abs/2103.03874>.

601 Tomek Korbak, Mikita Balesni, Elizabeth Barnes, Yoshua Bengio, Joe Benton, Joseph Bloom, Mark
 602 Chen, Alan Cooney, Allan Dafoe, Anca Dragan, et al. Chain of thought monitorability: A new and
 603 fragile opportunity for ai safety. *arXiv preprint arXiv:2507.11473*, 2025.

604

605 Tamera Lanham, Anna Chen, Ansh Radhakrishnan, Benoit Steiner, Carson Denison, Danny Hernan-
 606 dez, Dustin Li, Esin Durmus, Evan Hubinger, Jackson Kernion, Kamilé Lukošiūtė, Karina
 607 Nguyen, Newton Cheng, Nicholas Joseph, Nicholas Schiefer, Oliver Rausch, Robin Larson, Sam
 608 McCandlish, Sandipan Kundu, Saurav Kadavath, Shannon Yang, Thomas Henighan, Timothy
 609 Maxwell, Timothy Telleen-Lawton, Tristan Hume, Zac Hatfield-Dodds, Jared Kaplan, Jan Brauner,
 610 Samuel R. Bowman, and Ethan Perez. Measuring faithfulness in chain-of-thought reasoning,
 611 2023a. URL <https://arxiv.org/abs/2307.13702>.

612 Tamera Lanham, Anna Chen, Ansh Radhakrishnan, Benoit Steiner, Carson Denison, Danny Hernan-
 613 dez, Dustin Li, Esin Durmus, Evan Hubinger, Jackson Kernion, et al. Measuring faithfulness in
 614 chain-of-thought reasoning. *arXiv preprint arXiv:2307.13702*, 2023b.

615 Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David
 616 Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, Charles Sutton, and
 617 Augustus Odena. Show your work: Scratchpads for intermediate computation with language
 618 models, 2021.

619

620 Chris Olah. Mechanistic interpretability, variables, and the importance of interpretable bases. <https://www.transformer-circuits.pub/2022/mech-interp-essay>, 2022.

621

622 Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter.
 623 Zoom in: An introduction to circuits. *Distill*, 2020. doi: 10.23915/distill.00024.001.

624

625 OpenAI. o1: Introducing our first reasoning model. <https://openai.com/o1/>, 2024. Ac-
 626 cessed: 2025-05-15.

627

628 Letitia Parcalabescu and Anette Frank. On measuring faithfulness or self-consistency of natu-
 629 ral language explanations. In *Proceedings of the 62nd Annual Meeting of the Association for*
630 Computational Linguistics (Volume 1: Long Papers), pp. 6048–6089, 2024.

631 Ansh Radhakrishnan, Karina Nguyen, Anna Chen, Carol Chen, Carson Denison, Danny Hernandez,
 632 Esin Durmus, Evan Hubinger, Jackson Kernion, Kamilé Lukošiūtė, et al. Question decomposition
 633 improves the faithfulness of model-generated reasoning. *arXiv preprint arXiv:2307.11768*, 2023.

634

635 Anton Razhigaev, Matvey Mikhalkchuk, Temurbek Rahmatullaev, Elizaveta Goncharova, Polina
 636 Druzhinina, Ivan Oseledets, and Andrey Kuznetsov. Llm-microscope: Uncovering the hidden role
 637 of punctuation in context memory of transformers. *arXiv preprint arXiv:2502.15007*, 2025.

638 Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.
 639 *arXiv preprint arXiv:1908.10084*, 2019.

640

641 Laria Reynolds and Kyle McDonell. Prompt programming for large language models: Beyond the
 642 few-shot paradigm, 2021.

643

644 Rohin Shah, Alex Irpan, Alexander Matt Turner, Anna Wang, Arthur Conmy, David Lindner, Jonah
 645 Brown-Cohen, Lewis Ho, Neel Nanda, Raluca Ada Popa, Rishabh Jain, Rory Greig, Samuel Albanie,
 646 Scott Emmons, Sebastian Farquhar, Sébastien Krier, Senthooran Rajamanoharan, Sophie Bridgers,
 647 Tobi Iijitoye, Tom Everitt, Victoria Krakovna, Vikrant Varma, Vladimir Mikulik, Zachary Kenton,
 648 Dave Orr, Shane Legg, Noah Goodman, Allan Dafoe, Four Flynn, and Anca Dragan. An approach
 649 to technical agi safety and security, 2025. URL <https://arxiv.org/abs/2504.01849>.

648 Sree Harsha Tanneru, Dan Ley, Chirag Agarwal, and Himabindu Lakkaraju. On the hardness of
649 faithful chain-of-thought reasoning in large language models. *arXiv preprint arXiv:2406.10625*,
650 2024.

651 Miles Turpin, Julian Michael, Ethan Perez, and Samuel R. Bowman. Language models don't
652 always say what they think: Unfaithful explanations in chain-of-thought prompting, 2023. URL
653 <https://arxiv.org/abs/2305.04388>.

654 Constantin Venhoff, Iván Arcuschin, Philip Torr, Arthur Conmy, and Neel Nanda. Understanding
655 reasoning in thinking language models via steering vectors. In *Workshop on Reasoning and*
656 *Planning for Large Language Models*, 2025.

657 Kevin Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt. Inter-
658 pretability in the wild: a circuit for indirect object identification in gpt-2 small, 2022. URL
659 <https://arxiv.org/abs/2211.00593>.

660 Zezhong Wang, Xingshan Zeng, Weiwen Liu, Yufei Wang, Liangyou Li, Yasheng Wang, Lifeng
661 Shang, Xin Jiang, Qun Liu, and Kam-Fai Wong. Chain-of-probe: Examining the necessity and
662 accuracy of cot step-by-step. In *Findings of the Association for Computational Linguistics: NAACL*
663 2025, pp. 2586–2606, 2025.

664 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le,
665 and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023.
666 URL <https://arxiv.org/abs/2201.11903>.

667 Skyler Wu, Eric Meng Shen, Charumathi Badrinath, Jiaqi Ma, and Himabindu Lakkaraju. Analyzing
668 chain-of-thought prompting in large language models via gradient-based feature attributions, 2023.
669 URL <https://arxiv.org/abs/2307.13339>.

670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702 A CASE STUDY DETAILS
703704 A.1 CASE STUDY TRANSCRIPT
705706 Below is a transcript of the model’s response used for the case study (Section 5.2). The first 74
707 sentences following <think> are shown. After this point, the model converged on 100% resampling
708 accuracy for all subsequent sentences.

- 710 0. (problem_setup): Okay, so I have this problem where I need to find out how many bits
711 the base-16 number 66666_{16} has when it’s converted to base-2.
- 712 1. (uncertainty_management): Hmm, let’s see.
- 713 2. (fact_retrieval): I remember that each hexadecimal digit corresponds to exactly 4
714 binary digits, or bits.
- 715 3. (plan_generation): So, maybe I can just figure out how many hexadecimal digits there
716 are and multiply by 4 to get the number of bits.
- 717 4. (uncertainty_management): Let me check that.
- 718 5. (fact_retrieval): First, the number given is 66666 in base 16.
- 719 6. (active_computation): Let me count the digits: 6, 6, 6, 6, 6.
- 720 7. (result_consolidation): That’s five digits in total.
- 721 8. (active_computation): So, if each digit is 4 bits, then 5 digits would be $5 \times 4 = 20$ bits.
- 722 9. (uncertainty_management): Wait, is that always the case?
- 723 10. (fact_retrieval): I think so because each hex digit maps directly to 4 bits without any
724 overlap or sharing.
- 725 11. (result_consolidation): So, 66666_{16} would be 20 bits in binary.
- 726 12. (uncertainty_management): But wait, I should make sure that this is correct by
727 actually converting the number or at least checking if there’s any leading zero that might
728 affect the bit count.
- 729 13. (plan_generation): Alternatively, maybe I can calculate the value of 66666_{16} in
730 decimal and then find out how many bits that number would require.
- 731 14. (plan_generation): Let’s try that approach to cross-verify.
- 732 15. (fact_retrieval): So, to convert 66666_{16} to decimal, I can expand it as follows:
- 733 16. (fact_retrieval): Each digit represents a power of 16.
- 734 17. (fact_retrieval): Starting from the right, the digits are $16^0, 16^1, 16^2, 16^3, 16^4$.
- 735 18. (fact_retrieval): So, the number is:
- 736 19. (active_computation): $6 \times 16^4 + 6 \times 16^3 + 6 \times 16^2 + 6 \times 16^1 + 6 \times 16^0$
- 737 20. (plan_generation): Let me compute each term:
- 738 21. (fact_retrieval): First, 16^4 is $16 \times 16 \times 16 \times 16$.
- 739 22. (active_computation): 16^2 is 256, so 16^3 is $256 \times 16 = 4096$, and 16^4 is
740 $4096 \times 16 = 65536$.
- 741 23. (active_computation): So, $6 \times 65536 = 393216$
- 742 24. (active_computation): Next, 16^3 is 4096, so $6 \times 4096 = 24576$
- 743 25. (active_computation): Then, 16^2 is 256, so $6 \times 256 = 1536$
- 744 26. (active_computation): 16^1 is 16, so $6 \times 16 = 96$
- 745 27. (active_computation): And 16^0 is 1, so $6 \times 1 = 6$
- 746 28. (result_consolidation): Now, adding all these up:
- 747 29. (active_computation): $393216 + 24576 = 417,792$
- 748 30. (active_computation): $417,792 + 1536 = 419,328$
- 749 31. (active_computation): $419,328 + 96 = 419,424$

