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Abstract

Visual anomaly detection is significant in safety-critical and reliability-sensitive
scenarios. Prior studies mainly emphasize the design and training of scoring
functions, while little effort has been devoted to constructing decision rules based
on these score functions. A recent work Ma et al.|(2025b)) highlights this issue and
proposes the SAC-BL algorithm to address it. This method consists of a strong
anomaly constraint (SAC) network and a betting-like (BL) algorithm serving as the
decision rule. The SAC-BL algorithm can control the false discovery rate (FDR).
However the performance of SAC-BL algorithm on anomalous examples, or its
false positive rate (FPR), has not been thoroughly investigated. This paper provides
a deeper analysis of this problem and explores how to theoretically reduce its FPR.
First, we show that as the number of testing examples tends to infinity, the SAC-BL
algorithm performs well on abnormal data if the scores follow the generalized
Gaussian-like distribution family. But such conditions about the number of testing
examples and the distribution of scores are overly restrictive for the real-world
applications. So, we attempt to decrease the FPR of the SAC-BL algorithm under
the condition of finite samples for practical anomaly detection. To this end, we
redesign the BL algorithm by incorporating a randomization strategy and propose
a novel stochastic BL (SBL) algorithm. The combination of the SAC network
and the SBL algorithm yields our method, SAC-SBL. Theoretical results show
that the SAC-SBL algorithm can achieve smaller FPR than SAC-BL algorithm
while controlling its FDR. Finally, extensive experimental results demonstrate the
superiority of our method over SAC-BL algorithm on multiple visual anomaly
detection benchmarks.

1 Introduction

Visual anomaly detection (AD) (Haselmann et al., 2018} is a critical task in computer vision, where
the objective is to identify and spatially localize regions in visual data that deviate from normal
patterns (Gong et al., 2019; [Tien et al.,[2023). The AD has wide-ranging applications, including
industrial quality control (Bergmann et al., [2019a), medical image analysis (Huang et al., 2024),
video surveillance (Lv et al.,[2023)) and autonomous driving (Huang et al.,|2020). Unlike standard
supervised learning problems, The AD task is characterized by a scarcity or complete absence of
labeled anomalous data, due to the inherent rarity, unpredictability, and diversity of anomalies in
real-world scenarios (Bergmann et al.,|2019b). Consequently, most existing approaches adopt an
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unsupervised learning paradigm, where models are trained solely on normal samples and then identify
the anomalies during inference based on the learned distribution information of normality (Wang
et al.,[2021} Bergmann et al., 2019¢; Deng, Li, 2022).

A substantial body of methods have been proposed to tackle the challenge of the AD. These methods
can be grouped into four principal categories: knowledge distillation-based methods (Deng, Li, |2022;
Tien et al., [2023)), synthesizing-based methods (Li et al., 2021} [Yan et al.,2021)), embedding-based
methods (Defard et al.,|2020; Roth et al.,[2022) and reconstruction-based method (Akcay et al.,|2018;
Bergmann et al., 2019c). The existing approaches mainly focus on designing the powerful score
functions to learn the discriminative information from normal data. However, these methods neglect
the deep investigation for the decision rules based on the proposed score functions. A recent work
Ma et al.| (2025b)) points out this issue and tackle it from statistical perspective. Concretely, Ma et al.
(2025b)) frames the AD task as a hypothesis testing problem and proposes a novel SAC-BL algorithm
to address it. The SAC-BL algorithm consists of a strong anomaly constraint (SAC) network and a
betting-like (BL) algorithm serving as the decision rule. Theoretically, the SAC-BL algorithm can
control false discovery rate (FDR) at prescribed level. However, the performance of the SAC-BL
algorithm on anomalous examples, or its false positive rate (FPR), has not been thoroughly analyzed.
Factually, only controlling the FDR might result in a poor performance on anomalous data in some
worst-case scenario. For example, we consider a trivial decision rule ¢(-) which directly accepts
all null hypotheses, equivalent to classify all testing examples as normal data. Obviously, the FDR
of decision rule ¢(-) is zero, but its FPR is one. It is therefore imperative to conduct an in-depth
study on the FPR of SAC-BL algorithm. Besides, a review (Pang et al., 2021) highlights that existing
anomaly detection methods—particularly unsupervised methods—often suffer from high FPR, and
how to reduce FPR remains one of the most important yet challenging problems in the field. Then,
one natural question arises:

How to theoretically reduce the FPR of SAC-BL algorithm while controlling the
FDR at prescribed level?

