
Lyria: A General LLM-Driven Genetic Algorithm Framework for Problem
Solving

Anonymous ACL submission

Abstract001

While Large Language Models (LLMs) have002
demonstrated impressive abilities across vari-003
ous domains, they still struggle with complex004
problems characterized by multi-objective opti-005
mization, precise constraint satisfaction, im-006
mense solution spaces, etc. To address the007
limitation, drawing on the superior semantic008
understanding ability of LLMs and also the out-009
standing global search and optimization capa-010
bility of genetic algorithms, we propose to cap-011
italize on their respective strengths and intro-012
duce Lyria, a general LLM-driven genetic algo-013
rithm framework, comprising 7 essential com-014
ponents. Through conducting extensive experi-015
ments with 4 LLMs across 3 types of problems,016
we demonstrated the efficacy of Lyria. Addi-017
tionally, with 7 additional ablation experiments,018
we further systematically analyzed and eluci-019
dated the factors that affect its performance1.020

1 Introduction021

Large Language Models (LLMs) have demon-022

strated versatile abilities across various domains023

and tasks, benefiting from the large-scale corpora024

they are trained on (Jiang et al., 2024; Valmeekam025

et al., 2023; Pan et al., 2023; Tang and Belle, 2024).026

Nevertheless, their performance remains inferior,027

especially when faced with complex problems,028

characterized by their immense solution spaces,029

precise constraint satisfaction, multi-objective op-030

timization, and domain-specific prior knowledge,031

such as reasoning (Mittal et al., 2025), plan-032

ning (Valmeekam et al., 2023), theorem prov-033

ing (Song et al., 2025), code generation (Jiang et al.,034

2024), and etc.035

Genetic algorithms, a subset of evolutionary036

algorithms inspired by natural selection, pow-037

ered by their essential operators such as selection,038

crossover, and mutation, are commonly used to039

1Our code is available at https://anonymous.4open.
science/r/Lyria.

Question

Fitness Evaluator

Experience Pool

Error Detector

Deduplicator

Initialization

Selector

Crossover Operator

Mutation Operator

Answer

Figure 1: The Lyria framework, consisting of 7 essen-
tial components, i.e., Error Detector, Experience Pool,
Deduplicator, Fitness Evaluator, Selector, Crossover
Operator, and Mutation Operator, enables evolving can-
didate solutions through generations to obtain superior
solution.

