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ABSTRACT

Image inpainting aims to restore missing regions of corrupted images by utilizing
the available unmasked content while ensuring consistency and fidelity. In scenar-
ios where limited information is available, determining a unique optimal solution
for a given inpainting case becomes challenging. However, existing assessment
approaches predominantly rely on the availability of corresponding unmasked im-
ages, which introduces potential biases toward specific inpainting solutions. To
address this disparity, we propose a novel evaluation framework that leverages
the power of aggregated multi-pass image inpainting. Our self-supervised metric
offers exceptional performance in scenarios with or without unmasked images.
Rather than solely relying on similarity to the original images in terms of pixel
space or feature space, our method prioritizes intrinsic self-consistency. This al-
lows us to explore diverse and viable inpainting solutions while mitigating bi-
ases. Through extensive experimentation on multiple baselines, we demonstrate
the strong alignment of our method with human perception, which is further sup-
ported by a comprehensive user study.

1 INTRODUCTION

Image inpainting (Bertalmio et al., 2000) is a long-standing topic in computer vision, aiming to fill in
missing regions of corrupted images with semantically consistent and visually convincing content.
Recent advancements in image inpainting have brought benefits to various applications, including
image editing (Jo & Park, 2019), photo restoration (Wan et al., 2020), and object removal (Yildirim
et al., 2023). Despite the promising results achieved by state-of-the-art approaches, effectively in-
painting complex image structures and large missing areas remains a challenging task.

Due to the inherently ill-posed nature of the image inpainting problem, reliable evaluation metrics
are lacking. Evaluation metrics commonly used for assessing inpainting performance can be cate-
gorized into two groups. The first group involves direct comparisons of similarity between paired
original and restored images, either in the pixel space or the embedded feature space. Examples
of such metrics include Mean Squared Error, Peak Signal-to-Noise Ratio, Structural Similarity In-
dex (Wang et al., 2004), and Learned Perceptual Image Patch Similarity (Zhang et al., 2018). The
second group of metrics measures the distance between the distributions of inpainted images and
the original images, such as the Frechet Inception Distance (Heusel et al., 2017). However, these
metrics require comparison with unmasked images, which may not always be available in practi-
cal scenarios. Thus, there is a need for a metric that can be based solely on the inpainted images
themselves.

Another concern relates to the potential bias introduced by the aforementioned metrics. Figure 1
serves as an illustrative example to highlight this issue. In practical scenarios, the mask representing
the corrupted area within an image often covers a significant portion, posing a formidable challenge
in accurately predicting the content hidden by the mask. Moreover, the content within the corrupted
region may have multiple plausible solutions, which is a common occurrence in real-world images.
As depicted in Figure 1, it is impossible to determine the exact height and pattern of the rock within
the masked area, making all plausible outcomes acceptable. More detailed discussions are provided
in Figure 3 and Section 3.3. Consequently, directly utilizing unmasked images as the basis for
evaluating inpainting methods can result in biased assessments.
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(a) Original Image (b) Masked Image (c) Inpainted 1 (d) Inpainted 2 (e) Inpainted 3

Figure 1: An example showcases the potential variations in inpainted results for a single image. The
presence of a large masked area, which may encompass crucial content that cannot be accurately
restored by inpainting methods, leads to inpainted images with multiple possible layouts. Comparing
the inpainted images directly to the original images can introduce bias into the evaluation process.

One potential approach to evaluating inpainting methods is to assess their understanding of the
content in both the damaged images and the content they generate themselves. This concept aligns
with the words of the esteemed scientist Richard Feynman, who stated, “What I cannot create,
I do not understand”. An exemplary inpainting method should demonstrate self-consistency in its
inpainted images. This implies that the inpainted content in the missing regions can generate content
in the unmasked regions. If we re-inpaint the inpainted images, these re-inpainted images should
be identical to the original inpainted images. By achieving such a high level of consistency, the
inpainting method can demonstrate its profound understanding of the generated content.

Building upon this hypothesis, we present a novel framework for unbiased evaluation of image
inpainting methods. Our proposed framework involves the selection of an inpainting method, fol-
lowed by the application of a random inpainting method using multiple new masks to re-inpaint the
inpainted images. To ensure context-level stability between the re-inpainted images and the original
inpainted images, we employ a patch-wise mask, thereby enhancing the multi-pass stability of the
evaluation process. This innovative benchmark enables the evaluation of inpainting methods without
the need for uncorrupted images, offering valuable insights into the image inpainting task. Exten-
sive experimentation validates that our proposed benchmark closely aligns with human evaluation,
eliminating the reliance on unmasked image comparisons.

2 RELATED WORKS

In this section, we present an overview of the image inpainting task and highlight the state-of-the-
art deep image inpainting methods. Additionally, we delve into the realm of perceptual metrics for
image inpainting, which constitutes the focus of this paper.

Image Inpainting The field of image inpainting has been under development for several decades
since the formal proposal of the task by Bertalmio et al. (Bertalmio et al., 2000). Traditional
image inpainting approaches can be categorized into two main types: diffusion-based and exemplar-
based methods. Diffusion-based methods (Richard & Chang, 2001; Tschumperlé, 2006; Li et al.,
2017; Daribo & Pesquet-Popescu, 2010) fill the missing region by smoothly propagating image
content from the boundary to the interior of the region. Exemplar-based approaches (Efros & Leung,
1999; Efros & Freeman, 2001; Le Meur & Guillemot, 2012; Criminisi et al., 2004; Barnes et al.,
2009; Ružić & Pižurica, 2014) search for similar patches in undamaged regions and leverage this
information to restore the missing part.

The emergence of deep learning has prompted researchers to propose numerous deep models to en-
hance inpainting performance. Nazeri et al. (Nazeri et al., 2019) introduced a two-stage adversarial
model that first generates hallucinated edges and then completes the image. Yu et al. (Yu et al.,
2019) devised gated convolution and a patch-based GAN loss for free-form mask settings. Zhao et
al. proposed a co-modulated generative adversarial network architecture for image inpainting, em-
bedding both conditional and stochastic style representations. Suvorov et al. (Suvorov et al., 2022)
utilized fast Fourier convolutions (FFCs) and achieved remarkable performance in handling large
missing areas and high-resolution images. Rombach et al. (Rombach et al., 2022) introduced la-
tent diffusion models and applied them to image inpainting. Despite the promising results obtained
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Figure 2: Overview of our proposed image inpainting metric. We incorporate a multi-pass approach
to enhance evaluation stability by iteratively re-inpainting the inpainted images using multiple patch
masks. This iterative process allows us to calculate the perceptual metric between the inpainted
images and the corresponding re-inpainted images, thereby capturing the consistency and fidelity of
the inpainting method.

by these works, achieving high-fidelity completed images with self-consistent context remains a
challenge, especially when dealing with complex structures and large irregular missing areas.

Perceptual Metrics Commonly used metrics for evaluating the performance of image inpainting
can be classified into two categories. The first category involves direct comparisons of similarity
between paired original and restored images in either the pixel space or the embedded feature space.
Examples of such metrics include Mean Squared Error (MSE), Learned Perceptual Image Patch
Similarity (LPIPS) (Zhang et al., 2018), Structural Similarity Index (SSIM) (Wang et al., 2004), and
Peak Signal-to-Noise Ratio (PSNR). However, considering that the inpainting result is not uniquely
determined by the known part of an image, the restored portion is not necessarily required to be
identical to the original image. These metrics confine the solutions to a subset of all feasible options,
potentially introducing biases and overfitting issues.

