On the SAC-BL Algorithm for Anomaly Detection

Xinsong Ma

School of Computer Science Wuhan University maxinsong1018@gmail.com

Jie Wu

School of Computer Science Wuhan University biandekeren@gmail.com

Weiwei Liu *
School of Computer Science
Wuhan University
liuweiwei863@gmail.com

Abstract

Visual anomaly detection is significant in safety-critical and reliability-sensitive scenarios. Prior studies mainly emphasize the design and training of scoring functions, while little effort has been devoted to constructing decision rules based on these score functions. A recent work Ma et al. (2025b) highlights this issue and proposes the SAC-BL algorithm to address it. This method consists of a strong anomaly constraint (SAC) network and a betting-like (BL) algorithm serving as the decision rule. The SAC-BL algorithm can control the false discovery rate (FDR). However the performance of SAC-BL algorithm on anomalous examples, or its false positive rate (FPR), has not been thoroughly investigated. This paper provides a deeper analysis of this problem and explores how to theoretically reduce its FPR. First, we show that as the number of testing examples tends to infinity, the SAC-BL algorithm performs well on abnormal data if the scores follow the generalized Gaussian-like distribution family. But such conditions about the number of testing examples and the distribution of scores are overly restrictive for the real-world applications. So, we attempt to decrease the FPR of the SAC-BL algorithm under the condition of finite samples for practical anomaly detection. To this end, we redesign the BL algorithm by incorporating a randomization strategy and propose a novel stochastic BL (SBL) algorithm. The combination of the SAC network and the SBL algorithm yields our method, SAC-SBL. Theoretical results show that the SAC-SBL algorithm can achieve smaller FPR than SAC-BL algorithm while controlling its FDR. Finally, extensive experimental results demonstrate the superiority of our method over SAC-BL algorithm on multiple visual anomaly detection benchmarks.

1 Introduction

Visual anomaly detection (AD) (Haselmann et al., 2018) is a critical task in computer vision, where the objective is to identify and spatially localize regions in visual data that deviate from normal patterns (Gong et al., 2019; Tien et al., 2023). The AD has wide-ranging applications, including industrial quality control (Bergmann et al., 2019a), medical image analysis (Huang et al., 2024), video surveillance (Lv et al., 2023) and autonomous driving (Huang et al., 2020). Unlike standard supervised learning problems, The AD task is characterized by a scarcity or complete absence of labeled anomalous data, due to the inherent rarity, unpredictability, and diversity of anomalies in real-world scenarios (Bergmann et al., 2019b). Consequently, most existing approaches adopt an

^{*}Corresponding author

unsupervised learning paradigm, where models are trained solely on normal samples and then identify the anomalies during inference based on the learned distribution information of normality (Wang et al., 2021; Bergmann et al., 2019c; Deng, Li, 2022).

A substantial body of methods have been proposed to tackle the challenge of the AD. These methods can be grouped into four principal categories: knowledge distillation-based methods (Deng, Li, 2022; Tien et al., 2023), synthesizing-based methods (Li et al., 2021; Yan et al., 2021), embedding-based methods (Defard et al., 2020; Roth et al., 2022) and reconstruction-based method (Akcay et al., 2018; Bergmann et al., 2019c). The existing approaches mainly focus on designing the powerful score functions to learn the discriminative information from normal data. However, these methods neglect the deep investigation for the decision rules based on the proposed score functions. A recent work Ma et al. (2025b) points out this issue and tackle it from statistical perspective. Concretely, Ma et al. (2025b) frames the AD task as a hypothesis testing problem and proposes a novel SAC-BL algorithm to address it. The SAC-BL algorithm consists of a strong anomaly constraint (SAC) network and a betting-like (BL) algorithm serving as the decision rule. Theoretically, the SAC-BL algorithm can control false discovery rate (FDR) at prescribed level. However, the performance of the SAC-BL algorithm on anomalous examples, or its false positive rate (FPR), has not been thoroughly analyzed. Factually, only controlling the FDR might result in a poor performance on anomalous data in some worst-case scenario. For example, we consider a trivial decision rule $\phi(\cdot)$ which directly accepts all null hypotheses, equivalent to classify all testing examples as normal data. Obviously, the FDR of decision rule $\phi(\cdot)$ is zero, but its FPR is one. It is therefore imperative to conduct an in-depth study on the FPR of SAC-BL algorithm. Besides, a review (Pang et al., 2021) highlights that existing anomaly detection methods—particularly unsupervised methods—often suffer from high FPR, and how to reduce FPR remains one of the most important yet challenging problems in the field. Then, one natural question arises:

How to theoretically reduce the FPR of SAC-BL algorithm while controlling the FDR at prescribed level?

This paper attempts to address the problems mentioned above.

Based on the analytical framework in Ingster, Suslina (2003); Donoho, Jin (2004); Jin, Ke (2016), we find that as the number of testing examples tends to infinity, the SAC-BL algorithm performs well on anomalous data, provided that the score distribution belongs to the generalized Gaussian-like family. However, such assumptions are often overly restrictive for real-world applications. On the one hand, real-world data distributions are complex and typically unknown, making it difficult to satisfy specific distributional requirements. On the other hand, the number of available testing samples is often limited. For example, in the widely used AD benchmark MVTec (Bergmann et al., 2019b), the testing set for the class "Pill" contains only 167 images. Hence, it is necessary to enhance the performance of SAC-BL algorithm on the anomalous data under the condition of finite examples for the real-world AD task. To this end, we redesign the BL algorithm by incorporating a randomization strategy and propose a novel stochastic BL (SBL) algorithm. The combination of the SAC network and the SBL algorithm yields our method, SAC-SBL. Theoretical results show that SAC-SBL algorithm can achieve smaller FPR than the SAC-BL algorithm while controlling its FDR at the prespecified level. Finally, we conduct extensive experiments to verify the effectiveness of SAC-SBL algorithm. For example, compared with the SAC-BL algorithm, our method reduces the image-level FPR from 43.26% to 29.08% while achieving the same TPR for the class "Pill" in MVTec.

We summarize our main contributions as follows.