This paper attempts to address the problems mentioned above.

Based on the analytical framework in |[Ingster, Suslina/ (2003)); |Donoho, Jinl (2004); Jin, Ke| (2016)), we
find that as the number of testing examples tends to infinity, the SAC-BL algorithm performs well on
anomalous data, provided that the score distribution belongs to the generalized Gaussian-like family.
However, such assumptions are often overly restrictive for real-world applications. On the one hand,
real-world data distributions are complex and typically unknown, making it difficult to satisfy specific
distributional requirements. On the other hand, the number of available testing samples is often
limited. For example, in the widely used AD benchmark MVTec (Bergmann et al., 2019b), the testing
set for the class “Pill” contains only 167 images. Hence, it is necessary to enhance the performance
of SAC-BL algorithm on the anomalous data under the condition of finite examples for the real-world
AD task. To this end, we redesign the BL algorithm by incorporating a randomization strategy
and propose a novel stochastic BL (SBL) algorithm. The combination of the SAC network and the
SBL algorithm yields our method, SAC-SBL. Theoretical results show that SAC-SBL algorithm
can achieve smaller FPR than the SAC-BL algorithm while controlling its FDR at the prespecified
level. Finally, we conduct extensive experiments to verify the effectiveness of SAC-SBL algorithm.
For example, compared with the SAC-BL algorithm, our method reduces the image-level FPR from
43.26% to 29.08% while achieving the same TPR for the class “Pill” in MV Tec.

‘We summarize our main contributions as follows.

1. We demonstrate that as the number of testing examples tends to infinity, the SAC-BL
algorithm achieves a well performance on anomalous testing examples if the distribution of
scores belongs to the generalized Gaussian-like distribution family.

2. To improve the performance of SAC-BL algorithm on anomalous examples in practical AD
task, we propose a novel SAC-SBL algorithm which is based on a randomization strategy for
the p-values. Theoretically, our proposed method can reduce the FPR of SAC-BL algorithm
while controlling its FDR at prescribed level.

3. Extensive experimental results demonstrate the superiority of our method over SAC-BL
algorithm on multiple visual anomaly detection benchmarks.



2 Background

Different from previous literature, [Ma et al.| (2025b) studies the AD problem from the perspective of
multiple hypothesis testing, and propose the SAC-BL algorithm to tackle it. We first introduce the
hypothesis testing framework introduced by Ma et al.|(2025b) for the AD task. To avoid confusion,
we use the same mathematical notations as|Ma et al.|(2025b) in our paper. Denote by X the feature
space of the normal examples, and X follows the underlying distribution D. In most cases, D is
unknown. Given a testing set 7/¢** = {X{est, Xfest, xhest ... Xtest}P| Ma et al) (2025b) frames
the AD task as the following multiple hypothesis testing problem:

Hl;() : lefest ~ D, Hl;l : X{'GSt ~ D
HQ;O : X%eSt ~ D, Hg;l : X;eSt ~ D
ey

Hyo: X1~ D Hpy o X190 6 D

where ;.o and H;;; are called null hypothesis and alternative/non-null hypothesis, respectively. In
the context of anomaly detection, if H; o is rejected, we declare that X f“t is anomalous.

In statistics, the decision to accept or reject the null hypothesis is determined by the concept of
p-value. Its general definition is presented as follows.

Definition 2.1. (P-value (Casella, Berger,2002)) Given a sample X Pl A statistic p()? ) is called
p-value corresponding to the null hypothesis Hy, if p(X) satisfies

P[p(X) < t|Ho] < t 2)
forevery 0 <t < 1.