approach optimal solution by iteratively optimiz- 040

ing the population through generations (Katoch 041

et al., 2021; Gen, 2019; Koza, 1994). They have 042

been studied and applied across diverse fields, such 043

as reasoning (Hameed et al., 2023; Schäfer and 044

Schulz, 2015; Tamaddoni-Nezhad and Muggle- 045

ton, 2001), planning (Burns et al., 2024; Elshamli 046

et al., 2004), combinatorial optimization (Shao 047

et al., 2023; Kobler, 2009), and symbolic regres- 048

sion (Bertschinger et al., 2024; Ashok et al., 2020), 049

primarily due to their ability to escape local optima, 050

conduct systematical searches, and flexibly inte- 051

grate domain-specific knowledge, thereby enabling 052

them to approach global optimal solutions (Katoch 053

et al., 2021). 054

Leveraging the semantic understanding and ex- 055

tensive prior knowledge acquired by LLMs from 056

large-scale corpora (Minaee et al., 2025; Tang et al., 057

2023), as well as the capacity of genetic algorithm 058

1

https://anonymous.4open.science/r/Lyria
https://anonymous.4open.science/r/Lyria

to continuously optimize solutions within immense059

search spaces (Katoch et al., 2021; Gen, 2019),060

we propose to integrate them to capitalize on their061

respective strengths. Therefore, we introduce a gen-062

eral framework called Lyria, consisting of 7 essen-063

tial components as illustrated in Figure 1, aiming064

to enhance the ability of LLMs to tackle complex065

problems. To evaluate its effectiveness, we con-066

ducted experiments using 4 LLMs on 3 NP prob-067

lems against 2 baselines, demonstrating its signifi-068

cant performance improvements. We also executed069

7 additional ablation experiments to analyze the070

impact of various factors on its performance.071

We summarize our contributions as follows:072

1. We proposed Lyria, a general LLM-driven ge-073

netic algorithm framework for problem solv-074

ing, and demonstrated its effectiveness by075

evaluating with 4 LLMs and 3 types of NP076

problems;077

2. We constructed dedicated prompts and078

domain-specific operators tailored to each079

type of problem, ensuring that Lyria is aligned080

with their unique requirements;081

3. We conducted 7 additional ablation experi-082

ments to comprehensively analyze the impact083

of various factors on the performance of Lyria.084

2 Related Work085

Recently, research on the integration of LLMs and086

genetic algorithms has begun to emerge, demon-087

strating promising results across a variety of tasks.088

Through synergistically combining LLMs with089

evolutionary algorithms, EVOPROMPT (Guo et al.,090

2024) shows its efficacy to optimize discrete091

prompt generation, outperforming existing au-092

tomatic prompt generation methods across vari-093

ous LLMs and tasks. In addition, Morris et al.094

(2024) proposed a novel framework which lever-095

ages LLMs to autonomously evolve neural net-096

work architectures through feedback-driven code097

modifications via Evolution of Thought and Char-098

acter Role Play, while Nasir et al. (2024) pro-099

posed a method LLMatic that integrates the code-100

generation capabilities of LLMs and Quality Diver-101

sity algorithms which are a subset of evolutionary102

algorithms (Cully and Demiris, 2017; Pugh et al.,103

2016) to efficiently discover network architectures.104

Furthermore, Hemberg et al. (2024) proposed and105

demonstrated the way to replace traditional genetic106

programming operators with LLM-based operators.107

Moreover, Pinna et al. (2024) proposed an approach 108

based on LLMs and Genetic Improvement to im- 109

prove code generation. 110

Nevertheless, a general LLM-driven genetic al- 111

gorithm framework along with a comprehensive 112

analysis, has yet to be proposed, resulting in an 113

incomplete and unclear understanding of it. Dif- 114

fering from prior work, this paper introduces a 115

general LLM-driven framework comprising 7 prin- 116

cipal components and offers a thorough, in-depth 117

analysis of the various factors that may affect its 118

performance. 119

3 Benchmarks 120

To evaluate Lyria, we selected 3 NP problems, 121

i.e. Sudoku (Yato and Seta, 2003), Graph Col- 122

oring (Gent et al., 2017), and Traveling Salesman 123

Problem (Papadimitriou and Steiglitz, 1976), char- 124

acterized by their vast solution spaces and stringent 125

constraints satisfaction requirements, thereby sup- 126

posed to pose significant challenges to LLMs. It 127

is worth noting that Lyria is not restricted to these 128

problems, and the selection of them is only moti- 129

vated by their complexity and the convenience of 130

generating uncontaminated data. We describe each 131

problem and their metrics in the following sections. 132

3.1 Sudoku 133

Sudoku (SK) is a number-placement puzzle played 134

on a 9× 9 grid, where each cell must be assigned a 135

digit from 1 to 9. The grid is partitioned into nine 136

3× 3 subgrids. A correct Sudoku solution requires 137

that each row, column, and subgrid contains all 138

digits from 1 to 9 exactly once. The puzzle is 139

typically presented with some cells pre-filled, and 140

a given solution must respect the constraints. 141

Data Generation We fixed the number of un- 142

filled cells to 40 in each puzzle, generating a total 143

of 50 distinct 9× 9 SK instances. 144

Metrics We evaluate SK solutions using 3 met- 145

rics, namely Correctness, Score, and Penalized 146

Score. Correctness checks whether a solution sat- 147

isfies all row, column, and sub-grid constraints, 148

with the correct percentage across all solutions re- 149

ported as SKCR. Score calculates the proportion 150

of valid rows, columns, and subgrids in a solution 151

and averages these three values, with higher scores 152

indicating fewer errors. Since Score can be skewed 153

by extremes, Penalized Score takes the geomet- 154

ric mean of those three proportions, dampening 155

2

solutions that over-optimize one constraint at the156

expense of others, with the average across all so-157

lutions reported as SKPS in a range from 0 to 100.158

We formally define each metrics and detail them in159

Appendix A.1.160

3.2 Graph Coloring161

Graph Coloring (GC) is the task of assigning colors162

to the vertices of a given graph such that no two163

adjacent vertices share the same color. Formally,164

given a graph G = (V,E) and a set of k distinct165

colors, the goal is to find a function f : V →166

{0, 1, . . . , k−1} such that for any edge (u, v) ∈ E,167

f(u) ̸= f(v).168

Data Generation We fixed the number of ver-169

tices |V | to 9, the size of the color set k to 3 and170

the edge connection probability to 0.5. This pro-171

cess yields 50 distinct GC instances.172

Metrics We evaluate GC solutions using 5 met-173

rics, namely Excess Color Usage, Conflict Ratio,174

Correctness, Score, and Penalized Score. Correct-175

ness verifies if a solution uses exactly k colors and176

no adjacent vertex is conflicted, with the correct177

percentage across all solutions reported as GCCR.178

Penalized Score is a modified score that penalizes179

solutions that use too many distinct colors, e.g.,180

coloring each vertices with a distinct color, and181

it ranges from 0 to 100, where higher means bet-182

ter, with the average across all solutions reported183

as GCPS . We formally defined the 5 metrics and184

detailed them in Appendix A.2.185

3.3 Traveling Salesman Problem186

Traveling Salesman Problem (TSP) is a route-187

finding task defined on a set of cities and pairwise188

distances between them. Formally, let G = (V,E)189

be a complete undirected graph in which V =190

{v1, . . . , vn} is a set of vertices of the graph and191

E = {(u, v) : u, v ∈ V, u ̸= v} is a set of edges. A192

distance function d : V × V → R≥0 assigns each193

edge (u, v) a nonnegative distance d(u, v). The194

goal in the TSP is to find a Hamiltonian cycle in195

G whose total distance is minimized. Formally, a196

route r is any permutation π of V , with the first197

element also appearing at the end, forming a cycle,198

defined as a sequence r = [vπ(1), . . . , vπ(n), vπ(1)].199

The total distance of this route is given as: D(r) =200

d(vπ(n), vπ(1))+
∑n−1

i=1 d(vπ(i), vπ(i+1)). Thus, the201

goal of TSP is to determine the route r∗ in all pos-202

sible routes R such that ∀r ∈ R, D(r) ≥ D(r∗),203

i.e., r∗ = min
r∈R

D(r).204

Dataset Generation For each TSP problem, we 205

fixed the number of cities |V | to 10. The coordinate 206

(xv, yv) of city v is sampled as x, y i.i.d∼ U [0, 100] 207

and the distance between cities are calculated by 208

Euclidean distance. A start and end city is fixed and 209

noted as v1. An optimal reference route is then de- 210

rived by exhaustively enumerating all Hamiltonian 211

cycles beginning and ending at v1. This procedure 212

is repeated to produce 50 distinct TSP instances. 213

Metrics We evaluate TSP solutions using 4 met- 214

rics, namely Excess Distance Multiplier (EDM), 215

Missing Cities (MC), Correctness, and Penalized 216

Score. Correctness verifies if a route is the short- 217

est cycle visiting all cities exactly once, with the 218

correct percentage across all solutions reported as 219

TSPCR. Penalized Score considers both EDM and 220

MC as penalties and is given in a range of 0 and 221

100 where higher is better, with the average across 222

solutions reported as TSPPS . We formally de- 223

fined each of 4 metrics and detailed them in Ap- 224

pendix A.3. 225

4 Methodology 226

Lyria comprises 7 primary components: Error 227

Detector, Experience Pool, Deduplicator, Fitness 228

Evaluator, Selector, Crossover Operator, and Mu- 229

tation Operator. We begin with a high-level 230

overview of the framework, followed by a detailed 231

elucidation of each component. 232

Initially, an LLM generates a population of can- 233

didate solutions. Every candidate is scored by the 234

Fitness Evaluator and analyzed by the Error Detec- 235

tor. Evolution then proceeds in generations: a frac- 236

tion of the lowest fitness individuals, determined 237

by the replay rate, is replaced by the highest fitness 238

candidates drawn from the Experience Pool; the Se- 239

lector chooses appropriate parents; the Crossover 240

Operator, guided by parental errors, generates off- 241

spring until the population size is restored; and the 242

Mutation Operator modifies each candidate accord- 243

ing to its own errors. After initialization and every 244

crossover and mutation operations, the Deduplica- 245

tor removes duplicates to maintain diversity. The 246

updated population is re-evaluated and advanced 247

in the next generation, until reaching the prede- 248

termined maximum number of generations. We 249

demonstrate the pseudo code in Algorithm 1. 250

4.1 Error Detector 251

Inspired by Reflexion (Shinn et al., 2023) and Self- 252

Refinement (Madaan et al., 2023), whenever a new 253

3

candidate is generated, the error detector (ED) iden-254

tifies its errors up to a predefined maximum de-255

tected errors, enabling crossover and mutation op-256

erators to learn from past mistakes, thereby promot-257

ing the generation of improved candidates.258

In Lyria, we proposed two types of EDs. A259

Verifier-based ED invokes external instruments,260

e.g., parsers, compilers, test suites, model checkers,261

etc., to examine a candidate against formal criteria262

and to emit deterministic and unbiased diagnoses.263

By contrast, an LLM-based ED prompts an LLM to264

introspectively evaluate the candidate, harnessing265

its knowledge and reasoning abilities trained on266

corpora. While the latter may hallucinate on iden-267

tifying errors, it still remains indispensable when268

external verifiers are unavailable.269

Different problem types typically have distinct270

error spaces. For each type of problem, we de-271

signed dedicated EDs and implemented them in272

both the Verifier-based and LLM-based approaches.273

For the Verifier-based EDs, we realized them274

programmatically. For the LLM-based EDs, we275

crafted dedicated prompt templates and demon-276

strated them in Prompt Template 1, 2, and 3. Due277

to space constraints, we detailed all the EDs in278

Appendix D.279

4.2 Deduplicator280

During initialization, crossover, and mutation, the281

deduplicator (DD) discards any individual that du-282

plicates an existing one, requesting replacements283

until a preset maximum deduplication attempts is284

reached. This prevents identical candidates from285

dominating and preserves diversity.286

Formally, given a sequence of candidates C =287

[ci]
k
i=1 where k is the number of candidates gen-288

erated, a newly generated candidate ck+1, and289

a predefined maximum deduplication attempts τ ,290

the deduplicator DD(C, ck+1, τ) operates as fol-291

lows: if ck+1 /∈ C, it returns ck+1; if ∃i ∈292

{1, . . . , τ}, c(i)k+1 /∈ C and ∀j < i, c
(j)
k+1 ∈ C, it re-293

turns c(i)k+1; otherwise, it returns c(τ)k+1. Here, c(i)k+1294

denotes a regenerated candidate. Hence, unique295

candidates are accepted immediately; duplicates296

trigger up to τ regenerations, with the first non-297

duplicate retained or the final candidate accepted if298

all fail.299

4.3 Experience Pool300

During initialization and after each generation, can-301

didate solutions with their fitness scores and errors302

are recorded in the experience pool (EP). Before 303

selection, the lowest fitness individuals in the popu- 304

lation are systematically replaced with the highest 305

fitness candidates in EP, with the number of replace- 306

ments determined by a predefined replay rate. The 307

EP preserves high-quality solutions and prevents 308

inferior candidates from dominating the population, 309

averting convergence toward suboptimal regions. 310

For the EP updating, formally, let EPt de- 311

note EP at generation t, which is initialized as: 312

EP0 = {(ci, si, ei) | ci ∈ C0, si ∈ S0, ei ∈ E0} , 313

where C0 = [ci]
n
i=1 is a sequence of candi- 314

dates representing the initial population, S0 = 315

[si]
n
i=1 is a sequence of fitness score correspond- 316

ing to each candidate in C0, and E0 = [e1]
n
i=1 317

is a sequence of error information of each can- 318

didate in C0. After each generation t, the ex- 319

perience pool is updated as: EPt+1 = EPt ∪ 320

{(ci, si, ei) | ci ∈ Ct, si ∈ St, ei ∈ Et} . 321

For the candidates replacement before selection, 322

let Ct−1 = {c1, . . . , cn} be the previous popula- 323

tion and CEP
t = {c⋆1, . . . , c⋆m} be the candidates 324

from EP at t. For the replay rate ρ, we define 325

replacement count k = ⌊ρ · n⌋. Let permuta- 326

tion σ↑ sort Ct−1 such that sσ↑(i) ≤ sσ↑(j) for 327

all i < j, and permutation σ↓ sort CEP
t such that 328

s⋆
σ↓(i)

≥ s⋆
σ↓(j)

for all i < j. We construct the 329

new population C ′ = [c′1, c
′
2, . . . , c

′
n], in which 330

c′i = c⋆
σ↓(i)

if 1 ≤ i ≤ k and s⋆
σ↓(i)

> sσ↑(i), other- 331

wise c′i = cσ↑(i). 332

4.4 Fitness Evaluator 333

The fitness evaluator (FE) assigns each candidate a 334

score, determining selection probability during evo- 335

lution and influencing their crossover and mutation 336

opportunities. Higher scores indicate the proximity 337

of solutions to the optimum, increasing the pos- 338

sibility of selection to generate offspring. Lower 339

scores reduce their selection probability. The FE 340

critically guides the evolution and different FEs 341

can exert distinct evolutionary processes. In Lyria, 342

we propose two types of FEs, i.e., Oracle-based FE 343

and LLM-based FE. 344

Oracle-Based FE The Oracle-based FE lever- 345

ages an external verifier that deterministically re- 346

turns a score for a candidate solution. Given a 347

candidate and the associated scoring criteria, the 348

verifier strictly adheres to the criteria, producing a 349

precise score. For all 3 problem types, we imple- 350

ment their penalized score metric as the FE criteria 351

in their verifiers to compute their fitness scores. 352

4

LLM-Based FE The LLM-based FE eliminates353

the need for external or handcrafted verifiers354

by prompting an LLM to generate scores. Al-355

though an LLM can occasionally deviate from the356

ground-truth score, it is still worthy and indispens-357

able, when an external verifier is unavailable or358

costly to obtain. For each type of problem, we in-359

struct the LLM to compute the fitness score based360

on their penalized score metric. We demonstrate all361

prompt templates in Prompt Template 4, 5, and 6.362

4.5 Selector363

Given a sequence of candidate solutions, the se-364

lector elects appropriate candidates and prepares a365

mating pool for subsequent crossover and mutation.366

While prioritizing individuals with high fitness may367

promote the generation of superior offspring, ex-368

clusively retaining them may impede population369

diversity and risk premature convergence to local370

optima. To balance exploration and exploitation,371

we implement a hybrid selection strategy for the372

selector that combines truncation selection with373

tournament selection. Nevertheless, we note that374

Lyria is not confined to a specific selection strategy375

and it can be substituted by any alternatives.376

Let C = [ci]
n
i=1 be a sequence of candidates377

with fitness scores S = [si]
n
i=1. Let ke ∈ [0, n]378

denote the number of fittest candidates that are di-379

rectly carried forward in truncation selection. Let380

kr = n − ke denote the number of candidates381

for tournament selection. The selector sorts C382

in descending order based on their fitness, giv-383

ing Cσ↓ = [cσ↓(1), cσ↓(2), . . . , cσ↓(n)]. Then, it se-384

lects a subsequence of ke fittest candidates from385

Cσ↓ , corresponding to the truncation selection,386

as Ctrunc = [cσ↓(1), cσ↓(2), . . . , cσ↓(ke)]. Then, let387

Itour = [(xi, yi)]
kr
i=1 be a sequence of index-388

pairs and xi, yi
i.i.d.∼ U [1, n]. The candidates se-389

lected by tournament selection is given as Ctour =390

[ctour1 , ctour2 , . . . , ctourkr
], where ctouri = cxi if sxi >391

syi , otherwise ctouri = cyi . Thus, combining392

the truncation selection and tournament selection,393

the selector is defined as: Select(C, S, ke, kr) =394

Ctrunc ∪ Ctour. Hence, the candidates selected as395

the mating pool is C ′ = Select(C, S, ke, kr).396

4.6 Crossover Operator397

The crossover operator (CO) selects parent pairs398

from the mating pool, governed by a predefined399

crossover rate. If crossover is skipped, a parent is400

randomly returned; otherwise, offspring are gen-401

erated. This iterates until the offspring population 402

reaches the predefined population size. The ob- 403

jective of CO is to combine advantageous traits 404

of parents while suppressing detrimental ones to 405

produce improved offspring with higher fitness. In 406

Lyria, we propose two COs, i.e. LLM-based CO 407

(LCO) and External CO (ECO), which are alter- 408

nated in evolution based on an external crossover 409

rate, for which lower prioritizes LCO while higher 410

prioritizes ECO. 411

LCO In LCO, an LLM is prompted to merge two 412

parent candidates by integrating their advantageous 413

attributes and excluding their deficiencies, drawing 414

on the experience and prior knowledge of the LLM 415

and their understanding of the error information of 416

the candidates provided by the ED, to produce an 417

improved child. This approach eliminates the need 418

to manually specify any domain-specific strategy, 419

instead fully delegating it to the LLM. We demon- 420

strated the prompts we designed for each of the 3 421

problem types in Prompt Template 7, 8, and 9. 422

ECO In ECO, two parent candidates are com- 423

bined via external procedures or tools, based on 424

domain-specific strategies and also the error infor- 425

mation of the given parents. Varying from domains, 426

distinct strategies can be employed, e.g., leveraging 427

external heuristics provided by domain experts, for- 428

mal logical constraints, etc. We designed specific 429

ECOs for each problem type and detailed all of 430

them in Appendix E. 431

4.7 Mutation Operator 432

The mutation operator (MO) applies mutations to 433

each candidate based on a predefined mutation rate, 434

returning either the original or mutated candidate. 435

This preserves population diversity and prevents 436

premature convergence. In Lyria, we propose two 437

MOs, i.e., LLM-based MO (LMO) and External 438

MO (EMO), which are alternated in evolution via 439

an external mutation rate, for which lower priori- 440

tizes LMO while higher prioritizes EMO. 441

LMO In LMO, an LLM is instructed to mutate a 442

given candidate, by identifying and improving its 443

inferior parts, based on the knowledge of LLMs and 444

their understanding of error information. Similar 445

to LCO, this approach eliminates the necessity to 446

manually construct domain-specific strategies and 447

enables the LLM to autonomously design strategies 448

to modify the given candidate. We designed the 449

prompt for each problem type and demonstrated 450

5

Model Method SKCR SKPS GCCR GCPS TSPCR TSPPS

GPT-4o-Mini
DP 0 39 0 73 0 79

BoN 6 ↑6 73 ↑34 0 86 ↑13 4 ↑4 94 ↑15

Lyria 8 ↑8 ↑2 73 ↑34 − 0 97 ↑24 ↑11 6 ↑6 ↑2 96 ↑17 ↑2

Qwen2.5:32B-Instruct
DP 0 31 0 74 0 81

BoN 8 ↑8 76 ↑45 0 87 ↑13 8 ↑8 97 ↑16

Lyria 32 ↑32 ↑24 87 ↑56 ↑11 0 96 ↑22 ↑9 30 ↑30 ↑22 99 ↑18 ↑2

Mistral:7B-Instruct
DP 0 0 0 0 0 60

BoN 0 5 ↑5 0 84 ↑84 0 80 ↑20

Lyria 0 12 ↑12 ↑7 0 92 ↑92 ↑8 0 89 ↑29 ↑9

Qwen2.5:7B-Instruct
DP 0 26 0 73 0 34

BoN 0 55 ↑29 0 84 ↑11 0 88 ↑54

Lyria 0 61 ↑35 ↑6 0 95 ↑22 ↑11 4 ↑4 ↑4 95 ↑61 ↑7

Table 1: The results of Correctness and Penalized Score for SK, GC, TSP. For each LLM, across the three methods,
the best correctness and penalized score are highlighted with a bold font. Blue arrows ↑↓ indicate performance
differences relative to the DP baseline, while red arrows ↑↓ denote differences relative to the BoN baseline.

them in Prompt Template 10, 11, and 12.451

EMO In EMO, the mutation is handled by exter-452

nal procedures or tools, guided by domain-specific453

mutation strategies and also the error information454

of the candidate, to modify the candidate. We de-455

signed specific EMOs for each problem type and456

elucidated them in detail in Appendix F.457

5 Main Experiment458

5.1 Baselines459

We adapted two baselines, i.e., Direct Prompting460

(DP) and Best-of-N Direct Prompting (BoN), for461

comparative evaluation.462

For DP, an LLM is invoked once and prompted463

to generate a solution directly in a zero-shot man-464

ner. We designed the prompt templates for each465

problem type and demonstrated them in Prompt466

Template 13, 14, and 15.467

Since Lyria may sample an LLM up to L times468

for a single problem, a naive comparison against469

DP could favor Lyria merely by virtue of increased470

sampling2. To ensure a fair comparison, we adopt471

the BoN approach. For each problem, BoN draws472

N = L independent responses from the LLM us-473

ing the identical prompt template employed by DP474

and preserves the one with the best metrics as the475

answer. Additionally, same as Lyria, a deduplicator476

is introduced to remove redundant answers. This477

approach equalizes the number of sampling and478

2The calculation of L is demonstrated in Appendix B.

ensures any observed performance improvements 479

are attributable to the innovations of Lyria. 480

5.2 Experiment Settings 481

For a comprehensive evaluation, we selected 482

4 LLMs: GPT-4o-Mini, Qwen2.5:32B-Instruct, 483

Qwen2.5:7B-Instruct, and Mistral:7B-Instruct. 484

For DP, we set the temperature to 0 for greedy 485

decoding and the maximum generated tokens to 486

4096. 487

For BoN, we set the temperature at 0.7 to enable 488

diverse generated answers, the maximum generated 489

tokens at 4096, the sampling times N at 345 to 490

align the number of queries with Lyria, and the 491

maximum deduplication attempts at 3. 492

For Lyria, we switch on the Oracle-based FE. We 493

set the temperature of LLM at 0.7, the maximum 494

generated tokens at 4096, the population size at 495

30, the generations at 15, the maximum detected 496

errors at 3, the maximum deduplication attempts at 497

3, the replay rate at 0.6, the crossover rate at 0.7, 498

the external crossover rate at 0.3, the mutation rate 499

at 0.3, and the external mutation rate at 0.3. 500

5.3 Results & Analysis 501

As shown in Table 1, LLMs struggle across prob- 502

lems in DP3. While BoN greatly improves the 503

performance across the problems, Lyria demon- 504

strates its ability to further consistently contribute 505

significant improvement across various LLMs and 506

3Results of all metrics for each problem type is shown in
Appendix G.