- 1. We demonstrate that as the number of testing examples tends to infinity, the SAC-BL algorithm achieves a well performance on anomalous testing examples if the distribution of scores belongs to the generalized Gaussian-like distribution family.
- 2. To improve the performance of SAC-BL algorithm on anomalous examples in practical AD task, we propose a novel SAC-SBL algorithm which is based on a randomization strategy for the p-values. Theoretically, our proposed method can reduce the FPR of SAC-BL algorithm while controlling its FDR at prescribed level.
- 3. Extensive experimental results demonstrate the superiority of our method over SAC-BL algorithm on multiple visual anomaly detection benchmarks.

2 Background

Different from previous literature, Ma et al. (2025b) studies the AD problem from the perspective of multiple hypothesis testing, and propose the SAC-BL algorithm to tackle it. We first introduce the hypothesis testing framework introduced by Ma et al. (2025b) for the AD task. To avoid confusion, we use the same mathematical notations as Ma et al. (2025b) in our paper. Denote by $\mathcal X$ the feature space of the normal examples, and $\mathcal X$ follows the underlying distribution $\mathcal D$. In most cases, $\mathcal D$ is unknown. Given a testing set $\mathcal T^{test} = \{X_1^{test}, X_2^{test}, X_3^{test}, \cdots, X_n^{test}\}^2$, Ma et al. (2025b) frames the AD task as the following multiple hypothesis testing problem:

$$\begin{split} H_{1;0}: X_{1}^{test} \sim \mathcal{D}, & H_{1;1}: X_{1}^{test} \nsim \mathcal{D} \\ H_{2;0}: X_{2}^{test} \sim \mathcal{D}, & H_{2;1}: X_{2}^{test} \nsim \mathcal{D} \\ & \vdots \\ H_{n;0}: X_{n}^{test} \sim \mathcal{D} & H_{n;1}: X_{n}^{test} \nsim \mathcal{D} \end{split} \tag{1}$$

where $H_{i;0}$ and $H_{i;1}$ are called null hypothesis and alternative/non-null hypothesis, respectively. In the context of anomaly detection, if $H_{i,0}$ is rejected, we declare that X_i^{test} is anomalous.

In statistics, the decision to accept or reject the null hypothesis is determined by the concept of *p-value*. Its general definition is presented as follows.

Definition 2.1. (P-value (Casella, Berger, 2002)) Given a sample \widetilde{X}^3 . A statistic $p(\widetilde{X})$ is called p-value corresponding to the null hypothesis H_0 , if $p(\widetilde{X})$ satisfies

$$\mathbb{P}[p(\widetilde{X}) \le t | H_0] \le t \tag{2}$$

for every $0 \le t \le 1$.

A small p-value usually provides strong evidence against the null hypothesis. If the cumulative distribution function $F(\cdot)$ of testing statistic T for null hypothesis is known, then the corresponding p-value can be defined as

$$p(\hat{T}) = \mathbb{P}(T > \hat{T}) = 1 - F(\hat{T}),$$

where \hat{T} is the observation of T. It is easy to demonstrate that $p(\hat{T})$ satisfies the condition in Eq. (2). It is noteworthy that the p-value has clear statistical interpretation. For example, suppose the p-value of a anomalous testing example X_i^{test} is 0.01. This means that for any coming testing example X_j^{test} , the probability that X_j^{test} is more anomalous than X_i^{test} is 0.01. In other words, it is extremely difficult to find a more anomalous example than X_i^{test} . Hence, we are highly confident that X_i^{test} is abnormal.

It is known that the probability of type-I error should be controlled at the prescribed significant level in single hypothesis testing. Similarly, in multiple hypothesis testing, the false discovery rate (FDR), as the generalization of probability of type-I error, should be controlled. The statistical advantages of FDR have been detailedly discussed in (Benjamini, Hochberg, 1995; Benjamini, Yekutieli, 2001).

Given the null hypotheses $\{H_{1;0}, H_{2;0}, \cdots, H_{n;0}\}$, let \mathcal{R} be the set of indices of the rejected null hypotheses. Similarly, denote by \mathcal{H}_0 and \mathcal{H}_1 the set of indices for the true null hypotheses and false null hypotheses for $\{H_{1;0}, H_{2;0}, \cdots, H_{n;0}\}$, respectively. Besides, let $n_0 = |\mathcal{H}_0|$ be the number of true null hypotheses. In statistics, if one null hypothesis is rejected, it is said to make a discovery. FDR is the expected proportion of false discoveries among the rejected hypotheses.

Definition 2.2 (FDR(Benjamini, Hochberg, 1995)). Dnote by V the number of true null hypotheses rejected for the hypotheses $H_{1;0}, H_{2;0}, \cdots, H_{n;0}$. Additionally, let U be the number of rejected hypotheses. The false discovery proportion (FDP) is defined as:

$$\mathrm{FDP} = \begin{cases} V/U, & \text{if } U > 0, \\ 0, & \text{otherwise.} \end{cases}$$

The expectation of FDP is defined as the FDR, namely

$$\underline{\text{FDR}} = \mathbb{E}(\text{FDP}) = \mathbb{E}\left[\frac{|\mathcal{R} \cap \mathcal{H}_0|}{\max\{1, |\mathcal{R}|\}}\right].$$

 $^{{}^{2}}X_{i}^{test}$ is a image or pixel.

³A sample means a sequence of examples.

We given a new insight for controlling the FDR. Following Ma et al. (2025b), the normal data is set to be positive. The FDP is closely related to the TPR and FPR. Using the notations of confusion matrixm, the FDP is expressed as

$$FDP = \frac{FN}{FN + TN} = \frac{1}{1 + \frac{TN}{FN}}$$

$$= \frac{1}{1 + \frac{N - FP}{P - TP}} = \frac{1}{1 + \frac{P}{N} \cdot \frac{1 - FPR}{1 - TPR}}.$$
(3)

Note that $P=|\mathcal{H}_0|$ and $N=|\mathcal{H}_1|$. For a given testing set, P and N are fixed. It is well-known that there is a tradeoff between the detection performance of normal and abnormal examples for a trained score functions. Therefore, we cannot only consider the true positive rate (TPR) or false positive rate (TPR) when designing the AD algorithm. Factually, an ideal AD algorithm should achieve low FPR while maintaining a high TPR, which leads to a small FDP based on Eq. (3). Thus, controlling FDR tends to achieve a well tradeoff between the detection performance of both normal and abnormal examples if $\mathcal{R} \neq \emptyset$.