A small p-value usually provides strong evidence against the null hypothesis. If the cumulative
distribution function F'(-) of testing statistic 7" for null hypothesis is known, then the corresponding
p-value can be defined as

p(T) =B(T > T) = 1- F(T),

where 7" is the observation of 7. It is easy to demonstrate that p(T) satisfies the condition in Eq. (2).
It is noteworthy that the p-value has clear statistical interpretation. For example, suppose the p-value
of a anomalous testing example X “** is 0.01. This means that for any coming testing example X;eSt,
the probability that X/“** is more anomalous than X{*** is 0.01. In other words, it is extremely

difficult to find a more anomalous example than X[“**. Hence, we are highly confident that X *** is
abnormal.

It is known that the probability of type-I error should be controlled at the prescribed significant level
in single hypothesis testing. Similarly, in multiple hypothesis testing, the false discovery rate (FDR),
as the generalization of probability of type-I error, should be controlled. The statistical advantages of
FDR have been detailedly discussed in (Benjamini, Hochberg, [1995} Benjamini, Yekutieli, [2001).

Given the null hypotheses {H1.9, Ho.0, - - - , Hy.0}, let R be the set of indices of the rejected null
hypotheses. Similarly, denote by Hy and H; the set of indices for the true null hypotheses and false
null hypotheses for {H1,0, H2,0, - - - , Hn0}, respectively. Besides, let ng = |#,| be the number of
true null hypotheses. In statistics, if one null hypothesis is rejected, it is said to make a discovery.
FDR is the expected proportion of false discoveries among the rejected hypotheses.

Definition 2.2 (FDR(Benjamini, Hochberg, 1995)). Dnote by V' the number of true null hypotheses
rejected for the hypotheses Hy.0, Ha.0, - - , Hp,0. Additionally, let U be the number of rejected
hypotheses. The false discovery proportion (FDP) is defined as:

FDP — V/U, ifU > 0,
0, otherwise.
The expectation of FDP is defined as the FDR, namely
RN
FDR = E(FDP) = E [ [R N Hol } :

max{1, |R[}

2X et is a image or pixel.
3A sample means a sequence of examples.



We given a new insight for controlling the FDR. Following Ma et al.|(2025b), the normal data is set
to be positive. The FDP is closely related to the TPR and FPR. Using the notations of confusion
matrixm, the FDP is expressed as

FN 1
FDP = = N
FN+TN 1+ N
1 1
pr— p— . (3)
N—_FP P 1-FPR
L+ P—TP L+ N '1-TPR

Note that P = |Ho| and N = |H;]. For a given testing set, P and N are fixed. It is well-known that
there is a tradeoff between the detection performance of normal and abnormal examples for a trained
score functions. Therefore, we cannot only consider the true positive rate (TPR) or false positive rate
(TPR) when designing the AD algorithm. Factually, an ideal AD algorithm should achieve low FPR
while maintaining a high TPR, which leads to a small FDP based on Eq. (3). Thus, controlling FDR
tends to achieve a well tradeoff between the detection performance of both normal and abnormal
examples if R # (.

To control the FDR for the AD task, |Ma et al.|(2025b) proposes a new SAC-BL algorithm, which
consists of a SAC network serving as the score function and a BL algorithm as the decision rule.
The SAC network is composed of two parts: a reconstrunction network (R-net) and a discriminative
network (D-net). The core of SAC network is to apply strong constraints for the training process
of discriminator by hard pairs generated from reconstruction network, which can improve the
discriminative capability for weak anomalies. The details about SAC network can be found in Section
4 of Ma et al.|(2025b). The BL algorithm is defined as follows.

Definition 2.3 (BL algorithm (Ma et al., 2025b)). Given the p-values p1, p2, - - - , py, corresponding
to the null hypotheses Hy o, H2 0, - , Hy 0, let p(;) be the i-th order statistics from the smallest to
the largest. For a pre-specified level o € (0, 1), define

1 Sovi
iBL :=max{i€[1:n]:pvzcszi}:max{ie[lzn]:p?i)gzz} (4)
(4)

where 1, § are two positive real numbers and satisfy v + § < 1. Then, the null hypothesis H ;) ¢ is
rejected if ¢ < i%;.