6

Figure 2: The figure shows the performance comparison
between Lyria and BoN, in which the x-axis indexes
each parameter set, e.g., index 0 means the pair of (np =
5, ng = 5) for Lyria and N = 23 for BoN, and the y-
axis shows the corresponding score averaging across
SKPS , GCPS , and TSPPS .

problems. For example, Lyria improves GCPS for507

GPT-4o-Mini by 24% over DP and 11% over BoN,508

while enhancing SKCR by 32% and 24% and also509

SKPS by 56% and 11%, for Qwen2.5:32B-Instruct,510

compared to DP and BoN, respectively. In addi-511

tion, for relatively small LLMs like Qwen2.5:7B-512

Instruct, Lyria also shows its efficacy, by 22% and513

11% GCPS increases, and 61% and 7% TSPPS514

improved, compared to DP and BoN, respectively.515

Furthermore, across all LLMs, for SK, Lyria516

shows an average 10% and 7% increases on SKCR517

with 34% and 6% increases on SKPS , compared to518

DP and BoN. For GC, Lyria shows 40% and 10%519

improvement on GCPS . For TSP, Lyria shows520

10% and 7% increases on TSPCR with 32% and521

5% improvement on TSPPS . Therefore, across all522

LLMs and problems, Lyria demonstrates 7% and523

5% increases on the correctness and 35% and 7%524

improvements on the penalized score, compared to525

DP and BoN, respectively, demonstrating the con-526

sistent performance contribution offered by Lyria.527

6 Ablation Experiments528

To further investigate the impact of various fac-529

tors that influence the performance of Lyria, we530

conducted 7 additional experiments. To avoid pro-531

hibitive costs, we selected Qwen2.5:7B-Instruct532

and limited the number of problems to 10. Unless533

otherwise specified, we adhere to the same param-534

eter settings as in the main experiment and refer535

their performance to the penalized score metric.536

6.1 Scaling Population Size and Generations537

This experiment investigates the impact of scal-538

ing population size np and generations ng on the539

performance of Lyria. We executed 6 experiment 540

settings, each pairing a np and ng: (5, 5), (10, 10), 541

(20, 20), (30, 30), (40, 40) and (50, 50). For each 542

setting, we applied the BoN baseline for compari- 543

son, with the corresponding values of N equal to 544

23, 80, 300, 660, 1160, and 1800. As demonstrated 545

in Figure 2, averaged across problems, while BoN 546

exhibits diminishing marginal gains as parame- 547

ters scaled, Lyria demonstrated consistent improve- 548

ments and increasingly larger performance gaps 549

compared to BoN. We attribute the limitations of 550

BoN to LLMs getting trapped in local optima with- 551

out effective capacities to extricate themselves from 552

it, resulting in even sampling an arbitrarily large 553

number of answers yet still failing to yield fur- 554

ther performance improvements. However, Lyria 555

inherently possesses the capacity to escape local 556

optima, driving substantial performance improve- 557

ments while increasing np and ng. 558

In addition, to disentangle the individual contri- 559

bution of np and ng, we conducted 6 additional 560

experiments settings. We fixed the np at 10 while 561

varying ng at values of 10, 30, and 50, and con- 562

versely fixed ng at 10 while adjusting np across 563

values of 10, 30 and 50. For the former, averaged 564

across problems, the penalized scores increase by 565

4%, while the latter one yields 7% gains. The mod- 566

est 3% difference between them could result from 567

the limited diversity in smaller populations, causing 568

offspring becoming homologous to their parents, 569

thereby suppressing evolutionary efficacy. How- 570

ever, given this minor gap, we cannot exclude the 571

possibility that it arises from stochastic variation. 572

6.2 Oracle-Based FE VS LLM-Based FE 573

This experiment seeks to explore how the perfor- 574

mance of Lyria varies when using an Oracle-based 575

FE versus an LLM-based FE. We compared an 576

Oracle-based FE with two LLM-based FEs, one 577

built on Qwen2.5:7B-Instruct and the other on GPT- 578

4o-Mini. 579

We observed that, averaged across problems, the 580

Oracle-based FE achieved a penalized score of 84, 581

whereas Qwen2.5:7B-Instruct and GPT-4o-Mini 582

scored only 51 and 50, respectively. The superior 583

result of Oracle-based FE, as expected, shows that 584

a stronger evaluator markedly boosts the perfor- 585

mance of Lyria. Additionally, it is also worth not- 586

ing that the nearly identical scores of GPT-4o-Mini 587

and Qwen2.5:7B-Instruct indicate no significant 588

difference in their evaluative capacity, although 589

GPT-4o-Mini demonstrates a consistent better prob- 590

7

lem solving ability than Qwen2.5:7B-instruct as591

shown in Table 1. We expect the future work to592

seek to improve the ability of LLMs as evaluator593

and approach it to oracle level. Thus, the Oracle-594

based FE in Lyria can be fully replaced by LLMs,595

which is advantageous when an Oracle-based FE596

is unavailable or difficult to secure.597

6.3 Impact of ED, EP, DD598

This experiment aims to investigate the impact of599

the Error Detector, Experience Pool, and Dedupli-600

cator on Lyria.601

For ED, we vary the maximum detected errors ϵ602

at values of 0, 3, 6, and 9. For TSP, we do not603

observe a significant impact when increasing ϵ.604

In contrast, for SK, as ϵ rises, the SKPS also in-605

creased, yielding 4% gains. For GC, increasing606

ϵ produced a significant 7% improvements. We607

attribute the performance differences across prob-608

lems to the varying efficacy of their dedicated de-609

sign of ECO and EMO.610

For EP, we vary the replay rate ρ at values of 0,611

0.3, and 0.6. We observed that varying ρ did not612

produce significant changes in GCPS and TSPPS .613

However, for SK, while setting ρ to 0 and 0.6614

yielded scores of 59 and 62, setting ρ = 0.3 pro-615

duces a score of 73, bringing up a significant im-616

provement of 14% and 11% compared to the scores617

when ρ = 0 and ρ = 0.6. We attribute this discrep-618

ancy to the trade-offs of ρ. When ρ is too low or EP619

is dropped, since the population of each generation620

evolves solely by referring to its immediate prede-621

cessors, the lack of retained historical best solutions622

may bias the evolutionary direction. Conversely,623

when ρ is too high, overreliance on historical best624

solutions which may themselves be local optima,625

can homogenize the evolved population and lead626

to premature convergence on suboptimal solutions.627

For DD, we vary the maximum deduplication628

attempts τ at the values of 0, 3, and 6. Averaged629

across problems, increasing τ does not bring up630

a significant improvement, which, nevertheless, is631

as expected and does not mean that the deduplica-632

tor is dispensable. Since the solution spaces of all633

the given problems are considerably immense, and634

when the population size remains much smaller635

than the solution space, it results in a low inci-636

dence of duplicate individuals, DD therefore may637

not be invoked. Thus, when encountering problems638

with comparatively smaller solution spaces, DD639

could effectively eliminate duplicates and thereby640

enhance population diversity.641

6.4 Impact of ECO and EMO 642

This experiment aims to investigate the impact of 643

External Crossover Operator and External Muta- 644

tion Operator on Lyria. Given the close interde- 645

pendence between these two operators, rather than 646

evaluating their efficacy in isolation, we simultane- 647

ously vary both the external crossover rate ξ and 648

the external mutation rate µ to investigate the ef- 649

ficacy of them. Thus, we construct 3 experiment 650

settings, each pairing a ξ and µ: (0, 0), (0.3, 0.3), 651

and (0.6, 0.6). 652

For GC, raising ξ and µ induces a 6% perfor- 653

mance gain by improving GCPS from 91 to 97. 654

However, for TSP, we did not observe a significant 655

performance gain after increasing the rates. Fur- 656

thermore, for SK, we observed a 6% performance 657

drop after raising rates. The disparity of the results 658

illustrates that the quality of ECO and EMO de- 659

signs tailored to specific problems can markedly in- 660

fluence performance. High-quality ECO and EMO 661

enable Lyria to evolve populations more effectively, 662

leading to better performance. We consider that 663

a high-quality ECO and EMO may contain, but 664

are not limited to, extra or superior heuristics be- 665

yond what an LLM alone can provide, structural or 666

precise constraints, or expert domain knowledge. 667

Conversely, poor designed of them may trigger 668

performance declines. We consider that inferior 669

operators can synthesize solutions worse than their 670

predecessors, especially when they are frequently 671

used in the case that ξ and µ are elevated, which 672

can introduce low-quality individuals into each gen- 673

eration, thereby degrading performance. Therefore, 674

a meticulous and superior design of ECO and EMO 675

is essential for Lyria. 676

7 Conclusion 677

In this work, we introduced Lyria, a general LLM- 678

driven genetic algorithm framework, which inte- 679

grates the semantic understanding and reasoning 680

abilities of LLMs with the global and systematic 681

search capacity of genetic algorithms, comprising 682

7 essential components, to solve complex prob- 683

lems. We conducted extensive experiments with 684

4 LLMs across 3 types of problems to show the 685

superior ability of Lyria, and also conducted 7 ad- 686

ditional ablation experiments to demonstrate how 687

various factors affect its performance. We hope this 688

work offers valuable insights into the integration of 689

LLMs with genetic algorithms and sparks further 690

exploration in this field. 691

8

8 Limitations692

Although our evaluation of Lyria focuses on SK,693

GC, and TSP problems, the framework is not re-694

stricted to these domains. We believe Lyria can be695

applied in a broader range of domains, especially696

for those problems characterized by multi-objective697

or discrete optimization, precise constraints, im-698

mense solution spaces, while also needing semantic699

understanding, such as planning in a dynamic en-700

vironment, code synthesis, music generation, and701

other real-world applications. We encourage and702

expect the integration of Lyria into these domains703

in future works.704

While Lyria exerts significant performance im-705

provements, especially when the population size706

and generations are increased, it necessarily in-707

duces more LLM queries, leading to longer re-708

sponse time and higher costs. At present, it may not709

therefore be suited to applications that demand im-710

mediate responses or have a low budget. Thereby,711

reducing this overhead is an important goal for sub-712

sequent work.713

In addition, in Section 6.2, we observed a large714

performance gap between the Oracle-based FE and715

the LLM-based FE. Since we do not expect, in716

practice, an Oracle-based FE is always available,717

we believe replacing the Oracle-based FE with an718

LLM-based FE can greatly increase the applicabil-719

ity and convenience of Lyria in real-world applica-720

tions. Thereby, we expect future work to improve721

the LLM-based FE to approach the Oracle-based722

FE.723

Finally, to our best knowledge, no existing simi-724

lar framework is directly comparable to Lyria. Con-725

sequently, this paper concentrates more on the in-726

ternal analysis to ensure that the observed perfor-727

mance improvements arise from the virtue of the728

framework itself rather than from other factors, e.g.,729

increasing samplings, and examining the contribu-730

tion and necessity of each component.731

References732

2019. Handbook of Metaheuristics, volume 272 of733
International Series in Operations Research & Man-734
agement Science. Springer International Publishing,735
Cham.736

Dhananjay Ashok, Joseph Scott, Sebastian Johann Wet-737
zel, Maysum Panju, and Vijay Ganesh. 2020. Logic738
guided genetic algorithms. ArXiv, abs/2010.11328.739

Amanda Bertschinger, James Bagrow, and Joshua Bon-740
gard. 2024. Evolving form and function: Dual-741

objective optimization in neural symbolic regression 742
networks. In Proceedings of the Genetic and Evolu- 743
tionary Computation Conference, GECCO ’24, page 744
277–285, New York, NY, USA. Association for Com- 745
puting Machinery. 746

Owen Burns, Dana Hughes, and Katia Sycara. 2024. 747
Plancritic: Formal planning with human feedback. 748
Preprint, arXiv:2412.00300. 749

Antoine Cully and Yiannis Demiris. 2017. Quality and 750
diversity optimization: A unifying modular frame- 751
work. IEEE Transactions on Evolutionary Computa- 752
tion, 22(2):245–259. 753

A. Elshamli, H.A. Abdullah, and S. Areibi. 2004. Ge- 754
netic algorithm for dynamic path planning. In Cana- 755
dian Conference on Electrical and Computer Engi- 756
neering 2004 (IEEE Cat. No.04CH37513), volume 2, 757
pages 677–680 Vol.2. 758

Ian P Gent, Christopher Jefferson, and Peter Nightingale. 759
2017. Complexity of n-queens completion. Journal 760
of Artificial Intelligence Research, 59:815–848. 761

Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao 762
Song, Xu Tan, Guoqing Liu, Jiang Bian, and Yu- 763
jiu Yang. 2024. Connecting large language models 764
with evolutionary algorithms yields powerful prompt 765
optimizers. Preprint, arXiv:2309.08532. 766

Shaima Hameed, Yousef Elsheikh, and Mohammad 767
Azzeh. 2023. An optimized case-based software 768
project effort estimation using genetic algorithm. In- 769
formation and Software Technology, 153:107088. 770

Erik Hemberg, Stephen Moskal, and Una-May O’Reilly. 771
2024. Evolving code with a large language model. 772
Genetic Programming and Evolvable Machines, 773
25(2):21. 774

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, 775
and Sunghun Kim. 2024. A survey on large 776
language models for code generation. Preprint, 777
arXiv:2406.00515. 778

Sourabh Katoch, Sumit Singh Chauhan, and Vijay Ku- 779
mar. 2021. A review on genetic algorithm: past, 780
present, and future. Multimedia Tools and Applica- 781
tions, 80(5):8091–8126. 782