To control the FDR for the AD task, Ma et al. (2025b) proposes a new SAC-BL algorithm, which consists of a SAC network serving as the score function and a BL algorithm as the decision rule. The SAC network is composed of two parts: a reconstrunction network (R-net) and a discriminative network (D-net). The core of SAC network is to apply strong constraints for the training process of discriminator by hard pairs generated from reconstruction network, which can improve the discriminative capability for weak anomalies. The details about SAC network can be found in Section 4 of Ma et al. (2025b). The BL algorithm is defined as follows.

Definition 2.3 (BL algorithm (Ma et al., 2025b)). Given the p-values p_1, p_2, \dots, p_n corresponding to the null hypotheses $H_{1,0}, H_{2,0}, \dots, H_{n,0}$, let $p_{(i)}$ be the *i*-th order statistics from the smallest to the largest. For a pre-specified level $\alpha \in (0, 1)$, define

$$i_{BL}^* := \max \left\{ i \in [1:n] : \frac{1}{p_{(i)}^{\gamma}} \ge \frac{n}{\delta \alpha i} \right\} = \max \left\{ i \in [1:n] : p_{(i)}^{\gamma} \le \frac{\delta \alpha i}{n} \right\} \tag{4}$$

where γ, δ are two positive real numbers and satisfy $\gamma + \delta \leq 1$. Then, the null hypothesis $H_{(i),0}$ is rejected if $i \leq i_{BL}^*$.

In statistics, α is usually set to 0.05. Eq. (4) indicates that the BL algorithm rejects the null hypothesis $H_{i,0}$ if $p_i^{\gamma} \leq \frac{\alpha \delta}{n} i_{BL}^*$ and $|\mathcal{R}| = i_{BL}^*$. In practice, for a testing example X_i^{test} , if the distribution of testing statistic (or scores) is known, the p-value p_i corresponding to null hypothesis $H_{i;0}$ can be presented as $p_i = 1 - F(s(X_i))$ where $F(\cdot)$ is the cumulative distribution function of the scores and $s(\cdot)$ is the score function. If the distribution information is unknown, the computation of the p-value relies on a calibrated set consisting of normal examples. Specifically, given a calibrated set $\mathcal{T}^{cal} = \{X_1^{cal}, X_2^{cal}, \dots, X_k^{cal}\}$, p_i is presented as

$$p_i = p(X_i^{test}) = \frac{\sum_{j=1}^k \mathbf{1}(s(X_j^{cal}) \ge s(X_i^{test})) + 1}{k+1}.$$
 (5)

3 Asymptotic FPR of SAC-BL algorithm

False positive rate (FPR) is a significant evaluation criterion for AD task, which can be expressed as

$$FPR = \frac{FP}{FP + TN} = \frac{|\mathcal{R}^c \cap \mathcal{H}_1|}{|\mathcal{H}_1|}.$$

Although Ma et al. (2025b) has proved that the SAC-BL algorithm can control FDR. However, relatively little is known about the theoretical properties of FPR of SAC-BL algorithm. In this section, we aim to analyze the asymptotic performance of its FPR. Our analytical framework follows Donoho, Jin (2004); Jin, Ke (2016)

In the vast majority of theoretical literature on multiple hypothesis testing (Benjamini, Hochberg, 1995; Benjamini, Yekutieli, 2001; Storey, 2002; Blanchard, Roquain, 2008), the p-values are assumed to be available, equivalently, the distribution of test statistic for each null hypothesis is known. In this

situation, the p-value can be represented as $p_i = \Psi(\tilde{T}_i)^4$ where \tilde{T}_i is the observation of test statistic T_i corresponding to hypothesis H_i and $\Psi(\cdot)$ is the survival function of test statistic. For analytical simplicity, we suppose that the observation $\tilde{T}_1, \tilde{T}_2, \cdots, \tilde{T}_n$ are continuous random variables. We first define a function class as follows.

$$\mathcal{F} = \left\{ \Psi(t) : \lim_{t \to \infty} \frac{-\log \Psi(t)}{t^{\tau}} = \frac{1}{\tau}, \ \tau > 1 \right\}.$$

Based on the function class \mathcal{F} , we have the following definition.

Definition 3.1 (Generalized Gaussian-like Distribution Family). A random variable X is said to follow the generalized Gaussian-like distribution with the location μ and the degree τ , denote $X \sim G(\mu, \tau)$, if the survival function $\Psi(\cdot)$ of X satisfies $\Psi(t - \mu) \in \mathcal{F}$.

It is easy to verify that Gaussian distribution belongs to this distribution family. Similar to Donoho, Jin (2004); Ingster, Suslina (2003); Jin, Ke (2016), our analytical framework relies on the above generalized Gaussian-like distribution family. Specifically, we assume that the test statistic T_i^5 corresponding to the hypothesis H_i satisfies:

$$T_i \sim \begin{cases} G(0,\tau), & \text{if } i \in \mathcal{H}_0 \\ G(\mu,\tau), & \text{if } i \in \mathcal{H}_1 \end{cases}$$
 (6)

Following Donoho, Jin (2004), we set $\mu=(\tau r\log n)^{1/\tau}$. Besides, we focus on the sparse region in which the number of true null hypothesis is larger than that of the true alternative hypothesis (Donoho, Jin, 2006). In this case, $n_1=|\mathcal{H}_1|=n^{1-\beta}$ where $\beta< r<1$ (note that $\frac{n_1}{n}\to 0$). Based on the framework above, we derive the asymptotic FPR of SAC-BL algorithm.

Theorem 3.2. Suppose that the test statistic T_i corresponding to H_i satisfies the condition in Eq. (6) for $i \in [n]$. Then, for the p-values $p_1 = \Psi(\tilde{T}_1), p_2 = \Psi(\tilde{T}_3), \cdots, p_n = \Psi(\tilde{T}_n)$, the FPR of SAC-BL algorithm converges to zero in probability, namely

$$\mathrm{FPR}_{BL} = \frac{FP}{FP + TN} \rightarrow 0$$
 in probability

as $n \to \infty$.