In statistics, « is usually set to 0.05. Eq. (@) indicates that the BL algorithm rejects the null hypothesis
H; if p] < %‘Si}; , and |R| = i, . In practice, for a testing example X%, if the distribution of
testing statistic (or scores) is known, the p-value p; corresponding to null hypothesis H;,; can be
presented as p; = 1 — F'(s(X;)) where F'(-) is the cumulative distribution function of the scores
and s(-) is the score function. If the distribution information is unknown, the computation of the
p-value relies on a calibrated set consisting of normal examples. Specifically, given a calibrated set
Teal = {Xgab Xsol .. Xgel}, p; is presented as

S A(s(X5) > s(XPet)) + 1
kE+1 '

pi = p(X{*") = (5)

3 Asymptotic FPR of SAC-BL algorithm

False positive rate (FPR) is a significant evaluation criterion for AD task, which can be expressed as

FP _"Rcﬂ}lﬂ
FP+TN  |H4

Although [Ma et al.| (2025b)) has proved that the SAC-BL algorithm can control FDR. However,
relatively little is known about the theoretical properties of FPR of SAC-BL algorithm. In this section,
we aim to analyze the asymptotic performance of its FPR. Our analytical framework follows Donoho|
Jin| (2004); Jin, Ke|(2016))

In the vast majority of theoretical literature on multiple hypothesis testing (Benjamini, Hochberg|
1995; Benjamini, Yekutieli, 2001} [Storey, 2002} Blanchard, Roquain), 2008), the p-values are assumed
to be available, equivalently, the distribution of test statistic for each null hypothesis is known. In this

FPR =



situation, the p-value can be represented as p; = \P(Ti)ﬂ where T is the observation of test statistic
T; corresponding to hypothesis H; and W(+) is the survival function of test statistic. For analytical
simplicity, we suppose that the observation 77, 75, - - - , T;, are continuous random variables. We first
define a function class as follows.

}':{\Il(t): limM:; T>1}.

t—o00 t7

Based on the function class F, we have the following definition.

Definition 3.1 (Generalized Gaussian-like Distribution Family). A random variable X is said to
follow the generalized Gaussian-like distribution with the location 1 and the degree 7, denote
X ~ G(u, ), if the survival function ¥(-) of X satisfies ¥ (¢t — ) € F .

It is easy to verify that Gaussian distribution belongs to this distribution family. Similar to/Donoho|
Jin| (2004); [Ingster, Suslina (2003); Jin, Ke|(2016), our analytical framework relies on the above
generalized Gaussian-like distribution family. Specifically, we assume that the test statistic TiE]
corresponding to the hypothesis H; satisfies:

T, ~ {G(O,T), ifi € Ho

G(u, 1), ifieH, ©

Following |Donoho, Jin| (2004), we set u = (77 log n)l/ . Besides, we focus on the sparse region in
which the number of true null hypothesis is larger than that of the true alternative hypothesis (Donoho.
Jin, 2006). In this case, n; = |H;| = n'~” where 8 < r < 1 (note that “L — 0). Based on the
framework above, we derive the asymptotic FPR of SAC-BL algorithm.

Theorem 3.2. Suppose that the test statistic T; corresponding to H; satisfies the condition in Eq. @
fori € [n]. Then, for the p-values p1 = VU(T}),p2 = U(T3),-- ,pp = U(T},), the FPR of SAC-BL
algorithm converges to zero in probability, namely

FpP

as n — oQ.

The proof of Theorem [3.2]is presented in Appendix Based on the Theorem [3.2] we have the
following theoretical result.

Theorem 3.3. Suppose that the conditions in Theorem[3.2| hold. Then, we have

FP

P . . . FP
FPTTN — 0 ifand only if nhﬁrr;(jE <> — 0.

FP+TN

The proof of Theorem [3.3]is presented in Appendix

Theorem 3.2]indicates that as the number of testing samples tends to infinity, the SAC-BL algorithm
performs well on anomalous examples, provided that the distribution of the scores belongs to the
generalized Gaussian-like distribution family. However, such conditions are overly restrictive in
real-world applications, as the distribution of real-world data is often complex and typically unknown.
Besides, for the widely used AD benchmark MVTech (Bergmann et al.,[2019b)), the testing set for the
class “Pill” only contains 167 images and the SAC-BL attains the image-level FPR of merely 43% on
it (see Table[T). Hence, we need to explore how to improve the performance of SAC-BL algorithm
on the anomalous data under the condition of finite examples for the practical AD task.