Daniel Kobler. 2009. Evolutionary algorithms in 783
combinatorial optimizationEvolutionary Algorithms 784
in Combinatorial Optimization, pages 950–959. 785
Springer US, Boston, MA. 786

JohnR. Koza. 1994. Genetic programming as a means 787
for programming computers by natural selection. 788
Statistics and Computing, 4(2). 789

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler 790
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon, 791
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, 792
Shashank Gupta, Bodhisattwa Prasad Majumder, 793
Katherine Hermann, Sean Welleck, Amir Yazdan- 794
bakhsh, and Peter Clark. 2023. Self-refine: Itera- 795
tive refinement with self-feedback. In Thirty-seventh 796

9

https://doi.org/10.1007/978-3-319-91086-4
https://api.semanticscholar.org/CorpusID:225039867
https://api.semanticscholar.org/CorpusID:225039867
https://api.semanticscholar.org/CorpusID:225039867
https://doi.org/10.1145/3638529.3654030
https://doi.org/10.1145/3638529.3654030
https://doi.org/10.1145/3638529.3654030
https://doi.org/10.1145/3638529.3654030
https://doi.org/10.1145/3638529.3654030
https://arxiv.org/abs/2412.00300
https://doi.org/10.1109/CCECE.2004.1345203
https://doi.org/10.1109/CCECE.2004.1345203
https://doi.org/10.1109/CCECE.2004.1345203
https://arxiv.org/abs/2309.08532
https://arxiv.org/abs/2309.08532
https://arxiv.org/abs/2309.08532
https://arxiv.org/abs/2309.08532
https://arxiv.org/abs/2309.08532
https://arxiv.org/abs/2406.00515
https://arxiv.org/abs/2406.00515
https://arxiv.org/abs/2406.00515
https://doi.org/10.1007/s11042-020-10139-6
https://doi.org/10.1007/s11042-020-10139-6
https://doi.org/10.1007/s11042-020-10139-6
https://doi.org/10.1007/978-0-387-74759-0_167
https://doi.org/10.1007/978-0-387-74759-0_167
https://doi.org/10.1007/978-0-387-74759-0_167
https://doi.org/10.1007/978-0-387-74759-0_167
https://doi.org/10.1007/978-0-387-74759-0_167
https://doi.org/10.1007/BF00175355
https://doi.org/10.1007/BF00175355
https://doi.org/10.1007/BF00175355
https://openreview.net/forum?id=S37hOerQLB
https://openreview.net/forum?id=S37hOerQLB
https://openreview.net/forum?id=S37hOerQLB

Conference on Neural Information Processing Sys-797
tems.798

Shervin Minaee, Tomas Mikolov, Narjes Nikzad,799
Meysam Chenaghlu, Richard Socher, Xavier Am-800
atriain, and Jianfeng Gao. 2025. Large language801
models: A survey. Preprint, arXiv:2402.06196.802

Chinmay Mittal, Krishna Kartik, Mausam, and Parag803
Singla. 2025. Fcorebench: Can large language mod-804
els solve challenging first-order combinatorial rea-805
soning problems? Preprint, arXiv:2402.02611.806

Clint Morris, Michael Jurado, and Jason Zutty. 2024.807
Llm guided evolution - the automation of models808
advancing models. In Proceedings of the Genetic809
and Evolutionary Computation Conference, GECCO810
’24, page 377–384, New York, NY, USA. Association811
for Computing Machinery.812

Muhammad Umair Nasir, Sam Earle, Julian Togelius,813
Steven James, and Christopher Cleghorn. 2024. Ll-814
matic: Neural architecture search via large language815
models and quality diversity optimization. In Pro-816
ceedings of the Genetic and Evolutionary Compu-817
tation Conference, GECCO ’24, page 1110–1118,818
New York, NY, USA. Association for Computing819
Machinery.820

Liangming Pan, Alon Albalak, Xinyi Wang, and821
William Wang. 2023. Logic-LM: Empowering large822
language models with symbolic solvers for faithful823
logical reasoning. In Findings of the Association824
for Computational Linguistics: EMNLP 2023, pages825
3806–3824, Singapore. Association for Computa-826
tional Linguistics.827

Christos H. Papadimitriou and Kenneth Steiglitz. 1976.828
Some complexity results for the traveling salesman829
problem. In Proceedings of the Eighth Annual ACM830
Symposium on Theory of Computing, STOC ’76, page831
1–9, New York, NY, USA. Association for Comput-832
ing Machinery.833

Giovanni Pinna, Damiano Ravalico, Luigi Rovito, Luca834
Manzoni, and Andrea De Lorenzo. 2024. Enhanc-835
ing large language models-based code generation by836
leveraging genetic improvement. In Genetic Pro-837
gramming, pages 108–124, Cham. Springer Nature838
Switzerland.839

Justin K Pugh, Lisa B Soros, and Kenneth O Stanley.840
2016. Quality diversity: A new frontier for evolu-841
tionary computation. Frontiers in Robotics and AI,842
3:40.843

Simon Schäfer and Stephan Schulz. 2015. Breeding844
theorem proving heuristics with genetic algorithms.845
In GCAI, pages 263–274. Citeseer.846

Yinan Shao, Jerry Chun-Wei Lin, Gautam Srivastava,847
Dongdong Guo, Hongchun Zhang, Hu Yi, and848
Alireza Jolfaei. 2023. Multi-objective neural evo-849
lutionary algorithm for combinatorial optimization850
problems. IEEE Transactions on Neural Networks851
and Learning Systems, 34(4):2133–2143.852

Noah Shinn, Federico Cassano, Ashwin Gopinath, 853
Karthik R Narasimhan, and Shunyu Yao. 2023. Re- 854
flexion: language agents with verbal reinforcement 855
learning. In Thirty-seventh Conference on Neural 856
Information Processing Systems. 857

Peiyang Song, Kaiyu Yang, and Anima Anandkumar. 858
2025. Lean copilot: Large language models as 859
copilots for theorem proving in lean. Preprint, 860
arXiv:2404.12534. 861

Alireza Tamaddoni-Nezhad and Stephen Muggleton. 862
2001. Using genetic algorithms for learning clauses 863
in first-order logic. In Proceedings of the 3rd Annual 864
Conference on Genetic and Evolutionary Computa- 865
tion, pages 639–646. 866

Weizhi Tang and Vaishak Belle. 2024. Tom-lm: Del- 867
egating theory of mind reasoning to external sym- 868
bolic executors in large language models. In Neural- 869
Symbolic Learning and Reasoning: 18th Interna- 870
tional Conference, NeSy 2024, Barcelona, Spain, 871
September 9–12, 2024, Proceedings, Part II, page 872
245–257, Berlin, Heidelberg. Springer-Verlag. 873

Xiaojuan Tang, Zilong Zheng, Jiaqi Li, Fanxu Meng, 874
Song-Chun Zhu, Yitao Liang, and Muhan Zhang. 875
2023. Large language models are in-context seman- 876
tic reasoners rather than symbolic reasoners. arXiv 877
preprint arXiv:2305.14825. 878

Karthik Valmeekam, Matthew Marquez, Sarath Sreed- 879
haran, and Subbarao Kambhampati. 2023. On the 880
planning abilities of large language models: a critical 881
investigation. In Proceedings of the 37th Interna- 882
tional Conference on Neural Information Processing 883
Systems, NIPS ’23, Red Hook, NY, USA. Curran 884
Associates Inc. 885

Takayuki Yato and Takahiro Seta. 2003. Complexity 886
and completeness of finding another solution and 887
its application to puzzles. IEICE transactions on 888
fundamentals of electronics, communications and 889
computer sciences, 86(5):1052–1060. 890

10

https://arxiv.org/abs/2402.06196
https://arxiv.org/abs/2402.06196
https://arxiv.org/abs/2402.06196
https://arxiv.org/abs/2402.02611
https://arxiv.org/abs/2402.02611
https://arxiv.org/abs/2402.02611
https://arxiv.org/abs/2402.02611
https://arxiv.org/abs/2402.02611
https://doi.org/10.1145/3638529.3654178
https://doi.org/10.1145/3638529.3654178
https://doi.org/10.1145/3638529.3654178
https://doi.org/10.1145/3638529.3654017
https://doi.org/10.1145/3638529.3654017
https://doi.org/10.1145/3638529.3654017
https://doi.org/10.1145/3638529.3654017
https://doi.org/10.1145/3638529.3654017
https://doi.org/10.18653/v1/2023.findings-emnlp.248
https://doi.org/10.18653/v1/2023.findings-emnlp.248
https://doi.org/10.18653/v1/2023.findings-emnlp.248
https://doi.org/10.18653/v1/2023.findings-emnlp.248
https://doi.org/10.18653/v1/2023.findings-emnlp.248
https://doi.org/10.1145/800113.803625
https://doi.org/10.1145/800113.803625
https://doi.org/10.1145/800113.803625
https://doi.org/10.1109/TNNLS.2021.3105937
https://doi.org/10.1109/TNNLS.2021.3105937
https://doi.org/10.1109/TNNLS.2021.3105937
https://doi.org/10.1109/TNNLS.2021.3105937
https://doi.org/10.1109/TNNLS.2021.3105937
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://arxiv.org/abs/2404.12534
https://arxiv.org/abs/2404.12534
https://arxiv.org/abs/2404.12534
https://doi.org/10.1007/978-3-031-71170-1_20
https://doi.org/10.1007/978-3-031-71170-1_20
https://doi.org/10.1007/978-3-031-71170-1_20
https://doi.org/10.1007/978-3-031-71170-1_20
https://doi.org/10.1007/978-3-031-71170-1_20

A Metrics891

A.1 Sudoku892

Given a SK solution s′ as a 9× 9 matrix with each
cell filled, formally we have:

s′ =


u1,1 u1,2 u1,3 · · · u1,9
u2,1 u2,2 u2,3 · · · u2,9
u3,1 u3,2 u3,3 · · · u3,9

...
...

...
. . .

...
u9,1 u9,2 u9,3 · · · u9,9

 .

Let S denote the solutions to all SK problems. We893

mainly employ 3 metrics to assess the quality of894

the generated solutions:895

Correctness The correctness of s′ is defined896

as CR(s′), which returns 1 if s′ satisfies all the897

row, column, and subgrids constraints, otherwise898

0. Formally, let R(s′, i) denote the values at row i,899

C(s′, j) denote the values at column j, and B(s′, k)900

denote the k-th 3×3 subgrids. The CR(s′) is given901

as:902

CR(s′) =



1, if (∀i, |R(s′, i)| = 9)

∧(∀j, |C(s′, j)| = 9)

∧(∀k, |B(s′, k)| = 9)

∧(∀i, j, s′[i, j] ∈ {1, . . . , 9})
0, otherwise

903

We report the correctness percentage of S as904

SudokuCR.905

Score Evaluating a Sudoku solution solely based
on its correctness provides an overly narrow per-
spective, since when an LLM fails to provide
a fully correct solution, it becomes challenging
to observe and analyze whether it yields a high-
quality albeit suboptimal solution and how closely
it approximates the optimal solution. Thus, we
define the score of a given s′ as the average of
percentages of constraints sanctification of rows,
columns, and subgrids. Higher score means s′

approaches more to the optimal solution. For-
mally, let I(X) be an indicator function that re-
turns 1 if X = {1, . . . , 9}, otherwise 0. Let
IRs′ =

∑9
i=1 I(R(s′, i)), ICs′ =

∑9
j=1 I(C(s′, j)),

and IBs′ =
∑9

k=1 I(B(s′, k)). We have SC(s′) as:

SC(s′) = 100 · 1
27

(
IRs′ + ICs′ + IBs′

)
,

We report the average of S as SudokuSC906

Penalized Score To prevent a solution from re-
sorting to extreme strategies to improve correctness,
such as boosting row and column correctness while
sacrificing subgrid correctness, and thus ending up
far from the optimal solution despite a seemingly
high score, we adopt the geometric mean to mit-
igate the impact of these extreme values on the
overall score. Formally, we have PS(s′) as:

PS(s′) = 100 · 3

√
IRs′
9
·
ICs′
9
·
IBs′
9
,

We report the average penalized score of S as 907

SudokuPS . 908

A.2 Graph Coloring 909

Given a GC solution f ′, let F denote the solutions 910

to all GC problems, we employ 5 metrics to more 911

precisely evaluate the solution quality: 912

Correctness The correctness of f ′ indicates 913

whether it assigns colors to each vertex such that 914

no adjacent vertex has the same color. Formally: 915

CR(f ′) =


1, if

(
∀v ∈ V, f ′(v) ∈ {i}k−1

i=0

)
∧(

∀(u, v) ∈ E, f ′(u) ̸= f ′(v)
)
,

0, otherwise.

916

We report the correctness percentage for F as 917

GCCR. 918

Excess Color Usage We define the excess color
usage of a given f ′ as the number of distinct colors
used that exceeds the allowed distinct colors k:

ECU(f ′) =
∣∣{ f ′(v) | v ∈ V }

∣∣− k.

We report the average of F as GCECU . 919

Conflict Ratio We define the conflict ratio as 920

the ratio of edges whose endpoints share the same 921

color. Define an indicator function: 922

ICF (f
′, u, v) =

{
1, if f ′(u) = f ′(v),

0, otherwise.
923

The conflict ratio CF for a given f ′ is given as:

CF(f ′) =

∑
(u,v)∈E ICF (f

′, u, v)

|E|
.