The second category of metrics measures the distance between the distributions of inpainted images
and the original images. Metrics such as the Frechet Inception Distance (FID) (Heusel et al., 2017)
and Paired/Unpaired Inception Discriminative Score (P/U-IDS) (Zhao et al., 2021) quantify the per-
ceptual fidelity of inpainted images by assessing their linear separability in the deep feature space
of Inception models (Szegedy et al., 2016). However, in certain scenarios, it may not be feasible
to obtain a sufficiently large dataset for accurately computing the distribution distance. Thus, the
applicability of these metrics can be limited.

Our approach distinguishes itself from these methods by achieving reliable image quality assessment
using a single image without the need for an unmasked image reference. This allows for a self-
consistency metric that ensures the context of the inpainted image remains consistent throughout the
restoration process.

3 THE PROPOSED BENCHMARK

In this section, we first introduce the image inpainting task and then present our proposed evaluation
framework. Subsequently, we discuss the bias introduced by previous evaluation framework and
demonstrate how our proposed benchmark can alleviate this bias.

3.1 NOTATIONS

Image inpainting is a task that aims to restore missing regions in corrupted images, ensuring both
visual coherence and semantic consistency. Let X ∈ Rw×h×3 denote the original image with width
w and height h, and M1 ∈ {0, 1}w×h represent the corresponding binary mask, where 1 (resp.,
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(a) Unmasked image. (b) A normal mask. (c) Inpainted image masked by
corresponding normal mask.

(d) A patch mask. (e) Inpainted image masked by
corresponding patch mask.

(f) The distribution of LPIPS scores

Figure 3: Comparison of inpainted images masked by normal mask and patch mask. Figure 3a 3b
3c 3d 3e show image examples under different settings. Figure 3f shows the distribution of LPIPS
scores with different types of masks (normal or patch masks) relative to the original image. For each
type of mask, we use 100 different random seeds using StableDiffusion with the same mask and the
same original image.

0) indicates masked (resp., unmasked) pixels. We also call M1 as the first mask. The objective of
the image inpainting task is to restore the damaged image X⊙M1, where ⊙ denotes element-wise
product.

Our proposed evaluation framework aims to assign a score to an inpainting method F1(·, ·) (a.k.a.,
the first inpainting network), which takes X⊙M1 and M1 as input and outputs an inpainted image
X̂1 = F1(X⊙M1,M1). This inpainted image is referred to as the first inpainted image.

3.2 THE PROPOSED FRAMEWORK

The evaluation of image inpainting involves both visual quality of the generated images and appro-
priateness of the content. Similarly, inpainting networks rely on both visual appearance and global
context to determine what to inpaint. If either the appropriateness or fidelity of one aspect is com-
promised, or if there’s a lack of overall consistency, the model tends to produce less natural and more
chaotic inpaintings. A natural image or an ideal inpainted image inherently possesses high intrinsic
consistency, due to myriad interconnections present in the real world, such as physical laws or the
joint probability distribution of various image elements. Such consistency provides clear guidance
on the following inpainting. On the other side, unnatural images or poorly inpainted images are
not seen in the training dataset of any inpainting networks and tend to get low performance as a
consequence.

Motivated by the above perspective, we propose our evaluation framework for image inpainting that
mitigates bias through multi-pass self-consistency. Within this framework, we introduce an addi-
tional binary mask M2 ∈ {0, 1}w×h (a.k.a., the second mask) and an inpainting method F2(·, ·)
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Algorithm 1 Random Mask Generator

Require: Image to be inpainted X, brush-box submask selection probability P
1: Initialize mask M with the same size of X
2: Generate a random float R between 0 and 1
3: if R ¡ P then
4: Draw n irregular submasks, where n is a random integer drawn from a uniform distribution

of a specified range.
5: for i← 0 to n do
6: Select a random starting point (x, y) in the image
7: Select random length l, width w and angle a of the brush-like submask
8: Calculate the end point of the segment (x′, y′) based on x, y, a, and l
9: Generate an brush-like submask in M from (x, y) to (x′, y′) with brush width w

10: x, y ← x′, y′

11: end for
12: else
13: Draw n irregular submasks, where n is a random integer drawn from a uniform distribution

of a specified range.
14: for i← 0 to n do
15: Select a random size (h,w) and position (x, y) of the submask
16: Generate a box-like submask based on the selected size and position
17: end for
18: end if
19: return the generated mask M

(a.k.a., the second inpainting network). We generate a second inpainted image (a.k.a., the re-
inpainted image) X̂2 = F2(X̂1 ⊙M2,M2).

In our proposed evaluation framework, we start with an original image X masked with a normal
mask M1, which is commonly encountered in real-world applications. The inpainting methods
under testing are then applied to inpaint the first masked image X⊙M1, resulting in a first inpainted
image X̂1. Subsequently, we apply multiple patch masks M2 to the first inpainted image and use a
chosen inpainting network F2(·) to further inpaint it, generating a set of inpainted images {X̂k

2 |Kk=1}.
We empirically choose K as 10, and the results are collectively aggregated.

To ensure unbiased evaluations and avoid style similarities between the first and second inpainting
networks, we employ a selective masking approach. Specifically, only the parts of the first inpainted
image that have not been previously masked are masked again. In other words, after collecting the
patch mask Mp, we first preprocess it to obtain M2 = 1− (1−Mp)⊙M1, then we mask X̂1 with
M2. Our proposed consistency metric for evaluating image inpainting methods can be formulated
as:

D(F1) =
1

K

K∑
i=1

d(X̂1, X̂
i
2), (1)

here, the sub-metric d(·, ·), which can be based on common metrics like PSNR, SSIM (Wang et al.,
2004), and LPIPS (Zhang et al., 2018), is employed to compare the first inpainted image X̂1 with
each second inpainted image X̂i

2. These second inpainted images are generated using the inpainting
method F2(·) and the patch-wise mask M2. The resulting sub-metric values are then averaged over
K iterations to obtain the final metric value D(F1). This metric quantifies the consistency between
the first inpainted images and the second inpainted images, providing an objective measure for the
multi-pass self-consistency of the images produced by the inpainting methods.

3.3 ALLEVIATING BIAS WITH PATCH MASKS

Most existing evaluation metrics for image inpainting involve direct comparisons between the orig-
inal and the restored images, either in the pixel space or the embedded feature space. However,
metrics such as Mean Squared Error (MSE), Peak Signal-to-Noise Ratio (PSNR), Structural Sim-
ilarity Index (SSIM) (Wang et al., 2004), and Learned Perceptual Image Patch Similarity (LPIPS)
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Algorithm 2 Patch Mask Generator

Require: The image to be masked X, size of each patch S, ratio of the masked region P
1: Initialize mask M with the same size of X
2: for each patch of size S in M do
3: Generate a random float R between 0 and 1
4: if R ≤ P then
5: Set all pixels in the current patch of the M to 1 (indicating it is masked)
6: else
7: Set all pixels in the current patch of the M to 0 (indicating it is not masked)
8: end if
9: end for

10: return the generated mask M

(Zhang et al., 2018) have limitations. These metrics impose constraints on the feasible solutions,
leading to biases toward certain distributions and restricting the diversity of inpainted results.

Algorithm 1 and Algorithm 2 provide detailed descriptions of the commonly used normal mask
(Suvorov et al., 2022) in image inpainting tasks and our proposed patch mask. The normal mask
obscures connected regions that resemble brush-like or box-like shapes, while the patch mask in-
dependently determines whether to mask each patch, resulting in isolated small regions of blocked
images. Inpainted images masked by commonly used normal masks in image inpainting tasks ex-
hibit significant variance and can deviate substantially from the original image. As shown in Figure
1 and Figure 3c, normal masks can introduce diverse results in inpainted images. Consequently,
similarity-based metrics such as PSNR, LPIPS, and SSIM fail to provide reliable assessments.