4 Decreasing the FPR of SAC-BL algorithm

In this section, we explore how to reduce the FPR of SAC-BL algorithm while controlling its FDR at
the prescribed level. Our main focus is to redesign the BL algorithm.

“Under the null hypothesis, all of test statistic have the same function. So, we use the same survival function.
Note that the observations of test statistic can be regarded as its sample, thus the test statistic and its
observations have the same distribution.



Note that FPR = + PZ_F;F ~ = |R‘;317'|£1| . where R€ is the complement of R. For a given testing set,

FP + TN is equal to the number of true anomalous examples in testing set. Therefore, we can
reduce the FPR by reducing FP, equivalent to increasing the number of rejecting null hypotheses

< 5041

|R|. Recall the BL algorithm: i%;; := max {Z €ll:n]: p( ) . The null hypothesis H; ¢ is

rejected if and only if p( ) < 5—%*3 1,- Denote

R R

n n n

oo dai 1o 26« noa
fBL—;ZBLa &= —, C:{ }

Note that €1, only take the value in C. For a given p-value p; satlsfylng p; > 9 *&pL,ourideais to

develop a strategy that changes the value of p; to p; such that p] = gy, w1th0ut violating the core
conditions of controlling FDR for the SAC-BL algorithm. Then we could increase the number of
rejecting null hypotheses and further reduce the FPR of SAC-BL algorithm.

Denote by A the random variable uniformly distributed on (0, 1) independent of p-values and we
define
Ti(x) =27 -1(z" <&)+&-1(A < Ax? <&).

Moreover, for each i € [n] := {1,2,3,--- ,n}, we denote

= Z 1(p; <pi), k(i) = arg maxiﬂ{.
j>e Py

If there are multiple indices that satisfy the argmax, we take the largest index. Then, we define the
stochastic BL (SBL) algorithm as follows.

Definition 4.1. (Stochastic BL Algorithm) Given the random variable A uniformly distributed on
(0,1), p-values p1, pa, - - - , b, corresponding to the null hypotheses Hy o, Ha,- - - , Hp o and the
prespecified level o € (0, 1). For each i € [n], define

Yoy (i) =07 -1 (9] < &aty) + &ui) - 1 (M) < Ap] < &)

1
iBL —max{ [1: n]:7>n,}—max{ [1: n]:pz)<50ﬂ}7

Phy dai n

and

where v,  are two positive real numbers and satisfy v + ¢ < 1. Then, the null hypothesis H;g is
rejected if

oo,
Yy (pi) < ) 'L

The SBL algorithm in Definition [4.1]is mainly used to derive our theoretical results. Additionally, we

have another simple version of SBL algorithm.

Definition 4.2. (Stochastic BL algorithm: version 2 ) Given the p-values p;, ps,-- -, p, corre-
sponding to the null hypotheses H1 o, Ha 0, - , Hy 0, let p(;) be the i-th order statistics from the
smallest to the largest. Denote by A the random variable uniformly distributed on (0, 1). For a
pre-specified level a € (0, 1), define

1 nA
I ie€l:n]: — > — 7
lgpr ‘= Mmax {Z [1:n] - 6ai} (N
where +, ¢ are two positive real number and satisfies v + ¢ < 1. Then, the null hypothesis H ;) ¢ is

rejected if ¢ < i%g;.

The Following theory reveals the relation between the SBL algorithms in Definition[4.1]and the one
in Definition 4.2
Theorem 4.3. The SBL algorithm in Definitiond.1|is equivalent to the one in Definition

The proof of Theorem [4.3]is presented in Appendix [B.3] Obviously, the SBL algorithm in Definition
[.2]has less computation steps than the one in Definition |4.1] and thus is more suitable for the practical



W N =

£

Algorithm 1: Practical SAC-SBL Algorithm

Input: Training set 7", calibrated set 7°% = { X X§at ... X¢o!} testing set
Tlest = [ Xiest Xlest  Xtestl prescribed level o € (0, 1), generator of synthetic
anomalous example G(-).
Utilize G(+) to construct the new training set 7™* based on the training set 7.
Train the SAC network on 7™*, and then obtain the score function s(-) for images or pixels.
Calculate the empirical p-value corresponding to X /5

> L(s(X5!) = s(X[e")) + 1

e X.test — j=1
pi = p(X;*) ]

®)

Draw a sample A from the uniform distribution on (0, 1).