We report the average of F as GCCF . 924

11

Score We define the score of a given f ′ as the
percentage of edges colored properly as:

Score(f ′) =
(
1− CF(f ′)

)
· 100.

We report the average of F as GCSC .925

Penalized Score The penalized score is a modi-
fied score that penalizes solutions using too many
colors, e.g., coloring each vertices with a distinct
color. Let k′ = |{f ′(v) : v ∈ V }| be the total
number of distinct colors used. Formally, we have
PS as:

PS(f ′) =


0, if k′ ≥ |V |,
Score(f ′), if k′ ≤ k,

Score(f ′) · R, otherwise.

where R = (1− k′ − k

|V | − k
) is the penalty ratio for926

the score. We report the average of F as GCPS .927

A.3 Traveling Salesman Problem928

Given a TSP solution r′ ∈ R and r′ =929

[v′1, v
′
2, . . . , v

′
|V |+1], let T denote the solutions to930

all problems, we employ 4 metrics to analyze the931

solution quality:932

Correctness The correctness of r′ indicates933

whether it is the shortest route while starting and934

ending at v′1. Formally:935

CR(r′) =


1, if (r′ = min

r∈R
D(r))

∧ (v′1 = v′|v|+1)

∧ (|r′| = |V |+ 1)

0, otherwise.

936

We report the average of T as TSPCR.937

Excess Distance Multiplier The excess distance
multiplier of r′ quantifies the factor by which a
solution’s distance exceeds the optimal distance
D(r∗). Formally:

EDM(r′) = min
(
3,

D(r′) − D(r∗)

D(r∗)

)
The value of 0 indicates the solution’s distance938

matches the optimal distance, while a value of 1939

means the solution is twice as long as the option940

distance and so on. We make the value saturates at941

3 as a default and maximum. We report the average942

of T as TSPEDM .943

Missing Cities A given route r′ may skip some
cities or revisit others. To measure this, we count
the number of distinct cities that are missed from
the solution. Formally:

MC(r′) = |V | − |{v | v ∈ r′}|.

We report the average of T as TSPMC . 944

Penalized Score The penalized score for r′ mea-
sures how closely it approximates r∗, while apply-
ing penalties to the exceeded distance and also the
omission of cities. Let Dist = 1 − EDM(r′)

3 and
Miss = 1− MC(r′)

|V | . Formally:

PS(r′) = IS ·min(Dist,Miss)

where IS = 100 is the initialized score. We report 945

the average of T as TSPPS . 946

B L Calculation of Lyria 947

Lyria could sample an LLM up to L times for a
single problem. Let np be the population size, ng

be the generations, η be the crossover rate, ξ be the
external crossover rate, κ be the mutation rate, and
µ be the external mutation rate. The sample times
L are given as:

L = np +
(
np · η · (1− ξ) + np · κ · (1− µ)

)
· ng

Thus, for example, given np = 30, ng = 15, η = 948

0.7, ξ = 0.3, κ = 0.3, µ = 0.3, we have L = 949

30+(30·0.7·(1−0.3)+30·0.3·(1−0.3))·15 = 345. 950

C Lyria Pseudo Code 951

We demonstrate the pseudo code of Lyria in Al- 952

gorithm 1, in which P means the problem, np 953

means population size, ng means generations, ke 954

means the number of fittest candidates that are di- 955

rectly carried forward in truncation selection, ϵ 956

means the maximum detected errors, ρ means re- 957

play rate, τ means the maximum deduplication 958

attempts, η means crossover rate, ξ means external 959

crossover rate, κ means mutation rate, µ means 960

external mutation rate, FE means the fitness eval- 961

uator which can either be Oracle-based or LLM- 962

based, ED means the error detector which can ei- 963

ther be Verifier-based or LLM-based, LCO means 964

the LLM-based crossover operator, ECO means the 965

external crossover operator, LMO means the LLM- 966

based mutation operator, EMO means the exter- 967

nal mutation operator, and llm indicates the LLM 968

which accepts a prompt and returns a response. 969

12

Algorithm 1 Lyria

1: procedure LYRIA(P, np, ng, ke, ϵ, ρ, τ, η, ξ, κ, µ, FE, ED, LCO, ECO, LMO, EMO, llm)
2: population, fitness, best_fitness, best_solution, errors, EP, τ ′ ← [], [],−∞, ∅, [], ∅, 0
3: while |population| < np do ▷ Initialization
4: prompt← DPPROMPT(P)
5: candidate← llm(prompt)
6: if child ∈ population and τ ′ < τ then τ ′ ← τ ′ + 1; Continue else τ ′ ← 0 ▷ Deduplicator
7: population, fitness← population ∥ [candidate], fitness ∥ [FE(candidate)]
8: errors← errors ∥ [ED(candidate, ϵ)]
9: if fitness[−1] > best_fitness then

10: best_solution, best_fitness← candidate, fitness[−1]
11: end if
12: end while
13: for n′

g ← 1 to ng do ▷ Start Evolution
14: population, fitness, errors← Replacing ⌊np · ρ⌋ candidates with EP ▷ EP Replay
15: selected← SELECT(population, fitness, ke, |population| − ke) ▷ Selection Phase
16: Update fitness, errors to align with selected
17: offspring, os_fitness, os_errors, τ ′ ← [], [], [], 0
18: while |offspring| < np do ▷ Crossover Phase
19: c1, c2, s1, s2, e1, e2 ← RANDOMCHOICE(selected, fitness, errors)

20: if RD() < η then ▷ Apply ECO or LCO , and RD() means x i.i.d.∼ U [0, 1]
21: child← ECO(P, c1, c2, e1, e2) if RD() < ξ else LCO(P, c1, c2, s1, s2, e1, e2, llm)
22: else
23: child← RANDOMCHOICE([c1, c2])
24: end if
25: if child ∈ offspring and τ ′ < τ then τ ′ ← τ ′ + 1; Continue else τ ′ ← 0
26: offspring, os_fitness← offspring ∥ [child], os_fitness ∥ [FE(child)]
27: os_errors← os_errors ∥ [ED(child, ϵ)]
28: end while
29: mutated,mt_fitness,mt_errors, τ ′ ← [], [], [], 0
30: while |mutated| < np do ▷ Mutation Phase
31: i← |mutated|
32: c, e, s← offspring[i], errors[i], fitness[i]
33: if RD() < κ then ▷ Apply EMO or LMO
34: child← EMO(P, c, e) if RD() < µ else LMO(P, c, s, e, llm)
35: else
36: child← c
37: end if
38: if child ∈ mutated and τ ′ < τ then τ ′ ← τ ′ + 1; Continue else τ ′ ← 0
39: mutated,mt_fitness← mutated ∥ [child],mt_fitness ∥ [FE(child)]
40: mt_errors← mt_errors ∥ [ED(child, ϵ)]
41: end while
42: population, fitness← mutated,mt_fitness ▷ Update Population
43: errors← mt_errors
44: EP ← EP ∪ {(c, s, e) | c ∈ population, s ∈ fitness, e ∈ errors}
45: Update best_solution and best_fitness
46: end for
47: return best_solution
48: end procedure

13

At Line 2, we initialize essential parameters.970

From Line 3 to 12, we use DPPROMPT to construct971

the prompt. For example, we use prompt templates972

shown in Prompt Template 13, 14, and 15 to con-973

struct the prompt for each problem type. Then,974

llm uses this prompt to generate new candidate.975

Deduplicator removes redundant candidates, FE976

assigns fitness score to the candidate, ED detect977

its errors up to ϵ for which we show the prompt978

templates we used in Prompt Templates 1, 2, and 3.979

For Line 13-46, Lyria starts evolution. At Line 14,980

EP intervenes to replace the lowest fitness candi-981

dates from the previous population with the highest982

fitness candidates from EP along with their fitness983

scores and errors. At Line 15-16, the selector se-984

lects appropriate candidates along with their fitness985

scores and errors. For Line 17-28, the crossover986

rate η determines whether to apply the crossover987

operation, while the external crossover rate ξ de-988

termines whether ECO is prioritized. For LCO,989

we demonstrate the prompt templates we used for990

each problem type in Prompt Template 7, 8, and 9.991

For Line 29-41, the mutation rate κ determines992

whether to apply the mutation operation, while993

the external mutation rate µ determines whether994

EMO is prioritized. For LMO, we demonstrate995

the prompt templates we used for each problem996

type in Prompt Template 10, 11, and 12. For Line997

42-45, population, fitness, errors, and EP are998

updated, and the evolution advances into the next999

generation.1000

In addition, in practice, to prevent unnec-1001

essary additional overhead, especially when1002

best_fitenss attains its optima, we also introduce1003

a fitness threshold. During both initialization and1004

the end of each generation, we check whether1005

best_fitness meets or exceeds the fitness thresh-1006

old. The best_solution is returned earlier if it1007

meets the threshold. For every type of problem, the1008

fitness threshold is set to 100.1009

D Error Detectors1010

D.1 SK ED1011

Given a SK solution s′, we define 2 error types as1012

follows:1013

Syntax Error (XE) For any generated SK solu-1014

tion by LLMs, we require it to be in the format of1015

a 9× 9 matrix, with each cell separated by a space,1016

as described in Prompt Template 13. XE indicates1017

whether s′ is in a valid format. If the format is1018

correct, XE(s′) = 0, otherwise XE(s′) = 1.1019

Semantic Error (SE) It consists of indices of 1020

cells that do not satisfy its row, column, and subgrid 1021

constraints. We define it as: SE(c) = {(i, j, t) | 1022

i, j ∈ {1, . . . , 9} ∧ t ∈ {0, 1, 2}}}, where i, j are 1023

row and column index respectively and t indicates 1024

the unsatisfied constraint, in which 0 indicates row, 1025

1 means column, and 2 refers to subgrid. 1026

D.2 GC ED 1027

Given a GC solution f ′, represented as a sequence 1028

F ′ = [o′1, o
′
2, . . . , o

′
|V |] where oi = f ′(vi) is a 1029

color assignment for vi ∈ V . We define two error 1030

types: 1031

Syntax Error (SX) For any generated GC solu- 1032

tion by LLMs, we require it to be in the format of a 1033

list of digits separated by commas, as described in 1034

Prompt Template 14. SX verifies whether F ′ is in 1035

a valid format. If the format is valid, SX(F ′) = 0, 1036

otherwise 1. 1037

Semantic Error (SE) It comprises two compo- 1038

nents: 1039

• Conflict Edges (CE): It consists of a set 1040

of edges where adjacent nodes share the 1041

same color, violating coloring constraints: 1042

CE(f ′) = {(u, v) | (u, v) ∈ E ∧ f ′(u) = 1043

f ′(v)} 1044

• Excess Colors Count (ECC): It indicates the 1045

number of distinct colors used that exceeds the 1046

specified color count k: ECC(f ′) = |F ′| − k 1047

Thus, SE for f ′ is given as: SE(f ′) = 1048

(CE(f ′),ECC(f ′)). 1049

D.3 TSP ED 1050

Given a TSP solution r′, we define two error types: 1051

Syntax Error (XE) For any generated TSP so- 1052

lution by LLMs, we require it to be in the for- 1053

mat of a list of digits separated by commas, with 1054

the first and last city being the same and equal 1055

to 0 and each city index in the range from 0 to 1056

number_of_cities − 1, as described in Prompt 1057

Template 15. XE indicates whether the solution is 1058

a route in a valid format. If it is valid, XE(r′) = 0, 1059

otherwise 1. 1060

Semantic Error (SE) It comprises two compo- 1061

nents: 1062

• Missing Cities (MC): It consists of the cities 1063

omitted in r′: MC(r′) = {v | v ∈ V ∧ v /∈ 1064

r′}. 1065

14

• Excess Distance (ED): It indicates the differ-1066

ence between the distance used in r′ and r∗:1067

ED(r′) = D(r′)−D(r∗).1068

Thus, SE is given as: SE(r′) = (MC(r′),ED(r′)).1069

E External Crossover Operators1070

E.1 SK ECO1071

Let c1, c2 be parent candidates as two 9 × 9 ma-1072

trix. Let Premoved denote the initially removed1073

positions of the puzzle and {(i, j) | (i, j, t) ∈1074

SE(c)} ⊆ Premoved. The crossover operator1075

COSudoku(c1, c2) produces the child cchild as:1076

cchild =


c1 if SE(c1) = ∅,
c2 if SE(c2) = ∅,
Φ(c2, Pcorr(c1)) otherwise,

1077

where Pcorr(c1) = Premoved \ {(i, j) |1078

(i, j, t) ∈ SE(c1)} are c1’s corrected positions,1079

and Φ(c, Pcorr) updates c by replacing c’s values at1080

{(i, j) | (i, j, t) ∈ SE(c)} ∩ Pcorr.1081

E.2 GC ECO1082

Let c1, c2 be two parent candidates, which are1083

two GC solutions of which each represented1084

as a sequence of color assignments, i.e., c =1085

[o1, o2, . . . , o|V |] where oi is a color assignment1086

for vi ∈ V . Let CV(c) = {v | ∃(v, u) ∈ CE(c)}1087

denote conflict vertices in candidate c. The exter-1088

nal crossover operator ECOGC generates the child1089

cchild as:1090

∀i, cchild[i] =



c2[i] if i ∈ CV(c1)

\CV(c2),

c1[i] if i ∈ CV(c2)