The proof of Theorem 3.2 is presented in Appendix B.1. Based on the Theorem 3.2, we have the following theoretical result.

Theorem 3.3. Suppose that the conditions in Theorem 3.2 hold. Then, we have

$$\frac{FP}{FP+TN} \stackrel{P}{\longrightarrow} 0 \quad \textit{if and only if} \quad \lim_{n \to \infty} \mathbb{E}\left(\frac{FP}{FP+TN}\right) \to 0.$$

The proof of Theorem 3.3 is presented in Appendix B.2.

Theorem 3.2 indicates that as the number of testing samples tends to infinity, the SAC-BL algorithm performs well on anomalous examples, provided that the distribution of the scores belongs to the generalized Gaussian-like distribution family. However, such conditions are overly restrictive in real-world applications, as the distribution of real-world data is often complex and typically unknown. Besides, for the widely used AD benchmark MVTech (Bergmann et al., 2019b), the testing set for the class "Pill" only contains 167 images and the SAC-BL attains the image-level FPR of merely 43% on it (see Table 1). Hence, we need to explore how to improve the performance of SAC-BL algorithm on the anomalous data under the condition of finite examples for the practical AD task.

4 Decreasing the FPR of SAC-BL algorithm

In this section, we explore how to reduce the FPR of SAC-BL algorithm while controlling its FDR at the prescribed level. Our main focus is to redesign the BL algorithm.

⁴Under the null hypothesis, all of test statistic have the same function. So, we use the same survival function.

⁵Note that the observations of test statistic can be regarded as its sample, thus the test statistic and its observations have the same distribution.

Note that $FPR = \frac{FP}{FP + TN} = \frac{|\mathcal{R}^c \cup \mathcal{H}_1|}{|\mathcal{H}_1|}$. where \mathcal{R}^c is the complement of \mathcal{R} . For a given testing set, FP + TN is equal to the number of true anomalous examples in testing set. Therefore, we can reduce the FPR by reducing FP, equivalent to increasing the number of rejecting null hypotheses $|\mathcal{R}|$. Recall the BL algorithm: $i_{BL}^* := \max\left\{i \in [1:n]: p_{(i)}^\gamma \leq \frac{\delta \alpha i}{n}\right\}$. The null hypothesis $H_{i,0}$ is rejected if and only if $p_{(i)}^\gamma \leq \frac{\delta \alpha}{n} i_{BL}^*$. Denote

$$\xi_{BL} = \frac{\delta \alpha}{n} i_{BL}^*, \qquad \xi_i = \frac{\delta \alpha i}{n}, \qquad \mathcal{C} = \left\{ \frac{1\delta \alpha}{n}, \frac{2\delta \alpha}{n}, \cdots, \frac{n\delta \alpha}{n} \right\}.$$

Note that ξ_{BL} only take the value in \mathcal{C} . For a given p-value p_i satisfying $p_i^{\gamma} > \frac{\delta \alpha}{n} \xi_{BL}$, our idea is to develop a strategy that changes the value of p_i to \tilde{p}_i such that $\tilde{p}_i^{\gamma} = \xi_{BL}$ without violating the core conditions of controlling FDR for the SAC-BL algorithm. Then we could increase the number of rejecting null hypotheses and further reduce the FPR of SAC-BL algorithm.

Denote by Λ the random variable uniformly distributed on (0,1) independent of p-values and we define

$$\Upsilon_i(x) = x^{\gamma} \cdot \mathbf{1} (x^{\gamma} \leq \xi_i) + \xi_i \cdot \mathbf{1} (\Lambda \xi_i < \Lambda x^{\gamma} \leq \xi_i).$$

Moreover, for each $i \in [n] := \{1, 2, 3, \dots, n\}$, we denote

$$\epsilon_i = \sum_{j=1}^n \mathbf{1} (p_j \le p_i), \qquad \kappa(i) = \underset{j \ge \epsilon_i}{\operatorname{arg max}} \frac{j}{p_j^{\gamma}}.$$

If there are multiple indices that satisfy the argmax, we take the largest index. Then, we define the stochastic BL (SBL) algorithm as follows.

Definition 4.1. (Stochastic BL Algorithm) Given the random variable Λ uniformly distributed on (0,1), p-values p_1,p_2,\cdots,p_n corresponding to the null hypotheses $H_{1,0},H_{2,0},\cdots,H_{n,0}$ and the prespecified level $\alpha\in(0,1)$. For each $i\in[n]$, define

$$\Upsilon_{\kappa(i)}(p_i) = p_i^{\gamma} \cdot \mathbf{1} \left(p_i^{\gamma} \le \xi_{\kappa(i)} \right) + \xi_{\kappa(i)} \cdot \mathbf{1} \left(\Lambda \xi_{\kappa(i)} < \Lambda p_i^{\gamma} \le \xi_{\kappa(i)} \right)$$

and

$$i_{BL}^* := \max \left\{ i \in [1:n] : \frac{1}{p_{(i)}^{\gamma}} \geq \frac{n}{\delta \alpha i} \right\} = \max \left\{ i \in [1:n] : p_{(i)}^{\gamma} \leq \frac{\delta \alpha i}{n} \right\},$$

where γ, δ are two positive real numbers and satisfy $\gamma + \delta \leq 1$. Then, the null hypothesis $H_{i;0}$ is rejected if

$$\Upsilon_{\kappa(i)}(p_i) \leq \frac{\delta \alpha}{n} i_{BL}^*$$

The SBL algorithm in Definition 4.1 is mainly used to derive our theoretical results. Additionally, we have another simple version of SBL algorithm.

Definition 4.2. (Stochastic BL algorithm: version 2) Given the p-values p_1, p_2, \dots, p_n corresponding to the null hypotheses $H_{1,0}, H_{2,0}, \dots, H_{n,0}$, let $p_{(i)}$ be the *i*-th order statistics from the smallest to the largest. Denote by Λ the random variable uniformly distributed on (0,1). For a pre-specified level $\alpha \in (0, 1)$, define

$$i_{SBL}^* := \max \left\{ i \in [1:n] : \frac{1}{p_{(i)}^{\gamma}} \ge \frac{n\Lambda}{\delta \alpha i} \right\}$$
 (7)

where γ, δ are two positive real number and satisfies $\gamma + \delta \leq 1$. Then, the null hypothesis $H_{(i),0}$ is rejected if $i \leq i_{SBL}^*$.