5 Determine the index i3 :

. . 1 nA
igpr = max<i € [n]: —— > —

Output: Declare that X Ef)“ is anomalous if i < %y, .

applications. The version of SBL algorithm in Definition is used to establish the connection
between the SBL algorithm and BL algorithm for the theoretical analysis.

In the context of anomaly detection, the underlying distribution information of normal data is usually
unknown. Therefore, we can use the method in Eq. (3] to compute the p-values in practice. Combining
the SAC network proposed by Ma et al.| (2025b) and the SBL algorithm in Definition [.2] yields our
method, SAC-SBL. Its detailed steps are presented in Algorithm [I]

Now we present our core theoretical results to demonstrate the superiority of SAC-SBL algorithm
over the SAC-BL algorithm in terms of FPR while controlling the FDR at the prescribed level.

Theorem 4.4. Given the random variable A uniformly distributed on (0,1), the p-values
P1,P2, -, Dn corresponding to the null hypotheses Hy o, Ha,- -+ ,Hp o in Eq. (8) and the pre-
specified level o € (0, 1). The following conclusions hold:

1. the FDR of SAC-SBL algorithm satisfies

FDRsac—-spr < o

2. For the index sets Rsac—_pr, and Rsac—_sBL, we have

P(Rsac-Br € Rsac-sBL) = 1;

3. If there exists a p-value p; which satisfies P (p;y < %) > 0, then we have
P(|Rsac-BLl < |Rsac-sBLl) > 0.

The proof of Theorem[.4]is presented in Appendix [B.4] Theorem [4.4]suggests that the SAC-SBL
algorithm does not reject fewer null hypotheses than the SAC-BL algorithm almost surely while
controlling the FDR at the prescribed level. In other words, SAC-BL algorithm tends to classify
more testing examples as anomalous data. Based on Theorem [d.4] we can easily obtain the following
theoretical results.

Theorem 4.5. Suppose the conditions in Theoremd.4|hold, then the FPR of the SAC-BL algorithm
and that of SAC-SBL algorithm satisfy

P(FPRsac-pL > FPRsac-spL) = 1.
Moreover, if there exists a p-value p; which satisfies P (p;y < %) > 0, then we have

P(FPRSAC_BL > FPRSAC—SBL) > 0.



Table 1: Experimental results (%) on MVTec. We compare the performance between SAC-BL
algorithm and SAC-SBL based on the same trained SAC network. 1 indicates larger values are better
and vice versa.

Image-level Pixel-level
Category ~ Method  TpR+4+ FPR| Fl-scoret TPRT FPR| Fl-score T

SAC-BL 100.0 35.78 54.12 99.25 41.82 93.24

Capsule  SAC-SBL 100.0 26.61 61.33 99.25  34.77 99.43
T T T SAC-BL 9500 ~ 3.17 9268 9540 363 =~ 9742
Bottle SAC-SBL 95.00  0.00 97.44 9540  3.62 97.53
T T T T T SAC-BL ~ 100.0 1573 =~ 80.00  ~ 90.39 ~ 494 = 94387
Carpet SAC-SBL 92.14  4.49 83.64 90.37  4.93 94.90
T T T T SAC-BL 1000 4.35 ~ 94.12  98.19 424 =~ 99.06
Leather SAC-SBL  100.0  0.00 100.0 98.21 4.16 99.08
T T T SAC-BL 1000 4326  46.02 9528 478 =~ 9742
Pill SAC-SBL  100.0  29.08 55.91 9527  4.77 97.49
S 7 7 SAC-BL 100.0 30.00 ~ 90.91 = 96.63 42,62 = 90.18

Transistor  SAC-SBL  100.0  30.00 90.91 96.62  31.58 97.22
T T T SAC-BL 1000 ~1.19 9851 9501 077 ~ 9738
Tile SAC-SBL  100.0  0.00 100.0 95.01 0.77 97.38