756 32. (active_computation): $419,424+6=419,430$
 757 33. (result_consolidation): So, 66666_{16} is equal to 419,430 in decimal.
 758 34. (fact_retrieval): Now, to find out how many bits this number requires, I can use
 759 the formula for the number of bits needed to represent a number N in binary, which is
 760 $\text{floor}(\log_2(N)) + 1$.
 761 35. (plan_generation): So, let's compute $\log_2(419,430)$.
 762 36. (uncertainty_management): Hmm, I don't have a calculator here, but I can estimate
 763 it.
 764 37. (fact_retrieval): I know that $2^{18} = 262,144$
 765 38. (fact_retrieval): $2^{19} = 524,288$
 766 39. (result_consolidation): So, 419,430 is between 2^{18} and 2^{19} .
 767 40. (result_consolidation): Therefore, $\log_2(419,430)$ is between 18 and 19.
 768 41. (active_computation): The floor of that would be 18, so the number of bits is
 769 $18+1=19$ bits.
 770 42. (uncertainty_management): Wait, but earlier I thought it would be 20 bits because
 771 it's 5 hex digits each being 4 bits.
 772 43. (result_consolidation): Now, according to this, it's 19 bits.
 773 44. (uncertainty_management): There's a discrepancy here.
 774 45. (uncertainty_management): I must have made a mistake somewhere.
 775 46. (self_checking): Wait, let me check my calculations again.
 776 47. (uncertainty_management): Maybe I messed up the decimal conversion.
 777 48. (fact_retrieval): Wait, 66666 in hex.
 778 49. (plan_generation): Let me convert it step by step again.
 779 50. (active_computation): $6 \times 16^4: 6 \times 65536 = 393216$
 780 51. (active_computation): $6 \times 16^3: 6 \times 4096 = 24576$
 781 52. (active_computation): $6 \times 16^2: 6 \times 256 = 1536$
 782 53. (active_computation): $6 \times 16^1: 6 \times 16 = 96$
 783 54. (active_computation): $6 \times 16^0: 6 \times 1 = 6$
 784 55. (active_computation): Adding them up: $393216 + 24576 = 417,792$
 785 56. (active_computation): $417,792 + 1536 = 419,328$
 786 57. (active_computation): $419,328 + 96 = 419,424$
 787 58. (active_computation): $419,424 + 6 = 419,430$.
 788 59. (result_consolidation): That seems correct.
 789 60. (result_consolidation): So, 419,430 in decimal.
 790 61. (fact_retrieval): Now, let's check 2^{18} is 262,144, 2^{19} is 524,288.
 791 62. (result_consolidation): So, 419,430 is less than 524,288, so $\log_2(419,430)$ is less
 792 than 19.
 793 63. (active_computation): So, $\text{floor}(\log_2(419,430))$ is 18, so number of bits is 19.
 794 64. (uncertainty_management): But wait, when I thought about each hex digit being 4
 795 bits, 5 hex digits would be 20 bits.
 796 65. (uncertainty_management): So, why is there a difference?
 797 66. (plan_generation): Ah, perhaps because leading zeros are not counted.
 798 67. (fact_retrieval): So, when converting from hex to binary, each digit is 4 bits, but if
 799 the leading hex digits are such that when converted to binary, they don't add any leading
 800 zeros beyond the 4 bits per digit.
 801 68. (uncertainty_management): Wait, but 66666 in hex is 5 digits, so $5 \times 4 = 20$ bits.

810 69. (result_consolidation): But according to the decimal conversion, it's 19 bits.
 811 70. (result_consolidation): That suggests that when converted to binary, it's 19 bits,
 812 not 20.
 813 71. (uncertainty_management): So, which is correct?
 814 72. (plan_generation): Wait, perhaps when converting 66666_{16} to binary, it's exactly 20
 815 bits, but the leading bits are zeros, so when counting the number of bits, we don't count
 816 leading zeros.
 817 73. (fact_retrieval): Wait, but in the problem, it's just asking how many bits it has when
 818 written in base 2.

820 **A.2 CASE STUDY: SENTENCE 13 ALTERNATIVES**

821 Sentence 13 (“*Alternatively, maybe I can calculate the value of 66666_{16} in decimal and then find out*
 822 *how many bits that number would require.*”) was found to have the highest counterfactual importance
 823 among any sentence in the response (see Figure 2A). Five alternative possible sentences resampled
 824 at the sentence 13 position, marked by whether they eventually led to a correct or incorrect answer,
 825 are as follows:

826 1. (✗) Let me think. The first digit is 6, which in binary is 0110.
 827 2. (✓) Let me try converting the number to decimal first...
 828 3. (✗) Let me try converting the first few digits to binary to see how it goes.
 829 4. (✗) Let me think about the conversion process.
 830 5. (✓) Let me try converting the number step by step.

831 **B GENERALIZING TO AN ALTERNATIVE REASONING MODEL**

832 **B.1 MEASURING COUNTERFACTUAL INFLUENCE**

833 To assess the generalizability of our counterfactual importance findings, we replicated our resampling
 834 methodology on R1-Distill-Llama-8B, applying the same experimental parameters (e.g., temperature
 835 = 0.6 and top-p = 0.95) used for R1-Distill-Qwen-14B. We collected 100 rollouts for 20 correct and
 836 20 incorrect base solutions using the identical question set described in Section 2.

837 The resampling accuracy trajectories for R1-Distill-Llama-8B (Figure 8) demonstrate patterns that
 838 are similar to those observed in R1-Distill-Qwen-14B (Figure 2). Specifically, we observe similar
 839 characteristic accuracy fluctuations throughout the reasoning traces, with notable spikes and dips
 840 occurring at sentences corresponding to critical reasoning transitions.

841 Figure 9 shows that R1-Distill-Llama-8B exhibits similar sentence category effects whereby *plan*
 842 *generation* and *uncertainty management* sentences demonstrate higher counterfactual importance
 843 compared to *active computation* and *fact retrieval* sentences (see Figure 3 for R1-Distill-Qwen-14B).

844 This cross-model validation supports our claim that reasoning traces are structured around high-level
 845 organizational sentences rather than low-level computational steps. The consistency of counterfactual
 846 importance patterns suggests that our sentence-level attribution framework captures fundamental
 847 properties of chain-of-thought reasoning that generalize beyond specific model implementations.

848 **B.2 ATTENTION AGGREGATION**

849 R1-Distill-Llama-8B displayed receiver-head patterns largely consistent with those of R1-Distill-
 850 Qwen-14B. The histogram of attention heads’ vertical-attention scores displays a right tail, indicating
 851 that some attention heads tend to particularly focus attention on a subset of sentences (Figure 11A).
 852 Interestingly, the R1-Distill-Qwen-14B receiver-heads tended to be more frequent in later layers (see
 853 below, Figure 20), which was not evident in R1-Distill-Llama-8B (Figure 10).

854 The R1-Distill-Qwen-14B and R1-Distill-Llama-8B receiver heads displayed consistent patterns
 855 related to sentence types, such that *plan generation*, *uncertainty management*, and *self checking*

864
865
866
867
868
869

881 Figure 8: Accuracy over 100 rollouts at each sentence for (A) one correct and (B) one incorrect
 882 base solution for R1-Distill-Llama-8B. Red dots mark significant spikes or dips. Local minima and
 883 maxima sentences are annotated with category initials. Our analyses focus on the counterfactual
 884 KL-divergence between sentences, but resampling accuracy is visualized here as it is more intuitive.

885
886
887
888
889
890
891
892
893
894
895

910 Figure 9: The mean of each sentence category for (A) forced-answer importance and (B) counterfac-
 911 tual importance for R1-Distill-Llama-8B, per the resampling method, plotted against the sentence
 912 category's mean position in the reasoning trace. Only the 5 most common sentence types are shown.
 913

914
915
916
917

918 sentences received heightened attention; although visually, the differences to *fact retrieval* and *active*
 919 *computation* may be less prominent, paired t-tests (paired with respect to a given response) showed
 920 that *plan generation* and *uncertainty management* always significantly surpassed *fact retrieval* and
 921 *active computation* (four paired t-tests: $ps \leq .01$).