The Following theory reveals the relation between the SBL algorithms in Definition 4.1 and the one in Definition 4.2.

Theorem 4.3. The SBL algorithm in Definition 4.1 is equivalent to the one in Definition 4.2.

The proof of Theorem 4.3 is presented in Appendix B.3. Obviously, the SBL algorithm in Definition 4.2 has less computation steps than the one in Definition 4.1, and thus is more suitable for the practical

Algorithm 1: Practical SAC-SBL Algorithm

Input: Training set \mathcal{T}^{tra} , calibrated set $\mathcal{T}^{cal} = \{X_1^{cal}, X_2^{cal}, \dots, X_k^{cal}\}$ testing set $\mathcal{T}^{test} = \{X_1^{test}, X_2^{test}, \dots, X_n^{test}\}$, prescribed level $\alpha \in (0,1)$, generator of synthetic anomalous example $G(\cdot)$.

- 1 Utilize $G(\cdot)$ to construct the new training set \mathcal{T}^{mix} based on the training set \mathcal{T}^{tra} .
- 2 Train the SAC network on \mathcal{T}^{mix} , and then obtain the score function $s(\cdot)$ for images or pixels.
- 3 Calculate the empirical p-value corresponding to X_i^{test} :

$$p_i = p(X_i^{test}) = \frac{\sum_{j=1}^k \mathbb{1}(s(X_j^{cal}) \ge s(X_i^{test})) + 1}{k+1}.$$
 (8)

- 4 Draw a sample Λ from the uniform distribution on (0,1).
- 5 Determine the index i_{BL}^* :

$$i_{SBL}^* := \max \left\{ i \in [n] : \frac{1}{p_{(i)}^{\gamma}} \ge \frac{n\Lambda}{\delta \alpha i} \right\}$$

Output: Declare that $X_{(i)}^{test}$ is anomalous if $i \leq i_{SBL}^*$.

applications. The version of SBL algorithm in Definition 4.1 is used to establish the connection between the SBL algorithm and BL algorithm for the theoretical analysis.

In the context of anomaly detection, the underlying distribution information of normal data is usually unknown. Therefore, we can use the method in Eq. (5) to compute the p-values in practice. Combining the SAC network proposed by Ma et al. (2025b) and the SBL algorithm in Definition 4.2 yields our method, SAC-SBL. Its detailed steps are presented in Algorithm 1.

Now we present our core theoretical results to demonstrate the superiority of SAC-SBL algorithm over the SAC-BL algorithm in terms of FPR while controlling the FDR at the prescribed level.

Theorem 4.4. Given the random variable Λ uniformly distributed on (0,1), the p-values p_1, p_2, \dots, p_n corresponding to the null hypotheses $H_{1,0}, H_{2,0}, \dots, H_{n,0}$ in Eq. (8) and the prespecified level $\alpha \in (0, 1)$. The following conclusions hold:

1. the FDR of SAC-SBL algorithm satisfies

$$FDR_{SAC-SBL} \leq \alpha;$$

2. For the index sets \mathcal{R}_{SAC-BL} and $\mathcal{R}_{SAC-SBL}$, we have

$$\mathbb{P}\left(\mathcal{R}_{SAC-BL} \subseteq \mathcal{R}_{SAC-SBL}\right) = 1;$$

3. If there exists a p-value p_i which satisfies $\mathcal{P}\left(p_i^{\gamma} < \frac{\delta \alpha i_{BL}^*}{n}\right) > 0$, then we have

$$\mathbb{P}\left(\left|\mathcal{R}_{SAC-BL}\right| < \left|\mathcal{R}_{SAC-SBL}\right|\right) > 0.$$

The proof of Theorem 4.4 is presented in Appendix B.4. Theorem 4.4 suggests that the SAC-SBL algorithm does not reject fewer null hypotheses than the SAC-BL algorithm almost surely while controlling the FDR at the prescribed level. In other words, SAC-BL algorithm tends to classify more testing examples as anomalous data. Based on Theorem 4.4, we can easily obtain the following theoretical results.

Theorem 4.5. Suppose the conditions in Theorem 4.4 hold, then the FPR of the SAC-BL algorithm and that of SAC-SBL algorithm satisfy

$$\mathbb{P}\left(FPR_{SAC-BL} \ge FPR_{SAC-SBL}\right) = 1.$$

Moreover, if there exists a p-value p_i which satisfies $\mathcal{P}\left(p_i^{\gamma} < \frac{\delta \alpha i_{BL}^*}{n}\right) > 0$, then we have

$$\mathbb{P}\left(FPR_{SAC-BL} > FPR_{SAC-SBL}\right) > 0.$$

Table 1: Experimental results (%) on **MVTec**. We compare the performance between SAC-BL algorithm and SAC-SBL based on the same trained SAC network. ↑ indicates larger values are better and vice versa.