The use of patch masks ensures the stability (low variance) of the high-level aspects, while the focus
is directed toward the restoration of the low-level details. As a result, the inpainted images exhibit
low variance and closely resemble the original image. Figures 3c and 3e showcase examples of
inpainted images under normal mask and patch mask conditions, respectively. It is worth noting that
the presence of large connected corrupted regions in randomly masked images often leads to the
generation of objects that do not exist in the original image.

To further investigate this matter, we present Figure 3f, which offers a comprehensive analysis of
the distribution of LPIPS scores among 100 images inpainted using StableDiffusion, employing the
same original image and the first mask. The results reveal a notably lower variance in LPIPS scores
when patch masking is utilized in comparison to normal masking, thereby indicating the enhanced
stability of our proposed metric for evaluation. This figure also highlights that the use of normal
masks introduces a high variance in the inpainted images, emphasizing the potential bias introduced
when evaluating inpainting methods with unmasked images.

4 EXPERIMENTS

In this section, we provide a comprehensive overview of our proposed benchmark for evaluating
image inpainting. We begin by presenting the key features and components of the benchmark,
highlighting its multi-pass nature, self-consistency, and metric-driven evaluation. Subsequently,
we conduct ablative studies to identify the optimal configuration of the benchmark, ensuring its
effectiveness in assessing image inpainting methods. Finally, we utilize the selected benchmark
setting to compare it with other metrics and evaluate a variety of image inpainting techniques.

In the Appendix, we include detailed quantitative results obtained from our proposed benchmark, as
well as the images used for evaluation and the code implementation of our benchmark.

4.1 IMPLEMENTATION DETAILS

Inpainting Methods and Dataset We evaluate the inpainting methods F1 performance of five
methods: DeepFillv2 (Yu et al., 2019), EdgeConnect (Nazeri et al., 2019), CoModGAN (Zhao et al.,
2021), StableDiffusion (Rombach et al., 2022), and LaMa (Suvorov et al., 2022), using a dataset of
100 images selected from the Places2 dataset (Zhou et al., 2017) with resolution 512 × 512. These
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methods are chosen to represent a diverse range of state-of-the-art inpainting techniques. We use
K = 10 different patch masks in Eqn. 1. In Eqn. 1, we use LPIPS Zhang et al. (2018) for the
sub-metric d(·, ·). Please refer to Section A.1 for analyses of other sub-metric choices.

Masks To assess the performance of the inpainting methods, we employ different types of masks.
For the original images X, a normal mask M1 is applied, while for the first inpainted images X̂1,
a patch mask M2 is utilized. The first mask ratio is varied within the ranges of 0-20%, 20%-40%,
and 40%-60%. A higher ratio indicates a more challenging task of recovering the damaged regions.
The second mask ratio is fixed at 20%, 40%, and 60% to provide concordance in the evaluation.
To generate random masks within the specified ranges or patch masks with the specified ratio, we
utilize the method described in Algorithm 1 and Algorithm 2.

4.2 CHOICE OF METRIC OBJECTIVE

In Eqn. 1, we discussed the use of the evaluation between the first inpainted image X̂1 and the
second inpainted images X̂2 as the final consistency metric for image inpainting methods. In this
section, we explore different options for this objective and present the rationale behind our choice.
We evaluate three different metrics in Table 1 with a fixed second mask ratio of 40%:

Table 1: Quantitative results obtained using Sta-
bleDiffusion as the second inpainting network
with a fixed second mask ratio of 40%.

Metric Objective

Method 1-to-0 2-to-0 2-to-1

Fi
rs

tM
as

k
R

at
io

0%
-2

0%

DeepFillv2 0.0586 0.3183 0.2860
EdgeConnect 0.0649 0.3254 0.2910
CoModGAN 0.0590 0.3177 0.2823

StableDiffusion 0.0555 0.3139 0.2758
LaMa 0.0491 0.3093 0.2817

20
%

-4
0%

DeepFillv2 0.1714 0.3705 0.2635
EdgeConnect 0.1832 0.3832 0.2790
CoModGAN 0.1683 0.3654 0.2552

StableDiffusion 0.1650 0.3608 0.2384
LaMa 0.1464 0.3464 0.2581

40
%

-6
0%

DeepFillv2 0.2735 0.4288 0.2435
EdgeConnect 0.2859 0.4394 0.2668
CoModGAN 0.2620 0.4148 0.2326

StableDiffusion 0.2643 0.4144 0.2089
LaMa 0.2352 0.3909 0.2415

Table 2: Statistics of the proposed metric for var-
ious combinations of first and second mask ra-
tios.

Second Mask Ratio

Method 20% 40% 60%

Fi
rs

tM
as

k
R

at
io

0%
-2

0%

DeepFillv2 0.2189 0.2860 0.3471
EdgeConnect 0.2231 0.2910 0.3540
CoModGAN 0.2161 0.2823 0.3433

StableDiffusion 0.2101 0.2758 0.3359
LaMa 0.2161 0.2817 0.3416

20
%

-4
0%

DeepFillv2 0.2113 0.2635 0.3100
EdgeConnect 0.2252 0.2790 0.3274
CoModGAN 0.2037 0.2552 0.3015

StableDiffusion 0.1874 0.2384 0.2835
LaMa 0.2071 0.2581 0.3028

40
%

-6
0%

DeepFillv2 0.2026 0.2435 0.2789
EdgeConnect 0.2258 0.2668 0.3051
CoModGAN 0.1926 0.2326 0.2678

StableDiffusion 0.1702 0.2089 0.2429
LaMa 0.2025 0.2415 0.2759

• Original-First: This metric utilizes a sub-metric that compares the original image X with the
first inpainted image X̂1. This approach is commonly used for conventional evaluation in image
inpainting. However, as previously mentioned, this metric can introduce biases in the evaluation
process.

• Original-Second: This metric employs a sub-metric that compares the original image X with the
second inpainted image X̂2. As shown in Table 1, the results of Original-Second exhibit a similar
tendency to Original-First, indicating the persistence of biases in this metric.

• First-Second: This metric employs a sub-metric that compares the first inpainted image X̂1 with
the second inpainted image X̂2, without involving the original image X. As mentioned earlier,
this metric captures the self-consistency of the inpainting method. The results differ significantly
from those of Original-First and Original-Second.

Considering that First-Second is the only metric objective that does not rely on the original image
X, we select it as the metric objective for our proposed benchmark. By focusing on the similarity
between the first and second inpainted images, we aim to capture the self-consistency of the in-
painted images and provide a reliable and unbiased assessment of the inpainting performance. This
metric choice aligns with our goal of evaluating the ability of inpainting methods to maintain context
consistency.
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Figure 4: Examples of synthesized images, from left to right: natural image, blended image, noised
image with σ=0.1, noised image with σ=0.3 and noised image with σ=1.0.

4.3 CHOICE OF SECOND MASK RATIO

Table 2 illustrates the variation of the second mask ratio to examine the consistency of the proposed
evaluation metric. As previously mentioned in the subsections, we adopt First-Second as the ob-
jective metric, employ LPIPS as the sub-metric, and utilize StableDiffusion as the second inpainting
network. Additionally, we vary the first mask ratio to assess the consistency of our findings.

From the table, it is evident that our proposed method demonstrates stability across different second
mask ratios.