Zipper SAC-SBL  100.0 0.84 98.46 97.32  3.83 98.60
T T T T SAC-BL 1000 333 9600 94.04 176 ~ 9690
Toothbrush  §AC-SBL  100.0  0.00 100.00 94.05 1.71 96.92
T T T T SAC-BL 1000 ~1.08 ~ 97.78 9631 363  97.64
Metal_nut  SAC-SBL 100.0  0.00 100.0 96.07 3.28 97.78
T T T SAC-BL 1000 ~1.43 9877 9899 1024 =~ 9527
Hazelnut  gAC-SBL 100.0  0.00 100.0 98.92  8.63 99.35
T T T T T SAC-BL ~ 100.0 7227 ~ 4881 @~ 9940 1280 ~ 9567
Screw SAC-SBL 100.0 68.91 50.00 99.40  8.77 99.69
T T T T SAC-BL 1000 1930 ~ 7925 9756 0.63 ~ 9876
Grid SAC-SBL 100.0 1.75 97.67 97.57  0.61 98.77
T T T T SAC-BL 1000 833 8837 9269 ~ 7.09 = 9492
Wood SAC-SBL  100.0  0.00 100.0 9270  6.99 96.07
SAC-BL  99.55 17.45 83.22 95.99 10.85 96.22
Average SAC-SBL 9891 11.79 88.19 95.93 9.03 97.75

The proof of theorem [4.5]is presented in Appendix [B.5] Theorem [.5]indicates that the FPR of
the SAC-BL algorithm is not smaller than that of SAC-SBL algorithm almost surely. Besides, the
Saip

condition “there exists a p-value p; which satisfies P (p;’ < ) > 07 is nearly always satisfied

in practice, since it only excludes the trivial situation where all hypotheses are rejected. Therefore,
our proposed method can achieve a smaller FPR over the SAC-BL algorithm.

S Experiment

In this section, we perform extensive comparison experiments to verify the effectiveness of our
SAC-SBL method.

5.1 Experimental Settings

Baseline. We compare the decision-making performance of our proposed SAC-SBL method with the
SAC-BL method (Ma et al., 2025b)), using the default settings for SAC-BL.

Datasets. Experiments are conducted on three widely used anomaly detection datasets. The MVTec
dataset (Bergmann et al., 2019b)) consists of 5354 images across 15 object and texture categories.
The VisA dataset (Zou et al.,|2022)) is an industrial anomaly dataset comprising 10821 images from
12 objects across 3 domains. The BTAD dataset (Mishra et al., [2021) includes 2830 images of 3
industrial products, showcasing body and surface defects.

Evaluation Metrics. We use the true positive rate (TPR), false positive rate (FPR) and f1-score (F1)
to evaluate the effectiveness of the proposed method.



Table 2: Experimental results (%) on VisA. We compare the performance between SAC-BL algorithm
and SAC-SBL based on the same trained SAC network. 1 indicates larger values are better and vice
versa.

Image-level Pixel-level
Category Method  Tpr+ FPR| Fl-scoret TPRT FPR| Fl-score{
SAC-BL  100.0  49.00 80.97 99.88  55.26 95.87
Candle SAC-SBL  100.0  46.00 83.30 99.88 52.26 99.90
T T T SAC-BL 1000 52.00 ~ 7059 9839 983 ~ 9916
Capsules SAC-SBL  98.33  46.00 71.52 98.39  6.72 99.18
T T T SAC-BL ~ 100.0  87.00 ~ 54.05 9930 6793 = 90.88
Cashew SAC-SBL  100.0  85.00 54.05 99.25 64.51 99.24
T SAC-BL ~ 100.0 15.00 =~ '86.96 @ 9438 494 ~ 9710
Chewinggum gSAC-SBL  100.0  14.00 87.72 94.85 4.92 97.33
T T SAC-BL 1000 67.00 = 56.88 9944 6578 ~ 9219
Fryum SAC-SBL 100.0 57.00 63.69 99.42  65.39 98.94
7 7 SAC-BL  100.0 81.00 ~ 71.17 9991 1830 = 99.95
Macaronil ~ §AC-SBL  100.0  79.00 76.68 9991 18.21 99.95
7 7 SAC-BL < 100.0 55.00 = 7437 = 9992 30.80 = 9346
Macaroni2 ~ SAC-SBL  100.0  48.00 80.65 99.92 2598 99.95
T T T SAC-BL ~98.00 69.00 ~ 7041 9598 1336 ~ 9792
Pcbl SAC-SBL  98.00  64.00 73.68 9598 13.36 97.92
T T T SAC-BL ~ 97.00 45.00 ~ 80.17 9297 3077 =~ 9629
Pcb2 SAC-SBL  96.00 31.00 83.56 9298  30.69 96.33
T T SAC-BL ~99.01 56.00 =~ 76.82 9941 3924 = 99.60
Pcb3 SAC-SBL  98.02  50.00 79.20 99.41 38.94 99.66
T T T SAC-BL ~98.02 13.00 ~ 90.96  98.08 2494 =~ 98387
Pcb4 SAC-SBL 97.03  7.00 95.15 98.08 24.92 98.95
T SAC-BL ~ 100.0  100.0  ~ 50.00  99.34 7315 =~ 91.75
Pipe_fryum  gAC-SBL 100.0 96.00 50.25 99.34  60.10 99.21
SAC-BL 9934 57.42 71.95 98.08  36.20 96.09
Average SAC-SBL 9895 51.92 74.95 98.12 33.83 98.88