Category	Method	Image-level			Pixel-level		
		$TPR\uparrow$	FPR ↓	F1-score ↑	TPR \uparrow	$FPR\downarrow$	F1-score ↑
Capsule Bottle	SAC-BL	100.0	35.78	54.12	99.25	41.82	93.24
	SAC-SBL	100.0	26.61	61.33	99.25	34.77	99.43
	SAC-BL	95.00	$\bar{3.17}^{-1}$	92.68	95.40	3.63	97.42
	SAC-SBL	95.00	0.00	97.44	95.40	3.62	97.53
Carpet	SAC-BL	⁻ 10 0 . 0 -	15.73	80.00	90.39	4.94	94.87
	SAC-SBL	92.14	4.49	83.64	90.37	4.93	94.90
Leather	SAC-BL	- <u>1</u> 0 <u>0</u> . <u>0</u> -	$-4.\bar{3}5^{-}$	94.12	98.19	4.24	99.06
	SAC-SBL	100.0	0.00	100.0	98.21	4.16	99.08
Pill	SAC-BL	- 100.0 -	43.26	46.02	95.28	4.78	97.42
	SAC-SBL	100.0	29.08	55.91	95.27	4.77	97.49
	SAC-BL	⁻ 100.0 ⁻	30.00	90.91	96.63	$-42.6\bar{2}$	90.18
Transistor	SAC-SBL	100.0	30.00	90.91	96.62	31.58	97.22
Tile	SAC-BL	- 100.0 -	Ī.Ī9¯	98.51	95.01	$-\bar{0}.\bar{7}\bar{7}$	97.38
	SAC-SBL	100.0	0.00	100.0	95.01	0.77	97.38
	SAC-BL	98.28	-21.74	84.44	93.33	19.89	95.96
Cable	SAC-SBL	96.55	15.22	87.50	92.85	16.95	96.01
	SAC-BL	- 100.0 -	-0.84^{-1}	98.46	97.32	3.83	98.60
Zipper	SAC-SBL	100.0	0.84	98.46	97.32	3.83	98.60
Toothbrush	SAC-BL	- 100.0 -	$\bar{3}.\bar{3}\bar{3}$	96.00	94.04	1.76	96.90
	SAC-SBL	100.0	0.00	100.00	94.05	1.71	96.92
Metal_nut	SAC-BL	- 100.0 -	1.08	97.78	96.31	3.63	97.64
	SAC-SBL	100.0	0.00	100.0	96.07	3.28	97.78
Hazelnut	SAC-BL	_ 100.0 _	1.43	98.77	98.99	10.24	95.27
	SAC-SBL	100.0	0.00	100.0	98.92	8.63	99.35
Screw	SAC-BL	- 100.0 -	⁻ 72.27 ⁻	48.81	99.40	12.80	95.67
	SAC-SBL	100.0	68.91	50.00	99.40	8.77	99.69
Grid	SAC-BL	100.0	19.30	79.25	97.56	0.63	98.76
	SAC-SBL	100.0	1.75	97.67	97.57	0.61	98.77
Wood	SAC-BL	- 100.0 -	8.33	88.37	92.69	7.09	94.92
	SAC-SBL	100.0	0.00	100.0	92.70	6.99	96.07
Average	SAC-BL	99.55	17.45	83.22	95.99	10.85	96.22
	SAC-SBL	98.91	11.79	88.19	95.93	9.03	97.75

The proof of theorem 4.5 is presented in Appendix B.5. Theorem 4.5 indicates that the FPR of the SAC-BL algorithm is not smaller than that of SAC-SBL algorithm almost surely. Besides, the condition "there exists a p-value p_i which satisfies $\mathcal{P}\left(p_i^{\gamma} < \frac{\delta \alpha i_{BL}^*}{n}\right) > 0$ " is nearly always satisfied in practice, since it only excludes the trivial situation where all hypotheses are rejected. Therefore, our proposed method can achieve a smaller FPR over the SAC-BL algorithm.

5 Experiment

In this section, we perform extensive comparison experiments to verify the effectiveness of our SAC-SBL method.

5.1 Experimental Settings

Baseline. We compare the decision-making performance of our proposed SAC-SBL method with the SAC-BL method (Ma et al., 2025b), using the default settings for SAC-BL.

Datasets. Experiments are conducted on three widely used anomaly detection datasets. The MVTec dataset (Bergmann et al., 2019b) consists of 5354 images across 15 object and texture categories. The VisA dataset (Zou et al., 2022) is an industrial anomaly dataset comprising 10821 images from 12 objects across 3 domains. The BTAD dataset (Mishra et al., 2021) includes 2830 images of 3 industrial products, showcasing body and surface defects.

Evaluation Metrics. We use the true positive rate (TPR), false positive rate (FPR) and f1-score (F1) to evaluate the effectiveness of the proposed method.

Table 2: Experimental results (%) on **VisA**. We compare the performance between SAC-BL algorithm and SAC-SBL based on the same trained SAC network. ↑ indicates larger values are better and vice versa.

Category		Image-level			Pixel-level		
	Method	TPR ↑	FPR ↓	F1-score ↑	TPR ↑	$FPR \downarrow$	F1-score ↑
Candle	SAC-BL	100.0	49.00	80.97	99.88	55.26	95.87
	SAC-SBL	100.0	46.00	83.30	99.88	52.26	99.90
Capsules	SAC-BL	_ 100.0 _	52.00	70.59	98.39	9.83	99.16
	SAC-SBL	98.33	46.00	71.52	98.39	6.72	99.18
Cashew	SAC-BL	100.0	87.00	54.05	99.30	67.93	90.88
	SAC-SBL	100.0	85.00	54.05	99.25	64.51	99.24
Chewinggum	SAC-BL	$\bar{1}00.\bar{0}$	15.00	86.96	94.38	4.94	97.10
	SAC-SBL	100.0	14.00	87.72	94.85	4.92	97.33
	SAC-BL	- 1 0 0 .0 -	67.00	56.88	99.44	$^{-}65.78$	92.19
Fryum	SAC-SBL	100.0	57.00	63.69	99.42	65.39	98.94
	SAC-BL	100.0	81.00	71.17	99.91	18.30	99.95
Macaroni1	SAC-SBL	100.0	79.00	76.68	99.91	18.21	99.95
	SAC-BL	$\bar{1}00.\bar{0}^{-}$	55.00	74.37	99.92	30.89	93.46
Macaroni2	SAC-SBL	100.0	48.00	80.65	99.92	25.98	99.95
	SAC-BL	98.00	69.00	70.41	95.98	13.36	97.92
Pcb1	SAC-SBL	98.00	64.00	73.68	95.98	13.36	97.92
Pcb2	SAC-BL	97.00	45.00	80.17	92.97	$\bar{30.77}$	96.29
	SAC-SBL	96.00	31.00	83.56	92.98	30.69	96.33
	SAC-BL	⁻ 99.01 ⁻	56.00	76.82	99.41	39.24	99.60
Pcb3	SAC-SBL	98.02	50.00	79.20	99.41	38.94	99.66
	SAC-BL	98.02	13.00	90.96	98.08	24.94	98.87
Pcb4	SAC-SBL	97.03	7.00	95.15	98.08	24.92	98.95
Pipe_fryum	SAC-BL	_ <u>100.0</u> _	100.0	50.00	99.34	$\bar{7}3.1\bar{5}$	91.75
	SAC-SBL	100.0	96.00	50.25	99.34	60.10	99.21
A	SAC-BL	99.34	57.42	71.95	98.08	36.20	96.09
Average	SAC-SBL	98.95	51.92	74.95	98.12	33.83	98.88

Implementation Details. In SAC-SBL, we repeat the stochastic perturbation 100 times and take the meaning value. All experiments are conducted on a workstation with eight NVIDIA GeForce GTX 3090 GPUs and two 2.2GHZ Intel CPUs.