922 No R1-Distill-Llama-8B results are provided for the attention suppression analysis, as that method was
 923 principally used for the case study, and no new case study was performed for R1-Distill-Llama-8B.
 924

938 Figure 10: The plots here show the vertical-attention score patterns associated with the R1-Distill-
 939 Llama-8B data. **A.** This histogram shows the kurtosis values across all attention heads, median
 940 across all reasoning traces; parallels Figure 4 based on the R1-Qwen-14B data. **B.** This scatterplot
 941 shows the kurtosis of each head's vertical-attention score, organized by layer. Figure 20 is the
 942 R1-Distill-Qwen-14B version of this figure, which showed an upward trend into later layers that is
 943 not evident here.

957 Figure 11: Based on the R1-Distill-Llama-8B data, the boxplot shows the average top-64 receiver-
 958 head score for each sentence type. The boxes correspond to the interquartile range across different
 959 reasoning traces. Figure 5 is the R1-Distill-Qwen-14B version of this figure; note that for the R1-
 960 Distill-Qwen-14B figure, the top-32 heads were used. We found that for Llama 8B, examining the
 961 top-64 heads yielded more pronounced differences, although the sentence types with the highest
 962 scores remain the same.

C SENTENCE TAXONOMY

968 Building on top of the framework presented by (Venhoff et al., 2025), we developed a taxonomy
 969 consisting of eight distinct sentence categories that capture reasoning functions in mathematical
 970 problem-solving. Each category represents a specific cognitive operation. The functions and examples
 971 for each category are given in Table 1 and Table 2. Notably, the *uncertainty management* category
 includes backtracking sentences.

972

973

Table 1: Sentence taxonomy with reasoning functions in problem-solving

Category	Function	Examples
Problem Setup	Parsing or rephrasing the problem (e.g., initial reading)	<i>I need to find the area of a circle with radius 5 cm.</i>
Plan Generation	Stating or deciding on a plan of action, meta-reasoning	<i>I'll solve this by applying the area formula.</i>
Fact Retrieval	Recalling facts, formulas, problem details without computation	<i>The formula for the area of a circle is $A = \pi r^2$.</i>
Active Computation	Algebra, calculations, or other manipulations toward the answer	<i>Substituting $r = 5$: $A = \pi \times 5^2 = 25\pi$.</i>
Uncertainty Management	Expressing confusion, re-evaluating, including backtracking	<i>Wait, I made a mistake earlier. Let me reconsider...</i>
Result Consolidation	Aggregating intermediate results, summarizing, or preparing	<i>So the area is 25π square cm which is approximately...</i>
Self Checking	Verifying previous steps, checking calculations, and re-confirmations	<i>Let me verify: $\pi r^2 = \pi \times 5^2 = 25\pi$. Correct.</i>
Final Answer Emission	Explicitly stating the final answer	<i>Therefore, the answer is...</i>

The distribution of categories across our dataset as shown in Figure 12 reveals that *active computation* constitutes the largest proportion (32.7%), followed by *fact retrieval* (20.1%), *plan generation* (15.5%), and *uncertainty management* (14.0%). The sequential structure of reasoning is reflected in the rarity and positioning of *problem setup* (2.4%), which typically occurs at the beginning, and *final answer emission* (0.7%), which predominantly appears toward the end of the reasoning process.

Figure 12: Counts and frequencies of taxonomic sentence categories in our dataset.

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

Table 2: Ten randomly selected examples for each category in our functional taxonomy. Examples are drawn from model reasoning traces on MATH problems.

Example Sentence

Problem Setup (n=124)

Continued on next page

Table 2 – continued from previous page

#	Example Sentence
1026	
1027	
1028	
1029	1 The question is asking how many different ways we can assign 0s and 1s to the bottom row such that the number in the ver...
1030	2 So, each of these four small triangles is a quarter of the size of the large one, and they are arranged such that one is...
1031	3 The answer should be to the nearest hundredth of a percent.
1032	4 Compute $3(1 + 3(1 + 3(1 + 3(1 + 3(1 + 3(1 + 3(1 + 3(1 + 3(1 + 3))))))))$
1033	5 But wait, the problem is asking for the coefficient in the entire expression $\frac{1}{4}(a + b)^4$
1034	$\left(c + \frac{1}{4}(a + b)^4\right)$...
1035	6 Okay, so I've got this problem where a mother wants to arrange her plates around a circular table, and she doesn't want ...
1036	7 So, it's a triangle with 11 rows, right?
1037	8 So, the large triangle is divided into four small ones, each at the corners, and the central area is another shape, but ...
1038	9 Wait, but in an equilateral triangle, if you connect the midpoints, you actually create four smaller equilateral triangl...
1039	10 Wait, the problem is asking for the coefficient of $\frac{1}{4}(a^2b^2)$.
1040	
1041	
1042	
1043	
1044	Plan Generation (n=761)
1045	1 Let's check:
1046	2 Since P is a polynomial whose roots are $r_j + 1/r_j$, maybe I can express P in terms of $f(x)$.
1047	3 Let me try expanding both parts separately.
1048	4 Suppose that two different irrational roots have the same conjugate.
1049	5 Let me see how that progresses over 12 months.
1050	6 Then, we can model this as a linear algebra problem over the field $GF(3)$, where we're looking for the number of solution...
1051	7 If I can figure out what those coefficients are modulo 3, I can then determine how the initial 0s and 1s in the bottom r...
1052	8 When they're nailed together, the area where they overlap would be covered by both boards, meaning that when you paint t...
1053	9 Now, I need to find $P(1)/P(-1)$.
1054	10 Similarly, $f(\delta) = \delta^{2007} + 17\delta^{2006} + 1$.
1055	
1056	
1057	
1058	
1059	Fact Retrieval (n=1470)
1060	1 Wait, but if r is 2 feet, and h is 3 feet, then $(r - h)$ would be negative, which is $(2 - 3) = -1$.
1061	2 However, the problem states that \sqrt{r} , \sqrt{s} , and \sqrt{t} are distinct, so $\sqrt{c} = 1$ is a possible solution, but ...
1062	3. Rotation by 240° clockwise: this is the inverse of the 120° rotation, so it would be $(1\ 2\ 4\ 3)$.
1063	4 γ is a primitive 3rd root of unity, so $\gamma^3 = 1$, and $\gamma^2 = \gamma^{-1}$.
1064	5 Given $y = x + 1/x$, then as I mentioned before, x satisfies $x^2 - yx + 1 = 0$.
1065	6 So, $\sin(\theta) = 0$ when $\theta = n\pi$, where n is any integer.
1066	7 So, starting from the bottom side, for example, from the bottom-left corner, moving 3 units to the right is the first po...
1067	8 Points B and A are at $(0,2)$ and $(12,10)$, respectively.
1068	9 So, these two equations relate r and $1/r$.
1069	10 I think that's correct because each of the four variables a_1, a_2, a_{10}, a_{11} can be 0 or 1, giving 16 possibilities.
1070	
1071	
1072	
1073	
1074	Active Computation (n=1902)
1075	1 Simplify numerator and denominator:
1076	2 Wait, but when $k = 319$, $x = 1/(319\pi) \approx 0.0009965$, which is still less than 0.001, so it's included.
1077	3 $3 * 500 = 1500$
1078	
1079	