4.4 VALIDATION ON SYNTHESIZED INPAINTING IMAGES

Table 3: Statistics of the proposed metric on synthesized images.

First Mask Ratio

Processing Method 0%-20% 20%-40% 40%-60%

Natural 0.2778 0.2455 0.2206
Blend 0.2794 0.2484 0.2279

Noise 0.1 0.3015 0.3034 0.3044
Noise 0.3 0.3060 0.3210 0.3341
Noise 1.0 0.3085 0.3281 0.3452

To intuitively demonstrate the
capabilities of our framework in
evaluating inpainted images, we
have synthesized several cate-
gories of bad inpainting results.
We compute the scores for both
the synthesized images and the
natural images using our ap-
proach and subsequently com-
pare these scores. In more de-
tail, we employ our subset of
100 inpainted images {X1} from
Places2 dataset and the corresponding 100 random masks {M1} for our experiments. In the first
setting, we aim to emulate inpainting results that maintain local consistency in most areas yet lack
global content consistency. To achieve this, we choose a distinct random image, denoted as I, from
the set {X1} to populate the masked region of our original image X. Given that the random mask
associated with X is M1, the inpainted image X̂1 is formulated as:

X̂1 = X⊙M1 + I⊙ (1−M1) (2)

In the second setting, we introduce Gaussian noise with varying magnitudes to the masked region
in order to simulate inpainting results that may lack detail and fidelity. This can be mathematically
represented as:

X̂1 = X⊙M1 + (X+N (0, σ2))⊙ (1−M1) (3)

We empirically select three distinct magnitudes of Gaussian noise. The first simulates subtle noise,
allowing details within the noisy region to remain discernible. The second introduces moderate
noise, preserving only the broader structure of the affected area. The third applies intense noise,
making the noisy region nearly indistinguishable. These scenarios correspond to values of σ being
0.1, 0.3, and 1.0, respectively. The subsequent stages of our experiment follow our framework
detailed in 3.2, we apply multiple patch masks with a ratio of 40% then inpaint them using Stable
Diffusion, the sub-metric d(·, ·) is set to LPIPS only.

We present examples of the synthesized images in Figure 4. Upon reviewing the figure, it becomes
evident that these synthesized images exhibit lower quality in comparison to natural images. The
content of blended images lacks consistency, while the noise-infused images demonstrate blurred
inappropriate outcomes. As Table 3 shows, all categories of synthesized poorly inpainting images
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yield larger values of Eq. 1, which validates the effectiveness of our approach intuitively: our
proposed approach can both evaluate the appropriateness and fidelity of inpainted images.

4.5 OVERALL EVALUATION OF THE FIRST INPAINTING NETWORK

Table 4: Quantitative results of two NR-IQA metrics, namely MUSIQ and PAR, along with our
proposed metric and human evaluations.

Metrics

Method MUSIQ PAR(%) Ours Human(%)

Fi
rs

tM
as

k
R

at
io 0
%

−
2
0
%

DeepFillv2 64.62 72.60 0.2859 8.72
EdgeConnect 64.89 81.39 0.2911 5.39
CoModGAN 65.85 83.30 0.2823 16.91

StableDiffusion 65.86 87.58 0.2760 45.53
LaMa 65.61 74.42 0.2815 23.45

2
0
%

−
4
0
% DeepFillv2 61.53 24.38 0.2634 1.23

EdgeConnect 62.74 35.04 0.2789 1.39
CoModGAN 65.24 33.48 0.2552 20.67

StableDiffusion 65.73 36.72 0.2382 58.03
LaMa 63.94 30.10 0.2581 18.68

4
0
%

−
6
0
% DeepFillv2 58.96 16.35 0.2432 0.60

EdgeConnect 61.19 26.99 0.2670 0.21
CoModGAN 64.96 23.55 0.2325 27.61

StableDiffusion 65.07 26.88 0.2089 59.39
LaMa 62.18 23.56 0.2418 12.19

In this section, we provide a comprehensive evaluation of the first inpainting network based on the
established settings from the previous subsections. The objective metric First-Second is employed,
with LPIPS as the sub-metric. We select StableDiffusion as the second inpainting network and set
the second mask ratio to 40%. To benchmark our proposed method, we compare it with two No-
Reference Image Quality Assessment (NR-IQA) metrics, MUSIQ (Ke et al., 2021) and PAR (Zhang
et al., 2022), as well as a user study conducted by 100 professional human evaluators. The user
study scores are determined by assessing the most plausible images among all the inpainted images
generated by different inpainting methods. The results are summarized in Table 4.

From the human evaluation results, we observe that StableDiffusion emerges as the top-performing
method. While the advantages of StableDiffusion may not be evident when the first mask ratio
is low, as all methods can easily restore small damaged areas, its superiority becomes apparent as
the first mask ratio increases. This can be attributed to its extensive training dataset and advanced
model structure. The results of PAR, however, differ significantly from human evaluation. Con-
versely, both MUSIQ and our proposed benchmark closely align with the conclusions of human
evaluation, indicating their effectiveness. In comparison to MUSIQ, our proposed method offers the
advantage of not requiring training with image quality annotations, thereby providing flexibility and
cost-effectiveness.

5 CONCLUSIONS

In this paper, we introduce a novel evaluation framework that harnesses the capabilities of aggregated
multi-pass image inpainting. Our proposed self-supervised metric achieves remarkable performance
in both scenarios with or without access to unmasked images. Instead of relying solely on similarity
to the original images in terms of pixel space or feature space, our method emphasizes intrinsic
self-consistency. This approach enables the exploration of diverse and viable inpainting solutions
while mitigating biases. Through extensive experimentation across various baselines, we establish
the strong alignment between our method and human perception, which is further corroborated by a
comprehensive user study.
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A APPENDIX

In this section, we further explore the details of our experiment, presenting the comprehensive quan-
titative results of our proposed benchmark, along with some examples from the second inpainting
network. The code for our proposed benchmark is available on Google Drive; please refer to the
provided URL 1.

A.1 CHOICE OF SUB-METRIC AND THE SECOND INPAINTING NETWORK

Table 5: Quantitative results showing the impact of varying the first mask ratio and second inpainting
networks.

First Mask 0%-20% First Mask 20%-40% First Mask 40%-60%

Method PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

Se
co

nd
In

pa
in

tin
g

M
et

ho
ds

St
ab

le
D

iff
us

io
n DeepFillv2 21.7949 0.6487 0.2860 22.8094 0.6855 0.2635 23.7716 0.7249 0.2435

EdgeConnect 21.8444 0.6498 0.2910 22.7964 0.6771 0.2790 23.6027 0.7021 0.2668
CoModGAN 21.7173 0.6465 0.2823 22.4921 0.6773 0.2552 23.2653 0.7080 0.2326

StableDiffusion 21.8031 0.6586 0.2758 22.7357 0.7053 0.2384 23.4685 0.7431 0.2089
LaMa 21.8414 0.6507 0.2817 22.8644 0.6855 0.2581 23.8487 0.7174 0.2415

L
aM

a

DeepFillv2 26.0877 0.8804 0.1335 28.4204 0.9142 0.1050 28.6469 0.9278 0.0867
EdgeConnect 26.0820 0.8803 0.1330 27.4104 0.9077 0.1052 28.6063 0.9273 0.0837
CoModGAN 26.0248 0.8797 0.1322 27.3358 0.9072 0.1043 28.5275 0.9269 0.0833

StableDiffusion 26.0613 0.8798 0.1319 27.3632 0.9069 0.1040 28.5544 0.9265 0.0822
LaMa 26.0836 0.8804 0.1321 28.4181 0.9129 0.1042 28.6547 0.9279 0.0833

D
ee

pF
ill

v2

DeepFillv2 24.8895 0.8614 0.1583 26.2330 0.8936 0.1278 27.4044 0.9158 0.1041
EdgeConnect 24.8560 0.8612 0.1573 26.1859 0.8926 0.1257 27.4083 0.9157 0.1000
CoModGAN 24.8108 0.8605 0.1565 26.1428 0.8923 0.1244 27.3103 0.9149 0.0994

StableDiffusion 24.8407 0.8605 0.1564 26.1738 0.8923 0.1234 27.3663 0.9150 0.0981
LaMa 24.8616 0.8612 0.1567 26.1659 0.8929 0.1251 27.3760 0.9158 0.1003

In Eqn. 1, we have three different choices for the sub-metric d(·, ·):

• PSNR (Peak Signal-to-Noise Ratio): PSNR is a commonly used objective metric for image quality
assessment. It measures the ratio between the maximum possible power of a signal and the power
of the noise present in the signal.