5.2 Experimental Results

We evaluate our proposed method against the SAC-BL algorithm on three datasets, demonstrating its superior performance and generalization. The image-level and pixel-level results on MVTec are presented in Table 1, and the results on VisA are shown in Table 2. because of the space limitation, the results in BTAD are reported in Appendix A. From the Tables 1 and 2, we can see: 1) Our method achieves the comparable performance in terms of TPR. For example, in Table 1, our method have the same image-level TPR as the SAC-BL algorithm in 13 classe among 15 classes. On average, the image-level and pixel-level TPRs of two methods are also comparable. 2) Our method yields lower FPR and higher F1-scores across all classes, regardless of image-level or pixel-level evaluation. As shown in Table 1, compared to the SAC-BL algorithm, our method reduce the image-level FPR from 21.74% to 15.22%, and improve the image-level F1-score from 84.44% to 87.5%, the direct improvements of 6.52% and 3.06%, respectively. 3) In those classes where the SAC-BL algorithm struggles to identify anomalous examples, our method can considerably reduce the FPR. For instance, For classes "Carpet" and "Pill", our method achieve the improvements of 11.24% and 14.14% in terms of image-level FPR. Overall, these experimental results demonstrate the superiority of our method over the SAC-BL algorithm.

6 Conclusion

In this paper, we focus on investigating the SAC-BL algorithm in terms of FPR. First, we demonstrate that the FPR of SAC-BL algorithm converges to zero in probability based on the generalized Gaussian-like distribution family. Then, we propose a novel SAC-SBL algorithm which can reduce the FPR of SAC-BL algorithm while controlling the FDR at the prescribed level. Finally, we conduct extensive experiments to verify the effectiveness of our proposed method.

Acknowledgment

This work is supported by the National Natural Science Foundation of China under Grant 624B2106, the Key R&D Program of Hubei Province under Grant 2024BAB038, the National Key R&D Program of China under Grant 2023YFC3604702, the Fundamental Research Funds for the Central Universities under Grant 2042025kf0045.

References

- Akcay Samet, Abarghouei Amir Atapour, Breckon Toby P. GANomaly: Semi-supervised Anomaly Detection via Adversarial Training // ACCV. 11363. 2018. 622–637.
- Benjamini Yoav, Hochberg Yosef. Controlling the false discovery rate: a practical and powerful approach to multiple testing // Journal of the Royal statistical society: series B (Methodological). 1995. 57, 1. 289–300.
- Benjamini Yoav, Yekutieli Daniel. The control of the false discovery rate in multiple testing under dependency // Annals of statistics. 2001. 1165–1188.
- Bergmann Paul, Fauser Michael, Sattlegger David, Steger Carsten. MVTec AD A Comprehensive Real-World Dataset for Unsupervised Anomaly Detection // CVPR. 2019a. 9592–9600.
- Bergmann Paul, Fauser Michael, Sattlegger David, Steger Carsten. MVTec AD–A comprehensive real-world dataset for unsupervised anomaly detection // Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019b. 9592–9600.
- Bergmann Paul, Löwe Sindy, Fauser Michael, Sattlegger David, Steger Carsten. Improving Unsupervised Defect Segmentation by Applying Structural Similarity to Autoencoders // VISIGRAPP. 2019c. 372–380.
- Blanchard Gilles, Roquain Etienne. Two simple sufficient conditions for FDR control // Electronic Journal of Statistics. 2008. 2. 963–992.
- Casella George, Berger Roger L. Statistical inference. 2002.
- Defard Thomas, Setkov Aleksandr, Loesch Angelique, Audigier Romaric. PaDiM: A Patch Distribution Modeling Framework for Anomaly Detection and Localization // ICPR. 12664. 2020. 475–489.
- Deng Hanqiu, Li Xingyu. Anomaly Detection via Reverse Distillation from One-Class Embedding // CVPR. 2022. 9727–9736.
- Donoho David, Jin Jiashun. Higher criticism for detecting sparse heterogeneous mixtures // Annals of statistics. 2004. 32, 3. 962–994.
- *Donoho David, Jin Jiashun*. Asymptotic minimaxity of false discovery rate thresholding for sparse exponential data // Annals of Statistics. 2006. 34, 1. 2980–3018.
- *Eicker Friedhelm.* The asymptotic distribution of the suprema of the standardized empirical processes // The Annals of Statistics. 1979. 7, 1. 116–138.
- Gong Dong, Liu Lingqiao, Le Vuong, Saha Budhaditya, Mansour Moussa Reda, Venkatesh Svetha, Hengel Anton van den. Memorizing Normality to Detect Anomaly: Memory-Augmented Deep Autoencoder for Unsupervised Anomaly Detection // ICCV. 2019. 1705–1714.
- Gong Xiuwen, Yuan Dong, Bao Wei. Understanding Partial Multi-Label Learning via Mutual Information // NeurIPS. 2021. 4147–4156.
- Gong Xiuwen, Yuan Dong, Bao Wei. Partial Label Learning via Label Influence Function // ICML. 162. 2022. 7665–7678.
- Gong Xiuwen, Yuan Dong, Bao Wei. Discriminative Metric Learning for Partial Label Learning // IEEE Transactions on Neural Networks and Learning Systems. 2023a. 34, 8. 4428–4439.