Continued on next page

Table 2 – continued from previous page

#	Example Sentence
4	$2.296\dots \div 3 \approx 0.765\dots$
5	Compute each term:
6	Therefore, the total boundary length is $12 + 6\pi$ units.
7	$1.005^5 \approx 1.0201503906 * 1.005 \approx 1.0252518971$
8	Left side: $\lambda((z - 0)(z - s)(z + s)) = z(z^2 - s^2) = z^3 - s^2 z \lambda$
9	$10/24 = 120/288$
10	Then, when upright, $V = 4\pi H$.
Result Consolidation (n=879)	
1	So, the minimal degree is 1970.
2	Therefore, the only possible c 's are the cube roots of unity, which are three in number: $1, \omega, \omega^2$.
3	$y=2 \pm 19/81$, so $y \approx 2.2345679$ or $y \approx 1.7654321$.
4	Thus, y is either $2 + 19/81$ or $2 - 19/81$, which are $181/81$ and $143/81$, respectively.
5	Since each root requires its conjugate, and each pair contributes 2 to the degree, and there are 1000 such roots, each $n\dots$
6	Alternatively, I can write this as $143/(3^9)$, since 3^9 is 19,683.
7	Thus, I'm confident that $p(5) = -5/12$.
8	So, to find x such that $f(x)=186$, we can write $186 = 3^n * f(y)$, where y is in $[1,3]$, and $f(y)$ is in $[0,1]$.
9	Therefore, the final result is 36,084.
10	So, my calculation up to Level 9 as 36084 seems correct.
Self Checking (n=392)	
1	$/(5!2!1!) = 8!$
2	Correct. So, yes, $187 - 98 = 89$.
3	But since the plates are arranged in a circle, we use $(n-1)!$
4	Yes, that's correct.
5	As I thought, 289 is 17^2 , 259 is $7*37$.
6	Wait, let me make sure: the number of integers from a to b inclusive is $b - a + 1$.
7	$48+50$ is 98, plus 89 is 187.
8	4. Then I noticed that every 3 functions, it cycles: $f1, x, f, f1, x, f$, etc.
9	So, in $\lambda((a + b)^4)$, the coefficient of $\lambda(a^2b^2)$ is indeed 6.
10	Layer 8: $1 + 3*3280 = 1 + 9840 = 9841$
Uncertainty Management (n=859)	
1	So, I must have been wrong with that formula.
2	But wait, that would mean that the leading zero can be dropped, making it 19 bits.
3	Wait, but let me verify this because I might be making a mistake.
4	Wait, but let me confirm the count for $S=0$ and $S=3$.
5	Wait, perhaps I made a mistake.
6	Wait, but let me think again: when I subtract $3183 - 319$, that's 2864, and adding 1 gives 2865.
7	Wait, no, maybe I'm getting confused.
8	Let me do it properly.
9	Wait, perhaps the issue is that when converting from hex to binary directly, the leading zeros in the binary digits might...
10	But let me think more carefully.
Final Answer Emission (n=87)	
1	So, the final answer is $-289/259$.
2	Therefore, there are 89 more 4's than 8's.
3	**Final Answer** The number of initial distributions is $\boxed{1280}$.
4	So, the number of x-intercepts is 2865.

Continued on next page

Table 2 – continued from previous page

#	Example Sentence
5	**Final Answer** The smallest $\lfloor x \rfloor$ for which $\lfloor f(x) = f(2001) \rfloor$ is $\lfloor \boxed{dfrac{14319683}2} \rfloor$.
6	So, $f_{1993}(3) = -1/2$.
7	Therefore, the coefficient of a^2b^2 in the entire expression is 384.
8	Therefore, the area of the unpainted region on the four-inch board is $12\sqrt{3}$ square inches.
9	So, the number of distinguishable large equilateral triangles is 336.
10	Therefore, $p(5) = 24/5$.

D PROMPT INFORMATION

We used the following prompt with OpenAI GPT-4o (April-May, 2025) to annotate each sentence:

You are an expert in interpreting how LLMs solve math problems using multi-step reasoning. Your task is to analyze a chain-of-thought reasoning trace, broken into discrete text sentences, and label each sentence with:

1. **function_tags**: One or more labels that describe what this sentence is **doing** functionally in the reasoning process.
2. **depends_on**: A list of earlier sentence indices that this sentence directly depends on, e.g., uses information, results, or logic introduced in earlier sentences.

This annotation will be used to build a dependency graph and perform causal analysis, so please be precise and conservative: only mark a sentence as dependent on another if its reasoning clearly uses a previous sentence's result or idea.

Function Tags:

1. **problem_setup**: Parsing or rephrasing the problem (initial reading or comprehension).
2. **plan_generation**: Stating or deciding on a plan of action (often meta-reasoning).
3. **fact_retrieval**: Recalling facts, formulas, problem details (without immediate computation).
4. **active_computation**: Performing algebra, calculations, manipulations toward the answer.
5. **result_consolidation**: Aggregating intermediate results, summarizing, or preparing final answer.
6. **uncertainty_management**: Expressing confusion, re-evaluating, proposing alternative plans (includes backtracking).
7. **final_answer_emission**: Explicit statement of the final boxed answer or earlier sentences that contain the final answer.
8. **self_checking**: Verifying previous steps, checking calculations, and re-confirmations.
9. **unknown**: Use only if the sentence does not fit any of the above tags or is purely stylistic or semantic.

Dependencies:

For each sentence, include a list of earlier sentence indices that

```

1188 the reasoning in this sentence *uses*. For example:
1189 - If sentence 9 performs a computation based on a plan in sentence
1190 4 and a recalled rule in sentence 5, then depends_on: [4, 5]
1191 - If sentence 24 plugs in a final answer to verify correctness
1192 from sentence 23, then depends_on: [23]
1193 - If there's no clear dependency use an empty list: []
1194 - If sentence 13 performs a computation based on information in
1195 sentence 11, which in turn uses information from sentence 7, then
1196 depends_on: [11, 7]
1197
1198 Important Notes:
1199 - Make sure to include all dependencies for each sentence.
1200 - Include both long-range and short-range dependencies.
1201 - Do NOT forget about long-range dependencies.
1202 - Try to be as comprehensive as possible.
1203 - Make sure there is a path from earlier sentences to the final
1204 answer.
1205 Output Format:
1206
1207 Return a dictionary with one entry per sentence, where each entry
1208 has:
1209 - the sentence index (as the key, converted to a string),
1210 - a dictionary with:
1211   - "function_tags": list of tag strings
1212   - "depends_on": list of sentence indices, converted to strings
1213
1214 Here is the expected format:
1215 {
1216   "1": {
1217     "function_tags": ["problem_setup"],
1218     "depends_on": []
1219   },
1220   "4": {
1221     "function_tags": ["plan_generation"],
1222     "depends_on": ["3"]
1223   },
1224   "5": {
1225     "function_tags": ["fact_retrieval"],
1226     "depends_on": []
1227   },
1228   "9": {
1229     "function_tags": ["active_computation"],
1230     "depends_on": ["4", "5"]
1231   },
1232   "24": {
1233     "function_tags": ["uncertainty_management"],
1234     "depends_on": ["23"]
1235   },
1236 }
1237
1238 Here is the math problem:
1239 <PROBLEM>
1240
1241 Here is the full chain-of-thought, broken into sentences:
1242 <SENTENCES>

```

1242

1243 Now label each sentence with function tags and dependencies.

1244

1245 E SENTENCE CATEGORY PROBING

1246

1247 We trained a linear classifier to identify sentence categories based on activations. We employed a
 1248 multinomial logistic regression with L2 regularization ($C = 1.0$) on the residual stream activity
 1249 from layer 47 (last layer) of R1-Distill-Qwen-14B. For evaluating accuracy, we implemented a
 1250 group-5-fold cross-validation that ensured examples from the same problem response remained in
 1251 either the training or testing set to prevent data leakage. We averaged the residual stream activity
 1252 across tokens to create sentence-level representations, whose dimensions were then standardized.
 1253 To address class imbalance in the training data, we employed balanced class weights. The model
 1254 demonstrated strong discriminative power across all reasoning categories, achieving a macro-F1
 1255 score of 0.71. The confusion matrix presented in Figure 13 reveals high classification accuracies for
 1256 categories such as *active computation* (0.74), *uncertainty management* (0.79), and *problem setup*
 1257 (0.83), while showing some confusion between functionally related categories.

1258

1259

Sentence category classification from layer 47 activations

1278

1279

1280 Figure 13: Confusion matrix showing the sentence category classification performance of a logistic
 1281 regression probe trained on activations from layer 47 of the R1-Distill-Qwen-14B model. Values
 1282 represent the proportion of examples from each true category (rows) classified as each predicted
 1283 category (columns). Diagonal elements indicate correct classifications.

1284

1285

F EMBEDDINGS MODEL AND COUNTERFACTUAL IMPORTANCE RESULTS ACROSS SIMILARITY THRESHOLDS

1288

1289

1290 We used aLL-MiniLM-L6-v2 with a maximum sequence length of 256 tokens and a hidden dimension
 1291 of 384 as our sentence embeddings model from the sentence-transformers (Reimers
 1292 & Gurevych, 2019) library. We picked a cosine similarity threshold of 0.8, which is the median
 1293 similarity value between all sentence removed (i.e., original sentence) and sentence resampled pairs
 in our dataset.

1294

1295

The effects reported in Figure 3, whereby *plan generation* and *uncertainty management* display the highest levels of counterfactual importance, also emerges when the cosine similarity threshold for $T_i \neq S_i$ is set at 0.5 or 0.9 (Figure 14).

Figure 14: This is a variant of Figure 3, now performed a cosine similarity threshold of using either (A) 0.5 or (B) 0.9

G EVALUATING IMPORTANCE (KL) WHILE SMOOTHING

The identified link between sentence’s category and its forced-answer or counterfactual importances were also measured while smoothing the final-answer distribution associated with each sentence. Smoothing was performed when computing the KL divergence between the two distribution and constitutes replacing the $\epsilon = 10^{-9}$ term (originally used to avoid division by zero) with $\alpha = 1.0$ (Laplace smoothing) or $\alpha = 0.5$ (smoothing with Jeffrey’s prior).