\CV(c1),

R(c1[i], c2[i]) otherwise,

1091

where i ∈ {1, . . . , |V |} indicates both an index in1092

a color assignment sequence and also a city, and1093

R(x, y) denotes uniform random selection between1094

x and y. Thus, COGC transfers non-conflicting col-1095

ors between parents while preserving valid vertex1096

assignments.1097

E.3 TSP ECO1098

Let c1, c2 be two parent candidates, which are1099

two routines, for which each routine is a sequence1100

of visited cities. The external crossover operator1101

ECOTSP generates the child cchild as: 1102

cchild =


c1 if SE(c1) = (∅, 0),
c2 if SE(c2) = (∅, 0),
Ψ(c1, c2, k) otherwise,

1103

where k
i.i.d.∼ U [1, n − 1] is a uniformly random 1104

crossover point, and 1105

∀i,Ψ(c1, c2, k)[i] =

{
c1[i] for i ≤ k,

c2[i] for i > k,
1106

where i ∈ {1, . . . , |V |} is an index of a seqeunce. 1107

Thus, COTSP merges partial routes from both par- 1108

ents while preserving order. 1109

F External Mutation Operators 1110

F.1 SK EMO 1111

Given a candidate c as a 9× 9 matrix, the mutation 1112

operator MOSudoku is given as: 1113

EMOSudoku(c) =

{
c if SE(c) = ∅,
Θ(c, p, v) otherwise,

1114

where p
i.i.d.∼ U({(i, j) | (i, j, t) ∈ SE(c)}) is an 1115

error position, v i.i.d.∼ U [1, 9] is a random value, 1116

and Θ(c, p, v) denotes replacing c’s value at the 1117

position p with the value v. 1118

F.2 GC EMO 1119

Given a candidate c as a sequence of color assign- 1120

ments, the mutation operator MOGC proceeds as: 1121

EMOGC(c) = Γ(Λ(c)). 1122

It is composed of two main components, i.e., Con- 1123

flict Edges Resolution and Excess Colors Correc- 1124

tion, denoted as Λ and Γ respectively. 1125

Conflict Edges Resolution is given as:

Λ(c)[i] =

{
y if c[i] ∈ CV(c)

c[i] otherwise,

where i
i.i.d.∼ U [1, |c|] is a randomly selected index, 1126

and y
i.i.d.∼ U({0, . . . , k−1}\{c[i]}) is a new color 1127

value. Hence, it reassigns a new color to a vertex if 1128

it is conflicted such that y ̸= c[i]. 1129

Excess Colors Correction is given as:

∀i,Γ(c)[i] =

{
z if c[i] ∈ O,

c[i] otherwise.

15

Model Method SKCR SKSC SKPS

GPT-4o-Mini
DP 0 43 39

BoN 6 74 73
Lyria 8 74 73

Qwen2.5:32B-Instruct
DP 0 35 31

BoN 8 77 76
Lyria 32 87 87

Mistral:7B-Instruct
DP 0 1 0

BoN 0 11 5
Lyria 0 16 12

Qwen2.5:7B-Instruct
DP 0 32 26

BoN 0 57 55
Lyria 0 62 61

Table 2: The results of all metrics for SK.

where i ∈ {1, . . . , |c|}, z i.i.d.∼ U({0, . . . , k − 1})1130

and O = {k, . . . , k+ECC(c)}. Hence, it replaces1131

all color values ≥ k with random valid colors z ∈1132

{0, . . . , k − 1}.1133

F.3 TSP EMO1134

Give a candidate c as a route, which is a sequence1135

of visited cities, let Y be a set of duplicated cities1136

in c, and let M = MC(c) be the missing cities, the1137

mutation operator EMOTSP is given as:1138

EMOTSP(c) =

{
c if M = ∅,
Ω(c) otherwise,

1139

where Ω is defined as:1140

∀i,Ω(c)[i] =

{
φ(i) if c[i] ∈ Y

c[i] otherwise,
1141

in which i ∈ {1, . . . , |c|}, φ is an injection from1142

the first r = min(|Y |, |M |) elements of Y into1143

M . Hence, it resolves errors by substituting du-1144

plicates with missing cities, ensuring the mutated1145

child becomes a route without missing cities.1146

G Additional Results1147

We demonstrate the results of all metrics for each1148

problem type in Table 2, 3, and 4.1149

H Prompts 1150

1151

Prompt Template 1: Sudoku LLM-Based
Error Detector

===Instructions===
1. You are a Sudoku expert who can find
the errors in a sudoku candidate solution;
2. Given this Sudoku puzzle and its
candidate solution, you should find the
errors in the candidate solution;
3. The correctness of the solution depends
on:
(1) Correct Syntax: it has a correct format,
meaning each row, column, and
{subgrid_size}x{subgrid_size} square
exactly contain {puzzle_grid_size} number,
and each cell is separated by space. The
solution format must be in the same format
as the given puzzle but there is no unfilled
dot;
(2) Correct Semantics: for each row,
column, and {subgrid_size}x{subgrid_size}
square, the numbers 1 to {puzzle_grid_size}
should appear exactly once;
4. If the syntax is incorrect, the errors
should be "Syntax is wrong" (Noted as
Type 1 Error Msg);
5. If the syntax is correct, the errors should
be the positions of the wrong numbers in
the candidate solution with its conflict type,
"row", "col", or "subgrid" (Noted as Type 2
Error Msg);

1152

16

Model Method GCCR GCSC GCPS GCECU GCCF

GPT-4o-Mini
DP 0 73 73 0 27

BoN 0 86 86 0 14
Lyria 0 97 97 0 4

Qwen2.5:32B-Instruct
DP 0 74 74 0 26

BoN 0 87 87 0 13
Lyria 0 96 96 0 4

Mistral:7B-Instruct
DP 0 100 0 12 0

BoN 0 86 84 0 15
Lyria 0 93 92 0 7

Qwen2.5:7B-Instruct
DP 0 73 73 0 27

BoN 0 84 84 0 16
Lyria 0 95 95 0 5

Table 3: The results of all metrics for GC.

Model Method TSPCR TSPPS TSPEDM TSPMC

GPT-4o-Mini
DP 0 79 0.64 0

BoN 4 94 0.18 0
Lyria 6 96 0.13 0

Qwen2.5:32B-Instruct
DP 0 81 0.58 0

BoN 8 97 0.09 0
Lyria 30 99 0.04 0

Mistral:7B-Instruct
DP 0 60 1.20 2

BoN 0 80 0.61 0
Lyria 0 89 0.31 0

Qwen2.5:7B-Instruct
DP 0 34 1.97 5

BoN 0 88 0.36 0
Lyria 4 95 0.15 0

Table 4: The results of all metrics for TSP.

6. You should find all the errors in the
candidate solution;
7. If there are no errors, the errors should be
"No errors" (Noted as Type 3 Error Msg);
8. You can think it thoroughly in any way
you want, but You MUST give the errors in
the end of your thinking in the format as:
(1) For Type 1 Error Msg: "Syntax is
wrong" wrapped in triple backticks as a
code block;
(2) For Type 2 Error Msg:
a. Each error is in the format as "i,j,type",
where i is the row number and j is the
column number starting from 0 and type is

1153

the conflict type, "row", "col", or "subgrid";
b. Each error is separated by a newline;
c. All errors should be wrapped in triple
backticks as a code block;
(3) For Type 3 Error Msg: "No errors"
wrapped in triple backticks as a code block;
(4) You can give comments or explanations
before or after the code block but you
MUST NOT give any comments or
explanations in the code block;
===Type 1 Error Example===
```
Syntax is wrong
```

1154

17

===Type 2 Error Example===
```
0,0,row
1,0,subgrid
2,1,col
```
===Type 3 Error Example===
```
No errors
```
===Sudoku Puzzle===
```
{puzzle}
```
===Candidate Solution===
```
{candidate}
```

1155

Prompt Template 2: Graph Coloring LLM-
Based Error Detector

===Instructions===
1. You are a Graph Coloring expert who can
find the errors in a graph coloring candidate
solution;
2. Given this Graph Coloring puzzle:
(1) The graph is represented by the
adjacency matrix with {n_vertices} vertices,
in which "y" means the two vertices are
adjacent and "n" means the two vertices are
not adjacent;
(2) The goal is to color the vertices with
{color_count} colors such that no two
adjacent vertices have the same color;
3. Given its candidate solution, you should
find all the errors in the candidate solution;
4. The correctness of the solution depends
on:
(1) Correct Syntax: the solution should be a
list of {n_vertices} integers separated by
comma such as "0,1,2", each integer
represents the color of the corresponding
vertex, and the colors should be integers
from 0 to {color_count - 1};
(2) Correct Semantics: for each pair of
adjacent vertices, the colors of the two
vertices should be different;
4. If the syntax is incorrect, the errors
should be "Syntax is wrong" (Noted as
Type 1 Error Msg);

1156

5. If the syntax is correct, the errors
messages should be in two types:
(1) Type 2.1 Error Msg: the error msg are in
the format as "i,j,color", where i is the
vertex number, j is the vertex number, and
color is the conflict color, and all of them
are integers and separated by comma;
(2) Type 2.2 Error Msg: the error msg are in
a number which indicates the number of
exceeded colors, such as "0" means no
exceeded colors, "1" means one exceeded
color, "-1" means the colors used are less
than the allowed color count, and so on;
6. You should find all the errors in the
candidate solution;
7. If there are no errors, the errors should be
"No errors" (Noted as Type 3 Error Msg);
8. You can think it thoroughly in any way
you want, but You MUST give the errors in
the end of your thinking in the format as:
(1) For Type 1 Error Msg: "Syntax is
wrong" wrapped in triple backticks as a
code block with the language indicator as
"t1";
(2) For Type 2.1 Error Msg:
a. Each error is in the format as "i,j,color",
where i is the vertex number, j is the vertex
number, and color is the conflict color, and
all of them are integers and separated by
comma;
b. Each error is separated by a newline;
c. All errors should be wrapped in triple
backticks as a code block with the language
indicator as "t2.1";
(3) For Type 2.2 Error Msg: the number of
exceeded colors wrapped in triple backticks
as a code block with the language indicator
as "t2.2";
(3) For Type 3 Error Msg: "No errors"
wrapped in triple backticks as a code block
with the language indicator as "t3";
(4) You can give comments or explanations
before or after the code block but you
MUST NOT give any comments or
explanations in the code block;
===Type 1 Error Msg Example===
```t1
Syntax is wrong
```
===Type 2.1 Error Msg Example===