• SSIM (Wang et al., 2004) (Structural Similarity Index): SSIM is another widely used metric
for evaluating the perceptual quality of images. It measures the structural similarity between
the original and distorted images, taking into account their luminance, contrast, and structural
information.

• LPIPS (Zhang et al., 2018) (Learned Perceptual Image Patch Similarity): LPIPS is a metric that
utilizes deep neural networks to measure the perceptual similarity between images. Unlike PSNR
and SSIM, which rely on handcrafted features, LPIPS learns feature representations from large-
scale image datasets.

Regarding the second inpainting network, denoted as F2, we alternate between StableDiffusion,
DeepFillv2, and LaMa. This selection ensures consistent evaluation results across different choices
of the second inpainting method.

In Table 5, we vary the first mask ratio, all three sub-metrics, and the second inpainting networks
while keeping the second mask ratio fixed. From the results, we observe an interesting phenomenon:
the choice of the second inpainting network impacts the results of PSNR and SSIM. Specifically, if
we use DeepFillv2 as the second inpainting network, DeepFillv2 yields the best results in terms of
PSNR and SSIM. Conversely, if we switch the second inpainting network to LaMa, LaMa becomes
the best first inpainting network. This suggests that the generated results from the second network
tend to exhibit a similar style to those from the first network when the same model is used for both.
However, when different models are employed, there may be a variance in image style, which in
turn leads to a decline in the metrics that are based on pixel-level features, rather than on learned
perceptual features.

1https://drive.google.com/drive/folders/1NgYy8gUsGNaNwcuBfNVzi6LL30XxJwBO
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Figure 5: The arrangement of inpainted images shown to participants, from left to right: DeepFillv2,
EdgeConnect, CoModGAN, StableDiffusion, and LaMa

On the other hand, we found that LPIPS remains consistent across different second inpainting net-
works. This can be attributed to the fact that LPIPS is based on perceptual evaluation. Therefore,
we chose LPIPS as the sub-metric in our evaluation to ensure consistent and reliable results.

A.2 EXAMPLE INPAINTED IMAGES FROM THE SECOND INPAINTING NETWORK

In Figure 6, we present an example of inpainted images from the second inpainting network. We
select the first mask ratio in the interval of 20-40%. We then show 5 different second masks with
a mask ratio of 40%, along with the corresponding inpainted results for different first inpainting
methods. From the figure, we can observe varying degrees of self-consistency among the inpainted
images produced by different first inpainting methods. For other settings of our benchmark, please
refer to the provided code.

A.3 DATASET AND EXPERIMENT DETAILS

We randomly select 100 512 × 512 images from Places2 to form our dataset,
which can be accessed at https://drive.google.com/drive/folders/
1NgYy8gUsGNaNwcuBfNVzi6LL30XxJwBO?usp=sharing. To further validate the
comprehensiveness of our chosen subset, we expanded our evaluation to include an additional 10
and 1000 images from the Places2 dataset, applying our framework to each set. We set the first
mask ratio ranging from 20% to 40% and the second mask ratio 40%. StableDiffusion is employed
as both the first and second inpainting network. As illustrated in Figure 7a, the score distributions
derived from our framework remain stable across datasets of different sizes, which demonstrates
the representativeness of our dataset.

The choice of the number of second masks per first inpainted image is a problem of balancing
between computing efficiency and measurement stability. While a greater number of patch masks
would provide a more stable and unbiased result, it would also increase the computation time. We
empirically choose 10 masks to get the proper balance, ensuring both stable results and acceptable
computational requirements. As shown in Figure 7b, we conducted experiments with K=10, 100
and 1000 to a single first inpainted image. The second mask ratio is set to 40% and we employed
StableDiffusion as the second inpainting network. For the overall evaluation of the first inpainting
networks, our framework is initialized with three different random seeds, and we report the average
score in Table 4. The standard deviation for each case remains within 0.0003.

A.4 DETAILS ON HUMAN EVALUATION

We applied inpainting for each randomly masked image using five different methods: DeepFillv2,
EdgeConnect, CoModGAN, StableDiffusion, and LaMa. The inpainted images were arranged in a
row without any text descriptions, as shown in Figure 5. We then surveyed 100 unpaid volunteers,
all from computer science or related disciplines. Each participant was given 100 rows of these
inpainted images to evaluate. They were instructed: ”For each row, you’ll see images inpainted by
five different methods from the same original image. Please select the one that appears the most
visually natural and contextually consistent to you.” The human evaluation score is defined as the
average percentage of times a particular method was chosen as producing the best inpainting result.
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A.5 LIMITATIONS & SOCIETAL IMPACT

Limitations While our framework allows for more diversified inpainting results, the per-image
evaluation time is slower. In comparison to the direct LPIPS measurement, our method incorporates
an additional inpainting network. The per image per second mask computation time is 1x to 10x
times slower than direct LPIPS, depending on the second inpainting network used. As an example,
reproducing Table 2 with K=10 would require 45 hours on a single A5000 GPU.

Societal Impact Development in general visual generative models including image inpainting
models is a double-edged sword. On the one hand, these models open up various new applica-
tions and creative workflows. For instance, image inpainting can be used as a procedure in digital
drawing, which may effectively boost the efficiency of digital artists. On the other hand, such mod-
els can be misused to produce and distribute altered data, potentially leading to misinformation and
spam. Thus, it’s crucial to keep the deployment of such models under proper usage and regulation.
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(a) Original Image (b) First Mask with the ratio in the interval of 20-40%

(c) First Inpainted Images, from left to right: DeepFillv2, EdgeConnect, CoModGAN, LaMa, and StableDiffu-
sion

(d) Second Masks with ratio 40%

(e) Second Inpainted Images: Each row represents the results obtained from different first inpainting methods,
namely DeepFillv2, EdgeConnect, CoModGAN, LaMa, and StableDiffusion. Each column corresponds to a
different second inpainting mask.