Let $p(A'_{S_i})$ and $p(A_{S_i})$ be the empirical distributions over a set of K possible final answers, \mathcal{A} , derived from N rollouts (e.g., $N = 100$). Let $C'_{S_i}(a)$ and $C_{S_i}(a)$ be the observed counts for a specific answer $a \in \mathcal{A}$ in the intervention and base conditions, respectively, such that $\sum_{a \in \mathcal{A}} C'_{S_i}(a) = N$. Additive smoothing with a parameter α is applied to derive smoothed probabilities, p_α and q_α , from these counts:

$$p_\alpha(a) = \frac{C'_{S_i}(a) + \alpha}{N + K\alpha} \quad \text{and} \quad q_\alpha(a) = \frac{C_{S_i}(a) + \alpha}{N + K\alpha}$$

The smoothed KL divergence, D_{KL}^α , is then computed using these non-zero probabilities:

$$D_{\text{KL}}^\alpha[p(A'_{S_i}) || p(A_{S_i})] = \sum_{a \in \mathcal{A}} p_\alpha(a) \log \left(\frac{p_\alpha(a)}{q_\alpha(a)} \right)$$

This method replaces the use of a small ϵ floor. The smoothing parameters used are $\alpha = 1.0$ (Laplace smoothing) and $\alpha = 0.5$ (Jeffreys prior).

With either level of smoothing, the same patterns linking importance and sentence category emerge as initially reported without smoothing (Figure 3). Specifically, *active computation* sentences yield higher forced answer importance than *plan generation* and *uncertainty management*, but the reverse is true when examining counterfactual importance based on the resampling method (Figure 15).

Figure 15: This is a variant of Figure 3, now performed with smoothing. Smoothing was performed using either (A) $\alpha = 1.0$, Laplace smoothing, or (B) $\alpha = 0.5$, Jeffreys prior.

H COUNTERFACTUAL VERSUS RESAMPLING IMPORTANCE

The resampling importance metric introduced in Section 2.3 treats all resampled sentences as equally informative, but different sentence types may exhibit varying degrees of **overdetermination** during resampling. Overdetermination occurs when resampled sentences T_i are frequently similar to the original sentence S_i (i.e., $T_i \approx S_i$), indicating that the reasoning context strongly constrains what can be expressed at that position. We present empirical evidence that counterfactual importance is a more nuanced measure by accounting for semantic divergence in resampled content.

Some sentences are more overdetermined than others. Figure 16A shows that *uncertainty management* and *plan generation* sentences produce semantically different alternatives in a large proportion of resamples, while *active computation* and *problem setup* sentences show lower divergence rates.

The transition matrix in Figure 16B shows how sentence categories change under resampling. For instance, *uncertainty management* and *active computation* sentences are usually replaced by sentences of the same category, whereas *plan generation* and *fact retrieval* sentences are more often resampled into a variety of other categories.

Figure 16: (A) Fraction of semantically different resampled sentences by category, showing that *uncertainty management* and *plan generation* sentences produce more divergent alternatives when resampled. (B) Transition probabilities between original and resampled sentence categories.

These resampling behaviors create systematic differences between our counterfactual and resampling importance metrics. Figure 17 demonstrates that the relationship between the two metrics varies substantially across sentences and sentence categories. The counterfactual importance metric aims to address overdetermination by explicitly filtering for semantically different resamples, providing a more targeted measure of causal influence. In contrast, the resampling metric potentially overestimates the importance of sentences that consistently produce similar content when resampled.

Figure 17: Comparison between counterfactual and resampling importance metrics across sentence categories. Each point represents a single sentence and the dashed gray line is the $y = x$ line.

However, the counterfactual importance metric can yield high-variance estimates when the number of semantically divergent resampled sentences is low (e.g., < 10), as the conditional probability estimates become less reliable with limited data. Alongside the limitations discussed in Section 8, this represents another constraint of our approach that future work should investigate further.

I SIMULATING INTERPRETATIONS FROM READING COT TEXT

To address whether our techniques for quantifying sentence importance merely recover insights that are obvious from reading the CoT text, we conducted an experiment simulating a human evaluator. We employed an LLM judge (Claude-4.5-Sonnet) to read the 40 MATH reasoning traces and predict the causal importance of specific sentences. We used the scores for two analyses: First, we measured the correlation between the judge’s predicted importance and our empirical metrics (Counterfactual and Forced-Answer Importance). Second, we aggregated the judge’s ratings against our sentence taxonomy—mirroring the analysis in the main text—to determine which sentence types (e.g., *Plan Generation* vs. *Active Computation*) a reader intuitively perceives as important.

I.1 METHODOLOGY

For every sentence in our MATH dataset ($N = 6474$), we provided the LLM judge with the full reasoning trace up to that point. We tested two distinct prompting strategies (prompts in Table 3):

1458

1459 1. **Naive Causal Relevance:** We asked the judge to rate (0-10), "how much do you expect that
1460 the marked sentence is causally relevant to arriving at the correct final answer?"

1461 2. **Mechanism-Aware Relevance:** We explicitly prompted it to consider the mechanics of
1462 autoregressive generation. We asked the model to consider "restarting the reasoning from
1463 that point" and to "think about how a given sentence influences the likelihood of future
1464 sentences appearing" before assigning a 0-10 rating.

1465

1466 Table 3: System prompts used for the LLM Judge evaluation. Both prompts included the full problem
1467 and the solution with the target sentence highlighted.

Prompt Strategy	Prompt Template
Naive Causal Relevance	<p>You are evaluating the importance of individual sentences in a mathematical reasoning trace. Below is a chain-of-thought solution to a math problem. One sentence is marked with **[THIS SENTENCE]** tags.</p> <p>Problem: {problem}</p> <p>Solution: {marked_solution}</p> <p>Question: On a scale of 0 to 10, how much do you expect that the marked sentence is causally relevant to arriving at the correct final answer?</p> <p>- 0 means completely irrelevant (removing it would have no impact)</p> <p>- 10 means critically essential (removing it would definitely prevent getting the correct answer)</p> <p>Provide ONLY a single number from 0 to 10 as your response.</p>
Mechanism-Aware Relevance	<p>You are evaluating the importance of individual sentences in a mathematical reasoning trace. Below is a chain-of-thought solution to a math problem. One sentence is marked with **[THIS SENTENCE]** tags.</p> <p>Problem: {problem}</p> <p>Solution: {marked_solution}</p> <p>Question: On a scale of 0 to 10, how much do you expect that the marked sentence is causally relevant to arriving at the correct final answer?</p> <p>- 0 means completely irrelevant (removing and restarting the reasoning from that point would have no impact)</p> <p>- 10 means critically essential (removing and restarting the reasoning from that point would definitely prevent getting the correct answer)</p> <p>Think about how a given sentence influences the likelihood of future sentences appearing. Provide ONLY a single number from 0 to 10 as your response.</p>

I.2 CORRELATION RESULTS

We computed the Pearson correlation between the LLM judge's ratings and our empirically derived importance metrics. We found that the judge's importance scores did not meaningfully correlate with the ground-truth causal impact measured by our resampling method.

1501

1502 • **Correlation with Counterfactual Importance:** The judge's ratings showed near-zero
1503 correlation with our counterfactual importance metric for both the naive prompt ($r = -.03$)
1504 and the mechanism-aware prompt ($r = -.04$). This suggests that the sentences that actually
1505 drive the model's downstream trajectory are not intuitively obvious even to a strong frontier
1506 model analyzing the text.

1507

1508 • **Correlation with Forced-Answer Importance:** Interestingly, the judge's ratings showed a
1509 weak positive correlation with the forced-answer importance baseline for both prompting
1510 conditions ($r = .14 - .16$).

1511

1512
1513

I.3 DIFFERENCES ACROSS SENTENCE CATEGORIES

1514
1515
1516
1517
1518
1519

As shown in Figure 18, the divergence stems from what the judge values. The LLM judge tends to assign high importance to `active_computation`. In contrast, our resampling method identifies `plan_generation` and `uncertainty_management` steps as having the largest causal impact. Although there exists no single “ground truth” that all of these methods are attempting to predict, these comparisons demonstrate that our counterfactual technique identifies new insights and covers different mechanisms by considering how a sentence influences the downstream CoT.

1520

1521
1522
1523
1524
1525
1526
1527
1528
1529

1530

1531

1532

1533

Figure 18: Importance scores assigned by the LLM judge, averaged for each sentence category.