1157

18


```t2.1
0,1,2
1,2,0
“‘
===Type 2.2 Error Msg Example===
```t2.2
1
```
===Type 3 Error Msg Example===
```t3
No errors
```
===Graph Adjacency Matrix===
```
{adjacency_matrix}
```
===Candidate Solution===
```
{candidate}
```

1158

Prompt Template 3: Travel Salesman Prob-
lem Error Detector

===Instructions===
1. You are a Travel Salesman Problem
expert who can find all the errors in a TSP
candidate solution;
2. Given this Traveling Salesman Problem
puzzle:
(1) The distance matrix is a 2D matrix with
{n_cities} rows and {n_cities} columns, in
which each element represents the distance
of traveling from the city in the row to the
city in the column;
(2) The goal is to find the shortest path that
visits each city exactly once and returns to
the origin city;
3. Given its candidate solution, you should
find all the errors in the candidate solution;
4. The correctness of the solution depends
on:
(1) Correct Syntax:
a. the solution should be a list of {n_cities}
integers separated by comma such as
"0,1,2", each integer represents the index of
the city in the path, and the indexes should
be integers from 0 to {n_cities - 1};
b. the first and last city should be the same
and should be 0, which means the path
should return to the origin city which is 0;

1159

c. the index of city should be in the range
from 0 to {n_cities - 1};
(2) Correct Semantics:
a. No missing city: the path should visit
each city exactly once and return to the
origin city;
b. Optimal path: the path should be the
shortest path;
5. If the syntax is incorrect, the errors
should be "Syntax is wrong" (Noted as
Type 1 Error Msg);
6. If the syntax is correct, the errors
messages should be in two types:
(1) Type 2.1 Error Msg: the error msg are in
the format of list separated by comma,
where each element is a missing city in the
path, such as "0,1,2", where 0, 1, 2 are the
missing cities, and all of them are integers
and separated by comma;
(2) Type 2.2 Error Msg: the error msg are in
a number which indicates the exceeded
distance, such as "0" means the distance is
the optimal distance, "10.5" means the
distance exceeds the optimal distance by
10.5, and it should be a float;
6. You should find all the errors in the
candidate solution;
7. If there are no errors, the errors should be
"No errors" (Noted as Type 3 Error Msg);
8. You can think it thoroughly in any way
you want, but You MUST give the errors in
the end of your thinking in the format as:
(1) For Type 1 Error Msg: "Syntax is
wrong" wrapped in triple backticks as a
code block with the language indicator as
"t1";
(2) For Type 2.1 Error Msg:
a. the error msg are in the format of list
separated by comma, where each element is
a missing city in the path, such as "0,1,2",
where 0, 1, 2 are the missing cities, and all
of them are integers and separated by
comma;
c. the error should be wrapped in triple
backticks as a code block with the language
indicator as "t2.1";
(3) For Type 2.2 Error Msg: the exceeded
distance wrapped in triple backticks as a
code block with the language indicator as
"t2.2";

1160

19



(3) For Type 3 Error Msg: "No errors"
wrapped in triple backticks as a code block
with the language indicator as "t3";
(4) You can give comments or explanations
before or after the code block but you
MUST NOT give any comments or
explanations in the code block;
===Type 1 Error Msg Example===
```t1
Syntax is wrong
```
===Type 2.1 Error Msg Example===
```t2.1
0,1,2
```
===Type 2.2 Error Msg Example===
```t2.2
10.5
```
===Type 3 Error Example===
```t3
No errors
```
===Distance Matrix===
```
{distance_matrix}
```
===Candidate Solution===
```
{candidate}
```

1161

Prompt Template 4: Sudoku LLM-based
Fitness Evaluator

===Instructions===
1. You are a Sudoku expert who can
evaluate whether a sudoku candidate
solution is correct or not, or how close it is
to the correct solution;
2. Given this Sudoku puzzle and its
candidate solution, you should evaluate its
score. The score is to measure how close
the candidate is to the solution;
3. The correctness of the solution depends
on:
(1) Correct Syntax: it has a correct format,
meaning each row, column, and
{subgrid_size}x{subgrid_size} square
exactly contain {puzzle_grid_size} number,
and each cell is separated by space. The

1162

solution format must be in the same format
as the given puzzle but there is no unfilled
dot;
(2) Correct Semantics: for each row,
column, and {subgrid_size}x{subgrid_size}
square, the numbers 1 to {puzzle_grid_size}
should appear exactly once;
4. If the syntax is incorrect, the fitness score
should be 0.0;
5. If the syntax is correct, the score is
calculated based on the number of correct
numbers in rows, columns, and subgrids,
and shown in percentage. R = number of
correct rows / {puzzle_grid_size} + {delta},
C = number of correct columns /
{puzzle_grid_size} + {delta}, and S =
number of correct subgrids /
{puzzle_grid_size} + {delta}. The fitness
score is calculated based on geometric
mean as (R x C x S) ** (1/3) * 100.0, in
which higher is better and 0.0 means the
candidate is wrong at all while 100.0 means
the candidate is correct;
6. In most of time, you should NOT give a
score of 0.0 unless <4> are satisfied; You
should give a score between 0.0 and 100.0
to indicate how close the candidate is to the
correct solution;
7. Think it carefully and do NOT randomly
guess the score;
8. You can think it thoroughly in any way
you want, but You MUST give the score as
a float number in the end of your thinking.
===Sudoku Puzzle===
```
{puzzle}
```
===Candidate Solution===
```
{candidate}
```

1163

Prompt Template 5: Graph Coloring LLM-
based Fitness Evaluator

===Instructions===
1. You are a Graph Coloring expert who can
evaluate whether a graph coloring candidate
solution is correct or not, or how close it is
to the correct solution;
2. Given this Graph Coloring puzzle:

1164

20



(1) The graph is represented by the
adjacency matrix with {n_vertices} vertices,
in which "y" means the two vertices are
adjacent and "n" means the two vertices are
not adjacent;
(2) The goal is to color the vertices with
{color_count} colors such that no two
adjacent vertices have the same color;
3. Given its candidate solution, you should
evaluate its score. The score is to measure
how close the candidate is to the solution;
4. The correctness of the solution depends
on:
(1) Correct Syntax: the solution should be a
list of {n_vertices} integers separated by
comma such as "0,1,2", each integer
represents the color of the corresponding
vertex, and the colors should be integers
from 0 to {color_count - 1};
(2) Correct Semantics: for each pair of
adjacent vertices, the colors of the two
vertices should be different;
4. If the syntax is incorrect, the fitness score
should be 0.0;
5. If the syntax is correct, the score is
calculated based on:
(1) Number of Conflicted Edges (noted as
CE): the number of edges that two adjacent
vertices have the same color;
(2) Number of Exceeded Colors (noted as
EC): the number of colors exceeded the
allowed color count;
(3) The score is now calculated as: Max(0,
(1 - (CE/{n_edges})) * (1 - EC/({n_vertices
- color_count}))) * 100, which means the
score does not only depend on the number
of conflicted edges but also the number of
exceeded colors and ranges from 0.0 to
100.0;
6. In most of time, you should NOT give a
score of 0.0 unless your are very sure; You
should give a score between 0.0 and 100.0
to indicate how close the candidate is to the
correct solution;
7. Think it carefully and do NOT randomly
guess the score;
8. You can think it thoroughly in any way
you want, but You MUST give the score as
a float number in the end of your thinking.
===Graph Adjacency Matrix===

1165

```
adjacency_matrix_str
```
===Candidate Solution===
```
{candidate}
```

1166

Prompt Template 6: Travel Salesman Prob-
lem LLM-based Fitness Evaluator

===Instructions===
1. You are a Travel Salesman Problem
expert who can evaluate whether a TSP
candidate solution is correct or not, or how
close it is to the correct solution;
2. Given this Traveling Salesman Problem
puzzle:
(1) The distance matrix is a 2D matrix with
{n_cities} rows and {n_cities} columns, in
which each element represents the distance
of traveling from the city in the row to the
city in the column;
(2) The goal is to find the shortest path that
visits each city exactly once and returns to
the origin city;
3. Given its candidate solution, you should
evaluate its score. The score is to measure
how close the candidate is to the solution;
4. The correctness of the solution depends
on:
(1) Correct Syntax:
a. the solution should be a list of {n_cities}
integers separated by comma such as
"0,1,2", each integer represents the index of
the city in the path, and the indexes should
be integers from 0 to {n_cities - 1};
b. the first and last city should be the same
and should be 0, which means the path
should return to the origin city which is 0;
c. the index of city should be in the range
from 0 to {n_cities - 1};
(2) Correct Semantics:
a. No missing city: the path should visit
each city exactly once and return to the
origin city;
b. Optimal path: the path should be the
shortest path;
4. If the syntax is incorrect, the fitness score
should be 0.0;

1167

21



5. If the syntax is correct, the score is
calculated based on:
(1) Number of Missing Cities (noted as
MC): the number of missing cities in the
path;
(2) Used Distance (noted as UD): the total
distance of the path;
(3) The score is computed as follows (in
range of [0...100]):
1) Let base_score = 100;
2) Let OD = the sum of the shortest
distances of the path; (You should try to the
best to think about its optimal distance)
3) Let ED = UD - OD;
4) Let ED_Multiplier = ED / OD; (calculate
how much the distance exceeds the optimal
distance, it MUST be in range of
[0...{DEFAULT_EDM}])
5) distance_excess_ratio = ED_Multiplier /
{DEFAULT_EDM}; (in range of [0...1])
6) distance_correctness = base_score -
(base_score * distance_excess_ratio); (in
range of [0...100])
7) missing_ratio = MC / (the length of the
path - 1); (in range of [0...1])
8) missing_correctness = base_score -
(base_score * missing_ratio); (in range of
[0...100])
9) The final score is
min(distance_correctness,
missing_correctness), then clamped so it
never goes below 0 or above 100.
6. In most of time, you should NOT give a
score of 0.0 unless your are very sure; You
should give a score between 0.0 and 100.0
to indicate how close the candidate is to the
correct solution;
7. Think it carefully and do NOT randomly
guess the score;
8. You can think it thoroughly in any way
you want, but You MUST give the score as
a float number in the end of your thinking.
===Distance Matrix===
```
{distance_matrix}
```
===Candidate Solution===
```
{candidate}
```

1168

Prompt Template 7: Sudoku LCO

===Instructions===
1. Given this Sudoku puzzle and these two
Sudoku candidate solutions, you should
thoroughly think both good and bad parts of
each candidate and whether they are correct
solutions to the puzzle;
2. If you think one of them are already
correct, you can give the correct solution
directly;
3. If you think the two candidates have
good parts or bad parts, you can combine
the good parts of both candidates, exclude
the bad parts of both candidates, or do both
of them simultaneously, aiming at creating
a new candidate solution which can be
better than the original candidates and
approach more to the correct solution;
4. If you think it is not necessary to
combine the two candidates, you can also
give a new candidate solution which is
totally different from the original
candidates, aiming at approaching more to
the correct solution;
5. After crossover, the solution should
approach or become correct, which means:
(1) Correct Syntax: it has a correct format,
meaning each row, column, and
{subgrid_size}x{subgrid_size} square
exactly contain {puzzle_grid_size} number,
and each cell is separated by space. The
solution format must be in the same format
as the given puzzle but there is no unfilled
dot;
(2) Correct Semantics: for each row,
column, and {subgrid_size}x{subgrid_size}
square, the numbers 1 to {puzzle_grid_size}
should appear exactly once;
6. You should check the syntax carefully. If
the syntax is incorrect, you should give a
new solution which obey the rule "correct
syntax";
7. You should check the semantics carefully.
If the semantics is incorrect, you should
give a new solution which obey the rule
"correct semantics";
8. You can think whatever way you want,
but at the end of thinking, the final solution
should be given and written in the same
format as the puzzle wrapped in triple

1169

22



backticks as a code block;
9. You can give thinking steps or
explanation before or after code block but
you MUST NOT give any comments or
explanations in the code block;
===Sudoku Puzzle===
```
{puzzle}
```
===Candidate Solution 1===
```
{c1}
```
Score of Candidate Solution 1: {s1} (0.0
means the candidate is wrong at all while
100.0 means the candidate is correct)
Errors of Candidate Solution 1:
{c1_error}
===Candidate Solution 2===
```
{c2}
```
Score of Candidate Solution 2: {s2} (0.0
means the candidate is wrong at all while
100.0 means the candidate is correct)
Errors of Candidate Solution 2:
{c2_error}

Now, keep the scores and errors in mind
and think about how to combine the two
candidates to create a new candidate
solution that is better than the original
candidates.
You can think in any way but you must
finally give a candidate solution wrapped in
triple backticks as a code block in the same
format as the puzzle:

1170

Prompt Template 8: Graph Coloring LCO

===Instructions===
1. Given this Graph Coloring puzzle:
(1) The graph is represented by the
adjacency matrix with {n_vertices} vertices,
in which "y" means the two vertices are
adjacent and "n" means the two vertices are
not adjacent;
(2) The goal is to color the vertices with
{color_count} colors such that no two
adjacent vertices have the same color;

1171

2. Given these two candidate solutions, you
should thoroughly think both good and bad
parts of each candidate and whether they
are correct solutions to the puzzle;
3. If you think one of them are already
correct, you can give the correct solution
directly;
4. If you think the two candidates have
good parts or bad parts, you can combine
the good parts of both candidates, exclude
the bad parts of both candidates, or do both
of them simultaneously, aiming at creating
a new candidate solution which can be
better than the original candidates and
approach more to the correct solution;
5. If you think it is not necessary to
combine the two candidates, you can also
give a new candidate solution which is
totally different from the original
candidates, aiming at approaching more to
the correct solution;
6. After crossover, the solution should
approach or become correct, which means:
(1) Correct Syntax: the solution should be a
list of {n_vertices} integers separated by
comma such as "0,1,2", each integer
represents the color of the corresponding
vertex, and the colors should be integers
from 0 to {color_count - 1};
(2) Correct Semantics: for each pair of
adjacent vertices, the colors of the two
vertices should be different;
7. You should check the syntax carefully. If
the syntax is incorrect, you should give a
new solution which obey the rule "correct
syntax";
8. You should check the semantics carefully.
If the semantics is incorrect, you should
give a new solution which obey the rule
"correct semantics";
9. You can think whatever way you want,
but at the end of thinking, the final solution
should be given and written in a list of
integers separated by comma wrapped in
triple backticks as a code block;
10. You can give thinking steps or
explanation before or after code block but
you MUST NOT give any comments or
explanations in the code block;
===Graph Adjacency Matrix===

1172

23