Figure 6: Example masks and inpainted images.
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(a) Comparison of datasets of different sizes (b) Comparison of patch mask numbers
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A.6 FULL QUANTITATIVE RESULTS

In Section 4, we conducted several ablative studies of our proposed benchmark. Here, we present the
complete results of our benchmark, evaluating different inpainting methods. We evaluate the perfor-
mance of the inpainting methods F1 using five techniques: DeepFillv2 Yu et al. (2019), EdgeCon-
nect Nazeri et al. (2019), CoModGAN Zhao et al. (2021), StableDiffusion Rombach et al. (2022),
and LaMa Suvorov et al. (2022). These methods are chosen to represent a diverse range of state-
of-the-art inpainting techniques. We use K = 10 different patch masks in Eqn. 1. To assess the
performance of the inpainting methods, we employ different types of masks. For the original images
X, a normal mask M1 is applied, while for the first inpainted images X̂1, a patch mask M2 is uti-
lized. The first mask ratio is varied within the ranges of 0-20%, 20%-40%, and 40%-60%. A higher
ratio indicates a more challenging task of recovering the damaged regions. The second mask ratio
is fixed at 20%, 40%, and 60% to ensure consistency in the evaluation. To generate random masks
within the specified ranges or generate patch masks with the specified ratio, we utilize the methods
described in Algorithm 1 and Algorithm 2. We vary the metric objective among Original-First,
Original-Second, and First-Second, and vary the sub-metric to include PSNR, SSIM, and LPIPS.
The results can be found in Tables 6-14. It is important to note that the results of Original-First
remain identical across different second inpainting methods. These results provide further support
for the conclusions made in Section 4.

Table 6: Quantitative results on a subset of the Places2 dataset, with varying first mask ratios ranging
from 0% to 20%, and a fixed second mask ratio of 20%.

Original-First Inpainting Metrics Original-Second Inpainting Metrics First-Second Inpainting Metrics

Method PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

Se
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in

tin
g
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et

ho
ds

St
ab

le
D

iff
us

io
n DeepFillv2 28.1927 0.9429 0.0586 21.8288 0.6806 0.2532 23.8474 0.7110 0.2189

EdgeConnect 27.0888 0.9404 0.0649 21.5279 0.6780 0.2597 23.8937 0.7119 0.2231
CoModGAN 27.1559 0.9367 0.059 21.3926 0.6777 0.2535 23.7084 0.7100 0.2161

StableDiffusion 27.0113 0.9369 0.0555 21.2203 0.6747 0.2503 23.8512 0.7217 0.2101
LaMa 29.3233 0.9481 0.0491 22.1120 0.6854 0.2450 23.8624 0.7130 0.2161

L
aM

a

DeepFillv2 28.1927 0.9429 0.0586 24.8951 0.8875 0.1237 30.0454 0.9446 0.0670
EdgeConnect 27.0888 0.9404 0.0649 24.3749 0.8850 0.1295 30.0428 0.9446 0.0666
CoModGAN 27.1559 0.9367 0.0590 24.1829 0.8812 0.1236 29.9844 0.9443 0.0662

StableDiffusion 27.0113 0.9369 0.0555 24.0408 0.8814 0.1200 30.0221 0.9444 0.0661
LaMa 29.3233 0.9481 0.0491 25.4690 0.8928 0.1140 30.0443 0.9447 0.0662

D
ee

pF
ill

v2

DeepFillv2 28.1927 0.9429 0.0586 24.4023 0.8784 0.1349 28.8577 0.9355 0.0787
EdgeConnect 27.0888 0.9404 0.0649 23.9202 0.8756 0.1412 28.8462 0.9352 0.0787
CoModGAN 27.1559 0.9367 0.0590 23.7362 0.8722 0.1344 28.8078 0.9355 0.0775

StableDiffusion 27.0113 0.9369 0.0555 23.5697 0.8723 0.1314 28.8070 0.9353 0.0775
LaMa 29.3233 0.9481 0.0491 24.8964 0.8836 0.1254 28.8335 0.9355 0.0781

Table 7: Quantitative results on a subset of the Places2 dataset, with varying first mask ratios ranging
from 0% to 20%, and a fixed second mask ratio of 40%.

Original-First Inpainting Metrics Original-Second Inpainting Metrics First-Second Inpainting Metrics

Method PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

Se
co

nd
In

pa
in

tin
g

M
et

ho
ds

St
ab

le
D

iff
us

io
n DeepFillv2 28.1927 0.9429 0.0586 20.4058 0.6195 0.3183 21.7949 0.6487 0.2860

EdgeConnect 27.0888 0.9404 0.0649 20.1790 0.6169 0.3254 21.8444 0.6498 0.2910
CoModGAN 27.1559 0.9367 0.0590 20.1118 0.6165 0.3177 21.7173 0.6465 0.2823

StableDiffusion 27.0113 0.9369 0.0555 19.9455 0.6140 0.3139 21.8031 0.6586 0.2758
LaMa 29.3233 0.9481 0.0491 20.6442 0.6242 0.3093 21.8414 0.6507 0.2817

L
aM

a

DeepFillv2 28.1927 0.9429 0.0586 23.0158 0.8233 0.1887 26.0877 0.8804 0.1335
EdgeConnect 27.0888 0.9404 0.0649 22.6460 0.8208 0.1942 26.0820 0.8803 0.1330
CoModGAN 27.1559 0.9367 0.0590 22.4587 0.8168 0.1883 26.0248 0.8797 0.1322

StableDiffusion 27.0113 0.9369 0.0555 22.3209 0.8169 0.1846 26.0613 0.8798 0.1319
LaMa 29.3233 0.9481 0.0491 23.3934 0.8286 0.1788 26.0836 0.8804 0.1321

D
ee

pF
ill

v2

DeepFillv2 28.1927 0.9429 0.0586 22.3157 0.8043 0.2127 24.8895 0.8614 0.1583
EdgeConnect 27.0888 0.9404 0.0649 21.9770 0.8017 0.2178 24.8560 0.8612 0.1573
CoModGAN 27.1559 0.9367 0.0590 21.8044 0.7970 0.2121 24.8108 0.8605 0.1565

StableDiffusion 27.0113 0.9369 0.0555 21.6530 0.7976 0.2087 24.8407 0.8605 0.1564
LaMa 29.3233 0.9481 0.0491 22.6191 0.8094 0.2028 24.8616 0.8612 0.1567

17



Under review as a conference paper at ICLR 2024

Table 8: Quantitative results on a subset of the Places2 dataset, with varying first mask ratios ranging
from 0% to 20%, and a fixed second mask ratio of 60%.

Original-First Inpainting Metrics Original-Second Inpainting Metrics First-Second Inpainting Metrics

Method PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

Se
co

nd
In

pa
in

tin
g

M
et

ho
ds

St
ab

le
D

iff
us

io
n DeepFillv2 28.1927 0.9429 0.0586 18.8965 0.5619 0.3784 19.8600 0.5904 0.3471

EdgeConnect 27.0888 0.9404 0.0649 18.7292 0.5594 0.3870 19.9061 0.5917 0.3540
CoModGAN 27.1559 0.9367 0.0590 18.6641 0.5584 0.3774 19.7730 0.5878 0.3433

StableDiffusion 27.0113 0.9369 0.0555 18.5568 0.5572 0.3724 19.8725 0.6003 0.3359
LaMa 29.3233 0.9481 0.0491 19.0951 0.5681 0.3683 19.9228 0.5939 0.3416

L
aM

a

DeepFillv2 28.1927 0.9429 0.0586 21.2212 0.7434 0.2613 23.1770 0.8005 0.2076
EdgeConnect 27.0888 0.9404 0.0649 20.9600 0.7409 0.2665 23.1726 0.8003 0.2070
CoModGAN 27.1559 0.9367 0.0590 20.7962 0.7366 0.2604 23.1150 0.7993 0.2056

StableDiffusion 27.0113 0.9369 0.0555 20.6775 0.7369 0.2565 23.1585 0.7996 0.2052
LaMa 29.3233 0.9481 0.0491 21.4789 0.7489 0.2510 23.1795 0.8007 0.2052

D
ee

pF
ill

v2

DeepFillv2 28.1927 0.9429 0.0586 20.3794 0.7162 0.2973 21.9834 0.7732 0.2446
EdgeConnect 27.0888 0.9404 0.0649 20.1685 0.7137 0.3025 21.9932 0.7731 0.2439
CoModGAN 27.1559 0.9367 0.0590 20.0005 0.7088 0.2962 21.9093 0.7722 0.2420

StableDiffusion 27.0113 0.9369 0.0555 19.8807 0.7090 0.2932 21.9453 0.7718 0.2421
LaMa 29.3233 0.9481 0.0491 20.5805 0.7210 0.2878 21.9731 0.7727 0.2428

Table 9: Quantitative results on a subset of the Places2 dataset, with varying first mask ratios ranging
from 20% to 40%, and a fixed second mask ratio of 20%.