Implementation Details. In SAC-SBL, we repeat the stochastic perturbation 100 times and take the
meaning value. All experiments are conducted on a workstation with eight NVIDIA GeForce GTX
3090 GPUs and two 2.2GHZ Intel CPUs.

5.2 Experimental Results

We evaluate our proposed method against the SAC-BL algorithm on three datasets, demonstrating
its superior performance and generalization. The image-level and pixel-level results on MVTec are
presented in Table[I] and the results on VisA are shown in Table[2] because of the space limitation,
the results in BTAD are reported in Appendix [Al From the Tables[I|and [2] we can see: 1) Our mehtod
achieves the comparable performance in terms of TPR. For example, in Table[1} our method have
the same image-level TPR as the SAC-BL algorithm in 13 classe among 15 classes. On average,
the image-level and pixel-level TPRs of two methods are also comparable. 2) Our method yields
lower FPR and higher F1-scores across all classes, regardless of image-level or pixel-level evaluation.
As shown in Table|l} compared to the SAC-BL algorithm, our method reduce the image-level FPR
from 21.74% to 15.22%, and improve the image-level F1-score from 84.44% to 87.5%, the direct
improvements of 6.52% and 3.06%, respectively. 3) In those classes where the SAC-BL algorithm
struggles to identify anomalous examples, our method can considerably reduce the FPR. For instance,
For classes “Carpet” and “Pill”, our method achieve the improvements of 11.24% and 14.14% in
terms of image-level FPR. Overall, these experimental results demonstrate the superiority of our
method over the SAC-BL algorithm.

6 Conclusion

In this paper, we focus on investigating the SAC-BL algorithm in terms of FPR. First, we demonstrate
that the FPR of SAC-BL algorithm converges to zero in probability based on the generalized Gaussian-
like distribution family. Then, we propose a novel SAC-SBL algorithm which can reduce the FPR of
SAC-BL algorithm while controlling the FDR at the prescribed level. Finally, we conduct extensive
experiments to verify the effectiveness of our proposed method.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We clearly delineate this work’s contributions in Introduction, as well as in the
abstract.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in Appendix
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: All assumptions and results are clearly stated, and all proofs are provided in
Appendix.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide a detailed algorithm and description of the exact setup of our
experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: All datasets used in this study are publicly available. Open source code will be
provided at a later date.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Experimental settings and hyperparameters are well described.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Our method is based on the statistical hypothesis framework. The factors that
influence the statistical significance have been discussed.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The computational resources have been provided in Section 3}
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our work adheres to the NeurIPS Code of Ethics.
Guidelines:
» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.
* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:
Justification: There are no potential societal consequences of our work.
Guidelines:
» The answer NA means that there is no societal impact of the work performed.
* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations

(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper does not pose such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The assets are properly mentioned and cited in experimental settings.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

17


paperswithcode.com/datasets

13.

14.

15.

16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The paper does not involve LLMs as any important, original, or non-standard
components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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