```
{adjacency_matrix}
```
===Candidate Solution 1===
```
{c1}
```
Score of Candidate Solution 1: {s1} (0.0
means the candidate is wrong at all while
100.0 means the candidate is correct)
Errors of Candidate Solution 1:
{c1_error}
===Candidate Solution 2===
```
{c2}
```
Score of Candidate Solution 2: {s2} (0.0
means the candidate is wrong at all while
100.0 means the candidate is correct)
Errors of Candidate Solution 2:
{c2_error}

Now, keep the scores and errors in mind
and think about how to combine the two
candidates to create a new candidate
solution that is better than the original
candidates.
You can think in any way but you must
finally give a candidate solution as a list of
integers separated by comma wrapped in
triple backticks as a code block:

1173

Prompt Template 9: Travel Salesman Prob-
lem LCO

===Instructions===
1. Given this Traveling Salesman Problem
puzzle:
(1) The distance matrix is a 2D matrix with
{n_cities} rows and {n_cities} columns, in
which each element represents the distance
of traveling from the city in the row to the
city in the column;
(2) The goal is to find the shortest path that
visits each city exactly once and returns to
the origin city;
2. Given these two candidate solutions, you
should thoroughly think both good and bad
parts of each candidate and whether they
are correct solutions to the puzzle;

1174

3. If you think one of them are already
correct, you can give the correct solution
directly;
4. If you think the two candidates have
good parts or bad parts, you can combine
the good parts of both candidates, exclude
the bad parts of both candidates, or do both
of them simultaneously, aiming at creating
a new candidate solution which can be
better than the original candidates and
approach more to the correct solution;
5. If you think it is not necessary to
combine the two candidates, you can also
give a new candidate solution which is
totally different from the original
candidates, aiming at approaching more to
the correct solution;
6. After crossover, the solution should
approach or become correct, which means:
(1) Correct Syntax:
a. the solution should be a list of {n_cities}
integers separated by comma such as
"0,1,2", each integer represents the index of
the city in the path, and the indexes should
be integers from 0 to {n_cities - 1};
b. the first and last city should be the same
and should be 0, which means the path
should return to the origin city which is 0;
c. the index of city should be in the range
from 0 to {n_cities - 1};
(2) Correct Semantics:
a. No missing city: the path should visit
each city exactly once and return to the
origin city;
b. Optimal path: the path should be the
shortest path;
7. You should check the syntax carefully. If
the syntax is incorrect, you should give a
new solution which obey the rule "correct
syntax";
8. You should check the semantics carefully.
If the semantics is incorrect, you should
give a new solution which obey the rule
"correct semantics";
9. You can think whatever way you want,
but at the end of thinking, the final solution
should be given and written in a list of
integers separated by comma wrapped in
triple backticks as a code block;

1175

24



10. You can give thinking steps or
explanation before or after code block but
you MUST NOT give any comments or
explanations in the code block;
===Distance Matrix===
```
{distance_matrix}
```
===Candidate Solution 1===
```
{c1}
```
Score of Candidate Solution 1: {s1} (0.0
means the candidate is wrong at all while
100.0 means the candidate is correct)
Errors of Candidate Solution 1:
{c1_error}
===Candidate Solution 2===
```
{c2}
```
Score of Candidate Solution 2: {s2} (0.0
means the candidate is wrong at all while
100.0 means the candidate is correct)
Errors of Candidate Solution 2:
{c2_error}

Now, keep the scores and errors in mind
and think about how to combine the two
candidates to create a new candidate
solution that is better than the original
candidates.
You can think in any way but you must
finally give a candidate solution as a list of
integers separated by comma wrapped in
triple backticks as a code block:

1176

Prompt Template 10: Sudoku LMO

===Instructions===
1. Given this Sudoku puzzle and this
Sudoku candidate solution, you should
thoroughly think about the good and bad
parts of the candidate and whether it is a
correct solution to the puzzle;
2. If you think the candidate is already
correct, you can give the correct solution
directly;
3. If you think the candidate has bad parts,
you can change or improve the bad parts to

1177

make it good, aiming at creating a new
candidate solution which can be better than
the original candidate and approach more to
the correct solution;
4. If you think it is not necessary to change
the candidate, you can also give a new
candidate solution which is totally different
from the original candidate, aiming at
approaching more to the correct solution;
5. After mutation, the solution should
approach or become correct, which means:
(1) Correct Syntax: it has a correct format,
meaning each row, column, and
{subgrid_size}x{subgrid_size} square
exactly contain {puzzle_grid_size} number,
and each cell is separated by space. The
solution format must be in the same format
as the given puzzle but there is no unfilled
dot;
(2) Correct Semantics: for each row,
column, and {subgrid_size}x{subgrid_size}
square, the numbers 1 to {puzzle_grid_size}
should appear exactly once;
6. You should check the syntax carefully. If
the syntax is incorrect, you should give a
new solution which obey the rule "correct
syntax";
7. You should check the semantics carefully.
If the semantics is incorrect, you should
give a new solution which obey the rule
"correct semantics";
8. You can think whatever way you want,
but at the end of thinking, the final solution
should be given and written in the same
format as the puzzle wrapped in triple
backticks as a code block;
9. You can give thinking steps or
explanation before or after code block but
you MUST NOT give any comments or
explanations in the code block;
===Sudoku Puzzle===
```
{puzzle}
```
===Candidate Solution===
```
{candidate}
```
Score of Candidate Solution: {score} (0.0
means the candidate is wrong at all while

1178

25



100.0 means the candidate is correct)
Errors of Candidate Solution:
{error}

Now, keep the score and errors in mind and
think about how to change the candidate to
create a new candidate solution that is
better than the original candidate.
You can think in any way but you must
finally give a candidate solution wrapped in
triple backticks as a code block in the same
format as the puzzle:

1179

Prompt Template 11: Graph Coloring LMO

===Instructions===
1. Given this Graph Coloring puzzle:
(1) The graph is represented by the
adjacency matrix with {n_vertices} vertices,
in which "y" means the two vertices are
adjacent and "n" means the two vertices are
not adjacent;
(2) The goal is to color the vertices with
{color_count} colors such that no two
adjacent vertices have the same color;
2. Given this candidate solution, you should
thoroughly think about the good and bad
parts of the candidate and whether it is a
correct solution to the puzzle;
3. If you think the candidate is already
correct, you can give the correct solution
directly;
4. If you think the candidate has bad parts,
you can change or improve the bad parts to
make it good, aiming at creating a new
candidate solution which can be better than
the original candidate and approach more to
the correct solution;
5. If you think it is not necessary to change
the candidate, you can also give a new
candidate solution which is totally different
from the original candidate, aiming at
approaching more to the correct solution;
6. After mutation, the solution should
approach or become correct, which means:
(1) Correct Syntax: the solution should be a
list of {n_vertices} integers separated by
comma such as "0,1,2", each integer
represents the color of the corresponding
vertex, and the colors should be integers

1180

from 0 to {color_count - 1};
(2) Correct Semantics: for each pair of
adjacent vertices, the colors of the two
vertices should be different;
7. You should check the syntax carefully. If
the syntax is incorrect, you should give a
new solution which obey the rule "correct
syntax";
8. You should check the semantics carefully.
If the semantics is incorrect, you should
give a new solution which obey the rule
"correct semantics";
9. You can think whatever way you want,
but at the end of thinking, the final solution
should be given and written in a list of
integers separated by comma wrapped in
triple backticks as a code block;
10. You can give thinking steps or
explanation before or after code block but
you MUST NOT give any comments or
explanations in the code block;
===Graph Adjacency Matrix===
```
{adjacency_matrix}
```
===Candidate Solution===
```
{candidate}
```
Score of Candidate Solution: {score} (0.0
means the candidate is wrong at all while
100.0 means the candidate is correct)
Errors of Candidate Solution:
{error}

Now, keep the score and errors in mind and
think about how to change the candidate to
create a new candidate solution that is
better than the original candidate.
You can think in any way but you must
finally give a candidate solution as a list of
integers separated by comma wrapped in
triple backticks as a code block:

1181

Prompt Template 12: Travel Salesman Prob-
lem LMO

===Instructions===
1. Given this Traveling Salesman Problem
puzzle:

1182

26



(1) The distance matrix is a 2D matrix with
{n_cities} rows and {n_cities} columns, in
which each element represents the distance
of traveling from the city in the row to the
city in the column;
(2) The goal is to find the shortest path that
visits each city exactly once and returns to
the origin city;
2. Given this candidate solution, you should
thoroughly think about the good and bad
parts of the candidate and whether it is a
correct solution to the puzzle;
3. If you think the candidate is already
correct, you can give the correct solution
directly;
4. If you think the candidate has bad parts,
you can change or improve the bad parts to
make it good, aiming at creating a new
candidate solution which can be better than
the original candidate and approach more to
the correct solution;
5. If you think it is not necessary to change
the candidate, you can also give a new
candidate solution which is totally different
from the original candidate, aiming at
approaching more to the correct solution;
6. After mutation, the solution should
approach or become correct, which means:
(1) Correct Syntax:
a. the solution should be a list of {n_cities}
integers separated by comma such as
"0,1,2", each integer represents the index of
the city in the path, and the indexes should
be integers from 0 to {n_cities - 1};
b. the first and last city should be the same
and should be 0, which means the path
should return to the origin city which is 0;
c. the index of city should be in the range
from 0 to {n_cities - 1};
(2) Correct Semantics:
a. No missing city: the path should visit
each city exactly once and return to the
origin city;
b. Optimal path: the path should be the
shortest path;
7. You should check the syntax carefully. If
the syntax is incorrect, you should give a
new solution which obey the rule "correct
syntax";

1183

8. You should check the semantics carefully.
If the semantics is incorrect, you should
give a new solution which obey the rule
"correct semantics";
9. You can think whatever way you want,
but at the end of thinking, the final solution
should be given and written in a list of
integers separated by comma wrapped in
triple backticks as a code block;
10. You can give thinking steps or
explanation before or after code block but
you MUST NOT give any comments or
explanations in the code block;
===Distance Matrix===
```
{distance_matrix}
```
===Candidate Solution===
```
{candidate}
```
Score of Candidate Solution: {score} (0.0
means the candidate is wrong at all while
100.0 means the candidate is correct)
Errors of Candidate Solution:
{error}

Now, keep the score and errors in mind and
think about how to change the candidate to
create a new candidate solution that is
better than the original candidate.
You can think in any way but you must
finally give a candidate solution as a list of
integers separated by comma wrapped in
triple backticks as a code block:

1184

Prompt Template 13: Sudoku Direct
Prompting

===Instructions===
1. Given this Sudoku puzzle, you should fill
in the missing numbers represented by dots;
2. The solution should be correct, which
means:
(1) Correct Syntax: it has a correct format,
meaning each row, column, and
{subgrid_size}x{subgrid_size} square
exactly contain {puzzle_grid_size} number,
and each cell is separated by space. The
solution format must be in the same format

1185

27



as the given puzzle but there is no unfilled
dot;
(2) Correct Semantics: for each row,
column, and {subgrid_size}x{subgrid_size}
square, the numbers 1 to {puzzle_grid_size}
should appear exactly once;
3. The puzzle is guaranteed to have a
unique solution;
4. You should check the syntax carefully. If
the syntax is incorrect, you should give a
new solution which obey the rule "correct
syntax";
5. You should check the semantics carefully.
If the semantics is incorrect, you should
give a new solution which obey the rule
"correct semantics";
6. You can think whatever way you want,
but at the end of thinking, the final solution
should be given and written in the same
format as the puzzle wrapped in triple
backticks as a code block;
7. You can give thinking steps or
explanation before or after code block but
you MUST NOT give any comments or
explanations in the code block;
===Sudoku Puzzle===
```
{puzzle}
```

1186

Prompt Template 14: Graph Coloring Direct
Prompting

===Instructions===
1. Given this Graph Coloring puzzle:
(1) The graph is represented by the
adjacency matrix with {n_vertices} vertices,
in which "y" means the two vertices are
adjacent and "n" means the two vertices are
not adjacent;
(2) The goal is to color the vertices with
{color_count} colors such that no two
adjacent vertices have the same color;
2. The solution should be correct, which
means:
(1) Correct Syntax: the solution should be a
list of {n_vertices} integers separated by
comma such as "0,1,2", each integer
represents the color of the corresponding
vertex, and the colors should be integers
from 0 to {color_count - 1};

1187

(2) Correct Semantics: for each pair of
adjacent vertices, the colors of the two
vertices should be different;
3. You should check the syntax carefully. If
the syntax is incorrect, you should give a
new solution which obey the rule "correct
syntax";
4. You should check the semantics carefully.
If the semantics is incorrect, you should
give a new solution which obey the rule
"correct semantics";
5. You can think whatever way you want,
but at the end of thinking, the final solution
should be given and written in a list of
integers separated by comma wrapped in
triple backticks as a code block;
6. You can give thinking steps or
explanation before or after code block but
you MUST NOT give any comments or
explanations in the code block;
===Graph Adjacency Matrix===
```
{adjacency_matrix}
```

1188

Prompt Template 15: Travel Salesman Prob-
lem Direct Prompting

===Instructions===
1. Given this Traveling Salesman Problem
puzzle:
(1) The distance matrix is a 2D matrix with
{n_cities} rows and {n_cities} columns, in
which each element represents the distance
of traveling from the city in the row to the
city in the column;
(2) The goal is to find the shortest path that
visits each city exactly once and returns to
the origin city;
2. The solution should be correct, which
means:
(1) Correct Syntax:
a. the solution should be a list of {n_cities}
integers separated by comma such as
"0,1,2", each integer represents the index of
the city in the path, and the indexes should
be integers from 0 to {n_cities - 1};
b. the first and last city should be the same
and should be 0, which means the path
should return to the origin city which is 0;

1189

28



c. the index of city should be in the range
from 0 to {n_cities - 1};
(2) Correct Semantics:
a. No missing city: the path should visit
each city exactly once and return to the
origin city;
b. Optimal path: the path should be the
shortest path;
3. You should check the syntax carefully. If
the syntax is incorrect, you should give a
new solution which obey the rule "correct
syntax";
4. You should check the semantics carefully.
If the semantics is incorrect, you should
give a new solution which obey the rule
"correct semantics";
5. You can think whatever way you want,
but at the end of thinking, the final solution
should be given and written in a list of
integers separated by comma wrapped in
triple backticks as a code block;
6. You can give thinking steps or
explanation before or after code block but
you MUST NOT give any comments or
explanations in the code block;
===Distance Matrix===
```
{distance_matrix}
```

1190

29


	Introduction
	Related Work
	Benchmarks
	Sudoku
	Graph Coloring
	Traveling Salesman Problem

	Methodology
	Error Detector
	Deduplicator
	Experience Pool
	Fitness Evaluator
	Selector
	Crossover Operator
	Mutation Operator

	Main Experiment
	Baselines
	Experiment Settings
	Results & Analysis

	Ablation Experiments
	Scaling Population Size and Generations
	Oracle-Based FE VS LLM-Based FE
	Impact of ED, EP, DD
	Impact of ECO and EMO

	Conclusion
	Limitations
	Metrics
	Sudoku
	Graph Coloring
	Traveling Salesman Problem

	L Calculation of Lyria
	Lyria Pseudo Code
	Error Detectors
	SK ED
	GC ED
	TSP ED

	External Crossover Operators
	SK ECO
	GC ECO
	TSP ECO

	External Mutation Operators
	SK EMO
	GC EMO
	TSP EMO

	Additional Results
	Prompts