1534

1535

1536

1537

J ADDITIONAL RESAMPLING RESULTS

1538
1539
1540
1541
1542
1543
1544
1545
1546

Figure 19 presents mean counterfactual importances across all eight taxonomic categories for R1-Distill-Qwen-14B, extending the main text results (Figure 3) which showed only the five most frequent sentence types. The expanded view includes three additional categories with lower frequencies. *Problem setup* sentences occur predominantly at trace beginnings (mean normalized position ≈ 0.1) with moderate-high counterfactual importance. *Self checking* sentences tend to occur in the second-half of the traces and show lower counterfactual importance. *Final answer emission* sentences appear late in traces (mean normalized position ≈ 0.9) and show the lowest counterfactual importance. The patterns observed in the five-category analysis remain consistent when examining the full taxonomy.

1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
15631564
1565

Figure 19: The mean of each sentence category for (A) forced-answer importance and (B) counterfactual importance for R1-Distill-Qwen-14B, per the resampling method, plotted against the sentence category's mean position in the reasoning trace. All sentence types are shown.

1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619

Figure 20: This scatterplot shows the kurtosis of each head’s vertical-attention score, organized by layer. There is an upward trend across layers and a strong uptick among some late-layer heads.

K ADDITIONAL RECEIVER HEAD INFORMATION

Receiver heads – heads receiving high kurtosis scores – are more common in late layers (Figure 20). Examples of receiver heads are shown in Figure 21, showing how the highest kurtosis head consistently narrows attention on particular sentences, and Figure 22, showing how there exist many heads that narrow attention on particular sentences.

L REASONING VERSUS BASE MODEL DIFFERENCES IN RECEIVER HEADS

Attentional narrowing toward particular sentences may be a feature specifically of reasoning models. We submitted the reasoning traces to a base model version of Qwen-14B and identified receiver heads. For both models, we sorted all sentences by their mean receiver-head score using the 16 attention heads with the highest kurtoses. The highest percentile sentences received greater attention by the reasoning model - e.g., the highest-percentile sentences receive 1.8x more attention via top-16 heads in the reasoning model compared to the base model (Figure 23). Additionally, lower percentile sentences receive less attention through the top-16 heads. This conclusion is somewhat tenuous, as no base-model difference is seen when this result is tested using R1-Distill-Llama-8B. Nonetheless, based on the Qwen-14B data, it appears the model has learned to narrow its attention toward particular sentences.

M EFFECTS OF ABLATING RECEIVER HEADS

To test the causal hypothesis that the receiver heads identified in Section 4 are functionally important for reasoning, we performed an experiment ablating receiver heads and evaluating how this impact’s model accuracy. This intervention is designed to measure the direct impact of removing these heads on task performance and to evaluate the possibility that they may be more important than typical heads.

M.1 METHODOLOGY

We continue to use problems from the MATH dataset. We selected 32 problems where the non-ablated model achieves 10-90% accuracy on average. For each problem, we ran R1-Distil-Qwen-14B sixteen times, while allowing the model to output up to 2^{16} (16,384) tokens. Responses that did not produce an answer by that point were marked as incorrect.

We compared the effect of ablating 128 attention heads (approx. 7% of all heads), 256 heads (approx. 13%), or 512 heads (approx. 27%). The ablation strategies were:

Figure 21: The attention weight matrices for the receiver head with the highest kurtosis score are shown here for twenty of the forty responses (selected arbitrarily based on the first twenty processed). The coloring was defined such that the darkest navy corresponds to values surpassing 99.5th percentile value of each matrix. White is zero.

Figure 22: The attention weight matrices for response #1591 (incorrect) are shown here for the 20 attention heads yielding the highest kurtosis score across all responses. No effort was taken to “cherry-pick” responses showing prominent receiver head patterns; we are showing #1591 (incorrect) because it corresponded to the alphabetically earliest problem number among the ten problems analyzed (correct/incorrect chosen randomly). The coloring was defined such that the darkest navy corresponds to values surpassing 99.5th percentile value of each matrix. White is zero.

Figure 23: The navy and red lines on the left show the receiver-head scores assigned to sentences, averaged across the 16 heads with the highest kurtoses. The green lines on the right represent the ratio of the navy and blue lines for a given sentence rank. Sentences with high receiver head scores receive more attention in the reasoning model compared to the base model.

1728

1729 1. **Receiver head ablation:** We ablated the top- N heads with the highest average kurtosis

1730 scores.

1731 2. **Random non-receiver (control) ablation:** For each layer where k receiver heads were

1732 ablated, we ablated k heads chosen randomly from the set of heads not selected from that

1733 same layer. This ensures a matched comparison with no overlap.

1734 Note that receiver heads are more common in late layers (see above, Figure 20). By ensuring that

1735 both conditions included an equal number of heads from each layer (rather than selecting 128, 256,

1736 or 512 heads randomly across all layers), this ensures that differences cannot be explained simply by

1737 differences in the layers selected.

1738 In the 512-head ablation condition, a majority of attention heads in some late layers were marked

1739 as receiver heads. For these layers, the non-receiver control condition was modified to ablate the

1740 corresponding number of heads with the lowest kurtosis scores to ensure a valid comparison set. For

1741 instance, if 60% of layer 43 heads are in the top-512, then the control condition included the 60%

1742 with the lowest kurtosis score, meaning that there is 20% overlap for that layer.

1743 M.2 RESULTS AND DISCUSSION

1744 Our experiments show that a large number of heads must be ablated to induce a significant drop in

1745 performance compared to the baseline level of accuracy (baseline = 64.1%, 95% CI: [56.0%, 72.1%]).

1746 Regardless of whether receiver heads or non-receiver heads are targeted, ablating 128 heads produces

1747 differences in accuracy that insignificantly differ from baseline accuracy, and ablating 256 heads still

1748 produces only a small drop in accuracy (Table 4).¹

1749

1750

1751 Table 4: Answer accuracy on MATH problems for different self-attention-head ablation conditions.

1752 The brackets show the 95% confidence interval for each accuracy estimate.

1753

1754 Heads Ablated	1755 Receiver heads	1756 Random heads
1755 256	1756 48.8% [39.3%, 58.3%]	1756 52.7% [43.0%, 62.5%]
1756 512	1756 27.7% [17.2%, 38.2%]	1756 37.3% [27.5%, 47.1%]

1757

1758 The importance of receiver heads emerges when a large number of heads are ablated. When ablating

1759 512 heads (over a quarter of the model’s 1920 heads), targeting receiver heads caused performance to

1760 fall to 28% accuracy. Removing the same number of control heads resulted in a less severe drop to

1761 37% accuracy. There is a significant difference between these percentages ($t[31] = 2.55, p = .02$),

1762 suggesting receiver heads are more critical for reasoning than other heads.

1763

1764 As mentioned, this analysis treats responses as incorrect if they do not produce a final answer by

1765 16,384 tokens. If the analysis is changed to instead simply omit those responses entirely from the

1766 analysis, there remains a significant difference in accuracy when ablating top-512 receiver heads

1767 (29% accuracy) versus random non-receiver heads (39% accuracy) ($t[31] = 2.66, p = .02$). Hence,

1768 regardless of whether non-completed responses are marked as incorrect or ignored, ablating receiver

1769 heads is found to exert a larger impact on model accuracy than ablating random non-receiver heads.

1771 N KL CAUSAL GRAPH PSEUDOCODE

1772

1773 This pseudocode outlines the procedure for computing a sentence-to-sentence causal graph for a

1774 given chain-of-thought (CoT). The algorithm works by systematically masking each source sentence

1775 and measuring the resulting change in the model’s predictions (logits) for all subsequent target

1776 sentences. The sentence–sentence impact is quantified as the average log-KL divergence across a

1777 target sentence’s tokens, which is then normalized against the average impact from all prior sentences.

1778

1779 ¹We are not aware of prior studies on attention head ablation for models generating long chain-of-thought

1780 reasoning, making it difficult to establish what is a typical number of heads to ablate. Potentially, a large

1781 number is necessary because the long reasoning traces (sometimes exceeding 10,000 tokens) provide extensive

opportunities for error correction and compensatory computation.