Original-First Inpainting Metrics Original-Second Inpainting Metrics First-Second Inpainting Metrics

Method PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

Se
co
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pa
in

tin
g

M
et

ho
ds

St
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le
D

iff
us

io
n DeepFillv2 20.3649 0.8342 0.1714 18.9643 0.6329 0.3218 24.7064 0.7337 0.2113

EdgeConnect 19.3181 0.8224 0.1832 18.1145 0.6218 0.3333 24.6340 0.7248 0.2252
CoModGAN 19.3045 0.8164 0.1683 18.1921 0.6179 0.3177 24.3046 0.7267 0.2037

StableDiffusion 18.4795 0.8092 0.1650 17.4232 0.6079 0.3144 24.5880 0.7551 0.1874
LaMa 21.3790 0.8444 0.1464 19.6529 0.6419 0.2983 24.7283 0.7334 0.2071

L
aM

a

DeepFillv2 20.3649 0.8342 0.1714 19.9266 0.7917 0.2216 31.3895 0.9574 0.0538
EdgeConnect 19.3181 0.8224 0.1832 18.9396 0.7798 0.2324 31.3782 0.9572 0.0527
CoModGAN 19.3045 0.8164 0.1683 18.9256 0.7736 0.2176 31.3002 0.9570 0.0523

StableDiffusion 18.4795 0.8092 0.1650 18.1397 0.7663 0.2139 31.3187 0.9568 0.0520
LaMa 21.3790 0.8444 0.1464 20.8076 0.8019 0.1961 31.3897 0.9574 0.0524

D
ee

pF
ill

v2

DeepFillv2 20.3649 0.8342 0.1714 19.8145 0.7845 0.2308 30.1645 0.9502 0.0641
EdgeConnect 19.3181 0.8224 0.1832 18.8420 0.7725 0.2418 30.1266 0.9499 0.0629
CoModGAN 19.3045 0.8164 0.1683 18.8357 0.7663 0.2265 30.1090 0.9499 0.0619

StableDiffusion 18.4795 0.8092 0.1650 18.0557 0.7593 0.2231 30.1270 0.9498 0.0617
LaMa 21.3790 0.8444 0.1464 20.6609 0.7947 0.2051 30.1818 0.9502 0.0623

Table 10: Quantitative results on a subset of the Places2 dataset, with varying first mask ratios
ranging from 20% to 40%, and a fixed second mask ratio of 40%.

Original-First Inpainting Metrics Original-Second Inpainting Metrics First-Second Inpainting Metrics

Method PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

Se
co

nd
In

pa
in

tin
g

M
et

ho
ds

St
ab

le
D

iff
us

io
n DeepFillv2 20.3649 0.8342 0.1714 18.3761 0.5868 0.3705 22.8094 0.6855 0.2635

EdgeConnect 19.3181 0.8224 0.1832 17.6199 0.5765 0.3832 22.7964 0.6771 0.2790
CoModGAN 19.3045 0.8164 0.1683 17.7086 0.5727 0.3654 22.4921 0.6773 0.2552

StableDiffusion 18.4795 0.8092 0.1650 17.0181 0.5631 0.3608 22.7357 0.7053 0.2384
LaMa 21.3790 0.8444 0.1464 18.9888 0.5965 0.3464 22.8644 0.6855 0.2581

L
aM

a

DeepFillv2 20.3649 0.8342 0.1714 19.6776 0.7717 0.2422 28.4204 0.9142 0.1050
EdgeConnect 19.3181 0.8224 0.1832 18.4914 0.7304 0.2820 27.4104 0.9077 0.1052
CoModGAN 19.3045 0.8164 0.1683 18.4836 0.7240 0.2671 27.3358 0.9072 0.1043

StableDiffusion 18.4795 0.8092 0.1650 17.7439 0.7166 0.2631 27.3632 0.9069 0.1040
LaMa 21.3790 0.8444 0.1464 20.4780 0.7804 0.2199 28.4181 0.9129 0.1042

D
ee

pF
ill

v2

DeepFillv2 20.3649 0.8342 0.1714 19.1673 0.7281 0.2908 26.2330 0.8936 0.1278
EdgeConnect 19.3181 0.8224 0.1832 18.2762 0.7153 0.3012 26.1859 0.8926 0.1257
CoModGAN 19.3045 0.8164 0.1683 18.2782 0.7087 0.2861 26.1428 0.8923 0.1244

StableDiffusion 18.4795 0.8092 0.1650 17.5598 0.7020 0.2819 26.1738 0.8923 0.1234
LaMa 21.3790 0.8444 0.1464 19.8603 0.7375 0.2652 26.1659 0.8929 0.1251
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Table 11: Quantitative results on a subset of the Places2 dataset, with varying first mask ratios
ranging from 20% to 40%, and a fixed second mask ratio of 60%.

Original-First Inpainting Metrics Original-Second Inpainting Metrics First-Second Inpainting Metrics

Method PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

Se
co

nd
In

pa
in

tin
g

M
et

ho
ds

St
ab

le
D

iff
us

io
n DeepFillv2 20.3649 0.8342 0.1714 17.5937 0.5434 0.4152 20.9702 0.6408 0.3100

EdgeConnect 19.3181 0.8224 0.1832 16.9604 0.5336 0.4289 20.9867 0.6329 0.3274
CoModGAN 19.3045 0.8164 0.1683 17.0404 0.5293 0.4094 20.7521 0.6323 0.3015

StableDiffusion 18.4795 0.8092 0.1650 16.4499 0.5211 0.4028 20.9876 0.6604 0.2835
LaMa 21.3790 0.8444 0.1464 18.1273 0.5545 0.3897 21.0522 0.6423 0.3028

L
aM

a

DeepFillv2 20.3649 0.8342 0.1714 18.7276 0.6817 0.3280 24.5094 0.8472 0.1664
EdgeConnect 19.3181 0.8224 0.1832 17.9030 0.6694 0.3374 24.4951 0.8466 0.1633
CoModGAN 19.3045 0.8164 0.1683 17.9024 0.6628 0.3222 24.4214 0.8457 0.1617

StableDiffusion 18.4795 0.8092 0.1650 17.2245 0.6554 0.3176 24.4574 0.8454 0.1613
LaMa 21.3790 0.8444 0.1464 19.3694 0.6922 0.3010 24.5213 0.8475 0.1613

D
ee

pF
ill

v2

DeepFillv2 20.3649 0.8342 0.1714 18.3622 0.6609 0.3559 23.3539 0.8263 0.1962
EdgeConnect 19.3181 0.8224 0.1832 17.5654 0.6480 0.3655 23.2992 0.8251 0.1932
CoModGAN 19.3045 0.8164 0.1683 17.5695 0.6400 0.3508 23.2127 0.8236 0.1917

StableDiffusion 18.4795 0.8092 0.1650 16.9239 0.6338 0.3466 23.2890 0.8238 0.1910
LaMa 21.3790 0.8444 0.1464 18.9249 0.6697 0.3299 23.3380 0.8251 0.1921

Table 12: Quantitative results on a subset of the Places2 dataset, with varying first mask ratios
ranging from 40% to 60%, and a fixed second mask ratio of 20%.