- Gong Xiuwen, Yuan Dong, Bao Wei, Luo Fulin. A Unifying Probabilistic Framework for Partially Labeled Data Learning // IEEE Transactions on Pattern Analysis and Machine Intelligence. 2023b. 45, 7, 8036–8048.
- Haselmann Matthias, Gruber Dieter P., Tabatabai Paul. Anomaly Detection Using Deep Learning Based Image Completion // ICMLA. 2018. 1237–1242.
- Huang Chao, Shi Yushu, Zhang Bob, Lyu Ke. Uncertainty-aware prototypical learning for anomaly detection in medical images // Neural Networks. 2024. 175. 106284.
- Huang Xiaowei, Kroening Daniel, Ruan Wenjie, Sharp James, Sun Youcheng, Thamo Emese, Wu Min, Yi Xinping. A survey of safety and trustworthiness of deep neural networks: Verification, testing, adversarial attack and defence, and interpretability // Computer Science Review. 2020. 37. 100270.
- Ingster Yuri, Suslina Irina A. Nonparametric goodness-of-fit testing under Gaussian models. 169. 2003.
- Jin Jiashun, Ke Zheng Tracy. Rare and weak effects in large-scale inference: methods and phase diagrams // Statistica Sinica. 2016. 1–34.
- Li Chun-Liang, Sohn Kihyuk, Yoon Jinsung, Pfister Tomas. CutPaste: Self-Supervised Learning for Anomaly Detection and Localization // CVPR. 2021. 9664–9674.
- Lv Hui, Yue Zhongqi, Sun Qianru, Luo Bin, Cui Zhen, Zhang Hanwang. Unbiased Multiple Instance Learning for Weakly Supervised Video Anomaly Detection // CVPR. 2023. 8022–8031.
- Ma Xinsong, Wang Zekai, Liu Weiwei. On the Tradeoff Between Robustness and Fairness // NeurIPS 2022. 2022.
- Ma Xinsong, Wu Jie, Liu Weiwei. A Closer Look at Generalized BH Algorithm for Out-of-Distribution Detection // Forty-second International Conference on Machine Learning. 2025a.
- *Ma Xinsong, Wu Jie, Liu Weiwei.* SAC-BL: A hypothesis testing framework for unsupervised visual anomaly detection and location // Neural Networks. 2025b. 185. 107147.
- Ma Xinsong, Zou Xin, Liu Weiwei. A Provable Decision Rule for Out-of-Distribution Detection // ICML. 2024.
- *Ma Xinsong, Zou Xin, Liu Weiwei*. A Online Statistical Framework for Out-of-Distribution Detection // Forty-second International Conference on Machine Learning. 2025c.
- Mishra Pankaj, Verk Riccardo, Fornasier Daniele, Piciarelli Claudio, Foresti Gian Luca. VT-ADL: A vision transformer network for image anomaly detection and localization // 2021 IEEE 30th International Symposium on Industrial Electronics (ISIE). 2021. 01–06.
- Pang Guansong, Shen Chunhua, Cao Longbing, Hengel Anton Van Den. Deep learning for anomaly detection: A review // ACM computing surveys (CSUR). 2021. 54, 2. 1–38.
- Roth Karsten, Pemula Latha, Zepeda Joaquin, Schölkopf Bernhard, Brox Thomas, Gehler Peter V. Towards Total Recall in Industrial Anomaly Detection // CVPR. 2022. 14298–14308.
- Storey John D. A direct approach to false discovery rates // Journal of the Royal Statistical Society: Series B (Statistical Methodology). 2002. 64, 3. 479–498.
- Tien Tran Dinh, Nguyen Anh Tuan, Tran Nguyen Hoang, Huy Ta Duc, Duong Soan Thi Minh, Nguyen Chanh D. Tr., Truong Steven Q. H. Revisiting Reverse Distillation for Anomaly Detection // IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023, Vancouver, BC, Canada, June 17-24, 2023. 2023. 24511–24520.
- Wang G, Han S, Ding E, Huang D. Student-teacher feature pyramid matching for unsupervised anomaly detection // arXiv preprint arXiv:2103.04257. 2021. 1.
- Yan Xudong, Zhang Huaidong, Xu Xuemiao, Hu Xiaowei, Heng Pheng-Ann. Learning Semantic Context from Normal Samples for Unsupervised Anomaly Detection // AAAI. 2021. 3110–3118.

- Yu Chenglin, Ma Xinsong, Liu Weiwei. Delving into Noisy Label Detection with Clean Data // ICML. 202. 2023. 40290–40305.
- Zhang Shuai, Zhou Chuan, Liu Yang, Zhang Peng, Lin Xixun, Pan Shirui. Conformal Anomaly Detection in Event Sequences // ICML. 2025.
- *Zhang Shuai, Zhou Chuan, Zhang Peng, Liu Yang, Li Zhao, Chen Hongyang.* Multiple Hypothesis Testing for Anomaly Detection in Multi-type Event Sequences // ICDM. 2023. 808–817.
- Zou Yang, Jeong Jongheon, Pemula Latha, Zhang Dongqing, Dabeer Onkar. Spot-the-difference self-supervised pre-training for anomaly detection and segmentation // European Conference on Computer Vision. 2022. 392–408.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: We clearly delineate this work's contributions in Introduction, as well as in the abstract.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations in Appendix C.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: All assumptions and results are clearly stated, and all proofs are provided in Appendix.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide a detailed algorithm and description of the exact setup of our experiments.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived
 well by the reviewers: Making the paper reproducible is important, regardless of
 whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Ouestion: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [No]

Justification: All datasets used in this study are publicly available. Open source code will be provided at a later date.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/ public/quides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https: //nips.cc/public/quides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- · At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Ouestion: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: Experimental settings and hyperparameters are well described.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Our method is based on the statistical hypothesis framework. The factors that influence the statistical significance have been discussed.

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).

- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: The computational resources have been provided in Section 5.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our work adheres to the NeurIPS Code of Ethics.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [No]

Justification: There are no potential societal consequences of our work.

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.

- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not pose such risks.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: The assets are properly mentioned and cited in experimental settings.

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

- The answer NA means that the paper does not release new assets.
- · Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- · For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The paper does not involve LLMs as any important, original, or non-standard components.

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.