1782 This last normalization step effectively accounts for differences in target sentences' average entropy,
 1783 which may vary widely and can hamper studying differences between target sentences.
 1784

1785 Masking can be performed either by suppressing attention toward the source sentence or omitting the
 1786 sentence entirely; the former preserves positional embedding information, while the latter may be
 1787 computationally cheaper and easier to implement (e.g., with serverless providers). If masking is done
 1788 by omitting sentence i from the CoT, rather than suppressing attention toward sentence i , this will
 1789 impact sentence j 's token positions across the CoT and masked CoT, which should be accounted for.
 1790

Algorithm 1 GetCausalMatrix(CoT, Model)

```

1: Initialize CAUSAL_MATRIX  $\in \mathbb{R}^{M \times M} \leftarrow 0$   $\triangleright M = \text{number of sentences in CoT}$ 
2: LOGITS_BASE  $\leftarrow \text{FORWARD\_PASS}(\text{CoT}, \text{Model})$   $\triangleright \text{shape: (tokens, vocabulary)}$ 
3: for  $i = 0$  to  $M - 1$  do  $\triangleright \text{source sentence}$ 
4:   CoTmasked  $\leftarrow \text{MASK\_SOURCE}(\text{CoT}, i)$ 
5:   LOGITS_MASKED  $\leftarrow \text{FORWARD\_PASS}(\text{CoT}_{\text{masked}}, \text{Model})$ 
6:   for  $j = i + 1$  to  $M - 1$  do  $\triangleright \text{target sentence}$ 
7:     TOKENS_J  $\leftarrow \text{SENTENCE\_TOKENS}(\text{CoT}_{\text{masked}}, j)$ 
8:     TOTAL_KL  $\leftarrow 0$ 
9:     for each  $k \in \text{TOKENS\_J}$  do
10:       KL  $\leftarrow \text{KLDIVERGENCE}(\text{LOGITS\_BASE}[k], \text{LOGITS\_MASKED}[k])$ 
11:       TOTAL_KL  $\leftarrow \text{TOTAL\_KL} + \log(\text{KL})$ 
12:     end for
13:     CAUSAL_MATRIX[ $i, j$ ]  $\leftarrow \text{TOTAL\_KL} / |\text{TOKENS\_J}|$ 
14:   end for
15: end for  $\triangleright \text{Normalize each target column by the mean over prior sources}$ 
16: for  $j = 0$  to  $M - 1$  do
17:    $\mu \leftarrow \text{MEAN}(\text{CAUSAL\_MATRIX}[0:j, j])$ 
18:   CAUSAL_MATRIX[ $0:j, j$ ]  $\leftarrow \text{CAUSAL\_MATRIX}[0:j, j] - \mu$ 
19: end for
20: return CAUSAL_MATRIX
  
```

Algorithm 2 KLDivergence(LOGITS_P, LOGITS_Q)

```

1:  $\log p \leftarrow \text{LOGITS\_P} - \text{LOG\_SUM\_EXP}(\text{LOGITS\_P})$   $\triangleright \text{log-softmax}$ 
2:  $\log q \leftarrow \text{LOGITS\_Q} - \text{LOG\_SUM\_EXP}(\text{LOGITS\_Q})$ 
3:  $p \leftarrow \exp(\log p)$ 
4: KL  $\leftarrow 0$ 
5: for each vocabulary index  $v$  do
6:   KL  $\leftarrow \text{KL} + p[v] \cdot (\log p[v] - \log q[v])$ 
7: end for
8: return KL
  
```

O SENTENCE-TO-SENTENCE COUNTERFACTUAL IMPORTANCE

1826 We extend our counterfactual resampling framework (section 3.2) to quantify each sentence's influence
 1827 on each future sentence. Further below, we describe how this measure's values for sentence-sentence
 1828 links correlate with the values generated via our section 5 method, masking sentences and measuring
 1829 the impact on later sentences' logits.
 1830

O.1 COUNTERFACTUAL SENTENCE-SENTENCE LINKAGE METHODS

1831 We estimate the counterfactual importance of sentence S_i on a future sentence $S^{\text{Fut.}}$ formally with:
 1832

$$1833 \text{importance}(S_i \rightarrow S^{\text{Fut.}}) = \mathbb{P}(S^{\text{Fut.}} \in \approx \{S_i, \dots, S_M\}) - \mathbb{P}(S^{\text{Fut.}} \in \approx \{T_i, \dots, T_N\} | T_i \not\approx S_i) \quad (1)$$

1836 Intuitively, on the right-hand side of Equation (1), the first term is the probability that a future
 1837 sentence $S^{\text{Fut.}}$ will semantically occur given that S_i was present in the trace, and the second term is
 1838 the corresponding probability when S_i is resampled with a non-equivalent sentence. A positive score
 1839 indicates that sentence S_i increases the likelihood of producing $S^{\text{Fut.}}$ (i.e., S_i upregulates $S^{\text{Fut.}}$), while
 1840 a negative score suggests that it suppresses or inhibits it. To be clear, this technique relies on full
 1841 autoregressive rollouts rather than teacher-forced probabilities.

1842 In this context $S^{\text{Fut.}}$ semantically occurs if, when we extract the sentences and identify the best
 1843 candidate match for $S^{\text{Fut.}}$ using cosine similarity between sentence embeddings, it has greater than 0.8
 1844 cosine similarity (i.e., the median value in our dataset) to that sentence. Pseudocode for estimating
 1845 sentence-to-sentence importance and empirical values of this metric can be found in Section H.

1846 Beyond measuring individual sentence importance, our framework quantifies causal dependencies
 1847 between specific sentence pairs within reasoning traces. Figure 24 displays the sentence-to-sentence
 1848 importance matrix for problem #2236 (incorrect) (“*Each page number of a 488-page book is printed*
 1849 *one time in the book. The first page is page 1 and the last page is page 488. When printing all of*
 1850 *the page numbers, how many more 4’s are printed than 8’s?*”), showing how individual sentences
 1851 influence downstream reasoning steps. Below we list a few illustrative cases.

1852

1853

1854 • **12-PG → 16-PG.** The planning in sentence 12 (“*1. Count the number of 4’s in the units*
 1855 *place across all page numbers*”) raises the probability that the model produces sentence 16
 1856 (“*Starting with the 4’s.*”) by 0.39. A plan statement triggers a subordinate planning step.

1857

1858

1859 • **8-FR, 9-PG, 12-PG, 14-PG → 32-UM.** The uncertainty management in sentence 32 (“*How*
 1860 *ever, I need to check if 440-449 is fully included.*”) receives sizeable positive influence from
 1861 several earlier sentences: 8-FR (+0.11), 9-PG (+0.06), 12-PG (+0.12), 14-PG (+0.10).
 1862 This forms the dense horizontal band at row index 32.

1863

1864

1865 • **39-RC ↛ 83-UM.** The result consolidation in sentence 32 (“*Now, summing up all the 4’s:*
 1866 *- Units: 48 - Tens: 50 - Hundreds: 89. Total 4’s = 48 + 50 + 89 = 187.*”) decreases the
 1867 likelihood (i.e., inhibits) of 83-UM (“*Wait, but just to be thorough, let me check the hundreds*
 1868 *place for 4’s again.*”) by 0.22.

1869

1870

1871

1872 • **52-AC ↛ 65-SC.** The computation in sentence 52 (“*The first four blocks 80-89, 180-189,*
 1873 *280-289, 380-389 each contribute 10 eights in the tens place.*”) decreases the likelihood of
 1874 *65-SC* (“*Let me go through each step again to make sure I didn’t make a mistake.*”) by 0.16.

1875

1876

1877 • **63-AC → 64-UM, 65-SC, 69-SC, 75-SC, 83-UM, 86-SC.** The computation in sentence
 1878 63 (“*So, the difference is 187 - 98 = 89.*”) propagates forward, increasing the likelihood
 1879 of 64-UM (+0.24), 65-SC (+0.17), 69-SC (+0.16), 75-SC (+0.28), 83-UM (0.23), and
 1880 86-SC (0.16). This forms the dense vertical band originating from column index 63.

1881

1882

1883 • **64-UM → 65-SC, 69-SC, 75-SC, 83-UM, 86-SC.** The uncertainty management in sentence
 1884 64 (“*Wait, that seems quite a large difference.*”) further amplifies the same downstream
 1885 block: 65-SC (+0.32), 69-SC (+0.25), 75-SC (+0.26), 83-UM (0.25), and 86-SC (0.25).

1886

1887

1888 • **83-UM → 86-SC, 90-FAE.** Even very late checks matter. Sentence 83 (“*Wait, but just to be*
 1889 *thorough, let me check the hundreds place for 4’s again.*”) increases the chance of 86-SC
 (“*Correct. And for the tens place...*”) by 0.43 and of the final answer in 90-FAE by 0.41.

Figure 24: Sentence-to-sentence importance matrix for the 32 most important sentences in problem #2236 (incorrect), selected based on total outgoing and incoming importance. Each cell (i, j) shows the causal importance of sentence i on sentence j , calculated as the difference in the probability sentence j semantically occurs (> 0.8 cosine similarity) when sentence i is present versus resampled.