Original-First Inpainting Metrics Original-Second Inpainting Metrics First-Second Inpainting Metrics

Method PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

Se
co

nd
In

pa
in

tin
g

M
et

ho
ds

St
ab

le
D

iff
us

io
n DeepFillv2 17.7902 0.7482 0.2735 17.1320 0.5901 0.3919 25.5924 0.7621 0.2026

EdgeConnect 16.6286 0.7255 0.2859 16.1354 0.5703 0.4030 25.2335 0.7388 0.2258
CoModGAN 16.5925 0.7195 0.2620 16.1611 0.5656 0.3792 24.8675 0.7461 0.1926

StableDiffusion 15.6794 0.6957 0.2643 15.2555 0.5399 0.3809 25.0807 0.7816 0.1702
LaMa 18.7100 0.7593 0.2352 17.9365 0.6018 0.3551 25.5705 0.7540 0.2025

L
aM

a

DeepFillv2 17.7902 0.7482 0.2735 17.5983 0.7148 0.3128 32.5974 0.9665 0.0436
EdgeConnect 16.6286 0.7255 0.2859 16.4800 0.6920 0.3241 32.5631 0.9663 0.0419
CoModGAN 16.5925 0.7195 0.2620 16.4422 0.6859 0.3005 32.4879 0.9661 0.0417

StableDiffusion 15.6794 0.6957 0.2643 15.5483 0.6619 0.3021 32.4964 0.9659 0.0412
LaMa 18.7100 0.7593 0.2352 18.4756 0.7260 0.2740 32.6011 0.9666 0.0419

D
ee

pF
ill

v2

DeepFillv2 17.7902 0.7482 0.2735 17.5404 0.7090 0.3203 31.3589 0.9607 0.0525
EdgeConnect 16.6286 0.7255 0.2859 16.4363 0.6862 0.3314 31.3454 0.9605 0.0503
CoModGAN 16.5925 0.7195 0.2620 16.3993 0.6802 0.3075 31.3348 0.9606 0.0497

StableDiffusion 15.6794 0.6957 0.2643 15.5095 0.6561 0.3096 31.3306 0.9602 0.0492
LaMa 18.7100 0.7593 0.2352 18.3982 0.7199 0.2816 31.3252 0.9605 0.0508

Table 13: Quantitative results on a subset of the Places2 dataset, with varying first mask ratios
ranging from 40% to 60%, and a fixed second mask ratio of 40%.

Original-First Inpainting Metrics Original-Second Inpainting Metrics First-Second Inpainting Metrics

Method PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

Se
co

nd
In

pa
in

tin
g

M
et

ho
ds

St
ab

le
D

iff
us

io
n DeepFillv2 17.7902 0.7482 0.2735 16.8276 0.5551 0.4288 23.7716 0.7249 0.2435

EdgeConnect 16.6286 0.7255 0.2859 15.9004 0.5362 0.4394 23.6027 0.7021 0.2668
CoModGAN 16.5925 0.7195 0.2620 15.9357 0.5316 0.4148 23.2653 0.7080 0.2326

StableDiffusion 15.6794 0.6957 0.2643 15.0847 0.5067 0.4144 23.4685 0.7431 0.2089
LaMa 18.7100 0.7593 0.2352 17.5905 0.5677 0.3909 23.8487 0.7174 0.2415

L
aM

a

DeepFillv2 17.7902 0.7482 0.2735 17.3505 0.6761 0.3523 28.6469 0.9278 0.0867
EdgeConnect 16.6286 0.7255 0.2859 16.2838 0.6531 0.3626 28.6063 0.9273 0.0837
CoModGAN 16.5925 0.7195 0.2620 16.2436 0.6468 0.3392 28.5275 0.9269 0.0833

StableDiffusion 15.6794 0.6957 0.2643 15.3792 0.6227 0.3402 28.5544 0.9265 0.0822
LaMa 18.7100 0.7593 0.2352 18.1764 0.6874 0.3128 28.6547 0.9279 0.0833

D
ee

pF
ill

v2

DeepFillv2 17.7902 0.7482 0.2735 17.2145 0.6641 0.3676 27.4044 0.9158 0.1041
EdgeConnect 16.6286 0.7255 0.2859 16.1834 0.6415 0.3774 27.4083 0.9157 0.1000
CoModGAN 16.5925 0.7195 0.2620 16.1381 0.6345 0.3541 27.3103 0.9149 0.0994

StableDiffusion 15.6794 0.6957 0.2643 15.2907 0.6112 0.3554 27.3663 0.9150 0.0981
LaMa 18.7100 0.7593 0.2352 18.0074 0.6752 0.3280 27.3760 0.9158 0.1003
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Table 14: Quantitative results on a subset of the Places2 dataset, with varying first mask ratios
ranging from 40% to 60%, and a fixed second mask ratio of 60%.

Original-First Inpainting Metrics Original-Second Inpainting Metrics First-Second Inpainting Metrics

Method PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

Se
co

nd
In

pa
in

tin
g

M
et

ho
ds

St
ab

le
D

iff
us

io
n DeepFillv2 17.7902 0.7482 0.2735 16.4103 0.5225 0.4620 22.0647 0.6914 0.2789

EdgeConnect 16.6286 0.7255 0.2859 15.5556 0.5034 0.4743 21.9793 0.6680 0.3051
CoModGAN 16.5925 0.7195 0.2620 15.5958 0.4993 0.4475 21.7146 0.6743 0.2678

StableDiffusion 15.6794 0.6957 0.2643 14.8211 0.4752 0.4450 21.9188 0.7084 0.2429
LaMa 18.7100 0.7593 0.2352 17.1162 0.5358 0.4234 22.1772 0.6844 0.2759

L
aM

a

DeepFillv2 17.7902 0.7482 0.2735 16.9981 0.6285 0.3961 25.7239 0.8801 0.1340
EdgeConnect 16.6286 0.7255 0.2859 16.0006 0.6051 0.4056 25.6769 0.8792 0.1298
CoModGAN 16.5925 0.7195 0.2620 15.9597 0.5988 0.3819 25.6171 0.8787 0.1285

StableDiffusion 15.6794 0.6957 0.2643 15.1398 0.5746 0.3824 25.6559 0.8781 0.1272
LaMa 18.7100 0.7593 0.2352 17.7628 0.6401 0.3555 25.7547 0.8805 0.1281

D
ee

pF
ill

v2

DeepFillv2 17.7902 0.7482 0.2735 16.7838 0.6118 0.4182 24.5723 0.8633 0.1585
EdgeConnect 16.6286 0.7255 0.2859 15.8273 0.5878 0.4276 24.4957 0.8618 0.1539
CoModGAN 16.5925 0.7195 0.2620 15.7817 0.5808 0.4042 24.4307 0.8611 0.1524

StableDiffusion 15.6794 0.6957 0.2643 14.9893 0.5580 0.4047 24.5025 0.8615 0.1505
LaMa 18.7100 0.7593 0.2352 17.4978 0.6221 0.3785 24.5624 0.8625 0.1535
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