We provide the following pseudocode for estimating sentence-to-sentence importance:

```

Input: Sentence index i, target sentence index j (where  $j > i$ ),
       threshold  $t = 0.8$ 
Output: Importance score  $\text{importance}(i \rightarrow j)$ 

1. Get rollouts  $R_{\text{keep}}$  where sentence  $i$  was kept (resampling from  $i+1$ )
2. Get rollouts  $R_{\text{remove}}$  where sentence  $i$  was removed (resampling from  $i$ )

3. For each rollout  $r$  in  $R_{\text{keep}}$ :
   a. Extract all sentences  $S_r$  from rollout  $r$ 
   b. Find best matching sentence to target sentence  $j$ :
      - Compute sentence embeddings
      - Calculate cosine similarity between each  $s$  in  $S_r$  and target  $j$ 
      - Select sentence with highest similarity if  $\text{similarity} \geq t$ 
   c. Add to  $\text{matches}_{\text{keep}}$  if valid match found

4. For each rollout  $r$  in  $R_{\text{remove}}$ :
   a. Extract all sentences  $S_r$  from rollout  $r$ 
   b. Find best matching sentence to target sentence  $j$ 
      (same process as step 3b)
   c. Add to  $\text{matches}_{\text{remove}}$  if valid match found

5. Calculate match rates:
    $\text{match\_rate}_{\text{keep}} = |\text{matches}_{\text{keep}}| / |R_{\text{keep}}|$ 
    $\text{match\_rate}_{\text{remove}} = |\text{matches}_{\text{remove}}| / |R_{\text{remove}}|$ 

6. Return  $\text{importance}(i \rightarrow j) = \text{match\_rate}_{\text{keep}} - \text{match\_rate}_{\text{remove}}$ 

```

O.2 CORRELATIONS WITH THE RESAMPLING-BASED IMPORTANCE MATRIX

The sentence-masking matrix values correlate with those of the resampling-method matrix. Specifically, the two matrices were positively correlated for 90% of reasoning traces (mean $r = .20$, 95% CI: [.12, .27]); a correlation was computed separately for each CoT and then averaged, and this average significantly surpasses zero per a one-sample t-test ($p < .001$). This association is stronger when considering only cases fewer than five sentences apart in the reasoning trace, which may better track

Figure 25: Case study: problem #4682 (correct). Red matrix shows the effect of suppressing one sentence (x-axis) on a future sentence (y-axis). Darker colors indicate higher values. Bottom-left line plot shows the average attention toward each sentence by all subsequent sentences via the top-32 receiver heads (32 attention heads with the highest kurtosis score). Flowchart summarizes the model’s CoT with chunks defined around key sentences receiving high attention via receiver heads. Sentence 13 is emphasized as it has high counterfactual importance per the resampling method (see Figure 2A).

direct rather than indirect effects represented by the resampling method (mean $r = .34$ [.27, .40]). The magnitudes of these correlations are substantial, given that the two measures capture partially different aspects of causality and the resampling measure itself contains stochastic noise. Hence, these results give weight to the validity of the resampling approach, whose precision we leverage for the forthcoming case study.

P IN DEPTH CASE STUDY

The presented techniques cover different aspects of attribution within a reasoning trace. Building on the case-study conclusions from our resampling approach (section 2.4), we study the model’s CoT here by focusing on receiver heads and sentence-sentence links (Figure 25) (see above, Section A, for the full transcript).

P.1 RECEIVER HEADS

The trajectory toward the final correct answer can be understood as a series of computational chunks (see flowchart in Figure 25). First, the model prepares a formula for converting 66666_{16} to decimal (sentences 13-19). Next, the model computes the answer to that formula, finding that 66666_{16} is 419,430 in decimal (sentences 20-33). The model subsequently converts that number to binary by putting forth another formula and solving it, $\text{floor}(\log_2(419,430)) + 1 = 19$, to derive that the answer is “19 bits” (sentences 34-41). The model then notes a discrepancy with the earlier 20-bit solution (sentences 42-45). The model hence initiates new computations that verify that it computed the decimal value of 66666_{16} correctly (sentences 46-58) and that it computed the binary conversion accurately (sentences 59-62). Equipped with this increased certainty about 19-bit answer, the model

1998 discovers why its initial 20-bit idea was incorrect: “*because leading zeros are not counted*” (Sentence
 1999 66). This overall narrative is based on our analysis of attention patterns (section 4): Receiver attention
 2000 heads pinpoint sentences initiating computations or stating key conclusions, thereby segmenting the
 2001 reasoning trace into seemingly meaningful chunks (Figure 25).
 2002

2003 **P.2 ATTENTION SUPPRESSION**

2004 Along with being organized into computational chunks, the reasoning displays a scaffold related to
 2005 sentence-sentence dependencies (Figure 25). One piece of this structure is a self-correction pattern
 2006 involving an incorrect proposal, a detected discrepancy, and a final resolution. Specifically, the
 2007 model initially proposes an incorrect answer of “20 bits”, which it decides to recheck (sentence 12).
 2008 This leads to a discrepancy with the “19 bits” answer computed via decimal conversion (sentences
 2009 43 & 44). After rechecking its arithmetic supporting the “19 bit” answer, the model returns to
 2010 the discrepancy (sentence 65) and then produces an explanation for why the “20 bits” answer is
 2011 incorrect (sentence 66). This can be seen as a tentative CoT circuit, where two conclusions conflict
 2012 to produce a discrepancy, which in turn encourages the model to resolve the discrepancy. Within
 2013 this wide-spanning scaffold, there exist further dependencies, corresponding to verifying an earlier
 2014 computation. Specifically, the model finishes computing the decimal value of 66666_{16} as 419,430
 2015 (sentence 32), later decides to verify that decimal conversion (sentence 46), and finally confirms that
 2016 the original value is correct (sentence 59). This can be seen as further indication of CoT circuitry.
 2017

2018 We identified these linkages based on the attention-suppression matrix (section 5), which contains
 2019 local maxima at these linkages ($12 \rightarrow 43$, $43 \rightarrow 65$, $12 \rightarrow 66$; $32 \rightarrow 46$, $32 \rightarrow 59$). Notice that
 2020 many of the sentences pinpointed by the attention-suppression technique overlap with the sentences
 2021 receiving high attention from receiver heads. Adding to the receiver-head conclusions, the attention
 2022 suppression technique shows how information flows between these key sentences that structure the
 2023 reasoning trace.

2024 **Q SENTENCE POSITION EFFECTS ON RECEIVER-HEAD SCORES**

2025 A sentence’s position within the reasoning trace will tend to influence its measured receiver score.

2026 As a reasoning trace progresses, the number of possible broadcasted sentences will necessarily
 2027 increase. For instance, by sentence 20, there might be only two broadcasted sentences (each receiving
 2028 50% of attention from sentences 21-29), whereas by sentence 100, there could be ten broadcasted
 2029 sentences (each receiving 10% of attention from sentences 101-109). As the sum of an attention
 2030 weight row will sum to 1 (at the token level), later sentences will distribute their attention across a
 2031 larger number of past sentences. This dilution of attention creates downward pressure on the receiver-
 2032 head scores of later sentences. This is the case even though a receiver head score extends through all
 2033 subsequent low-competition or high-competition periods. For example, broadcasting sentence 20 will
 2034 face limited competition from receiving sentence 21-29 attention and high competition for sentences
 2035 101-109, whereas broadcasting sentence 100 will exclusively face high competition, pushing its score
 2036 downward as broadcasting-sentence position increases.
 2037

2038 There also exists a proximity effect on receiver-head scores that operates in the opposite direction of
 2039 the above effect. Although broadcasted sentences are attended by all subsequent sentences to some
 2040 degree, this will be more so the case for more recently subsequent sentences (e.g., receiving more
 2041 attention from a sentence 10 sentences downstream than one 20 sentences downstream). For sentences
 2042 late in the reasoning trace, the average distance to future sentences will be shorter. For example, if a
 2043 reasoning trace contains 120 sentences, then sentence 100 will be at most 19 sentences apart from
 2044 any given future sentence, whereas sentence 20 will be at most 99 sentences apart. To a degree, the
 2045 analyses in the report account for proximity effects by ignoring the 4 sentences immediately proximal
 2046 to a given sentence when calculating vertical-attention scores. However, this will not fully address
 2047 proximity effects.

2048 We see no reason why the downward pressure of sentence position on receiver-head scores (attention
 2049 dilution) will be equal in magnitude to the upward pressure of sentence position (proximity effects).
 2050

2051 For the preparation of the present report, we conducted exploratory analyses evaluating whether
 the above confounding factors invalidate any presented finding, and we did not find evidence that

2052 this is the case. Thus, rather than pursuing some technique to account for the above pressures (e.g.,
2053 linearly weighing attention weight matrices based on their position), we opted to only account for
2054 these factors in a minimal fashion by ignoring the attention among sentences just 4 sentences apart.
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105